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A B S T R A C T

The possible impact of temperature differences during crystal growth is investigated in this study. The
organic molecule considered is mandelic acid, an important component for the pharmaceutical industry. The
productivity of generating pure mandelic acid crystals are largely determined by the growth process. Reaction
conditions, purity of the components, supersaturation, temperature, but possibly also temperature gradients
play a central role during crystal growth. In this study a numerical model based on a hybrid solver combining
the lattice Boltzmann method with finite differences is developed to model the crystallization dynamics of
(S)-mandelic acid (S-ma) taking quantitatively into account temperature effects. At first, the fourth-order finite-
difference method used to model energy and species conservation is validated. Then, comparisons are carried
out regarding temperature changes within the single-crystal growth cell. In practice, the molar heat generation
at the crystal interface shows only a small effect on the temperature field in the surrounding domain, with
temperature differences below 1.5 degree. Finally, the study is extended to investigate the impact of forced
convection on the crystal habits while taking into account temperature differences.
1. Introduction

Mandelic acid and its derivatives are frequently used compounds
in the pharmaceutical industry. It exists as two pure enantiomers and
in the racemic form, with strong consequences on its pharmacological
properties (Chlebus, 2006). It is also used for the further organic
synthesis of pharmaceuticals, such as esters of mandelic acid generating
homatropine for eye drops. Mandelic acid is well known for its anti-
aging effects on the skin along with antibacterial functions in treating
acne (Emelýanenko et al., 2018). Furthermore, the manufacture of
many rubbers, adhesives, and plastic materials requires mandelic acid
as an intermediate substance. (S)- and (R)-mandelic acid are the two
enantiomeric forms. Enantiopure substances are required for most phar-
maceutical applications (Brittain, 2002). Crystallization is widely used
for the separation of enantiomers relying on classical resolution, or
preferential crystallization approaches (Lorenz and Seidel-Morgenstern,
2014). During crystallization, essential properties of the crystalline
products (e.g., purity, shape, sizes (Briesen, 2006)) are determined by
the growth process, which again depends on the conditions within the
crystallizer. The reaction conditions, such as supersaturation, temper-
ature, other components possibly present in the solution (impurities,
additives) play a central role for crystal growth. Many experimental
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studies have been conducted concerning crystallization-based enantio-
separation processes. Of particular interest for the present work are
measurements regarding growth kinetics of mandelic acid, e.g. Al-
varez Rodrigo et al. (2004), Lorenz and Seidel-Morgenstern (2014),
Coquerel (2006), Gänsch et al. (2021), Gou et al. (2012), Perlberg
et al. (2005), Srisanga et al. (2015) and Codan et al. (2013). Most
of the studies carried out up to now relied on the assumption of a
perfectly homogeneous temperature during crystallization. Typically,
experimental temperature measurements rely on a single sensor (point
measurement), so that possible temperature gradients could not be
tracked. Since only small temperature differences are expected, ex-
perimental investigations regarding temperature effects during crystal
growth would be challenging and costly.

Numerical simulations using accurate and efficient algorithms can
in this case complement or replace such experiments and provide
corresponding answers. In recent years, much effort has been put on
developing mathematical models and numerical algorithms suitable
for describing crystal habit and size of crystals (Karma and Rappel,
1998; Younsi and Cartalade, 2016), also for enantiopure (S)-mandelic
acid (Tan et al., 2022, 2023). The phase-field method has become
one of the most popular approaches to simulate crystal growth. It
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Fig. 1. Single-crystal growth cell used for all experiments: (a) photograph; (b) Schematic diagram of experimental arrangement for the measurement of a single crystal growth
rates (Gou et al., 2012; Bianco, 2009).
is a powerful tool for modeling structural evolution of materials and
crystals (Vakili et al., 2020; Subhedar et al., 2020; Schiedung et al.,
2020). It is now widely used to investigate solidification (Boettinger
et al., 2002; Nestler and Wheeler, 2002) and grain growth (Chen and
Yang, 1994; Takaki et al., 2016; Karma and Rappel, 1998; Tourret
et al., 2017). The phase-field approach has also been used in com-
bination with the lattice Boltzmann method, now widely recognized
as an efficient alternative to classical tools, to simulate solidification
processes (Younsi and Cartalade, 2016; Lin et al., 2014; Wang et al.,
2019; Rojas et al., 2015; Zirdehi and Varnik, 2019). This approach can
reproduce numerically the solid–liquid interface interactions and the
hydrodynamic effects affecting the habits of growing crystals (Henniges
et al., 2017; Medvedev et al., 2006; Sakane et al., 2018; Chakraborty
and Chatterjee, 2007; Tan et al., 2022, 2023). While widely used
in the literature for hydrodynamic simulations the lattice Boltzmann
method is known to suffer from Gibbs-type oscillations near sharp
interfaces and instability issues in the limit of vanishing diffusion
coefficients. Furthermore, the classical passive-scalar lattice Boltzmann
solvers cannot take into account flows with variable density and/or
specific heat capacity. For such flows the models need to be extended,
see for instance (Hosseini et al., 2019b). In such cases an interesting
alternative is to replace the solvers for the scalar fields, e.g. species and
temperature, with classical finite-difference solvers with discontinuity-
capturing schemes for the advection term. The corresponding finite-
difference solvers are then coupled to a lattice Boltzmann approach for
describing hydrodynamics. Such hybrid approaches have been increas-
ingly used in the past years for applications such as combustion, see for
instance (Hosseini et al., 2019c, 2020, 2022).

