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Abstract

Rhythm and language-related traits  are phenotypically correlated,  but their  genetic  overlap is

largely  unknown.  Here,  we  leveraged  two  large-scale  genome-wide  association  studies

performed  to  shed  light  on  the  shared  genetics  of  rhythm  (N=606,825)  and  dyslexia

(N=1,138,870). Our results reveal an intricate shared genetic and neurobiological architecture,

and  lay  groundwork  for  resolving  longstanding  debates  about  the  potential  co-evolution  of

human language and musical traits.

Main text word count: 2,807

The  human  brain  has  evolved  intricate  neural  circuitry  to  process  complex  communicative

signals and behaviours, including speech and music, and the extent of biological overlap between

these facets  is  an important  question for the field of  neurobiology.  Individual  differences  in

rhythm-related  skills  (e.g.,  beat  synchronisation,  rhythm perception  and production,  metrical

perception)  are  correlated  with  variability  in  a  range  of  language-related  skills  (e.g.,  word

recognition, spelling, phonological awareness), implicating potentially shared underlying neural

and  genetic  architectures1.  In  particular,  individuals  with  rhythm  impairment  have  been

suggested to show higher predisposition to language-related difficulties such as dyslexia and

developmental  language  disorder  (Atypical  Rhythm  Risk  Hypothesis,  ARRH)2.  Given  that
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disorders of language and reading can have long-term health impacts, identifying genetic factors

that they share with rhythm impairment may enhance future screening capabilities. Moreover,

basic  science concerning the biological  substrates  of these fundamental  human traits  will  be

informed by new approaches to their potentially shared genetic architecture.

The evolution of rhythm-related traits has been hypothesized to be linked to multiple facets of

human communication, including parent-child bonding, social or group cohesion, and aspects of

speech/language3,4.  To  address  prominent  theories  on  the  co-evolution  of  phonological  skill

development and rhythm in humans5, evidence to date has been taken largely from psychology,

neuroscience,  and  cross-species  comparisons  rather  than  genetics6,7.  We  hypothesise  that

identifying the shared genetic architecture between rhythm- and language-related disorders, and

probing the evolutionary past of the implicated genomic regions,  can help reveal  neural and

biological characteristics of our species which made rhythm and language an asset to human

development and behaviour.

Our work built on two recent genome-wide association studies (GWAS) that represent by far the

most well-powered genetic  investigations of rhythm-/language-relevant  traits  to date,  one for

musical rhythm (beat synchronisation, hereafter referred to as  rhythm;  “Can you clap in time

with  a  musical  beat?”,  Ncases(Yes)=555,660,  Ncontrols(No)=51,165)8 and  the  other  for  dyslexia

(developmental  reading/spelling  difficulties;  “Have  you  been  diagnosed  with  dyslexia?”,

Ncases(Yes)=51,800, Ncontrols(No)=1,087,070)9, both performed on 23andMe, Inc. Research Cohort

in individuals of European ancestry, and both classified as binary traits. We used the dyslexia

GWAS as  a proxy for the genetic  underpinnings  of  language and reading-related  aspects  of

human  communication,  as  dyslexia  often  co-occurs  with  a  number  of   speech/language

disorders10,11,12,13. Beat synchronisation GWAS was used as a proxy for musical rhythm skills, as

beat  perception  and  synchronisation  are  considered  to  be  important  features  of  musical

experiences in present-day humans14,15. We applied a three-stage analytic pipeline to investigate

shared genetics and biology: i) Genome-wide genetic correlations between rhythm and dyslexia

(as well as other language-related traits) using linkage disequilibrium score regression (LDSC)16,

ii)  multivariate  GWAS  (mvGWAS)  of  rhythm  impairment  and  dyslexia  using  Genomic

Structural  Equation  Modelling  (SEM)17,  iii)  post-mvGWAS analyses  of  the  shared  genomic

infrastructure as windows into its evolution and biology (Fig. 1A).
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In the first stage, we estimated genetic correlations between  rhythm and dyslexia,  as well as

quantitative measures of language/reading performance18, educational traits19, and brain-language

related  endophenotypes20,21 by  using  LDSC16.  We  found  moderate  but  significant  genetic

correlations  between  rhythm and  dyslexia  (rg(SE)=-0.28(0.02),  PFDR=2.05×10-31),  five

quantitative  language/reading  measures,  three  educational  traits,  and  two  language-relevant

neuroimaging endophenotypes (Fig. 1B, Table S1). In contrast there were negligible and non-

significant genetic correlations with non-verbal IQ (rg(SE)=-0.004(0.047), PFDR=0.94) and overall

school  performance  (rg(SE)=-0.066(0.040),  PFDR=0.11)  (Fig.  1B,  Table  S1). Thus,  rhythm is

genetically  correlated  not  only  with  dyslexia,  but  also  multiple  language-related  phenotypes

including word and non-word reading, non-word repetition, phoneme awareness, having better

language  skills  than  mathematics,  and  language  resting-state  functional  connectivity  (|rg|

median=0.184, range=0.004-0.376), providing empirical genetic evidence for the ARRH. The

absence of significant  genetic  correlations  between rhythm and cognitive traits  such as non-

verbal IQ and overall school performance provide evidence that genetic sharing between rhythm

and dyslexia is not driven by general cognition. These results represent the first direct empirical

support for a shared genetic architecture underlying previously observed phenotypic correlations

between rhythm and language-related traits1
, such as dyslexia (Pearson correlation=-0.04[-0.05;-

0.04], t=-25.96, df=363285, P<2.2×10-16).

Given that dyslexia is a neurodevelopmental disorder with effects particularly apparent in the

written language domain (evident from reading and/or spelling difficulties)9, and that other work

has shown rhythm impairments associated with dyslexia10,11,12,13, we expect it to be genetically

and phenotypically linked to impairment in rhythm (hereafter referred to as rhythm impairment)

rather than rhythm ability. (This expectation is supported by the negative sign of the genetic

correlation  observed  in  the  first  stage  of  our  pipeline  above.)  Thus,  we  reversed  the  effect

directions  in  the  binary  rhythm  GWAS  summary  statistics  in  order  to  align  genetic  effect

directions for rhythm- and reading-impairments. We then performed a mvGWAS on the rhythm

impairment and dyslexia GWASs to probe the validity of ARRH at the genetic level, using a

bivariate extension of Genomic SEM17 that we developed (see Methods). This allowed us to tease

apart the genetic effects shared between rhythm impairment and dyslexia from those that are

unique to each. We specified a measurement model with a shared genetic factor (FgRI-D), which

recaptured  the  genetic  correlation  between  two  traits  (σ2
FgRI-D(SE)=0.28(0.03)).  Similar  to

3

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.564908doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.564908
http://creativecommons.org/licenses/by/4.0/


Grotzinger et al.22, we then applied both the Common Pathway Model (CPM), which regresses

single-nucleotide polymorphisms (SNPs) from FgRI-D (Fig. S1), and the Independent Pathways

Model solution (IPM), which regresses SNPs directly onto the genetic components of the two

traits (Fig. S1). We were thus able to obtain a quantitative per-SNP score quantifying the extent

to which any given SNP influences rhythm impairment or dyslexia independent from FgRI-D, that

is the bivariate genetic heterogeneity (Qb).

