
Review
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and leukemia
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Abstract

During the last decades, remarkable progress has been made in
further understanding the complex molecular regulatory networks
that maintain hematopoietic stem cell (HSC) function. Cellular and
organismal metabolisms have been shown to directly instruct epi-
genetic alterations, and thereby dictate stem cell fate, in the bone
marrow. Epigenetic regulatory enzymes are dependent on the
availability of metabolites to facilitate DNA- and histone-modifying
reactions. The metabolic and epigenetic features of HSCs and their
downstream progenitors can be significantly altered by environ-
mental perturbations, dietary habits, and hematological diseases.
Therefore, understanding metabolic and epigenetic mechanisms
that regulate healthy HSCs can contribute to the discovery of novel
metabolic therapeutic targets that specifically eliminate leukemia
stem cells while sparing healthy HSCs. Here, we provide an in-
depth review of the metabolic and epigenetic interplay regulating
hematopoietic stem cell fate. We discuss the influence of meta-
bolic stress stimuli, as well as alterations occurring during leuke-
mic development. Additionally, we highlight recent therapeutic
advancements toward eradicating acute myeloid leukemia cells by
intervening in metabolic and epigenetic pathways.
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Introduction

For many years, hematopoietic stem cells (HSCs) have been a valu-

able model for studying tissue regeneration and stem cell mecha-

nisms. Residing at the top of a hierarchically organized system,

HSCs are tighly regulated to retain the unique capability to replenish

all blood cells. Cellular fitness of HSCs is attained by a deep

quiescence state to prevent DNA damage and exhaustion of the stem

cell pool owing to excessive cell divisions (Rossi et al, 2007; Weiss &

Ito, 2014; Walter et al, 2015). Consequently, during homeostasis,

almost the entire HSC compartment (~ 90%) resides in the resting

phase, G0 (Cheshier et al, 1999; Zhang et al, 2022b), while the

downstream multipotent progenitors are actively cycling to maintain

daily turnover (Sun et al, 2014; Busch et al, 2015; Sawai et al, 2016).

HSC quiescence is associated with glycolytic energy production

rather than oxidative phosphorylation (OXPHOS), ensuring low

reactive oxygen species (ROS) production, which can be harmful to

the genomic integrity (Ludin et al, 2014; Mistry et al, 2023) (Box 1;

Fig 1A). Additionally, low levels of metabolic activators and protein

synthesis are hallmarks of quiescent HSCs (Chen et al, 2008; Gan

et al, 2008; Signer et al, 2014; Ito et al, 2016; Scognamiglio et al,

2016; Vannini et al, 2016; Cabezas-Wallscheid et al, 2017). During

emergencies such as severe bleeding, infections, or chemotherapy,

HSCs must guarantee sufficient cellular compensation by exiting

their quiescent state to generate the downstream progenitors

(Randall & Weissman, 1997; Cheshier et al, 2007; Hormaechea-

Agulla et al, 2020). Higher energy demands of proliferative activated

HSCs are compensated by a reversible metabolic switch to OXPHOS

(Suda et al, 2011). The switch of HSC functionality is governed by

epigenetic regulators that modulate chromatin accessibility. Under

these circumstances, chromatin remodeling complexes are essential

to modulate the positioning of nucleosomes on the DNA (Yoshida

et al, 2008; Kokavec et al, 2017; Lehnertz et al, 2017; Liu et al, 2018;

Xu et al, 2018; Han et al, 2019; Tu et al, 2021). Moreover, histone

tails of the nucleosome core can be subjected to posttranslational

modifications (PTMs), including ac(et)ylation, methylation, phos-

phorylation, and ubiquitination. Next to modulating chromatin

accessibility, DNA methylation reactions are indispensable to regu-

late stemness functions (Farlik et al, 2016). Malfunction of these cel-

lular mechanisms can lead to the dysfunction of HSC survival,

proliferation, and differentiation processes.

In the context of aberrant hematopoiesis including acute myeloid

leukemia (AML), the metabolic state of leukemic cells remains con-

troversial. Some studies have implicated high glycolytic activity as a

driver of disease progression that can be targeted for eradicating

AML (Chapuis et al, 2019; Kreitz et al, 2019). However, emerging
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evidence suggests that leukemic stem cells (LSCs), which are respon-

sible for leukemia initiation, maintenance, and recurrence (O’Reilly

et al, 2021), are metabolically less active compared to the blast cell

population and cannot mobilize to enhance glycolysis. Instead, LSCs

are dependent on OXPHOS, a more efficient method of ATP produc-

tion (Lagadinou et al, 2013) (Box 1; Fig 1B). The distinct metabolic

profiles of LSCs promote resistance to traditional chemotherapy and

may represent a strong determinant for disease outcome (Sriskantha-

devan et al, 2015). However, studying LSCs has been challenging

due to the lack of reliable surface markers, making it difficult to dis-

sect the metabolic differences between the LSC and the blast popula-

tion. AML progression has also been shown to be regulated by

epigenetic mechanisms. Sequencing data from The Cancer Genome

Atlas (TCGA) revealed that 30% of the genes mutated in AML occur

within chromatin modifiers and 44% in DNA modification genes

(DNMT3A and TET2) (Ley et al, 2013).

Previous work has shown that the activity of numerous epige-

netic modifiers relies on specific metabolic intermediates serving as

cofactors and substrates to facilitate DNA- and histone-modifying

reactions and modulate chromatin accessibility, eventually altering

transcriptional output (Kaelin & McKnight, 2013; Keating & El-Osta,

2015; Wiese & Bannister, 2020). Subsequently, these epigenetic

modifications contribute to the metabolic flux by altering the tran-

scriptional regulation of metabolic factors. As a result, disturbances

in either the epigenetic or metabolic profile actively contribute to

healthy and malignant hematopoiesis. Advancements in low-input

techniques combined with novel functional assays have recently

provided the tools to investigate the interplay between central meta-

bolic pathways and epigenetic-transcriptional regulation involved in

stem cell fate determination (Takubo et al, 2013; Vannini et al,

2016; Agathocleous et al, 2017; Lozoya et al, 2018; Yang et al, 2019;

Kim et al, 2020; Sun et al, 2021).

Metabolism (Chandel et al, 2016; Nakamura-Ishizu et al, 2020;

Meacham et al, 2022) and epigenetics (Cullen et al, 2014; Jiang

et al, 2019a; Rodrigues et al, 2020) have been intensively reviewed

as separate themes. This review aims to highlight the instructive

contribution of metabolic regulators to epigenetics or vice versa,

which is a relatively unexplored field in HSC fate decisions. Further,

this review will discuss how these processes regulate leukemia in

general and specifically AML.
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Figure 1. Metabolic requirements of HSCs and LSCs.
(A) Hematopoietic stem cells (HSCs) exhibit a quiescent metabolic phenotype and thus show low TCA cycle and OXPHOS activity to sustain low ROS levels. On the other
hand, HSCs rely on high levels of autophagy and FAO to sequester damaged mitochondria and to maintain proper stem cell function. (B) Metabolic profiing of leukemic
stem cells (LSCs) revealed that these cells are more dependent on OXPHOS, which is more effective in producing ATP. LSCs can mitigate ROS levels by upregulating the
expression of ROS scavengers, regulating mitofission/fusion and autophagy. LSCs are more reliant on amino acids metabolism and fatty acid oxidation to supply the
compounds to fuel OXPHOS.
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BOX 1. Metabolic requirements of hematopoietic stem cells