In the present work the crystal growth of (S)-mandelic acid is stud-
ied in detail using a hybrid lattice Boltzmann/finite-difference method
under different reaction conditions and taking into account tempera-
ture difference changes; additionally, possible convection (sometimes
also called ventilation) effects will be considered. At the difference of
previous works, the enthalpy production due to mandelic acid lattice
integration is included in the model and an energy balance equation
is solved in the whole domain; in this manner, the effects of possible
temperature gradients within the crystallizer are fully taken into ac-
count. In companion experiments, well-characterized seed crystals must
be produced from supersaturated aqueous (S)-mandelic acid solutions.
The single grain growth is then tracked, the growing crystal being
inserted into a dedicated measurement cell. For the present studies
focusing on thermal effects: (1) the growth rate of the crystal was
investigated for different crystallization temperatures in the growth
cell; (2) numerically, heat generation is taken into account at the crystal
interface and temperature changes are solved for within the entire
growth cell. Finally, (3) the impact of convection effects on crystal habit
is studied at different Reynolds numbers. Baffles are additionally placed
in the cell to support symmetrical crystal growth.
2

2. Numerical methods

2.1. Governing equations

2.1.1. Diffuse-interface formulation: governing equations
In the phase-field method solid growth dynamics are expressed via

a non-dimensional order parameter, 𝜙, going from (+1) in the solid to
(−1) in the pure liquid phase. The space/time evolution equations are
written as (Jeong et al., 2001; Beckermann et al., 1999):

𝜏0𝑎
2
𝑠 (𝐧)

𝜕𝜙
𝜕𝑡

= 𝑊 2
0 𝛁 ⋅
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and regarding normalized supersaturation 𝑈 :

𝜕𝑈
𝜕𝑡

+
(

1 − 𝜙
2

)

𝒖 ⋅ 𝛁𝑈 = 𝐷𝛁 ⋅ (𝑞(𝜙)𝛁𝑈 ) − 1
2
𝜕𝜙
𝜕𝑡

, (2)

and temperature 𝜃:

𝜕𝑇
𝜕𝑡

+
(

1 − 𝜙
2

)

𝒖 ⋅ 𝛁𝑇 = 1
𝜌𝑐𝑝

𝛁𝜌𝑐𝑝𝜅 ⋅ 𝛁𝑇 + 1
2
𝛥𝐻cryst

𝑐𝑝

𝜕𝜙
𝜕𝑡

, (3)

where 𝜏 = 𝜏0𝑎2𝑠 (𝐧). The coefficient 𝜆1 and 𝜆2 describes the strength of
the coupling between the phase-field and the supersaturation field 𝑈 ,
the temperature field 𝑇 , respectively. 𝜃 = (𝑇 −𝑇1)∕𝑇1 is the normalized
temperature in the phase field equation. 𝑇1 is the constant temperature
in the growth cell(see Fig. 1). Both 𝑈 and 𝜃 contribute to the driving
force for the crystal growth. The parameter 𝜆1 = 𝜏0

𝑊 2
0

⋅ 𝐷
𝑎2

, where 𝐷

is the diffusion coefficient of the solution and 𝑎2 = 0.6267 (Ramirez
et al., 2004). Here 𝜆1 = 3.0 (Tan et al., 2023). The parameter 𝜏0 denotes
the characteristic time and 𝑊0 the characteristic width of the diffuse
interfaces. In Eq. (1), the quantity 𝐧 = − 𝛁𝜙

|𝛁𝜙| is the unit vector normal

to the crystal interface pointing from solid to fluid, while 𝑎𝑠(𝐧) is the
surface tension anisotropy function. In the context of the hexagonal
mandelic acid crystal growth, this quantity is defined as (Karma and
Rappel, 1998):

𝑎𝑠(𝐧) = 1 + 𝜀𝑠 cos(6𝜑), (4)

with 𝜑 = arctan(𝑛𝑦∕𝑛𝑥) considering the two spatial dimensions 𝑥 and
𝑦. The numerical parameter 𝜀𝑠 characterizes the anisotropy strength,
and is set in the present study to 𝜀𝑠 = 0.05 following (Karma and
Rappel, 1996). The term (𝜙 − 𝜙3) is the derivative of the double-
well potential. The last term in Eq. (1) is a source term accounting
for the coupling between supersaturation 𝑈 , temperature 𝜃, and order
parameter 𝜙. There, (1 − 𝜙2)2 is an interpolation function minimizing
the bulk potential at 𝜙 = ±1.

In Eq. (2), 𝒖 denotes the local fluid velocity while 𝑞(𝜙) = (1 − 𝜙) is
a function canceling out diffusion within the solid. As a consequence,
solute transport is assumed to take place only within the fluid phase
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Table 1
Physical parameters used for modeling single S-ma crystal growth at temperature of 25 ◦C.
Property Value Unit Ref.