Our mvGWAS analysis with the CPM resulted in a new set of summary statistics representing

the genetic overlap between rhythm impairment and dyslexia, and identified 18 genome-wide

significant (P<5×10-8) loci associated with FgRI-D (Fig. 2A, Table S2) after genomic control (GC)

correction (Fig. S2). We estimated the SNP-heritability of FgRI-D as 13% (SE=0.005) by using

LDSC16.  The  strongest  mvGWAS signal  came from the  SNP rs28576629 (P=3.79×10-14)  on

chromosome 3 (Fig. 2A), an intronic variant in PPP2R3A, a gene encoding a regulatory subunit

of protein phosphatase 223. We validated  the Genomic SEM CPM results using two additional

mvGWAS methods: 1) N-weighted Genome-Wide Association Meta-Analysis (GWAMA)24, and

2) Cross-Phenotype Association Analysis (CPASSOC)25. Both methods captured highly similar

genomic architectures to the one captured by the CPM (Fig. S3), confirming that the shared

genetics  of  rhythm  impairment  and  dyslexia  could  be  identified  consistently  regardless  of

analytic  tool.  The IPM resulted in two new sets  of summary statistics  capturing  the genetic

factors  of  rhythm  impairment  and  dyslexia  that  are  independent  from  FgRI-D,  so-called

independent factors (Fig. S4). We used the IPM results to obtain Qb and mapped the per-SNP Qb

scores  onto  CPM mvGWAS results  to  dissociate  the  homogeneous  (hereafter  referred  to  as

pleiotropic)  signals  from the  signals  driven  by a  single  GWAS (Fig  2A).  We identified  27

genome-wide significant (P<5×10-8) heterogeneous loci in the Qb results (Fig. 2A, Table S3), and

two  of  these  loci  are  co-localized  with  two  CPM  signals  on  chromosome  20  (30,690,943-

31,189,993 and 47,514,881-47,821,129),  which  are mvGWAS signals  that  are  driven by the

dyslexia GWAS (Fig. 2A). Our analysis revealed two distinct patterns for CPM mvGWAS hit

loci:  16  highly  homogeneous  (putatively  pleiotropic)  and  two  heterogeneous  loci  indicating

different levels of GWAS significance, effect sizes and/or opposite effect directions for these two

loci in the rhythm impairment and dyslexia GWASs (see Fig. 2B for representative loci of each

type).
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Next,  we  performed  a  transcriptome-wide  association  study  (TWAS)  using  FgRI-D summary

statistics, and whole-blood and 13 GTEx brain tissue phenotype weights26,27 with S-PrediXcan28

(Table S4). Our TWAS analysis identified 1,275 significant (PFDR<0.05) gene-tissue pairs, and

315 significant (PFDR<0.05) unique genes associated with FgRI-D after FDR correction (Fig. 3A,

Table S5). Some of the top significant gene-tissue pairs associated with FgRI-D are  AC072039.2

expression in brain nucleus (Z-score=-7.74, PFDR=1.17×10-9), PPP2R3A expression in cerebellum

(Z-score=7.49,  PFDR=2.43×10-9)  and  putamen  (Z-score=7.47,  PFDR=2.43×10-9),  and  FOXO3

expression  in  anterior  cingulate  cortex  (Z-score=6.07,  PFDR=1.15×10-5)  (Fig.  3A).  Functional

enrichment  analysis  of  the  significant  (PFDR<0.05)  TWAS genes  using  PANTHER29 did  not

identify any significant  enrichments  in  Gene Ontology30,31,32 and  PANTHER GO-Slim29,30,31,32

terms after accounting for multiple testing (Tables S6-11). Overall,  our S-PrediXcan analysis

highlighted 315 unique genes linked to  FgRI-D, including significant  gene-tissue pairs (such as

FOXO3 expression in the anterior cingulate cortex, and  PPP2R3A expression in the putamen)

involving brain regions with known relevance for music processing33,34.

To investigate  the neurobiology of genetic  variation  shared between rhythm impairment  and

dyslexia at cell-type resolution, we performed LDSC partitioned heritability analysis35 using cell-

type  specific  regulatory  region  annotations  of  neurons,  microglia,  astrocytes  and

oligodendrocytes36. We found robust significant SNP-heritability enrichments in the promoters of

neurons  (Enrichment(SE)=8.14(1.55),  PFDR=3.38×10-5),  oligodendrocytes

(Enrichment(SE)=7.98(1.53),  PFDR=3.38×10-5),  astrocytes  (Enrichment(SE)=7.72(1.59),

PFDR=1.1×10-4) and microglia (Enrichment(SE)=4.47(1.63), PFDR=0.04), as well as enhancers of

neurons  (Enrichment(SE)=4.43(0.35),  PFDR=7.96×10-18)  and  astrocytes

(Enrichment(SE)=2.73(0.58), PFDR=4.35×10-3) (Fig. 3B, Table S12). Consistent with the original

rhythm and dyslexia GWAS reports8,9, FgRI-D relates to brain structure in part by common effects

at  regulatory regions within multiple  cell-types, including neuronal and various non-neuronal

cells such as oligodendrocytes. This may suggest that the  FgRI-D might impact myelination and

white-matter  connectivity  patterns  that  could  potentially  instantiate  neural  overlap  between

rhythm and reading-related aspects of language1,5,37.

We  then  moved  on  to  investigate  relationships  of  FgRI-D with  psychiatric,  neurological,  and

behavioural  traits,  examining  patterns  of  genetic  correlations  with  common and independent

5

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.564908doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.564908
http://creativecommons.org/licenses/by/4.0/


factors in more detail. First, we curated 88 sets of GWAS summary statistics including traits that

were significantly genetically correlated either with rhythm or dyslexia in the original GWAS

reports8,9,  and three additional  education-related  traits19 (Table S13).  To reduce the statistical

burden of multiple testing correction in our consequent analyses, we subset this initial set of 88

traits  based on their  levels of genetic  correlation among themselves.  To do so, we estimated

pairwise genetic correlations, and identified the most highly correlated traits (|rg|>0.80; Fig. S5).