Hematopoetic stem cells (Summarized in Fig 1A)
HSCs exhibit hypoxic metabolic profiles and therefore rely on anaerobic glycolytic energy production instead of mitochondrial oxidative phosphory-
lation (OXPHOS) (Simsek et al, 2010; Suda et al, 2011). Hypoxia-inducible factor 1 alpha (Hif-1a) is a metabolic master regulator, which directly
senses oxygen levels within the bone marrow niche. Hypoxic conditions stabilize Hif-1a, which then hetero-dimerizes with the constitutively
expressed Hif-1b and transcriptionally activates multiple glycolytic genes (Semenza, 2010; Simsek et al, 2010; Takubo et al, 2010). Although some
studies suggest the dispensability of Hif proteins for HSC self-renewal (Guitart et al, 2013; Vukovic et al, 2016), there is evidence that this transcrip-
tion factor is required to ensure proper HSC function (Takubo et al, 2010; Kocabas et al, 2012; Takubo et al, 2013). Upon activation, HSCs increase
glycolysis as well as the production of acetyl-coenzyme A (acetyl-CoA) to fuel the mitochondrial tricarboxylic acid (TCA) cycle (Liang et al, 2020).
The TCA cycle has a central role in amino acid metabolism and generates redox equivalents such as nicotinamide adenine dinucleotide hydride
(NADH), which are required for OXPHOS via the five electron transport chain (ETC) complexes (Mart�ınez-Reyes & Chandel, 2020). Several studies
have highlighted the importance of distinct ETC members in maintaining HSC function (Bejarano-Garc�ıa et al, 2016; Ans�o et al, 2017). For instance,
ETC complex II activity maintains complex III in proton pumping, while ATP synthesis is kept at very low levels (Morganti et al, 2019). In order to
meet their higher energy demands, ATP production is indispensable for HSC differentiation processes, but mitochondrial oxidation may be addition-
ally required during homeostasis to recycle NAD+/NADH+H+ and FAD/FADH2 and to maintain TCA cycle activity for the generation of amino acids
and fatty acids. Therefore, a reduced OXPHOS capacity can inhibit HSC differentiation causing the accumulation of dysfunctional stem cells (Takubo
et al, 2013).
Fatty acid oxidation (FAO) catabolizes fatty acids to acetyl-CoA, generating reductive equivalents for the ETC and intermediates for the TCA cycle. FAO
is a critical regulator of HSC cell fate determination that controls asymmetric versus symmetric cell division and contributes to redox balancing, since
it is an important source of nicotinamide dinucleotide phosphate (NADPH) (Ito et al, 2012; Jeon et al, 2012). Inhibition of carnitine palmitoyl-
transferase 1a (Cpt1a), the key rate-limiting enzyme of FAO, promotes HSC differentiation. On the other hand, activation of the FAO upstream regula-
tor peroxisome proliferator-activated receptor delta (Ppard) further supports HSC function (Ito et al, 2012).
In general, mitochondrial respiration produces ROS, which in physiological concentrations can be involved in normal stem cell proliferation and differ-
entiation (Ludin et al, 2014). However, extensive ROS levels trigger DNA damage resulting in malfunction, exhaustion of the stem cell pool and aging
(Cipolleschi et al, 1993; Weiss & Ito, 2014). HSCs can prevent excessive ROS levels by upregulating ROS-detoxifying enzymes like superoxide dismutase
and catalase via the forkhead box protein O (FoxO) family of transcription factors. FoxO factors have been shown to prevent ROS-mediated DNA dam-
age, promote HSC quiescence, and mediate apoptosis and autophagy (Miyamoto et al, 2007; Tothova et al, 2007; Tothova & Gilliland, 2007; Hagen-
buchner & Ausserlechner, 2013; Warr et al, 2013; Rimmele et al, 2015). As mitochondria are key to various metabolic processes, it is not surprising that
mitochondrial homeostasis, including mitochondria fusion, fission, and clearance via autophagy, is crucial to prevent HSC malfunction (Youle &
Narendra, 2011; Luchsinger et al, 2016; Ho et al, 2017; Jin et al, 2018; Hinge et al, 2020; Murakami et al, 2021). For example, several studies have
described important roles for the Pink/Parkin pathway and the autophagy-related conjugation system, which mediate the clearance of depolarized
mitochondria (Joshi & Kundu, 2013; Romero-Moya et al, 2013). Remarkably, a recent study provided evidence that HSCs carrying dysfunctional mito-
chondria have limited their self-renewal capacity (Hinge et al, 2020). Based on recent studies, the mitochondrial mass content in HSCs remains contro-
versial (de Almeida et al, 2017; Bonora et al, 2018; Morganti et al, 2019).
Overall, the metabolic state of HSCs determines their function by preventing stem cell exhaustion while contributing to blood homeostasis and emer-
gency hematopoiesis.

Leukemia and stem cells (summarized in Fig 1B)
Leukemia stem cells (LSCs) are dependent on OXPHOS rather than on glycolysis (Lagadinou et al, 2013; Kuntz et al, 2017; Pollyea et al, 2018; Raffel
et al, 2020; Jayavelu et al, 2022; Pulikkottil et al, 2022; Thomas et al, 2022). In contrast, blast cells are dependent on glycolysis. The expression of
metabolic genes in AML has a prognostic value in predicting disease outcomes. For example, a high OXPHOS molecular signature (RNA and protein)
is associated with poor prognosis in AML patients (Jayavelu et al, 2022). It has been speculated that the dependence of LSCs on OXPHOS may be
explained by the need to increase ATP production to fuel ATP-dependent drug efflux pumps such as the multidrug resistance proteins P-
glycoprotein and the multidrug resistance protein 1 (Wuchter et al, 2000; Robey et al, 2018). Relative ROS levels can be used to isolate and enrich
for LSCs (ROS-low) and blasts (ROS-high) from primary AML patient specimens irrespective of the cytogenetic classification (Lagadinou et al, 2013).
Amino acid metabolites are significantly enriched in ROS-low LSCs compared to ROS-high AML blasts. The ROS-low LSCs rely on amino acids to
fuel OXPHOS. The higher abundance of intracellular amino acids is attributed to increased expression of amino acid transporters in ROS-low LSCs
compared to ROS-high blast cells. The depletion of amino acids severely affects ROS-low LSCs survival, indicating that LSCs rely highly on amino
acid metabolism (Jones et al, 2018). LSCs preserve the low ROS state by increasing the expression of multiple glutathione pathway regulatory pro-
teins, including the ROS-scavenging enzyme glutathione peroxidase 3 (GPX3) (Herault et al, 2012; Pei et al, 2013). Deacetylating mitochondrial
enzyme sirtuin 3 (SIRT3) reprograms mitochondrial metabolism toward OXPHOS, but downregulates ROS generation by activating mitochondrial
antioxidant enzymes (Chen et al, 2011). AML cells with high SIRT3 deacetylase activity are more resistant to chemotherapy (Ma et al, 2019). In
LSCs, high ROS levels promote mitochondrial dynamics. During mitofission and mitofusion, damaged mitochondria are isolated and degraded. Mito-
chondrial fission 1 (FIS1) is critical for mitophagy by clearing the dysfunctional mitochondria, and high FIS1 is associated with poor prognosis in
AML patients (Tian et al, 2014). Therefore, the depletion of FIS1 reduces mitophagy and leads to the loss of LSC self-renewal potential (Pei
et al, 2018).
LSCs can confer chemo-resistance by utilizing the gonadal adipose tissue as a fuel for FAO (Ye et al, 2016). The very long-chain acyl-CoA dehydroge-
nase (VLCAD) is also critical for leukemia cell mitochondrial metabolism, and when targeted can lead to increased cell death. Lipotoxicity can occur
when there is an accumulation of excessive lipids, but not all lipids are equally as cytotoxic. Saturated fatty acids (SFA) have high cytotoxicity com-
pared to unsaturated fatty acids. Stearoyl-CoA Desaturase (SCD), an enzyme that catalyzes monounsaturated fatty acids (MUFA), normalizes the
MUFA/SFA ratio and protects AML cells from lipotoxicity (Subedi et al, 2021).
However, a current challenge in the field is to define LSCs based on markers and the limited numbers of cells to perform certain metabolic assays.
Future studies might further define the metabolic features of LSCs based on new markers and low input metabolomics tools.
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Histone acetylation is required for regulating stem
cell function