Enthalpy of crystallization 𝛥𝐻𝑐𝑟𝑦𝑠𝑡 −18.5 kJ/mol Emelýanenko et al. (2018)
Specific heat capacity for solid 𝑐𝑝,𝑆 160.5 J/mol K Sapoundjiev et al. (2005)
Specific heat capacity for liquid 𝑐𝑝,𝐿 75 J/mol K Sapoundjiev et al. (2005)
Thermal diffusivity for solid 𝜅𝑆 1.1 mm2/s Slack (1979)
Thermal diffusivity for liquid 𝜅𝐿 0.146 mm2/s Speedy (1982)
Crystal growth rate constant 𝑘0 1.0 × 10−5 cm/s Zhang et al. (2010)
Density of solid 𝜌𝑆 1.341 g∕cm3 https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7428618.htm
Density of fluid 𝜌𝐿 1.0 g∕cm3 Patterson and Morris (1994)
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(one-sided model). The parameter 𝐷 is the diffusion coefficient of (S)-
andelic acid in water. Normalized supersaturation 𝑈 is later defined

n Eq. (23); its transport equation is given by Eq. (2).
In Eq. (3), 𝜅̃ is the thermal diffusivity in the single-crystal growth

ell, which is defined as:

𝜅̃ =
(1 − 𝜙)𝜅𝐿 + (1 + 𝜙)𝜅𝑆

2
, (5)

here 𝜅𝐿 is the thermal diffusivity for the solution and 𝜅𝑠 is for the
olid. The quantity 𝜅̃ tracks the different values of thermal diffusiv-
ty between the liquid and solid phases. Similarly, for specific heat
apacity:

𝑐𝑝 =
(1 − 𝜙)𝑐𝑝,𝐿 + (1 + 𝜙)𝑐𝑝,𝑆

2
. (6)

here 𝑐𝑝,𝐿 is the specific capacity for the liquid and 𝑐𝑝,𝑆 is for the
rystal. The quantity 𝛥𝐻𝑐𝑟𝑦𝑠𝑡 represents the energy difference per mole
f S-ma between the crystal solid and aqueous phases (see Table 1).

.1.2. Flow field formulation
The mass conservation (or continuity) equation reads for this incom-

ressible system:

⋅
[

1 − 𝜙
2

𝒖
]

= 0, (7)

where 𝒖 is the velocity of the flow field. The momentum conservation
equation is as follows:

𝜕
𝜕𝑡
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𝒖
]
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[

1 − 𝜙
2

𝒖
]
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2

)

𝛁𝑃
𝜌0

= 𝜈𝛁𝟐
[

1 − 𝜙
2

𝒖
]

− 𝜈
ℎ(1 + 𝜙)2(1 − 𝜙)

4𝑊 2
0

𝒖, (8)

here 𝑡 is time, 𝑃 pressure, 𝜌0 the liquid phase density, 𝜈 kinematic
iscosity, 𝑊0 interface thickness and ℎ a constant (equal to 2.757)
hat ensures that the interface shear is correct for a simple shear
low (Beckermann et al., 1999).

.2. Numerical methods

.2.1. Flow field solver with LBM
The flow field behavior (described by the incompressible Navier–

tokes and continuity equations) is modeled using the classical LB
ormulation consisting of the now-famous stream-collide operators:

𝛼
(

𝒙 + 𝒄𝛼𝛿𝑡, 𝑡 + 𝛿𝑡
)

− 𝑓𝛼 (𝒙, 𝑡) = 𝛿𝑡𝛺𝛼 (𝒙, 𝑡) + 𝛿𝑡𝑭 , (9)

here 𝑭 is the external force. Here, 𝑭 is used to represent the interac-
ion with the solid phase following (Beckermann et al., 1999):

= −
ℎ𝜈(1 + 𝜙)2(1 − 𝜙)𝒖

4𝑊 2
0

(10)

where ℎ is a dimensionless constant, chosen as ℎ = 2.757 (Beckermann
et al., 1999). Due to the absence of fluid velocity within the solid
crystal, the velocity variable 𝒖 is updated as:

∗ =
(1 − 𝜙)𝒖, (11)
3

2

nd the corrected fluid velocity 𝒖∗ is used in the equilibrium distri-
ution function (Beckermann et al., 1999). The collision operator 𝛺𝛼
ollows the linear Bhatnagar–Gross–Krook (BGK) approximation:

𝛼 = 1
𝜏
[

𝑓 (𝑒𝑞)
𝛼 − 𝑓𝛼

]

, (12)

where 𝑓 (𝑒𝑞)
𝛼 is the discrete isothermal equilibrium distribution function

EDF) defined as:

(𝑒𝑞)
𝛼 = 𝜌𝑤𝛼

∑

𝑖

1
𝑖!𝑐2𝑖𝑠

𝑎(𝑒𝑞)𝑖 (𝒖) ∶ H𝑖(𝒄𝛼), (13)

here 𝑎(𝑒𝑞)𝑖 and H𝑖(𝒄𝛼) are the corresponding multivariate Hermite
oefficients and polynomials of order 𝑖, with 𝑐𝑠 the lattice sound
peed corresponding to the speed of sound at the stencil reference
emperature, and 𝑤𝛼 the weights associated to the Gauss–Hermite
uadrature (Shan et al., 2006). Further information on the expansion
long with detailed expressions of the EDF can be found in Shan et al.
2006), Hosseini et al. (2019a) and Hosseini (2020). In the present
ork, an extended range of stability is obtained by using a central
ermite multiple relaxation time (MRT) implementation; correspond-

ng details can be found in Hosseini et al. (2021). The relaxation time
𝜏 is tied to the fluid kinematic viscosity as:

𝜏 = 𝜈
𝑐2𝑠

+ 𝛿𝑡
2
. (14)

Conserved variables, i.e., density and momentum are defined as mo-
ments of the discrete distribution function:

𝜌 =
∑

𝛼
𝑓𝛼 , (15)

𝒖 =
∑

𝛼
𝒄𝛼𝑓𝛼 . (16)

.2.2. LBM for phase-field equation
The phase-field equation is modeled using a modified lattice Boltz-

ann (LB) scheme implemented as (Walsh and Saar, 2010; Cartalade
t al., 2016):
2
𝑠 (𝒏)ℎ𝛼(𝒙 + 𝒄𝛼𝛿𝑥, 𝑡 + 𝛿𝑡) = ℎ𝛼(𝒙, 𝑡)

−
(

1 − 𝑎2𝑠 (𝒏)
)

ℎ𝛼(𝒙 + 𝒄𝛼𝛿𝑥, 𝑡) −
1

𝜂𝜙(𝒙, 𝑡)
[

ℎ𝛼(𝒙, 𝑡) − ℎ𝑒𝑞𝛼 (𝒙, 𝑡)
]

+𝑤𝛼𝑄𝜙(𝒙, 𝑡)
𝛿𝑡
𝜏0

, (17)

where the scalar function 𝑄𝜙 is the source term of the phase-field
defined as:

𝑄𝛼 = (𝜙 − 𝜙3) + 𝜆(𝑈 + 𝜃)(1 − 𝜙2)2, (18)

while the EDF ℎ𝑒𝑞𝛼 is defined as:

𝑒𝑞
𝛼 = 𝑤𝛼

(

𝜙 − 1
𝑐2𝑠

𝒄𝛼 ⋅
𝑊 2

0
𝜏0

|𝛁𝜙|2
𝜕(𝑎𝑠(𝒏)2)
𝜕𝛁𝜙

𝛿𝑡
𝛿𝑥

)

. (19)

where ∇𝜙 is calculated by directional derivatives with higher-order
isotropy (Tan et al., 2022):

∇𝜙 = 1
2

𝑄
∑

𝑤𝛼
(

|𝑐𝛼|
2)𝜙

(

𝑥 + 𝑐𝛼
)

𝑐𝛼 (20)

𝑐𝑠 𝛼=0

https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7428618.htm
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Fig. 2. Scaling of the 𝑙2 error norm as obtained from the grid convergence study. Black
markers represent error data from the simulations (see Table 2) while the black dashed
line displays the theoretical −4 slope.

where 𝑤𝛼
(

|𝑐𝛼|
2) are the weights associated to each layer of neighboring

nodes maximizing isotropy (Shan, 2006). The local value of the order
parameter 𝜙 is computed as:

𝜙 =
∑

𝛼
ℎ𝛼 , (21)

while the relaxation is set to:

𝜂𝜙 = 1
𝑐2𝑠

𝑎2𝑠 (𝒏)
𝑊 2

0
𝜏0

+ 𝛿𝑡
2
. (22)

2.2.3. Finite-difference solver for species and energy equations
Balance equations for supersaturation and temperature are solved

using a finite-difference scheme with a simple first-order time-stepping
coupled to a fourth-order central discretization in space for diffusion
terms and a third-order weighted essentially non-oscillatory (WENO)
approximation for convective terms (Liu et al., 1994). Related re-
searches are investigated from Liu et al. (1994), Cockburn et al. (1998)
and Shu (2020).

2.3. Evaluation of thermo-physical properties

The physical parameters of the pure (S)-mandelic acid at temper-
ature 𝑇 = 298.15 K (or 25 ◦C) are listed in Table 1. The enthalpy of
crystallization 𝛥𝐻𝑐𝑟𝑦𝑠𝑡 characterizes the energy difference per mole of
S-ma between the solid and liquid(melt) phase and is represented here
as negative value of the enthalpy of fusion (Emelýanenko et al., 2018).
The value of specific heat capacity 𝑐𝑝,𝐿 is that of water (being by far the
dominating component) and 𝑐𝑝,𝑆 is for racemic MA (Sapoundjiev et al.,
2005). Furthermore, 𝜅𝑆 denotes the thermal diffusivity of the crystal
and 𝜅𝐿 represents the thermal diffusivity of water (Slack, 1979; Speedy,
1982), while 𝐷 is the diffusion coefficient for the solution (Tanner,
1983).