We then performed hierarchical clustering, obtaining one representative trait from each cluster of

highly correlated traits (Fig. S6). This approach yielded 49 traits that were relatively genetically

independent (see Methods for details), for which we estimated the genetic correlations with FgRI-

D, and with the summary statistics obtained by the IPM (Fig. S7, Table S14). Genetic correlations

between FgRI-D and the assessed traits ranged from −0.56 to 0.46,  and mostly lay between the

genetic  correlation  estimates  for  independent  factors  (Fig.  S7),  supporting  that  FgRI-D indeed

captures the common genetic factor of rhythm impairment and dyslexia. We found significant

negative  correlations  between  FgRI-D and  non-word  repetition  (rg(SE)=-0.513(0.099),

PFDR=7.03×10-7), and phoneme awareness (rg(SE)=-0.562(0.058), PFDR=3.78×10-21), validating the

FgRI-D  construct’s link to reading- and language-related traits. Positive genetic correlations were

observed  for  ADHD  (rg(SE)=0.237(0.029),  PFDR=3.69×10-15),  autism  spectrum  disorder

(rg(SE)=0.075(0.035),  PFDR=4.529×10-2),  and insomnia (rg(SE)=0.200(0.027),  PFDR=6.04×10-13),

suggesting shared genetic  liability  with neuropsychiatric  traits  that  have been phenotypically

linked to rhythm38. In total, FgRI-D showed significant (PFDR<0.05) genetic correlations with 37 of

the  49  selected  psychiatric/neurological/behavioural  traits  with  varying  magnitudes  and

directions,  including  ADHD,  Parkinson’s  Disease,  health  satisfaction  and  loneliness  (|rg|

median=0.146, range=0.06-0.56). Consistent with the  ARRH hypothesis,  the directionality  of

genetic  correlations suggest that decreased rhythm impairment/dyslexia risk may be associated

with resilience to certain neuropsychiatric disorders.  These genetic  correlations  also reflect  a

shared genomic architecture underlying rhythm,  dyslexia and social traits, showing that social

function and co-evolution hypotheses  of rhythm and communication skills39,40,41 are plausible

from a genetic perspective. Future work will be needed to disentangle possibly shared genomic

substrates of the evolution of social interaction, language and music.

Even though reading is a recent human innovation, it recruits language-related brain circuits42,43,

which have undergone biological evolution on the lineage leading to humans. Similarly, dyslexia
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manifests  overtly  as  a  reading/spelling  disorder,  yet  in  many  cases  this  reflects  underlying

deficits in aspects of oral language (e.g. phonological awareness)10,11,12,13. Given this link between

spoken language and reading, and in light of theoretical frameworks positing co-evolution of

rhythm-  and  language-related  skills  in  humans5,39,40,41,44, we  leveraged  genomic  methods  to

investigate  the  evolution  of  the  overlap  between  rhythm  and  the  reading-related  aspect  of

language over a range of timescales (Fig. 4A). We first performed LDSC partitioned heritability

analysis  using  five  evolutionary  annotations  tagging  foetal  brain  human  gained  enhancers45,

Neandertal  introgressed  alleles46,  archaic  deserts47,  and  primate  conserved  and  accelerated

regions48 (Fig.  4A).  This  revealed  significant  SNP-heritability  depletions  in  Neandertal

introgressed alleles, and significant enrichments in primate conserved regions for all traits (Fig

4B, Table S15), in line with findings for many other complex human traits49. We then used the

SBayesS  function  of  the  GCTB  package50 to  probe  the  effect  size-minor  allele  frequency

relationship (Ŝ) – an essential component of the complex trait genetic architecture influenced by

natural selection50. Similar to most cognitive and behavioural traits50, we found moderate levels

of  negative  selection  acting  on  FgRI-D (Ŝ(SD)=-0.51(0.05)),  and  the  independent  factors  of

dyslexia Ŝ(SD)=-0.47(0.06)) and rhythm impairment (Ŝ(SD)=-0.49(0.06)) (Fig. 4D, Table S16).

To pin down gene-sets associated with various evolutionary events and timescales that are not

testable  via  partitioned  heritability  analysis,  we  performed  MAGMA  gene-set  analysis51.

Specifically, we tested whether genetic variation associated with FgRI-D was enriched in genes that

overlap with four evolutionary annotations (Tables S17-20): i) Ancient Selective Sweep sites52,

ii) Human Accelerated Regions53,54,55,56, iii) Differentially Methylated Regions (DMRs) between

Anatomically Modern Humans (AMHs) and archaic humans57, and iv) DMRs between AMHs

and  chimpanzees57.  These  gene-set  based  analyses  did  not  yield  any  significant  enrichment

signals (Table S21), indicating an absence of evidence for associations between FgRI-D and these

four annotations.

To  follow  up  the  significant  partitioned  SNP-heritability  enrichments  in  primate  conserved

regions, we investigated the association between FgRI-D mvGWAS p-values and per-SNP primate

phastCons scores48 for 38,164 clumped SNPs  (P<0.05,  r2<0.06) from FgRI-D summary statistics

(Fig. 4C), and found that one of the FgRI-D genome-wide significant hits, rs10891314, had an

exceptionally high phastCons score, likely because it is a missense variant (Fig. 4C). We zeroed-

in on this genome-wide significant hit as an example locus and dissected patterns of Qb, and
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conservation/accelerated  evolution  in  primates  (Fig.  4E),  confirming  the  sharp  increase  in

conservation rate for the SNP rs10891314. The Human Genome Dating Atlas58 estimates this

polymorphism  to  be  11,199  generations  old  (95%  confidence  interval),  corresponding  to

280,000 years ago assuming 25 years per generation, around the time period when the oldest∼

known Homo sapiens fossils have been dated59. Rs10891314 is located in the DLAT gene, which

is associated with a rare neurodevelopmental disorder Pyruvate Dehydrogenase E2 deficiency

characterised  by  neurological  dysfunction,  dystonia  and learning  disability  mainly  appearing

during  childhood60. DLAT is  highly  conserved  and  loss-of-function  intolerant  (pLI=6.68)61,

which  makes  this  particular  missense  variant  an  interesting  candidate  for  increasing

susceptibility to rhythm impairment and dyslexia.

After  assessing  evolutionary  signatures  on  FgRI-D at  the  genome-wide  and  SNP  levels,  we

extended our investigations of rhythm-language co-evolution by integrating with independent

data from neuroimaging genetics. Thus, we estimated  local genetic correlations between  FgRI-D

and fractional anisotropy (FA) measures of five left hemispheric white-matter tracts (Table S22),

involved in the dorsal stream of spoken language, and theorized as key components of rhythm-

language convergent evolution5,62. Using LAVA63, we identified a significant genetic correlation

between  FgRI-D and the left hemispheric superior longitudinal fasciculus (SLF) I (rg=1, PFDR=0.02)

(Table S23) on a ~2mb region on chromosome 20 (30,569,660-32,484,506) which encompasses

several genes including EFCAB8, BAK1P1 and SUN5 (Fig. S8). SLF-I is the dorsal division of

SLF connecting the superior parietal and superior frontal lobes64, with functional links to musical

rhythm65. This finding is consistent with the hypothesized role of the dorsal stream in supporting

co-evolution of phonological processing and beat synchronisation4.

In summary, we showed robust genetic correlations between rhythm and a number of reading-

and language-related traits, supporting ARRH. The bivariate Genomic SEM approach that we

developed allowed us to identify genetic overlaps between rhythm impairment and dyslexia, and

to present a map of homogeneous and heterogeneous genetic effects, shedding light on patterns

of pleiotropy between the two. Our post-mvGWAS analyses enhance our understanding of the

aetiology of rhythm and language (on which reading depends) by revealing intricate links across

rhythm  impairment,  dyslexia,  and  various  aspects  of  evolutionary  past  and  neurobiological

function (including gene expression in brain tissue, brain cell type-specific gene regulation, and a
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local genetic correlation with a tract linked to processing and production of speech and music)5.