The activity of chromatin-modifying enzymes is highly dependent

on essential metabolic cofactors. For instance, acetyl-CoA is a donor

of acetyl groups for histone acetylation. Therefore, histone acetyla-

tion levels are dependent on the availability of nuclear acetyl-CoA

(Simithy et al, 2017). Lysine acetyl-transferases (KATs) catalyze the

transfer of the acetyl group from acetyl-CoA to lysine residues on

histones, and histone acetylation levels are typically accompanied

by chromatin decompaction, resulting in active transcription (Jiang

et al, 2019a). In contrast, Zn2+-dependent histone deacetylases

(HDACs) and NAD+-dependent sirtuin (SIRT) deacetylases remove

these groups from histones (Ryall et al, 2015), thereby leading to

chromatin compaction and transcriptional silencing. SIRTs are regu-

lated by the NAD+/NADH ratio in a cell which directly links their

activity to the cellular redox status (Ryall et al, 2015). Nuclear

acetyl-CoA is generated through several enzymatic reactions. This

includes acyl-CoA-synthetase short-chain family member 2 (ACSS2)

which generates acetyl-CoA from acetate, and ATP-citrate lyase

(ACLY) which produces acetyl-CoA from citrate. Both enzymes are

present in the cytosol and nucleus. Additionally, the pyruvate dehy-

drogenase (PDH) complex has been shown to translocate to the

nucleus during mitochondrial stress conditions and generate acetyl-

CoA “onsite” from pyruvate (Sivanand et al, 2018) (Fig 2A).

Hematopoetic stem cells
Histone acetylation

To preserve HSC function, the acetyl-CoA to NAD+ ratio must be

tightly regulated since these metabolites directly impact cellular

acetylation levels. Numerous studies have examined the roles of

KATs in regulating HSC function (reviewed in Rodrigues

et al, 2020). For example, the lysine acetyltransferase, Kat6a uses

acetyl-CoA as a substrate and is required to sustain a functional

stem cell pool (Sheikh et al, 2016). Interestingly, Kat6a acts syner-

gistically with Bmi1, a component of polycomb repressive complex

1 (PRC1) that regulates distinct repressive histone modifications,

such as methylation of H3K27, to maintain HSC transplantation fea-

tures and prevent aging (Sheikh et al, 2017; Nitta et al, 2020). How-

ever, very little is known about the bidirectional interplay between

histone acetylation and metabolism in HSCs. To date, most studies

have explored histone acetylation with regard to stem cell aging, a

cellular state that is accompanied with substantial metabolic

changes. Although it remains to be elucidated if cellular acetyl-CoA

levels are altered during aging, various metabolic pathways, includ-

ing glycolysis, FAO, and acetyl-CoA metabolism, are affected in

aged hematopoietic stem and progenitor cells (HSPCs) (Brown

et al, 2013; Mohrin et al, 2015; Hinge et al, 2020; Nakamura-Ishizu

et al, 2020; Zhang et al, 2020). For instance, glycolytic carbons are

redirected to pathways that branch out of the TCA cycle to fuel ana-

bolic processes, which can ultimately lead to decreased acetylation

levels (Hennrich et al, 2018; Poisa-Beiro et al, 2020). In agreement,

H4K16ac levels decline upon aging and have been linked to

increased Rho-GTPase Cdc42 activity resulting in the loss of HSC

polarity (Florian et al, 2012). Moreover, in the early phase of hema-

topoietic regeneration after treatment with the chemotherapeutic

agent 5-fluorouracil (FU), HSCs increase the activity of ACLY, and

thereby enhance histone acetylation. HSCs with reduced mitochon-

drial metabolism and ACLY activity maintain stem cell phenotypes,

whereas ACLY-dependent histone acetylation in HSCs promote dif-

ferentiation (Umemoto et al, 2022). However, in mice, deficiency of

ACLY alters chromatin accessibility of multiple C/EBP family tran-

scription factors known to regulate myeloid differentiation and is

sufficient to enhance myelopoiesis (Greenwood et al, 2022).

Histone deacetylation

The proliferative activation of HSCs is generally accompanied with a

metabolic switch from glycolysis to OXPHOS. Higher OXPHOS activity

leads to an increase in NAD+, a cofactor of SIRT histone deacetylases.

SIRTs are inextricably linked to major mitochondrial pathways, includ-

ing biogenesis, metabolism, and the unfolded protein response

(Verovskaya et al, 2019). Thus, SIRTs are indispensable for regulating

HSC metabolic features and are particularly relevant for preventing

mitochondrial dysfunction upon aging. For instance, Sirt7 levels

decline upon aging resulting in hyperactivation of HSCs. Sirt7 acts on

proximal promoters of ribosomal proteins and can mediate gene

repression by directly binding to the mitochondrial master transcrip-

tion factor, nuclear respiratory factor I (Nrf1) (Mohrin et al, 2015)

(Fig 2C). On the other hand, the loss of Sirt1 suppresses the activation

of genes regulating oxidative metabolism, thereby inhibiting HSC aging

◀ Figure 2. Acetyl-CoA and S-adenosyl-L-methionine are key metabolites that play additional roles in acetylation and methylation of the chromatin.

(A) Acetyl-CoA is required as a substrate for KATs. Nuclear acetyl-CoA can be generated through several reactions, e.g., metabolization of pyruvate by the enzyme pyru-
vate dehydrogenase (PDH) or of acetate by acyl-CoA-synthetase short-chain family member 2 (ACSS2). Alternatively, ATP-citrate lyase (ACLY) can generate acetyl-CoA
from citrate. Histone acetylation is linked to chromatin decompaction, resulting in active transcription, and usually dependent on nuclear acetyl-CoA availability. This
PTM must be balanced by histone deacetylation, which is conferred by Zn2+-dependent HDACs or NAD+-dependent SIRT deacetylases. (B) One-carbon metabolism
encompasses both the folate and one-carbon cycles to allow cells to generate the methyl groups and use them for methylation reactions. DNMTs and HMTs catalyze
the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the C5 position of cytosine on the DNA or histone. TET proteins are iron(II)- and a-KG-dependent
oxygenases that hydroxylate 5mC to 5hmC. The JmjC family uses Fe2+and 2-oxoglutarate as cofactors, whereas LSD use FAD as a cofactor, to catalyze lysine demethyla-
tion. (C) HSC and AML regulation via the interaction between metabolism and histone acetylation HSCs can be maintained through Sirt7 repression of Nrf1 to prevent
the transcription of ribosomal proteins. Although Sirt1 acts as a deacetylase, upon aging, Sirt1 is recruited to maintain histone H4 acetylation. Sirt1 knockout inhibits
protein synthesis and metabolic activation. ACLY can promote histone acetylation by catalyzing acetyl-CoA from citrate. In AML, numerous metabolic pathways function
to increase availability of acetyl-CoA to augment histone acetylation and contribute to disease development and poor survival. For instance, MTCH2 increases nuclear
pyruvate and PDH, which increases acetyl-CoA generation. Alternatively, acetyl-CoA can be metabolized from ACLY or butyrate. AMPK increases acetyl-CoA and histone
acetylation, which recruits BET proteins to initiate transcription of leukemia-initiating genes. ANP32A increases H3 acetylation and the expression of lipid metabolism
genes. KAT2A affects the transcription of genes associated with mitochondrial metabolism. (D) HSC and AML regulation via the interaction between metabolism and his-
tone methylation. Mitochondrial respiration in HSCs is regulated by FH1 and RISP. Additionally, FH1 regulates histone H3 trimethylation. RISP represses 2-HG, a metabo-
lite known to inhibit DNA and histone demethylases. In favorable AML, EZH2 epigenetically represses genes such as BCAT1 via H3K27 methylation in a dose-dependent
manner. BCAT1 increases branched chain amino acid (BCAA). In unfavorable AML, methionine deprivation leads to a profound loss of global H3K27 methylation and
H3K36 methylation. JMJD1C enhanced AML proliferation by upregulating of glycolytic and oxidative machinery.
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(Wang et al, 2022c) (Fig 2C). Investigating the NAD+ content during

HSC aging will be of interest for the field.