3. Experimental setup

All experimental data for the single S-ma crystal growth rate in
the growth cell have been obtained from Gou et al. (2012), Bianco
(2009). The corresponding experimental setup is illustrated in Fig. 1.
A supersaturated aqueous solution of mandelic acid is pumped into
a constant-temperature cylindrical crystallization cell, with solution
temperatures varying between 20 and 30 ◦C. The temperature within
the cell is maintained constant via a water-based cooling/heating sys-
tem connected to a Pt-100 sensor monitoring the temperature at the
center of the cell. Vessel 2, denoted V2 in Fig. 1b contains a saturated
4

Fig. 3. Schematic of adiabatic cell box in 3D.

solution at temperature 𝑇2 while vessel 1 (V1) was set to a lower
temperature 𝑇1, corresponding to the temperature of the cell. To create
the supersaturated solution, the initially saturated solution in V2 is
pumped into V1 and cooled down to 𝑇1 before entering the growth
cell. This effectively allows to control the supersaturation level of the
incoming solution by choosing temperature 𝑇1. Based on the solutions
in the two vessels, the normalized supersaturation is defined as (Mullin,
2001):

𝑈 =
𝐶𝑠𝑎𝑡,2 − 𝐶𝑠𝑎𝑡,1

𝐶𝑠𝑎𝑡,1
(23)

To start the experiment, the supersaturated solution is continuously
pumped from vessel 1 to the growth cell, in which a single (S)-mandelic
crystal is glued on the pin head of a crystal holder. Then, the solution
is recycled to vessel 2 and the concentration of the solution is com-
pensated. In that way, a stable degree of supersaturation is guaranteed
during the whole process. A microscope with camera (Stemi2000C, Carl
Zeiss Co.) is used to take pictures of the single crystal at every one hour.
The images are afterwards post-processed by applying Carl Zeiss’ Axio
Vision software (Gou et al., 2012).

In the experimental setup, small temperature differences and gra-
dients cannot be measured, since this quantity is measured at a single
point. Due this fact it is attractive to analyze, the temperature field
within the entire growth cell numerically.

4. Simulations and analysis of the results

4.1. Validation of the finite-difference (FD) solver

In the present study, the FD method is adopted to solve for en-
ergy and species due to the large ratio between the value of thermal
diffusivity and of mass diffusion coefficient; the corresponding Lewis
number (the ratio between thermal diffusivity and mass diffusion) is of
the order of 102−103. Finite differences are more suitable for low values
of the diffusion coefficient, since LBM becomes numerically unstable at
very low non-dimensional diffusion coefficients, the relaxation time 𝜏
becoming close to 0.5.

4.1.1. Self-convergence of FD method
As known, LBM is of second-order accuracy for the phase-field

model (Tan et al., 2023). Here, the accuracy of the finite-difference
method is checked by considering only diffusion for a case with non-
homogeneous concentrations. In this test-case, periodic boundaries are
implemented in a 2D box of size [−1, 1] × [−1, 1] mm.

The concentration profile is set as a Gaussian hill following (Krüger
et al., 2017; Fedi et al., 2010):

𝐶(𝐱, 𝑡) =
𝛹0
√

exp
(

−1𝝈−1
𝒕 ∶ 𝐱2

)

. (24)

2𝜋 |𝝈𝒕| 2
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Fig. 4. Plots showing average concentration (left), crystal radius (center) and average temperature (right) as function of time as obtained from the hybrid LBM/FD solver, compared
with analytical solution. Note the horizontal logarithmic scale due to the long duration of the process.
Fig. 5. Molar heat generation during growth of spherical crystal at time 𝑡 = 1 hour.

Fig. 6. Evolution of average molar heat generation with time connected to spherical
crystal growth.

where 𝛹0 = 2𝜋𝜎20 with initial variance 𝜎0 = 0.01 mm. The tensor
𝝈𝒕 = 𝜎20𝐈+2𝑡𝐃, |𝝈𝒕| are the determinant value and 𝝈−1

𝒕 is inverse matrix
of 𝝈𝒕, respectively. Quantity 𝐈 is the unit matrix. Note that 𝜎0 is small
enough in the present case, so that periodic boundary conditions are
suitable.

The diffusion tensor in 2D:

𝐃 =
[

𝐷𝑥𝑥 𝐷𝑥𝑦
𝐷𝑦𝑥 𝐷𝑦𝑦

]

(25)

Therefore, 𝝈𝒕 is:

𝝈𝒕 =
[

𝜎20 + 2𝑡𝐷𝑦𝑦 2𝑡𝐷𝑦𝑥
2

]

(26)
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2𝑡𝐷𝑥𝑦 𝜎0 + 2𝑡𝐷𝑥𝑥
Fig. 7. Reactor geometry employed for all 2D simulations.

Fig. 8. Method used to number the crystal sides and the associated normal
directions (Bianco, 2009).

here diffusion coefficient is set by: 𝐷𝑥𝑦 = 𝐷𝑦𝑥 = 0, 𝐷𝑥𝑥 = 𝐷𝑦𝑦.
The simulations are conducted using four different spatial resolutions,
𝛿𝑥 ∈ {0.04, 0.025, 0.02, 0.016} mm. Since the overall size of the numerical
domain is kept fixed, an improved spatial resolution automatically
comes with a larger number of grid points. Then, the results are
compared with the analytical solution (see Eq. (24)) at time 𝑡 = 10s.

The 𝑙2 relative error norm is calculated based on the concentration
profiles over the entire domain. The 𝑙2 norm is defined as:

E𝑙2 =

√

√

√

√

√

∑

𝑖
(

𝐶𝑖 − 𝐶𝑎𝑛,𝑖
)2

∑

𝐶2
(27)
𝑖 𝑎𝑛,𝑖
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Table 2
Relative 𝑙2 errors of the scalar variable 𝐶 for different resolutions.