The  evolutionary  analyses  aimed  to  provide  empirical  genetic  data  as  groundwork  towards

understanding  potential  evolutionary  forces  acting  jointly  on  human  rhythm-  and  language-

related skills44,66, revealing a candidate gene, DLAT, for future experimental investigations.

Despite  a  number  of  practical  constraints,  such  as  the  fact  that  the  source  GWASs  were

performed  in  European-only  cohorts,  and  potential  confounds  due  to  residual  population

stratification and socioeconomic factors, our study represents a first step towards characterising

the shared genetic architecture between rhythm- and language-related traits. We reveal complex

links across common DNA variants,  genes, genomic loci, white-matter  structures and human

behaviour, making a first set of links across the immensely long causal chain spanning these

layers.  Developing  and  applying  more  sophisticated  methods  to  dissociate  environmental

confounds from genetics will allow future studies to obtain a better understanding of the genetics

and evolution of human language and musicality.

Methods

GWAS summary statistics

Beat synchronisation and dyslexia GWAS summary statistics8,9 were obtained from 23andMe

Inc.,  a  customer  genetics  company.  Both  GWASs  were  performed  on  European  ancestry

individuals  through  online  participation  and  participants  provided  informed  consent.  The

23AndMe sample prevalence of dyslexia is 4.6% (Ntotal=1,138,870, mean age=51), and sample

prevalence of beat synchronisation is 92% (Ntotal=606,825, mean age=52). Summary statistics

files were reformatted and harmonised to include required columns (e.g. SNP ID, beta, beta S.E.,

p-value) for each mvGWAS tool following the guidelines in original publications of each tool.

To obtain rhythm impairment summary statistics, effect sizes in the binary beat synchronisation

GWAS summary statistics were multiplied by -1, so that the effect directions were reversed.

Yielding  set  of  GWAS summary statistics  comprised of  SNP effects  contributing  to  rhythm

impairment, and was used for the subsequent mvGWAS analysis with dyslexia. We applied GC

correction to both sets of summary statistics for all non-LDSC-based analyses. For LDSC-based

analyses (including Genomic SEM), uncorrected summary statistics were used as input, as GC
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correction biases the LDSC SNP-heritability estimates downwards. The resulting set of summary

statistics from Genomic SEM was GC corrected.

SNP-heritability and genetic correlation estimations

We used LDSC16 (v1.0.1) to estimate the SNP-heritabilities and genetic correlations. For rhythm

impairment  and  dyslexia,  we  estimated  the  total  SNP-heritability  on  a  liability  scale  using

population and sample prevalence information from the original studies (sample prevalence of

0.045 for dyslexia and 0.085 for rhythm impairment, and a population prevalence of 0.050 for

dyslexia and 0.048 for rhythm impairment). Genetic correlations were estimated using bivariate

LDSC between rhythm, dyslexia, GenLang quantitative reading-/language-related traits18, Danish

School Grades GWAS19, and all external summary statistics except for the planum temporale

asymmetry  and  the  language  resting-state  functional  connectivity,  which  were  assessed  as

described below.

To  estimate  genetic  correlations  between  rhythm  and  planum  temporale  asymmetry21,  and

between  rhythm  and  language  resting-state  functional  connectivity20,  we  used  an  approach

proposed by Naqvi et al.67  applicable to unsigned multivariate statistics, as the mvGWAS effect

sizes or beta values, which are required to run genetic correlation analysis using LDSC, were not

available for these traits. We evaluated the amount of shared signal between each pair of GWASs

by  estimating  the  Spearman  correlation  of  the  average  SNP  p-values  within  approximately

independent LD blocks68. We first filtered the genome-wide SNPs using the HapMap3 reference

panel without the MHC region (https://github.com/bulik/ldsc). We then split the genome-wide

SNPs into 1,703 approximately independent blocks68. For each approximately independent LD

block, we computed the average SNP −log10(p-value). We then estimated a rank-based Spearman

correlation using the averaged association value (n=1,703) for each LD block. A standard error

of the Spearman correlation was estimated using statistical  resampling with 10,000 bootstrap

cycles with replacement from the 1,703 LD blocks.

Multivariate genome-wide association studies

To investigate the shared genetic variance of rhythm impairment and dyslexia, we performed

multivariate GWASs using three tools: Genomic SEM17, N-weighted GWAMA24, CPASSOC25.
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These  tools  use  GWAS summary-level  data  and account  for  genetic  correlation  and sample

overlap using the cross-trait LD score regression intercept.

Genomic SEM (Common and Independent Pathway Models). First, we reformatted our summary

statistics  for  LDSC  (munged)  and  Genomic  SEM,  following  standard  guidelines

(https://github.com/GenomicSEM/GenomicSEM/wiki).  We  then  used  the  multivariable

extension of LDSC to estimate the 2×2 empirical genetic covariance matrix between rhythm

impairment  and  dyslexia  and  their  associated  sampling  covariance  matrix.  We  specified  a

measurement model (Fig. S1), where a shared genetic factor (Fg) was estimated to capture the

observed genetic covariance between rhythm impairment and dyslexia. Given that the number of

observed parameters for any 2×2 covariance matrix equals 3, we constrained all paths between

Fg to 1. The final Common Pathway Structural model (CPM) was fit to a genetic covariance

matrix which incorporates the SNP tested (Fig. S1), SNPs were regressed from Fg , and residuals

were freely estimated. The 1000 Genomes Phase 3 reference panel69 was used as the reference

panel  to  calculate  SNP  variance  across  traits.  Effective  population  size  per-GWAS  was

calculated  as  4×Ncases×(1-Ncases/Ntotal).  Both  the  reference  panel  and effective  population  sizes

were then fed into the sumstats function and summary statistics were prepared for the meta-

analysis.  We applied genomic  correction to the CPM results  based on the genomic  inflation

index estimated by LDSC (λGC=1.62;  Fig. S2).  The final Independent Pathways model (IPM),

was fit to the same matrices incorporating the SNP effects, but with the SNP effect being directly

regressed from the traits. The final bivariate heterogeneity score, Qb, was obtained by subtracting

by a χ2 difference test, where the χ2 of the IPM is subtracted from the χ2 of the CPM (Qb = χ2
CPM –

χ2
IPM)22. High Qb  value index that the association between the SNP and rhythm impairment or

dyslexia  is  not  well  accounted  for  by  the  factor  Fg.  We then used the  intersect  function  of

bedtools (v. 2.29.2)70 to identify the overlaps between genome-wide significant Qb (Table S3),

and CPM loci (Table S2), as well as +-1Mb surroundings of each CPM locus.