Dietary intakes can also directly contribute to alterations in epi-

genetic enzyme activities (see Box 2). In particular, high-fat diets

correlating with obesity and specific fatty acids, including choles-

terol, can change HDAC activity and provoke HSC malfunction simi-

lar to aging (Zhang et al, 2013; Salminen et al, 2014; Tie

et al, 2014). While the loss of HDAC1 or HDAC2 can be compen-

sated by each other, simultaneous ablation leads to severe HSC

defects causing anemia and cytopenia (Heideman et al, 2014).

Overall, acetyl-CoA provides a hub fed by various metabolic

pathways, multiple cellular and environmental signals and can be

integrated to modulate the transcriptional program of HSCs.

AML
Histone acetylation

Aberrant acetylation and deacetylation play a central role in the reg-

ulation of metabolic genes in AML. Higher expression of ACLY in

AML is associated with increased levels of fatty acids and TCA inter-

mediates and worse clinical outcome (Wang et al, 2019; Basappa

et al, 2020). Higher histone acetylation is also observed in AML

from higher Acidic Nuclear Phosphoprotein 32 Family Member A

(ANP32A) expression, a member of the inhibitor of the histone acet-

yltransferase complex. ANP32A is a marker of an unfavorable dis-

ease outcome. Genome-wide histone H3 acetylation studies revealed

that ANP32A deficiency reduces histone H3 acetylation to induce

the expression of genes involved in lipids metabolism (Yang

et al, 2018; Wang et al, 2022a). On the other hand, loss of KAT2A

affects the transcription of genes associated with mitochondrial and

nucleic acid metabolism and depletes leukemia stem like cells

(Domingues et al, 2020) (Fig 2C).

Dysregulation of metabolic regulators can also influence histone

acetylation levels mainly by modulating acetyl-CoA availability. In

AML, inhibition of the mitochondrial carrier homolog 2 (MTCH2)

increases nuclear pyruvate and PDH, which in turn augments

acetyl-CoA generation. This process induces histone acetylation and

subsequently promotes differentiation (Khan et al, 2020). Histone

acetylation is also maintained by adenosine monophosphate-

activated protein kinase (AMPK), a regulator of glucose metabolism

and fatty acid uptake. AMPK deletion reduces histone acetylation

rendering the chromatin inaccessible to bromodomain and extra-

terminal (BET) proteins binding, thereby suppressing the expression

of leukemic genes and disease development (Jiang et al, 2019b)

(Fig 2C).

Histone deacetylation

In many types of leukemia, SIRTs are involved in disease aggres-

sion. For example, the mitochondrial deacetylase, SIRT3 reprograms

AML cells toward cellular respiration, protecting them from chemo-

therapy (Ma et al, 2019). Similarly, reduced SIRT5 activity hinderes

OXPHOS and glutamine metabolism, which is detrimental to AML.

In addition, loss of SIRT5 reduces superoxide dismutase 2 (SOD2)

expression, which increases mitochondrial superoxides (Yan et al,

2021). H3K9 acetylation levels are also suppressed by PI3K and LYN

inhibitors, which prevent ACLY-mediated production of acetyl-CoA

(Basappa et al, 2020).

While HDAC inhibitors are well-characterized antileukemia

agents that show promising clinical trial results, HDAC gene

mutations have not been detected in AML. There are several exam-

ples of synergies between HDAC inhibition and metabolic pathway

inhibitors in the ablation of leukemic cells. For instance, RNF5 pro-

motes the degradation of misfolded glutamine carrier proteins to

regulate glutamine metabolism. The inhibition of RNF5 was shown

to cause transcriptional changes that overlap with the inhibition of

HDAC1, which enhances AML cell sensitivity to HDAC inhibitors

(Khateb et al, 2021). The NAMPT inhibitor KPT-9274 confers syn-

thetic lethality with the HDAC inhibitor AR-42. Mechanistically, an

increase of histone acetylation potentiates the effect of KPT-9274 on

PARP-1 suppression through abolishing mono-ADP ribosylation and

attenuates homologous recombination and nonhomologous end-

joining pathways in the leukemia-initiating cells (Zhang et al, 2021).

However, in AML1-ETO leukemia, HDAC inhibition reduces autop-

hagy, thereby limiting cell death (Torgersen et al, 2013).

Stem cells require a balanced histone methylation status

S-adenosyl-Lmethionine (SAM) is the universal substrate for

methyltransferase reactions, including histone and DNA methyla-

tion. It is generated by one-carbon metabolism, a series of cyclic

reactions to transfer a single carbon unit, including the folate,

methionine, and trans-sulfuration cycle (Ryall et al, 2015). In brief,

tetrahydrofolate (THF) is reduced to 5-methyl THF, which donates a

carbon atom to homocysteine to generate methionine, which is then

adenylated into SAM (Ryall et al, 2015). Histone methyltransferases

(HMTs) transfer the methyl group from SAM onto lysine or arginine

residues, thereby generating S-adenosyl homocysteine (SAH), which

in turn acts as a potent methyltransferase inhibitor. Depending on

the number of methyl groups added and the amino acids modified,

histone methylation can translate to either transcriptional activation

(generally associated with H3K4, H3K36, and H3K79) or repression

(H3K9, H3K27, and H4K20) (Oh & Humphries, 2012). Numerous

histone demethylases exhibit metabolic dependencies such as

demethylation reactions that can be controlled by a-ketoglutarate
(a-KG) and succinate (Beerman & Rossi, 2015). a-KG may be either

produced via oxidative decarboxylation of isocitrate by isocitrate

dehydrogenase (IDH) or via oxidative deamination of glutamate by

glutamate dehydrogenase during glutaminolysis. Succinate is mainly

produced by the TCA cycle enzyme succinyl-CoA synthetase (Kaelin

Jr. & McKnight, 2013) (Fig 2B).

Hematopoetic stem cells
Histone methylation

In HSCs, H3K4 methylation is mediated by mixed lineage leukemia

1 (Mll-1; also known as Kmt2a) and involved in the regulation of

fetal and adult hematopoiesis (Jude et al, 2007; McMahon

et al, 2007). Dietary methionine restriction has been shown to regu-

late cellular SAM levels and thus to modulate H3K4me dynamics in

several tissues (Shiraki et al, 2014; Mentch et al, 2015; Dai

et al, 2018). However, the role of dietary methionine or intracellular

SAM levels have so far not been elucidated in HSCs. Additionally,

H3K9, H3K27, and H3K36 methylation are other types of SAM-

dependent modifications that modulate HSC fate decisions (Ugarte

et al, 2015; Kats et al, 2018; Zhang et al, 2018). It would be interest-

ing to investigate the direct link between SAM availability and his-

tone methylation levels in HSCs.
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Histone demethylation

HSCs depend on two families of histone demethylases (HDMs), the

lysine demethylase (LSD) and the Jumonji C (JmjC) domain-

containing family, to remove histone methylation marks. Impor-

tantly, a-KG acts as a cofactor for JmjC HDMs and TET enzymes. a-
KG levels are particularly important for HSC differentiation by alter-

ing demethylation activities and modulating chromatin changes (Ko

et al, 2011; Cimmino et al, 2017). Another example of regulating

methylation patterns is represented by the enzyme Lsd1, which

explicitly targets me1/2 of H3K4 and H3K9. Lsd1 is an important

regulator of HSC expansion (Subramaniam et al, 2020) and requires

FAD for its enzymatic activity (Forneris et al, 2005; Shi et al, 2005).

Interestingly, metabolites generated during mitochondrial respi-

ration such as fumarate have been shown to inhibit the activity of

HDMs. Fumarate hydratase (Fh1) is a component of the TCA cycle

and cytosolic fumarate metabolism. Deletion of Fh1 causes HSC

failure due to endogenous fumarate accumulation, which decreases

maximal mitochondrial respiration and increases histone H3

trimethylation (Guitart et al, 2017). Similarly, when mitochondrial

respiration is impaired by the loss of the mitochondrial complex III

subunit Rieske iron–sulfur protein (RISP), this results in loss of

quiescence of adult HSCs. Knockout of RISP results in elevated

levels of 2-hydroxyglutarate (2-HG), a metabolite known to inhibit

DNA and histone demethylases. Hence, the loss of RISP in HSCs
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Figure 3. Additional histone modifications impacting HSC self-renewal.