Numerical grid 50 × 50 80 × 80 100 × 100 125 × 125

𝐸𝑙2 5.0565 0.1787 0.0193 0.0081

Fig. 9. Instantaneous supersaturation and temperature fields in the growth cell for
initial supersaturation 𝑈0 = 0.045 at times 𝑡 = 4 hours (top), 8 h (center), 16 h (bottom),
respectively.

where 𝐶𝑖 represents the concentration obtained numerically at a cer-
tain position in the box and 𝐶𝑎𝑛 denotes the analytical solution from
Eq. (24). The errors obtained from the different simulations are illus-
trated in Fig. 2.

As observed from this plot, the numerical scheme is convergent
as the error decreases with resolution. Furthermore, as expected from
theoretical analyses, a fourth-order convergence is obtained for the
finite-difference solver.

Figs. 11 and 12 show the heat release process during phase-change
from the liquid into the solid state at the interface of the crystal.

4.1.2. Limiting case: adiabatic single-crystal growth cell
In this section, in order to get rough insight regarding the tempera-

ture range possible, an adiabatic single-crystal growth cell is computed
using mass and energy conservation for the purpose of verifying the
proper function of the hybrid LBM/FD solver for describing single S-ma
crystal growth rate and temperature within the cell.

The model is based on a square box in 3D (see Fig. 3) with a side
length of 1 cm. The seed is set in the center of the box with initial radius
𝑅 = 0.1 cm. The initial concentration of the supersaturated aqueous
S-ma aqueous solution is 0.887 mmol/cm3 in this closed adiabatic
system. The S-ma crystal keeps growing until the solution concentration
reaches equilibrium. The liquid phase mass balance involving liquid
phase concentration 𝑐 reads:

𝑉 𝑑𝑐 = −𝑘(𝑇 )𝐴 (𝑐 − 𝑐 (𝑇 )) = −𝑘(𝑇 )4𝜋𝑅2(𝑐 − 𝑐 (𝑇 )) (28)
6

𝐿 𝑑𝑡 𝑠𝑜𝑙𝑖𝑑 𝑠𝑎𝑡 𝑠𝑎𝑡
Fig. 10. Temperature profile around the center-line of the numerical domain at times
𝑡 = 4, 8 and 16 h, respectively.

where 𝑉𝐿 is the volume of the adiabatic box (here, 1 cm3); variable
𝐴𝑠𝑜𝑙𝑖𝑑 = 4𝜋𝑅2 is the surface area of the solid; 𝑉𝑠𝑜𝑙𝑖𝑑 = 4

3𝜋𝑅
3 is its

volume; 𝑐𝑠𝑎𝑡(𝑇 ) is the saturation concentration (see Eq. (33)) and 𝑘(𝑇 )
the growth rate constant (see Eq. (34)), both at temperature T. The ordi-
nary differential equation describing the liquid phase concentration 𝑐 is:

𝑑𝑐
𝑑𝑡

= −
𝑘(𝑇 )
𝑉𝐿

4𝜋𝑅2(𝑐 − 𝑐𝑠𝑎𝑡(𝑇 )) (29)

The solid phase mass balance reads (assuming that the density does not
depend on temperature, since temperature differences are expected to
be low):

𝜌𝑆
𝑑𝑉𝑆
𝑑𝑡

= 𝜌𝑆4𝜋𝑅2 𝑑𝑅
𝑑𝑡

= 𝑘(𝑇 )4𝜋𝑅2𝑀𝑆 (𝑐 − 𝑐𝑠𝑎𝑡(𝑇 )) (30)

where 𝜌𝑆 is the density of the mandelic acid crystal, 𝑀𝑆 is the molar
mass of the solid. The second ordinary differential equation describing
radius is:
𝑑𝑅
𝑑𝑡

=
𝑘(𝑇 )
𝜌𝑆

𝑀𝑆 (𝑐 − 𝑐𝑠𝑎𝑡(𝑇 )) (31)

The third ordinary differential equation representing energy (here
in the form of temperature) is:

𝑑𝑇
𝑑𝑡

= −
𝛥𝐻𝑐𝑟𝑦𝑠𝑡

𝑉𝐿𝜌𝐿𝑐𝑝,𝐿 + 4
3𝜋𝑅

3𝜌𝑆𝑐𝑝,𝑆
𝑘(𝑇 )4𝜋𝑅2(𝑐 − 𝑐𝑠𝑎𝑡(𝑇 )) (32)

The value of specific heat capacity 𝑐𝑝,𝐿 is that of water, and 𝑐𝑝,𝑆 is
from the S-mandelic acid, taken from Sapoundjiev et al. (2005). The
saturation function for a mandelic acid aqueous solution is (Lorenz
et al., 2002):

𝑐𝑠𝑎𝑡(𝑇 ) = −0.005006 + 0.00001923𝑇 (33)

where temperature 𝑇 with unit K and the kinetic growth rate constant
is:

𝑘(𝑇 ) = 𝑘0𝑒
−𝐸∕(𝑅𝑇 ) (34)

where 𝑘0 is the crystal growth rate constant with the unit [cm/s]; 𝐸 is
the activation energy, with unit [J/mol]. Due to the small temperature
range covered, the growth rate coefficient 𝑘(𝑇 ) was assumed to be
constant in the temperature range between 20 and 30 ◦C. The value
used is given in Table 1.