CPASSOC. Following  the  CPASSOC  manual25,  we  used  the  median  sample  size  for  each

summary statistics file as 23andMe SNPs can have varying sample sizes. We removed SNPs

with a Z-score larger than 1.96 or less than -1.96, and extracted a 2×2 genetic correlation matrix

for dyslexia and rhythm impairment. Then we generated a  M×K matrix of summary statistics

where each row represented a SNP, and 2 columns represented dyslexia and rhythm impairment
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Z-scores. We finally performed the Shom test, and obtained a vector of p-values for M SNPs using

pchisq function in R (4.0.3).

GWAMA (N-weighted). To account for sample overlap, we first generated a matrix of cross-trait

intercepts  using  the  intercepts  of  LDSC  genetic  correlations  between  dyslexia  and  rhythm

impairment summary statistics. We then performed N-weighted GWAMA by feeding the Cross

Trait  Intercept  matrix  and  a  vector  of  SNP-heritabilities  of  each  trait  using  the

multivariate_GWAMA function.

Transcriptome-wide association study

We conducted a transcriptome-wide association study (TWAS) using S-PrediXcan framework28

and the joint-tissue imputation (JTI) TWAS derived models from GTEx v8 tissues21. PrediXcan

predicts gene expression from the genotype profile of each individual by using the JTI model

weights,  which were trained on GTEx71,  and validated on PsychEncode72 and GEUVADIS73.

These SNP-expression weights represent the correlations  between SNPs and gene expression

levels. To overcome the requirement for individual-level genotype data, Barbeira et al.28, derived

a mathematical expression, implemented in S-PrediXcan framework, which effectively yields

similar outcomes to PrediXcan using GWAS summary statistics. S-PrediXcan and JTI weights

account for LD and collinearity problems due to high expression correlation across tissues21. We

filtered  the  17q21.31  inversion  region  (~1.5  Mb  long),  which  has  multiple  phenotypic

associations  with brain-related traits74 to  minimise the impact  of this  high-LD region on our

results. We then corrected TWAS p-values for 192,905 gene-tissue pairs, and used Z-scores and

PFDR of the significant (PFDR<0.05) pairs to assess gene-FgRI-D associations.

Gene-set enrichment and pathway analyses

We used PANTHER to run statistical overrepresentation analysis in 3 Gene Ontology (GO) and

3 PANTHER GO-Slim terms (biological process, molecular function, cellular component)29,30,31,32

with 315 unique genes that we obtained from TWAS. We used 20,102 genes that we tested in

TWAS as the background gene set. Results were FDR corrected for all GO and GO-Slim terms

(n=15,028).

LDSC partitioned heritability with cell type-specific annotations
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We used 8 human genome annotations by Nott et al.36 tagging promoter and enhancer regions of

neurons,  oligodendrocytes,  microglia  and  astrocytes  using  LDSC  partitioned  heritability

analysis35 following  the  guidelines  in  the  LDSC  Wiki  page

(https://github.com/bulik/ldsc/wiki/Partitioned-Heritability).  All  enrichment  analyses  were

controlled for the baselineLD model v2.2. Enrichment p-value results were FDR corrected for 8

tests.

Genetic correlations using GWAS summary statistics from neuropsychiatric/behavioural

phenotypes

We first  compiled  88 traits  that  were  significantly  genetically  correlated  either  with rhythm

impairment or dyslexia in the original respective GWAS papers8,9.  We filtered these traits  in

order  to  avoid  unnecessary  multiple  testing  burden and to  focus  on  genetically  independent

phenotypes. We first identified 46 traits that are more than +/-80% genetically correlated with at

least  one  other  trait.  Then  we  created  a  distance  matrix  from the  correlation  estimates  and

performed  hierarchical  clustering  using  Ward’s  method75 as  the  linkage  method,  which

maximises  the  within-cluster  homogeneity  to  identify  trait  clusters.  We identified  7  clusters

using the so-called elbow method, and chose the most informative and representative trait for

each cluster based on the highest correlation between traits and the cluster principal component.

We added these  7 cluster-representative  traits  to  the  remaining  42 traits  and used LDSC to

estimate genetic correlations with FgRI-D and 2 independent factors. Genetic correlation p-values

were FDR corrected for 49 tests.

Partitioned heritability analysis with custom evolutionary annotations

We used  LDSC16 (v1.0.1)  to  estimate  partitioned  SNP-heritability  enrichments/depletions  in

foetal brain human-gained enhancers, Neandertal introgressed alleles, archaic deserts, conserved

loci  in  the  primate  phylogeny  (Conserved_Primate_phastCons46way  annotation  from

baselineLD),  and genomic  loci  that  have  a  primate  phyloP score48 less  than  -2  (presumably

suggesting accelerated evolution). All annotations were controlled for baselineLD model v2.2.

Foetal  brain  human-gained enhancers were  also  controlled  for  foetal  brain  active  regulatory

elements from the Roadmap Epigenomics Consortium database76.
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MAGMA gene-set analysis with custom evolutionary gene lists

We compiled four additional evolutionary genomic annotations for MAGMA gene-set analysis51

which cover timescales from ~6 million years ago to ~250 thousand years ago: Ancient Selective

Sweeps52, Human Accelerated Regions53,54,55,56, Anatomically Modern Human-derived DMRs57,

and Human vs. chimpanzee DMRs57. These annotations either tag regulatory or selective sweep

sites. We listed the genes that fall within +/-1 kilobase of each locus tagged by each annotation,

and  filtered  these  initial  gene  lists  for  protein-coding  genes  using  NCBI’s  hg19  genome

annotation77. The resulting protein-coding gene lists were used for MAGMA gene-set enrichment

analysis for rhythm impairment, dyslexia and FgRI-D summary statistics. We first performed gene

annotation by integrating SNP locations from the summary statistics, and gene locations from

NCBI hg19 genome annotation.  We then performed a gene analysis using SNP p-values and

1000 Genomes Phase 3 European panel69. We finally applied a gene-set analysis using results

from gene annotation and gene analysis,  and four gene-sets. Enrichment  p-values were FDR

corrected for four tests.

Genome-wide negative selection estimation

We performed SBayesS analysis on the rhythm impairment, dyslexia, FgRI-D, and two independent

factor GWAS summary statistics using the GCTB software (version 2.02)50 to quantify the level

of  negative  selection  acting  on  these  traits.  SBayesS  estimates  total  SNP-heritability,

polygenicity, and the relationship between variants’ minor allele frequencies and effect sizes, and

generates a genome-wide negative selection metric (S) which ranges from 0 to -1.  S estimates

that are closer to -1 are interpreted as a sign of strong negative selection50, whereas estimates

closer to 0 can suggest positive selection (see Zeng et al., 2021).

LAVA local genetic correlations with white-matter connectivity measures

To identify local regions of the genome that might be shared between rhythm, language and

evolutionarily relevant  brain circuitry,  we tested local genetic correlations between  FgRI-D and

white-matter  connectivity  measures.  We performed  GWASs of  selected  brain  imaging  traits

using data from the UK Biobank78. For these GWASs, UK Biobank data first underwent sample
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and  genetic  quality  control  and  brain  imaging  data  processing,  followed  by  genome-wide

association analysis.