Numerous histone PTMs have been identified throughout the last few years, including acylations, (i.e., butyrylation, crotonylation, succinylation) as well as other
modifications such as O-GlcNAcylation and methylglyoxal (MGO) adduction. The corresponding substrates are produced within diverse metabolic processes including
lipid metabolism, amino acid catabolism, ketone body metabolism, as well as short-chain fatty acid (SCFA) metabolism derived from intestinal microbiota. For instance,
in HSCs O-GlcNActransferase (OGT), together with TET proteins, can modify histone methyltransferase complexes such as HCF1/SET1/COMPASS, which leads to changes
in H3K4 methylation levels. This results in activation of the PINK pathway, which is essential to maintain HSC function by removing defective mitochondria, limiting
ROS levels, and ultimately preventing apoptosis. Liquid–liquid phase separation of metabolic enzymes in the nucleus may be important to provide these subtrates in
substantial amount directly at the chromatin.
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increases both DNA and histone methylation (Ans�o et al, 2017)

(Fig 2D).

AML
Histone methylation

Histone methyltransferases such as EZH2, MLL, DOT1L are fre-

quently mutated in primary and secondary AML (Ley et al, 2013).

Myeloproliferative neoplasms (MPN), a precursor of AML, often

exhibit loss-of-function mutations of the methyltransferase, EZH2.

EZH2 represses genes such as branched-chain aminotransferase 1

(BCAT1), the enzymes responsible for the early steps of branched

chain amino acid (BCAA) catabolism via H3K27 methylation in a

dose-dependent manner. Thus, the loss of EZH2 elevates the expres-

sion of BCAT1. Enhanced expression of BCAT1 increases BCAA

metabolism and upregulates the expression of genes involved in the

TCA cycle (Gu et al, 2019) (Fig 2D). Moreover, mutated EZH2 and

oncogenic NRASG12D cooperate to increase the leukemia burden

through loss of EZH2 repression of BCAT1. This condition is miti-

gated by the BCAT1 inhibitor, Gbp, which impairs EZH2-deficient

leukemia-initiating cells (Gu et al, 2019).

Histone demethylation

JMJD1C is a JmjC containing H3K9 demethylase and, when overex-

pressed, increases AML proliferation through demethylase-

independent upregulation of glycolytic and oxidative machinery.

Targeting JMJD1C-mediatedmetabolism using ABT-268 and Shikonin

decreases tumor growth of leukemias co-expressing JMJD1C and

HOXA9 (Lynch et al, 2019). In another study, JMJD1C was found to

regulate lipid synthesis-associated genes such as fatty acid desaturase

2 (FAD2) and stearoyl-CoA desaturase (SOD) in MLL rearranged

AML. Inversely, the authors found that lipid synthesis-associated pro-

tein fatty acid-binding protein 5 (FABP5) binds to the jumonji domain

of JMJD1C to regulate expression (Qi et al, 2022) (Fig 2D).

In AML, dietary methionine deprivation leads to a profound loss

of global H3K27 methylation but an increase of H3K27me3 on the

DOT1L promoter. This results in a loss of DOT1L function and

prolonged survival in MLL-rearranged leukemia xenograft mice

(Barve et al, 2019). An additional study demonstrated that dietary

methionine deprivation most heavily impacted H3K36me3 and

delayed patient-derived AML progression. Methionine starvation is

mimicked by chemical inhibition of SETD2, the specific H3K36

trimethyltransferase (Cunningham et al, 2022) (Fig 2D).

Additional histone modifications: an understudied field in
HSCs and AML

Besides the histone PTMs mentioned above, several other modifica-

tions have been identified in recent years. These include acylations,

including propionylation, butyrylation, and crotonylation, and other

modifications such as ubiquitinylation, succinylation, glycosylation,

or ADP-ribosylation, which are important for modulating gene

expression (reviewed in Dutta et al, 2016, Dai et al, 2020, Nitsch

et al, 2021) (Fig 3). However, very little is known about the function

of these PTMs and their regulation by metabolites in the context of

HSCs and AML. One of the few examples that has been evaluated in

HSCs to date is uridine diphosphate N-acetylglucosamine (UDP-

GlcNAc), produced by the hexosamine biosynthetic pathway. This

modification is critical for the formation of glycoproteins and glyco-

lipids and reflects the global nutritional status of a cell. Via O-linked

addition of N-GlcNAc (O-GlcNAcylation), serine and threonine resi-

dues are reversibly modified by the O-GlcNAc transferase (Ogt).

This PTM is removed by an enzyme called O-GlcNAcase, as soon as

substrate availability decreases. In HSPCs, the deletion of Ogt leads

to the disruption of H3K4me3 patterns resulting in defective Pink-

dependent mitophagy, and thus to high ROS levels accompanied

with increased apoptosis (Murakami et al, 2021). It is worth
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Figure 4. DNA methylation enzymes can be triggered to alleviate and
treat AML.
FABP4 enhances the expression of DNMT1. Inhibition of FABP4 by BMS309403
downregulates DNMT1 and global DNA methylation to re-expression p15INK4.
MitoBloCK6 can increase mitochondrial copper, which negatively regulates the
activity of SAHH, decreasing SAM levels and global DNA methylation to pro-
long survival. MAT2A catalyzes the formation of SAM from methionine and
ATP. MAT2A inhibition by PF-9366 depletes SAM levels to decreases growth
and survival in MLL-rearranged AML.
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mentioning that O-GlcNAcylation has been previously reported in

the context of cell cycle transitioning. O-GlcNAcylation thereby reg-

ulates mitosis-specific phosphorylation on H3 to orchestrate G2-M

transition; however, its role in HSC cell cycle regulation remains to

be elucidated (Sakabe et al, 2010; Fong et al, 2012).

Metabolism tightly regulates DNA methylation

Next to histone methylation, SAM also serves as a methyl donor to

DNA methyltransferase reactions. DNA methylation is generally asso-

ciated with transcriptional repression and is mainly established by

DNA methyltransferases (DNMTs) on CpG sites and long stretches of

CpG repeats known as CpG islands. Conversely, DNA demethylation

is catalyzed by TET enzymes, which oxidize 5-methyl-cytosine

(5mC) to 5-hydroxymethyl-cytosine (5hmC) (Fig 2B).

Hematopoetic stem cells
DNA methylation

Dnmt1 maintains DNA methylation patterns after DNA replication,

and its genetic deletion causes reduced self-renewal capacity, niche

retention, and defective multi-lineage hematopoiesis (Bröske

et al, 2009; Trowbridge et al, 2009). Dnmt3a and Dnmt3b establish

de novo DNA methylation and are essential to ensure proper lineage

differentiation capacities. For example, loss of Dnmt3a leads to the

downregulation of lineage differentiation factors, thereby generating

“immortalized” HSCs to retain reconstitution potential over 12 gen-

erations of transplantation (Challen et al, 2011, 2014; Jeong

et al, 2018). Dietary changes in methionine and polyamine metabo-

lism can alter DNA methylation levels in various other cell types

(Bröske et al, 2009). However, whether the lack of methionine in

the diet can mimic the loss of Dnmt activity in HSCs remains to be

answered.
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Figure 5. Stem cell diets influence HSC and LSC functions.
Dietary preferences can have a large impact on the epigenetic control of cellular programs in HSCs, but also contribute to leukemia development and malignant
progression. In turn, nutritional interventions can be also applied to treat leukemia.
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DNA demethylation