In the numerical simulation based on the hybrid LBM/FD solver, the
spatial discretization is 0.01 cm (leading to a grid [100 × 100 × 100])
and the time-step is 0.005s. The physical parameters of S-ma are
selected based on Table 1. Fig. 4 shows average concentration, crystal
radius, and average temperature as function of time. It can be observed
that the numerical solution obtained with the hybrid LBM/FD solver



International Journal of Multiphase Flow 171 (2024) 104669Q. Tan et al.
Fig. 11. Instantaneous heat generation at the interface of the crystal at times 𝑡 = 4, 8 and 16 h (from left to right), respectively.
Fig. 12. Instantaneous heat generation along the centerline of the numerical domain
at times 𝑡 = 4, 8 and 16 h, respectively.

matches well with the analytical solutions derived from mass and
energy conservation. Figs. 5 and 6 illustrate the heat release process
during phase-change from the liquid into the solid state at the in-
terface of the crystal. Eventually, the heat release is stopped when
the crystal stops growing (equilibrium state has been reached). This
successfully terminates the verification procedure for the developed
numerical model. It can now safely be used to investigate growth rates
and possible temperature effects for a single S-ma crystal.

4.2. Validation for S-ma crystal growth including temperature effects

4.2.1. Experiments vs. numerical simulation for different temperatures
An excellent agreement between numerical predictions and experi-

mental observations was observed in a previous study when neglecting
the influence of changes in temperature (Tan et al., 2023). In order to
check now the ability of the solver to correctly describe S-ma crystal
growth at different temperatures (from 20 ◦C to 30 ◦C), 2D simulations
are carried out using the real reactor geometry. The reduction to two
dimensions is justified by the fact that, in all conditions considered
here, the crystal follows a platelet growth mode leading to a clear
separation of scales between growth in axial or in planar directions,
ensuring also symmetry of the flow field (Henniges et al., 2017). The
2D geometry used for the simulations is shown in Fig. 7. First, con-
figurations are considered where forced convection is negligible. For
all experiments presented in this section the initial seed is a hexagonal
crystal. The initial supersaturation is 𝑈 = 0.045, and the temperature
is 𝑇 = 20 ◦C, 𝑇 = 25 ◦C, or 𝑇 = 30 ◦C, respectively. The employed
physical parameters have been given in Table 1. All simulations are
carried out with a spatial resolution of 𝛿𝑥 = 0.1 mm. The interface
thickness is set to 𝑊0 = 0.25 mm, the relaxation time to 𝜏0 = 0.02s,
and the coupling coefficient 𝜆 = 3 was chosen as a standard value for
the phase-field method for dendrite growth (Ramirez et al., 2004). At
the walls of the reactor, zero-flux boundary conditions are applied to
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Table 3
Comparison between experiments and simulations for initial supersaturation 𝑈 = 0.045
as a function of temperature (Klukas, 2006).

Average growth rate [mm/h] 𝑇 = 20 ◦C 𝑇 = 25 ◦C 𝑇 = 30 ◦C

Experiments 0.011 0.023 0.0321
Simulations 0.0096 0.0222 0.0317

both the species and phase fields. A constant wall temperature (set as
the value of 𝑇1, see Fig. 1) is used as boundary condition for the energy
equation. At the inlet a constant supersaturation is imposed, following
the implementation described in Krüger et al. (2017) for the boundary
condition.

In Table 3, 𝐺𝑡ℎ is the average growth rate (in mm/h) obtained as
𝐺𝑡ℎ = (𝐿1+𝐿2+𝐿3+𝐿4+𝐿5+𝐿6)∕6𝑡 in both experiment and simulation.
The comparison between computed and measured values points to a
good agreement at all temperatures. 𝐿 is the normal length from the
center to every side of the crystal(see Fig. 8). It is observed that the
S-ma growth rate increases with temperature. As far as can be judged
from only 3 values (no other conditions have been investigated exper-
imentally), a quite linear behavior is observed between temperature
and growth rate in the range studied. It is now interesting to check
the occurrence and strength of possible temperature gradients within
this growth cell.

4.2.2. Occurrence of temperature gradients during crystal growth
Although the temperature of the single-crystal growth cell in the

experimental setting is kept constant through the walls at the tem-
perature of vessel V1, the growth of the crystal generates heat at
the interface between liquid and solid phase. The Pt-100 sensor used
for the temperature measurements in the experiment delivers only a
point value and cannot be used to track possible gradients. Hence, in
this section, the temperature field in the whole growth cell is studied
numerically. The initial supersaturation is kept at 𝑈0 = 0.045 as in the
previous section.

In Fig. 9, it is seen that the highest temperature in the crystal as
well as the solution temperature far from the crystal are still found
at around 300 K. However, a maximum difference in temperature
of the order of 0.5 ◦C is indeed observed within the cell, with a
maximum temperature close to the interface. Though small, this shows
that temperature differences do exist within the single-crystal growth
cell. Since these differences appear locally, non-negligible temperature
gradients will occur as well. Fig. 10 demonstrates that the temperature
increase has a peak value in the range of the single crystal and decreases
in the fluid phase to the wall of the cell.