Sample  quality  control. This  study  used  the  UK  Biobank  February  2020  release  (research

application  number:  79683).  All  participants  provided  informed  consent  and  the  study  was

approved by the North West Multi-Center Research Ethics Committee (MREC). For individual

with both diffusion-weighted MRI and genotyping data, we excluded participants with unusual

heterozygosity (principal components corrected heterozygosity>0.19), high missingness (missing

rate>0.05), sex mismatches between genetically inferred sex and self-reported sex as reported by

Bycroft et al.78. We further restricted our analyses to individuals with white British ancestry as

defined by Bycroft et al.78 in order to avoid any possible confounding effects related to ancestry.

This resulted in 31,465 individuals (mean age=55.21 years old, range between 40 to 70 years old,

16,497 females) passing the sample QC.

Genetic  quality  control. The imputed genotypes were obtained from the UK Biobank portal.

These data underwent a stringent quality control protocol. We excluded SNPs with minor allele

frequencies below 1%, Hardy-Weinberg p-value below 1×10-7 or imputation quality INFO scores

below 0.8. Multiallelic variants which cannot be handled by many programs used in genetic-

related analyses were removed. This resulted in 9,422,496 autosomal SNPs that were analyzed in

the GWAS.

Neuroimaging phenotypes. Neuroimaging measures of white-matter tracts were derived from the

diffusion-weighted scans  (3T Siemens  Skyra scanner)  released  by the UK Biobank Imaging

Study (refer to http://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=2367 for the full  protocol).

Briefly, in vivo, whole-brain diffusion-weighted MRI scans were acquired and fed into Diffusion

Tensor  Imaging  (DTI)  modelling  to  assess  brain  microstructure  and  derive  a  fractional

anisotropy  (FA)  quantitative  diffusion  map  that  was  subject  to  a  TBSS  (tract-based  spatial

statistics)  analysis resulting in a skeletonised image. Details of the image acquisition,  quality

control and processing are described elsewhere79. We extracted the following regions: The left

arcuate  fasciculus  (long,  anterior,  and  posterior  segments),  the  left  superior  longitudinal

fasciculus (I, II, III), and the left uncinate fasciculus for each individual by averaging the FA

skeletonised image across a set of five left white-matter tracts defined from a probabilistic atlas80.

Genome-wide  association  scanning. GWASs  were  performed  separately  for  each  of  the

neuroimaging phenotypes using imputed genotyping data, with PLINK (v1.9)81. We made use of

categorical and continuous variables controlling for covariates in the GWASs including age, sex,

genotype array type, and assessment centre. To avoid possible confounding effects  related to

ancestry,  we  used  the  first  ten  genetic  principal  components  capturing  population  genetic
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diversity.  These  covariates  are  considered  in  a  pre-residualization  step:  a  multiple  linear

regression of the endophenotype vector on the covariates is performed and all these ones are

replaced by their  corresponding residual.  Additionally,  a  rank-based inverse normalization  is

performed to ensure that the distributions of endophenotypes are normally distributed.

Local  genetic  correlations. We  identified  a  list  of  overlapping  loci  using  2,495  LD blocks

covering the whole human genome provided in the Local Analysis of [co]Variant Association

(LAVA)63 partitioning  algorithm  GitHub  repository  (https://github.com/cadeleeuw/lava-

partitioning),  and  1,609  genome-wide  significant  (P<5×10-8)  SNPs  in  our  FgRI-D summary

statistics.  This  resulted  in  18  LD  blocks.  We  then  used  LAVA  to  estimate  local  genetic

correlations  between  FgRI-D and the five aforementioned white-matter  tracts.  LAVA estimates

local heritability for each of these 18 LD blocks, and for each considered trait. For the loci which

explained a significant proportion (nominally significant SNP-heritability estimate, P<0.05) of

the total SNP-heritability of  FgRI-D and white-matter tracts, we proceeded to perform bivariate

local genetic correlation. This extra step of filtering based on local SNP-heritability estimates is

not mandatory but recommended63. Finally, we obtained local genetic correlation estimates and

associated p-values, which we FDR corrected for 14 tests.

Data availability

The full GWAS summary statistics from the original 23andMe discovery studies set have been

made available through 23andMe to qualified researchers under an agreement with 23andMe that

protects the privacy of the 23andMe participants. Datasets will be made available at no cost for

academic  use.  Please  visit  https://research.23andme.com/collaborate/#dataset-access/  for  more

information  and  to  apply  to  access  the  data.

Participants  provided informed consent  and volunteered to  participate  in the research online,

under  a  protocol  approved by the external  AAHRPP-accredited  IRB, Ethical  & Independent

(E&I)  Review  Services.  As  of  2022,  E&I  Review  Services  is  part  of  Salus  IRB

(https://www.versiticlinicaltrials.org/salusirb).

Code availability

All  scripts  used  for  analyses  are  publicly  available  on  the  GitHub  repository:

https://github.com/galagoz/pleiotropyevo
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This  study  used  openly  available  software,  specifically  PLINK

(http://zzz.bwh.harvard.edu/plink/), and S-PrediXcan (https://github.com/hakyimlab/MetaXcan).

JTI-TWAS  prediction  models  trained  on  GTEx  v8  are  available  at  the  PredictDB  website

(http://predictdb.org)  and  (https://github.com/gamazonlab/MR-JTI/tree/master).  The  human

frontal  lobe  probabilistic  atlas  used  is  available  at

(http://www.bcblab.com/BCB/Atlas_of_Human_Brain_Connections.html).

Acknowledgements

This project was supported in part by funding from the National Institute on Deafness and Other

Communication  Disorders,  the  Office  of  Behavioral  and  Social  Sciences  Research,  and  the

Office of the Director of the National Institutes of Health under Award Numbers R01DC016977,

K18DC017383, and DP2HD098859. G.A.,  E.E.,  G.B.,  and S.E.F.  are  supported by the Max

Planck  Society.  G.B.  is  also  supported  by  the  German  Federal  Ministry  of  Education  and

Research (BMBF). The funders had no role in study design, data collection and analysis, the

decision to publish, or the preparation of the manuscript. S.E.F. is a member of the Center for

Academic  Research  and  Training  in  Anthropogeny  (CARTA).  This  research  was  conducted

using  the  UK  Biobank  resource  under  application  no.  79683.  We  would  like  to  thank  the

research participants and employees of 23andMe for making this work possible.

The  following  members  of  the  23andMe  Research  Team  contributed  to  this  study:  

Stella  Aslibekyan,  Adam  Auton,  Elizabeth  Babalola,  Robert  K.  Bell,  Jessica  Bielenberg,

Jonathan Bowes, Katarzyna Bryc, Ninad S. Chaudhary, Daniella Coker, Sayantan Das, Emily

DelloRusso,  Sarah  L.  Elson,  Nicholas  Eriksson,  Teresa  Filshtein,  Pierre  Fontanillas,  Will

Freyman, Zach Fuller,  Chris German, Julie M. Granka, Karl Heilbron, Alejandro Hernandez,

Barry Hicks, David A. Hinds, Ethan M. Jewett, Yunxuan Jiang, Katelyn Kukar, Alan Kwong,

Yanyu Liang, Keng-Han Lin, Bianca A. Llamas, Matthew H. McIntyre, Steven J. Micheletti,

Meghan E. Moreno, Priyanka Nandakumar, Dominique T. Nguyen, Jared O'Connell, Aaron A.