Recently, large under-methylated regions, termed canyons, have

been described in HSCs. These depend on the cooperative function

of Dnmt3a and Tet1. Importantly, TET enzymatic activity is depen-

dent on the availability of a-KG. Additionally, vitamin C (ascorbate)

and iron serve as an important enzymatic cofactors (Yue &

Rao, 2020). When Tet1 binds to these canyons, Dnmt3a-mediated

DNA methylation is prevented. This also influences H3K27me3

levels at bivalent promoters, which further impacts gene expression

(Gu et al, 2018). Moreover, Tet2 plays an important role in HSC

maintenance. Loss of Tet2 results in drastic methylation changes at

CpG sites that are contained within lineage-specific transcription

factor-binding motifs causing a skew toward myelomonocytic pro-

genitors (Izzo et al, 2020). Already, Tet2 haploinsufficiency rewires

hematopoietic transformation by increasing HSC self-renewal and

extramedullary hematopoiesis. Under ambient air (� 21% O2), the

deletion of Tet2 reduces the expression of oxidative phosphorylation

genes, indicating more reliance on anaerobic glycolysis. However,

Table 1. Metabolic and epigenetic interplay in HSCs and AML. Metabolic factors including metabolites, enzymes, and translational factors can
influence the regulation of several epigenetic players. Inversely, epigenetic players influence the expression of metabolic factors to regulate HSCs
and AML activity.

(a) Interplay: metabolism—epigenetics

Metabolic partner Epigenetic partner HSC AML

MTCH2 Histone acetylation Accelerates/maintains (Khan et al, 2020)

ACLY Histon acetylation (H3K9) Impairs (Umemoto et al, 2022) Accelerates/maintains (Wang et al, 2019; Basappa et al,
2020)

AMPK Histone acetylation Accelerates/maintains (Jiang et al, 2019b)

Butyrate Acetyl-CoA for histone
acetylation

Decreases (Pulliam et al, 2016; Witt et al, 2000; Wang
et al, 2022b)

COX17 + ALR DNA methylation (SAHH:SAM
ratio)

Accelerates/maintains (Singh et al, 2020)

Curcumin DNMT1 Decreases (Yu et al, 2013)

Dietary methionine
deprivation

H3K27 and H3K36
methylation

Decreases (Barve et al, 2019; Cunningham et al, 2022)

Fh1/Furamate metabolism Histone trimethylation Promotes/maintains (Guitart et al,
2017)

Accelerates/maintains (Guitart et al, 2017)

MAT2A DNA methylation Accelerates/maintains (Secker et al, 2010)

RISP DNA and histone methylation Promotes/maintains (Ans�o et al,
2017)

(b) Interplay: epigenetics—metabolism

Epigenetic partner Metabolic partner HSC AML

ANP32A Lipid metabolism genes Accelerates/maintains (Wang
et al, 2022a)

DNMT1 FABP4 Accelerates/maintains (Yan
et al, 2017)

DNMT3A/B CPT1 Accelerates/maintains (Shi
et al, 2016)

EZH2 BCAT1/BCAA metabolism Decreases (Gu et al, 2019)

IDH1 R132H Phosphatidylinositol, sphingolipids Accelerates/maintains (Stuani
et al, 2018)

IDH1/2 2-HG Accelerates/maintains (Figueroa
et al, 2010a)

JMJD1C Glycolysis/respiration/fatty acid
synthesis genes

Accelerates/maintains (Lynch
et al, 2019)

KAT2A Mitochondrial and nucleic acid genes Accelerates/maintains (Domingues
et al, 2020)

OGT Pink-dependent mitophagy Promotes/maintains (Murakami
et al, 2021)

SIRT1 OXPHOS genes Impairs (Wang et al, 2022c)

SIRT7 Nuclear respiratory factor 1 Promotes/maintains (Mohrin
et al, 2015)
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under physioxia conditions (3% O2), Tet2 deletion does not alter

Hif-1a-regulated pathways (Aljoufi et al, 2022). Overall, DNA meth-

ylation states underlie dynamic metabolic regulatory mechanisms to

maintain key stem cell functions.

AML
DNA methylation

DNMT1 mutations are rare in AML. Nonetheless, the inhibition of

DNMT1 through metabolic factors improves survival in AML mice

(Pappalardi et al, 2021). For instance, curcumin reduces the

expression of DNMT1 and leads to DNA hypomethylation of

p15INK4, a tumor suppressor, to suppress AML growth (Yu

et al, 2013) (Fig 4). Further, in obese mice, DNMT1 regulates

FABP4 in a positive metabolic-epigenetic feedback loop. The selec-

tive inhibition of FABP4 by BMS309403 downregulates DNMT1

and global DNA methylation to re-expression p15INK4B (Yan

et al, 2017). Mutations in DNMT3A occur in about 20% of AML

patients. Typically, impaired methyltransferase activity is associ-

ated with poor disease outcome (Russler-Germain et al, 2014).

However, hypermethylation from increased expression of DNMT3A

can also be detrimental. For instance, high expression of DNMT3A

and DNMT3B is accompanied by higher CPT1A, an enzyme

responsible for mitochondrial uptake of long-chain fatty acids,

whose expression is accompanied with an adverse AML outcome

(Shi et al, 2016).

Mitochondrial sulfhydryl oxidase, ALR, and the copper chaper-

one, COX17, regulate AML stem cells by controlling the levels and

distribution of mitochondrial copper. Copper negatively regulates

the activity of S-adenosylhomocysteinine hydrolase (SAHH), a cyto-

plasmic and mitochondrial enzyme involved in preserving the

SAM/SAH ratio. COX17 and ALR inhibition prolong survival by

decreasing SAM levels and global DNA methylation, but histone

methylation levels are not reduced (Singh et al, 2020) (Fig 4). S-

adenosylmethionine synthetase isoform type 2 (MAT2A) is an

enzyme that catalyzes the formation of SAM from methionine and

ATP. Inhibition of MAT2A depletes SAM levels to decrease growth

and enhances apoptosis in MLL-rearranged AML (Secker

et al, 2020).

Approximately 20% of AML harbor mutations for IDH1 or IDH2.

Gain-of-function in IDH1 or IDH2 leads to increased production of

the metabolite, 2-hydroxyglutarate (2-HG), which promotes leuke-

mogenesis by blocking myeloid differentiation. 2-HG is a competi-

tive inhibitor of a-KG, an essential cofactor for certain histone and

DNA demethylases. The reduction of a-KG from IDH1 or IDH2

mutation is thought to result in hypermethylated histones and at the

DNA promoter (Figueroa et al, 2010a). Considerable metabolic

reprogramming is observed in IDH1/2 mutant AML. For instance,

the IDH1 R132H mutation in AML increases phosphatidylinositol,

sphingolipids (ceramide, sphingosine, and sphinganine), free cho-

lesterol, and monounsaturated fatty acids (Stuani et al, 2018). Addi-

tonally, IDH mutations increase TCA cycle intermediates and

enhance mitochondrial oxidative metabolism (Stuani et al, 2021).

Interestingly, the acetylation of K413 of mitochondrial IDH2 nega-

tively regulates IDH2 activity by preventing dimerization and

blocking the binding of a-KG and cofactor NADPH (Chen

et al, 2021). Currently, patients with relapsed or refractory AML are

treated with R140 and R172 IDH2 isoforms which increases 5hmC

levels and consequently reactivate TET activity.

DNA demethylation

Loss of function mutations of TET2 occur in 10–20% of AML,

resulting in an unfavorable disease outcome, and is mutually exclu-

sive to IDH1/2 mutations. Almost all patients with low 5hmC

exhibit TET2 mutations since these mutations can impair the pro-

duction of 5hmC. BCAT1 converts BCAAs into branched-chain keto

acids by transferring the BCAA amino group onto a-KG to generate

glutamate (Raffel et al, 2017). In de novo AML, high BCAT1 levels

are associated with poor patient outcomes in IDHWTTET2WT, but

not IDHmut or TET2mut AML. In the latter, high BCAT1 levels in leu-

kemia cells decrease intracellular a-KG levels and lead to a hyper-

methylated phenotype through altered TET activity that increases

leukemia-initiating potential by influencing gene transcription

(Raffel et al, 2017). This phenotype is similar to AML cells with the

IDHmut, where TET2 is inhibited by 2-HG. In contrast, the knock-

down of BCAT1 in leukemia cells causes accumulation of a-KG and

results in Egl-9 family hypoxia inducible factor 1 (EGLN1)-mediated

HIF-1a degradation, a protein associated with poor progonosis

(Deeb et al, 2011; Jabari et al, 2019). In summary, several metabo-

lites are highly relevant to modulate DNA methylation levels

in AML.