4.2.3. Ventilation and temperature effects during S-ma crystal growth
In the real single-crystal reactor the incoming flow of (S)-mandelic

acid in solution might have an impact on crystal growth rate and shape,
as demonstrated in Tan et al. (2023) when neglecting temperature
changes. The aim of the present section is to check this point for
different Reynolds numbers, and to suggest the inclusion of baffles to
support symmetrical growth.



International Journal of Multiphase Flow 171 (2024) 104669Q. Tan et al.
Fig. 13. Instantaneous fields of heat generation (top), temperature (center), velocity field (bottom) within the growth cell at time 𝑡 = 16 hours for different Reynolds numbers Re
= 16, 20, 24, and 28 (from left to right), respectively.
Fig. 14. Evolution of peak temperature with time within the cell for different Reynolds
numbers Re = 16, 20, 24, and 28, respectively.

Effect of Reynolds number. The Reynolds number is defined as Re=
𝒖𝑖𝑛𝐿𝐷∕𝜈𝑓 , where 𝐿𝐷 is the initial diameter of the circumscribed circle
of the hexagonal crystal seed, 𝜈𝑓 is the kinematic viscosity of water,
taken at 1 mm2/s. The inlet velocity is set as 𝒖𝑖𝑛 = 8, 10, 12 or 14 mm/s,
respectively.

Fig. 13 shows that at higher Reynolds number, the crystal grows
much faster. As a consequence, more heat is generated at the interface
because of the intensive solute convection around the crystal. This
effect dominates over the accelerated transport of heat away from the
crystal by the flow. Overall, an increase of the maximum temperature
with Re is observed around the single crystal (see Fig. 14).

Baffle. As seen from Fig. 13 (white lines in the bottom figure, showing
the crystal boundary), the overall shape of the crystal varies con-
siderably as function of the Reynolds number, and rapidly becomes
8

Fig. 15. 2D growth-cell geometry including baffles at different positions.

non-symmetric. However, the regularity of the crystal shape is a prop-
erty of high interest regarding the performance of the final products.
Therefore, it would be desirable to find a simple geometrical modi-
fication to the single-crystal growth cell, leading to isotropic growth
rates and/or a desired final aspect ratio. For this purpose, a simple
flat baffle has been included in the simulation domain in front of the
inlet, in order to prevent a direct impact of the incoming flow onto the
growing seed. Three different configurations (different positions) of the
baffle have been compared. The resulting configurations are illustrated
in Fig. 15; what is called configuration 0 is the original case, without
any baffle.

Fig. 16 shows that ventilation effects are still visible with the baffle
at position 1, much more than at other positions; this case leads to the
faster crystal growth in vertical direction. The single crystal growth
becomes more symmetric as the baffle is placed at a farther distance
from the inlet of the growth cell. To quantify the effect of the baffles
on the symmetry of the crystal, a quality parameter has been defined
as 𝑄 = max(𝐿 )∕min(𝐿 ) where index 𝑖 ∈ {0,… , 5} covers the length
𝑖 𝑖
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Fig. 16. Instantaneous fields of heat generation (top), temperature (center), velocity (bottom) at time 𝑡 = 16 hours in the growth cell with the baffle placed at different positions
(from left to right): (1) without baffle; (2) with baffle at position 1; (3) with baffle at position 2; (4) with baffle at position 3.
Fig. 17. Evolution of peak temperature with time for the baffles placed at different
positions, for an initial temperature 𝑇0 = 300 K.

Table 4
Impact of the different baffles (see Fig. 15) on the isotropy ratio.

Position No baffle Baffle 1 Baffle 2 Baffle 3

Q 1.29 1.73 1.16 1.12

of all sides of the resulting crystal. Thus, parameter 𝑄 quantifies non-
isotropic growth, with 𝑄 = 1 (the minimum value) corresponding to a
perfectly isotropic growth, while an increasing value of 𝑄 corresponds
to increasing non-isotropy. The values of crystal quality as obtained
from all simulations after 16 h of growth are listed in Table 4. Overall,
the baffle in position 3 should be preferred to get maximum isotropy
and minimum temperature effects.

Fig. 17 shows the peak temperature as function of time for the
different baffles. Baffle 1 corresponds to the large ventilation effects
visible in Fig. 16; then, the crystal side facing the high flow velocity in
vertical direction leads to a much larger growth rate there, generating
much heat at the crystal interface.
9

5. Conclusions and perspectives

In this work, a hybrid LBM/finite-difference method has been used
to model the growth of a single crystal of (S)-mandelic acid. LBM is
used for the phase-field equation, while the finite-difference method
is applied for the species and energy equations due to the high ratio
between thermal and species diffusivity. Selected test-cases show that
numerical stability can be achieved with the hybrid solver thanks to the
finite-difference method. Successful verification and validation steps
are documented. The results provide detailed information regarding the
magnitude and dynamics of the temperature fields developing in the
measuring cell during the growth process. The heat generation during
phase change at the interface of the crystal leads overall to only small
changes in temperature over the whole cell. These local changes in tem-
perature lead to noticeable temperature gradients around the crystal
interface. For all cases considered, a maximum temperature increase of
almost 1.5 ◦C has been observed at the moving crystal interface where
the temperature sensor is unable to measure it. In this particular case
the molar heat generation at the interface can be probably neglected
to address most questions of interest. However, convection can amplify
temperature differences. Using a baffle located at a suitable position,
ventilation and temperature effects can be minimized.
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