Petrakovitz, G. David Poznik, Alexandra Reynoso, Shubham Saini, Morgan Schumacher, Leah

Selcer, Anjali J. Shastri, Janie F. Shelton, Jingchunzi Shi, Suyash Shringarpure, Qiaojuan Jane

Su, Susana A. Tat, Vinh Tran, Joyce Y. Tung, Xin Wang, Wei Wang, Catherine H. Weldon,

Peter Wilton, Corinna D. Wong.

17

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.564908doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.564908
http://creativecommons.org/licenses/by/4.0/


Author contributions

G.A.,  E.E.,  N.J.C.,  R.L.G.,  and  S.E.F.  designed  research;  G.A.,  E.E.,  Y.M.,  G.B.  and  E.E.

performed research;  G.A.,  E.E.,  and Y.M. analyzed data;  G.A. wrote the initial  draft  of  the

manuscript; E.E., Y.M., G.B., P.F., M.G.N., M.L., R.L.G, and S.E.F. provided critical feedback

and commented  on the  manuscript. P.F.  is  employed by and hold  stock or  stock options  in

23andMe, Inc.

References

1. Nayak, S. et al. Neurobiology of Language 1–50 (2022).doi:10.1162/nol_a_00079
2. Ladányi, E., Persici, V., Fiveash, A., Tillmann, B. & Gordon, R.L. WIREs Cognitive Science 11, e1528 
(2020).
3. Mehr, S.A. et al. Science 366, eaax0868 (2019).
4. Savage, P.E. et al. Behavioral and Brain Sciences 44, e59 (2021).
5. Patel, A.D. Philosophical Transactions of the Royal Society B: Biological Sciences 376, 20200326 
(2021).
6. Zentner, M. & Eerola, T. Proceedings of the National Academy of Sciences 107, 5768–5773 (2010).
7. Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M. & Fitch, W.T. Philosophical Transactions of the 
Royal Society B: Biological Sciences 370, 20140093 (2015).
8. Niarchou, M. et al. Nat Hum Behav 6, 1292–1309 (2022).
9. Doust, C. et al. Nat Genet 1–9 (2022).doi:10.1038/s41588-022-01192-y
10. Carroll, J.M. & Snowling, M.J. Journal of Child Psychology and Psychiatry 45, 631–640 (2004).
11. Margari, L. et al. BMC Neurology 13, 198 (2013).
12. McArthur, G.M., Hogben, J.H., Edwards, V.T., Heath, S.M. & Mengler, E.D. Journal of Child 
Psychology and Psychiatry 41, 869–874 (2000).
13. Catts, H.W., Fey, M.E., Tomblin, J.B. & Zhang, X. Journal of Speech, Language, and Hearing 
Research 45, 1142–1157 (2002).
14. Savage, P.E., Brown, S., Sakai, E. & Currie, T.E. Proceedings of the National Academy of Sciences 
112, 8987–8992 (2015).
15. Jacoby, N. & McDermott, J.H. Current Biology 27, 359–370 (2017).
16. Bulik-Sullivan, B.K. et al. Nat Genet 47, 291–295 (2015).
17. Grotzinger, A.D. et al. Nat Hum Behav 3, 513–525 (2019).
18. Eising, E. et al. Proceedings of the National Academy of Sciences 119, e2202764119 (2022).
19. Rajagopal, V.M. et al. Sci Rep 13, 429 (2023).
20. Mekki, Y. et al. NeuroImage 249, 118795 (2022).
21. Carrion-Castillo, A. et al. Cortex 124, 137–153 (2020).
22. Grotzinger, A.D. et al. Nat Genet 54, 548–559 (2022).
23. Hendrix, P. et al. J Biol Chem 268, 15267–15276 (1993).
24. Mägi, R. & Morris, A.P. BMC Bioinformatics 11, 288 (2010).
25.  Li,  X.  &  Zhu,  X.  Statistical  Human  Genetics:  Methods  and  Protocols 455–467
(2017).doi:10.1007/978-1-4939-7274-6_22

18

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.564908doi: bioRxiv preprint 

https://doi.org/10.1007/978-1-4939-7274-6_22
https://doi.org/10.1038/s41588-022-01192-y
https://doi.org/10.1162/nol_a_00079
https://doi.org/10.1101/2023.11.01.564908
http://creativecommons.org/licenses/by/4.0/


26. Gamazon, Eric, & Zhou, Dan. (2020). JTI (1.0) [Data set]. Zenodo. 
https://doi.org/10.5281/zenodo.3842289
27. Zhou, D. et al. Nat Genet 52, 1239–1246 (2020).
28. Barbeira, A.N. et al. Nat Commun 9, 1825 (2018).
29. Mi, H. et al. Nat Protoc 14, 703–721 (2019).
30. Thomas, P.D. et al. Protein Science 31, 8–22 (2022).
31. Ashburner, M. et al. Nat Genet 25, 25–29 (2000).
32. The Gene Ontology Consortium Nucleic Acids Research 49, D325–D334 (2021).
33. Kasdan, A.V. et al. Neuroscience & Biobehavioral Reviews 136, 104588 (2022).
34. Nandi, B. et al. J. Neurosci. 43, 3365–3378 (2023).
35. Finucane, H.K. et al. Nat Genet 47, 1228–1235 (2015).
36. Nott, A. et al. Science 366, 1134–1139 (2019).
37. Fitch, W.T. & Martins, M.D. Annals of the New York Academy of Sciences 1316, 87–104 (2014).
38. Lense, M.D., Ladányi, E., Rabinowitch, T.-C., Trainor, L. & Gordon, R. Philosophical Transactions
of the Royal Society B: Biological Sciences 376, 20200327 (2021).
39. Killin, A. Music & Science 1, 205920431775197 (2018).
40. Patel, A.D. (2021).doi:10.31234/osf.io/qp6jx
41. Patel, A.D. PLOS Biology 12, e1001821 (2014).
42. Vandermosten, M., Hoeft, F. & Norton, E.S. Current Opinion in Behavioral Sciences 10, 155–161
(2016).
43. Wandell, B.A. & Le, R.K. Neuron 96, 298–311 (2017).
44. Mehr, S.A., Krasnow, M.M., Bryant, G.A. & Hagen, E.H.  Behavioral and Brain Sciences 44, e60
(2021).
45. Reilly, S.K. et al. Science 347, 1155–1159 (2015).
46. Vernot, B. & Akey, J.M. Science 343, 1017–1021 (2014).
47. Vernot, B. et al. Science 352, 235–239 (2016).
48. Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R. & Siepel, A. Genome Res. 20, 110–121 (2010).
49. McArthur, E., Rinker, D.C. & Capra, J.A. Nat Commun 12, 4481 (2021).
50. Zeng, J. et al. Nat Commun 12, 1164 (2021).
51. Leeuw, C.A. de, Mooij, J.M., Heskes, T. & Posthuma, D. PLOS Computational Biology 11, e1004219
(2015).
52.Peyrégne, S., Boyle, M.J., Dannemann, M. & Prüfer, K. Genome Res. 27, 1563–1572 (2017).
53. Lindblad-Toh, K. et al. Nature 478, 476–482 (2011).
54. Pollard, K.S. et al. Nature 443, 167–172 (2006).
55. Prabhakar, S., Noonan, J.P., Pääbo, S. & Rubin, E.M. Science 314, 786–786 (2006).
56. Bird, C.P. et al. Genome Biology 8, R118 (2007).
57. Gokhman, D. et al. Nat Commun 11, 1189 (2020).
58. Albers, P.K. & McVean, G. PLOS Biology 18, e3000586 (2020).
59. Hublin, J.-J. et al. Nature 546, 289–292 (2017).