Conclusions and future directions

It has become evident during the last few years that metabolites are

not only a consequence of a cellular state but rather play an active

role in regulating cell fate. As described above, metabolites can act

as co-factors of epigenetic enzymes and thus regulate HSC function

and AML development (see Table 1). Nevertheless, mechanistic

insights on the role of numerous metabolites regulating epigenetic

features in HSCs and AML are largely lacking. For instance, it

remains unknown if and how stem cells can buffer smaller or larger

environmental pertubations, which affect metabolism and ulti-

mately may also alter chromatin accessibilty. Global epigenetic

modifications must be stably maintained when encountering small

metabolic fluctuations. Thus, transcriptional regulation is mediated

by a combination of several histone modifications instead of relying

on single methylation or acetylation marks (Trefely et al, 2020).

Intriguingly, in other cell types, chromatin can act as reservoir for

metabolites responding to a metabolite surplus or supplement cellu-

lar pools when needed (Martinez-Pastor et al, 2013; Ye & Tu, 2018).

However, large metabolic fluctuations may result in the hyperactiva-

tion of gene loci that are generally maintained as heterochromatin,

including satellite repeats and LINE retrotransposons, and thus, lead

to cellular malfunctions. It will be of great interest to address

whether chromatin can act as a metabolic reservoir in HSCs upon

distinct stresses such as aging and leukemia. Another intriguing

question remaining unanswered is how HSCs regulate local metabo-

lite availability. In order to participate in chromatin modification,

epigenetic substrates must be provided in sufficient concentrations

within the nucleus; however, many acyl-CoAs are produced within

mitochondria and cannot directly cross mitochondrial membranes.

The mechanisms of acyl-CoA generation and transport to the

nuclear-cytoplasmic compartment remain poorly investigated, espe-

cially in the context of HSCs. Remarkably, there is growing evidence

that metabolic enzymes can be recruited to chromatin and metabolic

substrates may be generated onsite for epigenetic acylation and
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BOX 2. Dietary habits control stem cell fate and leukemic burden (summarized in Fig 5)

Nutritional preferences can significantly impact cell fate. This observation has been widely described in the context of diseases such as obesity, diabe-
tes, and cancer. A growing body of research reports on the effects of dietary habits on key characteristics of HSCs and LSCs driven by metabolism and
epigenetics. For example, several dietary interventions have been shown to play important roles in healthy hematopoiesis and can be applied to treat
or improve leukemia burden.

Vitamin A
Vitamin A is an essential metabolite that cannot be produced from our bodies and is critical for the maintenance of HSC dormancy. For instance, vita-
min A-free diets in mice caused declined HSC numbers accompanied with reduced in vivo blood reconstitution capacities and disrupted metabolic
and epigenetic features (Cabezas-Wallscheid et al, 2017; Schönberger et al, 2022b). In human, vitamin A deficiency is linked to immunodeficiency.
However, current therapies based on vitamin A supplementation exhibit a full immune recovery rate of only 20% of the cases (Kilic et al, 2005;
Villamor & Fawzi, 2005; Ross et al, 2011). It is tempting to speculate that this may be attributed to dysfunctional HSCs. Nevertheless, further studies
are needed to understand the role of vitamin A in the context of human.

Vitamin B3 and B6
Similarly, nicotinamide riboside, a form of vitamin B3, was shown to attenuate HSC aging and accelerate blood recovery after murine lethal irradiation
(Vannini et al, 2019; Sun et al, 2021). By boosting NAD+ production, nicotinamide riboside supplementation decreases mitochondrial stress levels, aug-
ments mitochondrial clearance, and thus supports asymmetric HSC divisions via metabolic and epigenetic control mechanisms (Vannini et al, 2019, Sun
et al, 2021). Supplementation of nicotinamide riboside in the water prevents HSC aging by preserving a youthful metabolic capacity (Sun et al, 2021).
In MLL-AF9 mice, dietary vitamin B6 deficiency decreases disease progression without manifestation of systemic toxicity. Pyroxidal kinase (PDXK) is an
enzyme that synthesizes pyridoxal phosphate (PLP) from vitamin B6, which regulates enzymes such as GOT2 that are required to produce amino acids
and nucleic acids for AML proliferation. Pharmacological disruption of the vitamin B6 pathways by targeting PDXK and PLP levels decreases disease
progression (Chen et al, 2020).

Vitamin C
In contrast to the aforementioned vitamins, vitamin C (ascorbate) is a negative regulator of HSC self-renewal. Depletion of dietary vitamin C in mice
was shown to increase HSC frequency and function (Agathocleous et al, 2017). Generally, ascorbate acts as a cofactor of TET enzymes and contributes
to DNA demethylation, thereby limiting self-renewal potential. However, during leukemogenesis, it is advantageous to actively block LSC self-renewal
potential and restore mutated TET function by supplementing vitamin C (Moran-Crusio et al, 2011; Agathocleous et al, 2017; Cimmino et al, 2017;
Schonberger & Cabezas-Wallscheid, 2017).

Vitamin D
Vitamin D has been demonstrated to be involved in myeloid differentiation and the ability to accumulate ROS (Cortes et al, 2016; Paubelle
et al, 2020). Elevated Vitamin D receptor (VDR) expression in AML4-5 patients is associated with prolonged survival. The VDR promoter is frequently
methylated; thereby, when VDR agonists are combined with hypomethylating agents, VDR-target gene expression is induced. This combination has
been suggested to promote LSC exhaustion and decrease tumor burden (Paubelle et al, 2020). VDR agonists can also upregulate the expression of
fructose-1,6-bisphosphatase (FBP1), a gluconeogenesis enzyme involved in the pathway that opposes glycolysis by transforming substrates into glu-
cose. FBP1 expression blocks glycolysis in the blast population, which leads them to cell death (Xu et al, 2022).

Other vitamins
Other vitamins are known to act as enzymatic cofactors, including folate (i.e important for transferring methyl-groups), cobalamin (vitamin B12;
required for methionine synthase and methyl-malonyl-CoA-mutase), and phyllochinone (carboxylation of glutamyl residues). While vitamin deficiencies
are known to cause numerous hematological diseases, the effects on HSCs and LSCs remain largely unknown.

Genistein
Genistein is a phytoestrogen found in soy and interacts with estrogen receptors a and b. Interestingly, genistein has been shown to provide signifi-
cant radioprotection to HSPCs before irradiation (Davis et al, 2007) while selectively limiting G-CSF-induced DNA damage in HSPCs but not down-
stream progenitors when administered as a dietary supplement (Souza et al, 2014). A genistein-rich diet in AML has been shown to improve the
survival of leukemic mice (Raynal et al, 2008). Mechanistically, genistein arrests cell cycle, reduces protein synthesis through inhibition of mTOR,
increases ROS, mitochondrial membrane polarization, and the ratio of BAX/BCL2, thereby inducing apoptosis (Narasimhan et al, 2015; Hsiao
et al, 2019; Hasan et al, 2020). Further, genistein enhances the anti-leukemia effect of the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) by targeting
the compensatory activation of the PI3K/Akt and MEK/ERK pathways (de Blas et al, 2016). Genistein can also synergize with chemotherapy to elicit
anti-leukemia through targeting MAPK signaling (Shen et al, 2007). It would be interesting to address whether genistein exerts its effect through
HSCs or by niche cells.

