Supplementary Materials for

The shared genetic architecture and evolution of human language and musical rhythm

Gökberk Alagöz^{#1}, Else Eising¹, Yasmina Mekki^{2,3}, Giacomo Bignardi^{1,4}, Pierre Fontanillas⁵, 23andMe Research Team, Michel G. Nivard⁶, Michelle Luciano⁷, Nancy J. Cox³, Simon E. Fisher^{#*1,8}, Reyna L. Gordon^{#*2,3,9,10}

¹ Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands

² Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.

³ Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.

⁴ Max Planck School of Cognition, Leipzig, Germany

⁵ 23andMe, Inc., Sunnyvale, CA, USA

⁶ Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands.

⁷ Department of Psychology, University of Edinburgh, Edinburgh, UK.

⁸ Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands

⁹ Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.

¹⁰ The Curb Center, Vanderbilt University, Nashville, TN, USA.

* Correspondence: goekberk.alagoez@mpi.nl, simon.fisher@mpi.nl, reyna.gordon@alumni.usc.edu * These authors contributed equally to this work.

This PDF file includes: Supplementary Figures 1 to 8

Supplementary Figure 1: Genomic SEM model diagrams for common pathway and independent pathways models. The models were used in the mvGWAS for the common factor and independent factor association analyses. D: dyslexia, RI: rhythm impairment, F_g : Common factor, u_D : residual variance of dyslexia, u_{RI} : residual variance of rhythm impairment, u_F : residual variance of the common factor, snp_i : ith SNP regression.

Supplementary Figure 2: QQ plots of F_{gRI-D} mvGWAS summary statistics *prior to* (left) and *after* (right) GC correction.

Supplementary Figure 3: Manhattan plots for Genomic SEM CPM (F_{gRI-D}), N-weighted GWAMA, and CPASSOC. The red lines correspond to the genome-wide significance threshold (P<5×10⁻⁸).

Supplementary Figure 4: Manhattan plots for the independent factors of dyslexia (top) and rhythm impairment (bottom). The red lines correspond to genome-wide significance threshold (P<5×10⁻⁸).

Supplementary Figure 5: Genetic correlations (r_g) among 88 traits that are significantly correlated either with dyslexia or rhythm. Genetic correlations were estimated using LDSC. Supplementary Table 13 provides the list of traits included.

Supplementary Figure 6: (A) Dendrogram showing the hierarchical clustering of highly genetically correlated ($|r_g|$ >0.80) traits. (B) Knee-point algorithm identified 7 representative clusters with. For each cluster, one representative trait (shown in bold red) was used in the genetic correlation analysis with the F_{gRI-D}.

Supplementary Figure 7: Genetic correlations (r_g) between the selected 49 traits and F_{gRI-D} (D-RI) (orange) and dyslexia (blue) and rhythm (yellow) independent factors. Genetic correlations were estimated using LDSC. Full circles indicate significant correlations (P<0.05). Error bars represent standard errors.

Supplementary Figure 8: LocusZoom plot of chr20: 30,569,660-32,484,506 locus, the region which is identified by local genetic correlation analysis of F_{gRI-D} and Superior Longitudinal Fasciculus I. P-values represent F_{gRI-D} mvGWAS significance. Direction of the triangles represent effect directions. LD (*r*²) levels with rs6141314 are represented in colours. Grey dash-line indicate genome-wide significance level (P<5x10⁻⁸).