60. Head, R.A. et al. Annals of Neurology 58, 234–241 (2005).
61. Lek, M. et al. Nature 536, 285–291 (2016).
62. Kotz, S.A., Ravignani, A. & Fitch, W.T. Trends in Cognitive Sciences 22, 896–910 (2018).
63. Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C.A. Nat Genet 54, 274–282 (2022).
64. Janelle, F., Iorio-Morin, C., D’amour, S. & Fortin, D. Frontiers in Neurology 13, (2022).

19

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.564908doi: bioRxiv preprint 

https://doi.org/10.31234/osf.io/qp6jx
https://doi.org/10.1101/2023.11.01.564908
http://creativecommons.org/licenses/by/4.0/


65. Oechslin, M., Imfeld, A., Loenneker, T., Meyer, M. & Jäncke, L. Frontiers in Human Neuroscience 3,
(2010).
66. Fitch, W.T. Psychon Bull Rev 24, 3–33 (2017).
67. Naqvi, S. et al. Nat Genet 53, 830–839 (2021).

68. Berisa, T. & Pickrell, J.K. Bioinformatics 32, 283–285 (2016).

69. Auton, A. et al. Nature 526, 68–74 (2015).

70. Quinlan, A.R. & Hall, I.M. Bioinformatics 26, 841–842 (2010).
71. Lonsdale, J. et al. Nat Genet 45, 580–585 (2013).

72. Wang, D. et al. Science 362, eaat8464 (2018).

73. Lappalainen, T. et al. Nature 501, 506–511 (2013).

74. Campoy, E., Puig, M., Yakymenko, I., Lerga-Jaso, J. & Cáceres, M. Philosophical Transactions of 

the Royal Society B: Biological Sciences 377, 20210209 (2022).

75. Ward, J.H. Journal of the American Statistical Association 58, 236–244 (1963).

76. Ernst, J. & Kellis, M. Nat Methods 9, 215–216 (2012).

77. Church, D.M. et al. PLOS Biology 9, e1001091 (2011).

78. Bycroft, C. et al. Nature 562, 203–209 (2018).
79. Alfaro-Almagro, F. et al. NeuroImage 166, 400–424 (2018).
80. Rojkova, K. et al. Brain Struct Funct 221, 1751–1766 (2016).
81. Chang, C.C. et al. GigaScience 4, s13742-015-0047–8 (2015).

20

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.564908doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.564908
http://creativecommons.org/licenses/by/4.0/


Figures

Fig.  1:  Study  design  and  genetic  correlations  between  rhythm  and  language-/reading-

related  traits.  (A) Flow chart  shows analyses  performed  in  our  study.  SNP-h2 and  genetic

correlations  were  estimated  using  LDSC.  Effect  directions  in  the  rhythm  GWAS  summary
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statistics were flipped to obtain a proxy to probe rhythm impairment. Genomic SEM was used to

identify common and independent genetic factors of rhythm impairment and dyslexia. As for

post mvGWAS analyses, we adopted various methods including LDSC partitioned heritability,

GCTB SBayesS, LAVA, and manual SNP-lookups.  (B) Genetic correlations between rhythm

and a set of language- and reading-related traits. Significant genetic correlations were indicated

by full circles. Error bars correspond to standard errors.
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Fig.  2:  Manhattan  plots  for  univariate  and  multivariate  GWASs  and  heterogeneity.

Examples of highly homogeneous and heterogeneous loci in FgRI-D results. (A) Manhattan
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plots  show -log10(P)  values  of  dyslexia,  rhythm GWASs,  FgRI-D mvGWAS and heterogeneity

across dyslexia and rhythm impairment. GWAS and mvGWAS results were GC corrected. The

red lines correspond to genome-wide significance threshold (P<5×10-8). (B) LocusZoom plots of

example  homogeneous  and  heterogeneous  loci,  identified  according  to  Qb p-values.  SEM

diagrams  show  effect  sizes  and  directions  of  the  selected  SNPs  for  dyslexia  and  rhythm

impairment, reflecting homogeneous vs. heterogeneous architecture of the example loci.
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Fig. 3: S-PrediXcan and LDSC partitioned heritability results for 8 regulatory brain-cell

type annotations. (A) Manhattan plot showing TWAS results on 13 brain tissue and whole-

blood  tissues. Each  dot  corresponds  to  a  gene-tissue  pair.  The  most  significant  gene-tissue

association  pair  is  shown  for  each  gene.  The  red  line  corresponds  to  the  genome-wide

significance  threshold  (P<5×10-8).  (B) Barplots  showing LDSC SNP-h2 enrichment/depletion

estimates for each of the 8 regulatory annotations. Green asterisk indicate significance after FDR

correction for 8 tests (PFDR<0.05). Error bars represent standard errors.
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Fig.  4:  Evolutionary  analyses  of  dyslexia,  rhythm  impairment,  FgRI-D and  independent

factors. (A) Timescales covered by evolutionary annotations that we used. (B) LDSC partitioned

heritability  estimates  for  each annotation-trait  pair.  Colour  coding of  the bars  correspond to

annotations in panel A. Green asterisk indicate significance after FDR correction for 25 tests

(PFDR<0.05).  Error  bars  represent  standard errors.  (C) A scatter  plot  showing the association

between  FgRI-D mvGWAS  -log10(P)  values  and  primate  phastCons  scores.  Lead  SNPs  in  17

genome-wide  significant  loci  are  highlighted  as  red  data  points  (1  missing  genome-wide

significant  locus  lead SNP does not  have a  phastCons score).  The dashed red line  indicates

genome-wide  significance  threshold  (P<5×10-8).  (D) GCTB  SBayesS  selection  coefficient

estimates as posterior means. Error bars represent standard errors. (E) Results of a manual look-

up of the SNP rs10891314, showing its co-localization with  DLAT. Colour coding reflects Qb

scores.  PhastCons  and  phyloP  panels  below  show  patterns  of  primate  conservation  and

accelerated evolution along the haplotype.
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