Calorie restriction
Although still debated, some studies suggest a positive effect of fasting on HSC function. For instance, prolonged fasting in 48 h cycles promotes HSC
regeneration via inhibition of insulin growth factor 1 signaling (Cheng et al, 2014). Another positive effect of dietary restriction was documented in
aged HSCs where regenerative capacities are alleviated but at the expenditure of lymphoid differentiation capabilities (Tang et al, 2016). In contrast,
an independent study demonstrated that life-long calorific restriction prevents the age-related increase of the bone marrow cellularity and ablates
functional benefits for aged HSCs, implying a significant role for fasting kinetics (Lazare et al, 2017). It would be interesting to assess if repeated
fasting intervals combined with regular dieting could impact HSC reconstitution capabilities more durably.
Interestingly, periodic starvation was shown to prevent the development of B- and T-ALL by promoting rapid proliferation, apoptosis, and differentia-
tion. However, in AML development, periodic starvation or dietary restriction is ineffective (Saito et al, 2015). Only in AMP-deficient AML, dietary
restriction extends the survival (Saito et al, 2015).
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methylation reactions (Mews et al, 2017; Wang et al, 2017). Thus,

the generation of so-called “nuclear micro-domains” may generally

contribute to the accurate control of gene expression (Prouteau &

Loewith, 2018). It is tempting to speculate that the formation of

nuclear condensates by liquid–liquid phase separation play a major

role in metabo-epigenetic control mechanisms regulating HSC func-

tion. Novel techniques such as mass spectrometry imaging, RNA

aptamers, and super-resolution microscopy may help to observe this

phenomenon also in rare stem cell populations. Additionally, future

studies should address how metabolism can dynamically influence

the high-level architecture of chromatin, i.e., nucleosome density

and chromosomal looping. For instance, the switch/sucrose nonfer-

mentable (Swi/Snf) complex coordinates nucleosome density and

phasing and is critical for HSC function (Han et al, 2019). Interest-

ingly, the Swi/Snf complex retains two different protein domains,

YEATS and Taf14, which enable its recruitment to distinct histone

acylation marks (Han et al, 2019). Dietary intake and certain metab-

olite ratios thus may influence higher chromatin structures in HSCs

and AML and help to fine-tune their spatio-temporal transcriptional

outputs.

Recent technological advancements (highlighted in Box 3) will

accelerate the development of “metabolo-epigenetics” in hematol-

ogy. Novel technologies, such as spatial and single-cell metabolo-

mics, are currently exploited and will help to better characterize the

hematopoietic heterogeneity and to understand the role of single

metabolites in regulating stem cell fate. Combined spatial omics

analyses (transcriptome-epigenome-metabolome on tissue sections)

and the development of corresponding analyses tools will serve as a

breakthrough technology to ultimately decipher the complex net-

works that regulate stemness. Moreover, our knowledge needs to

progress beyond the (homeostatic) adult bone marrow. The metabo-

epigenetic link still needs to be explored in neonatal/fetal HSCs and

under proliferative stress conditions and physiological aging. In

addition, we are only at the beginning of understanding the meta-

bolic fingerprints of the bone marrow niche and the influence of

niche-derived metabolites on HSC function and vice versa. There

are additional layers of complexity, where extrinsic metabolites

influencing HSCs goes beyond the niche.

Based on the evidence presented in this review and elsewhere,

metabolites can shape the epigenomic landscape and vice versa,

High fat diets
High-fat diets (HFD) show a vastly negative impact on HSCs. Most HFD models lead to obesity and exhibit reduced HSC activity by stimulating mye-
loid differentiation and provoking poor stress recovery responses, as demonstrated by 5-fluorouracil treatment (Singer et al, 2014; van den Berg
et al, 2016; Li et al, 2018). A second effect is provoked by augmented adipocyte numbers in the bone marrow niche, which has been suggested to neg-
atively regulate hematopoietic function (Ambrosi et al, 2017). Similarly, in the MLL-AF9 mouse model, the consumption of a HFD enhances AML devel-
opment (Hermetet et al, 2020). Nonetheless, particular fatty acids instruct positive epigenetic and transcriptional changes in the bone marrow
microenvironment. For example, fish oil-derived omega-3 polyunsaturated fatty acids increase the activity of matrix metalloproteinase in the bone
marrow microenvironment, which is accompanied by an expansion of the stem cell pool (Xia et al, 2015).

Fructose
Rapidly dividing AML cells consume substantial amounts of glucose, leading to glucose insufficiency. To compensate, AML cells upregulate glucose
transporter-like protein 5 (GLUT5), a fructose transporter. In general, patients with high expression of the GLUT5-encoding gene SLC2A5 or high serum fructose
concentration have poorer outcomes (Chen et al, 2016). In fructose-rich conditions, leukemia cells become dependent on the serine synthesis pathway (SSP).
The higher SSP flux, driven by a higher ratio of NAD+/NADH in fructose-rich conditions, contributes to the generation of a-KG from glutamine and facilitates
TCA anaplerosis. Targeting PHGDH, the rate-limiting enzyme in the SSP reduces the AML burden in high fructose conditions (Jeong et al, 2021).

Branched chain amino acids
Dietary amino acids contribute to HSC function. For example, valine, which is an essential branched-chain amino acid (BCAA), plays an important role
in the maintenance of stem cells by regulating the HSC proliferative capacity, survival, and apoptosis, as well as HSC self-renewal (Taya et al, 2016;
Nakauchi, 2017; Wilkinson et al, 2017; Naidu et al, 2022). Dietary valine restriction leads to a dramatic reduction of HSPCs and has been suggested as
a metabolic conditioning approach for HSC transplantations, thereby preventing iatrogenic complications caused by chemo-irradiative myeloablation
(Taya et al, 2016; Nakauchi, 2017). In T-cell acute lymphoblastic leukemia (T-ALL), dietary restriction of valine decreases disease burden and increases
in vivo survival (Taya et al, 2016; Wilkinson et al, 2018). In CML, dietary supplementation with BCAAs reverses the defects caused by the loss of BCAT1
activity (Hattori et al, 2017).

Gut microbiota
Recently, it was shown that accurate HSC function is dependent on the crosstalk between nutrient availability and the microbiome. Mechanistically,
microbiota produces short chain fatty acids (SCFAs) important to bone marrow macrophage function and thus enable recycling of red blood cells to
provide iron for HSC regeneration during stress conditions (Zhang et al, 2022a). Interestingly, HSC self-renewal and expansion can also be modulated
independently of the microbiome by restricting iron availability in the diet (Zhang et al, 2022a). Decreased diversity in the gut microbiota has been
reported in AML patients and is linked to accelerated disease progression. In particular, butyrate produced by the gut microbiota is reduced in feces of
AML patients. In murine AML, the supplementation of butyrate or Faecalibacterium, which produces butyrate, postpones murine AML progression
(Wang et al, 2022b). Overall, this demonstrates that targeting the gut microbiota is a therapeutic option for AML. Perhaps, the supplementation with
a microbiota following antibiotic treatment in AML patients might represent one method to reduce disease burden.

Other dietary influence
Intriguingly, the natural component of chili peppers capsaicin has been shown to activate nociceptive neurons resulting in an HSPC egress from the bone
marrow niche via CGRP—Ramp-1/ CALCRL signaling (Gao et al, 2021). Although not surprising, alcohol intake also infers toxic effects on stem cells. In HSCs,
acetaldehyde causes impaired blood production due to DNA damage and chromosomal rearrangements in HSCs (Garaycoechea et al, 2018).

BOX 2. (continued)
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thereby contributing to healthy and diseased hematopoiesis (see

Table 1). In AML, dietary modulation is becoming an increasingly

popular therapeutic approach and may serve in future studies to

manipulate epigenetic cellular features and improve patient survival

(see Box 2). Additonally, pharmacological inhibition of epigenetic

modulators and metabolic proteins has been proposed to treat AML

and continues to show promosing therapeutic responses. Thus,

targeting the metabo-epigenetic vulnerabilities is a promising strat-

egy for personalized cancer therapy.
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