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We consider the problem of deciding the existence of real roots of real-valued exponential polynomials with

algebraic coefficients. Such functions arise as solutions of linear differential equations with real algebraic

coefficients. We focus on two problems: the Zero Problem, which asks whether an exponential polynomial

has a real root, and the Infinite Zeros Problem, which asks whether such a function has infinitely many real

roots. Our main result is that for differential equations of order at most 8 the Zero Problem is decidable,

subject to Schanuel’s Conjecture, while the Infinite Zeros Problem is decidable unconditionally. We show

moreover that a decision procedure for the Infinite Zeros Problem at order 9 would yield an algorithm for

computing the Lagrange constant of any given real algebraic number to arbitrary precision, indicating that

it will be very difficult to extend our decidability results to higher orders.
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1 INTRODUCTION

This article concerns root-finding problems for exponential polynomials, i.e., functions that satisfy
ordinary linear differential equations with constant coefficients. The first problem we consider is
the Zero Problem. This has as input an interval I ⊆ R≥0 with rational (or infinite) endpoints and
an ordinary differential equation

f (n) + cn−1 f
(n−1) + · · · + c0 f = 0, (1)
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with the coefficients c0, . . . , cn−1 and initial conditions f (0), . . . , f (n−1) (0) being real algebraic
numbers. Writing f : R≥0 → R for the unique solution of the differential equation and initial condi-
tions, the question is whether there exists t ∈ I such that f (t ) = 0. Decidability of the Zero Problem
is currently open. Indeed, decidability is open even for the version of the problem in which we only
allow bounded intervals I , called the Bounded Zero Problem [2, Open Problem 17]. We also study
the Infinite Zeros Problem, which asks whether f has infinitely many zeros over the nonnegative
reals.

We recall some terminology in order to state our main contributions. Every solution of Equation
(1) has the form f (t ) =

∑m
j=1 Pj (t )eλj t , where λ1, . . . , λm are the characteristic roots of the differ-

ential equation and P1, . . . , Pm are polynomials that are determined by the initial conditions. We
call f an exponential polynomial. The frequencies of f are the imaginary parts of the characteristic
roots, and the polynomials Pj are called the coefficients of f . The order of f is the least number n
such that f satisfies a differential equation of the form in Equation (1).

Our first main result establishes decidability of the Bounded Zero Problem subject to Schanuel’s
Conjecture, a unifying conjecture in transcendental number theory that plays a key role in the
study of the exponential function over both the real and complex numbers [21, 22]. We use
Schanuel’s Conjecture to show that every every exponential polynomial admits a factorization
such that the zeros of each factor are simple and can be detected using finite-precision numerical
computations.

A celebrated paper of Macintyre and Wilkie [18] obtains decidability of the first-order theory
of the structure Rexp = (R, 0, 1, <, · ,+, exp) assuming Schanuel’s Conjecture over R. The
proof of [17, Theorem 3.1] refers to unpublished work of Macintyre and Wilkie that extends
the above-mentioned result to obtain decidability when Rexp is augmented with the restricted
functions sin �[0,2π ] and cos �[0,2π ], this time assuming Schanuel’s Conjecture over C. This result
immediately implies decidability of the Bounded Zero Problem. However, decidability of the latter
problem is much simpler and, as we show in Section 3, can be established by a direct application
of Schanuel’s Conjecture.

Our second main result, spanning Sections 4 and 5, shows that the Infinite Zeros Problem is
decidable for the class of exponential polynomials of order at most 8. We show moreover that if
such a function has finitely many zeros, then an upper bound on the magnitude of the largest zero
can be computed. We thereby reduce the Zero Problem to the Bounded Zero Problem and obtain
decidability of the former up to order 8, conditional on Schanuel’s Conjecture. Decidability of the
Infinite Zeros Problem is unconditional and relies on various results in real algebraic geometry,
transcendental number theory, and Diophantine approximation, such as the cell decomposition
theorem for semi-algebraic sets, Baker’s theorem on linear forms in logarithms of algebraic num-
bers, and Kronecker’s simultaneous approximation theorem.

We complete the picture in Section 6 by showing that decidability of the Infinite Zeros Problem
at order 9 would entail a major new effectiveness result in Diophantine approximation—namely
computability of the Lagrange constants of all real algebraic numbers. As discussed below,
currently essentially nothing is known about the Lagrange constants of algebraic numbers of
degree 3 or higher, and there are several longstanding open problems connected to this question.
Thus, the exhibited reduction represents a significant barrier to extending the positive decid-
ability results in this article. An analogous hardness result can be proven for the Zero Problem
[6, Chapter 6.4].

1.1 Related Work

To the best of our knowledge, the Zero Problem and Infinite Zeros Problem were first studied
in [2]. That work established decidability of the Infinite Zeros problem in the special case that the
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dominant characteristic roots are simple, are at least four in number, and have imaginary parts
linearly independent over Q (see [2, Theorem 15]).

The Zero Problem can be seen as a continuous analog of Skolem’s Problem for linear recurrence
sequences, which asks whether a given linear recurrence sequence has a zero term [11]. Decidabil-
ity of Skolem’s Problem is known for recurrences of order at most 4 but is open in general. Likewise,
the Infinite Zeros Problem can be seen as a continuous analog of the problem of whether a given
linear recurrence sequence has infinitely many zero terms. Decidability of the latter problem was
established in [3].

2 PRELIMINARIES

2.1 Exponential Polynomials

Consider a homogeneous linear differential equation

f (n) + cn−1 f
(n−1) + · · · + c0 f = 0 (2)

of order n with complex coefficients c0, . . . , cn−1. The characteristic polynomial of Equation (2) is

χ (x ) := xn + cn−1x
n−1 + · · · + c0. (3)

Given initial values of f (0), f ′(0), . . . , f (n−1) (0), the uniquely defined solution f of Equation (2)

can be expressed as an exponential polynomial f (t ) =
∑k

j=1 Pj (t )eλj t , where λ1, . . . , λk are the

distinct roots of χ and for all j, Pj is a polynomial of degree 1 less than the multiplicity of λj as a
root of χ . In particular, if the roots of χ are all simple, then f has constant coefficients. We call the
polynomials Pj the coefficients of f and we call the numbers λj the exponents of f . We refer to the
exponents with maximum real part as dominant.

If the coefficients of the differential Equation (2) and the initial values of the derivatives of f are
all real algebraic, the exponents and their corresponding coefficients come in complex-conjugate
pairs, and f has the form

f (t ) =
k∑

j=1

eaj t

mj−1∑
l=0

Cj,l t
l cos(bjt + φ j,l ), (4)

where the aj ,bj ,Cj,l are real algebraic and the φ j,l are real numbers such that eiφ j,l is algebraic for
all j, l . Both solution forms of Equation (3) and (4) can be computed from the differential equation
and initial conditions. We refer the reader to [2, Theorem 7] for details. Unless explicitly specified
otherwise, throughout this article exponential polynomials are assumed to be real-valued; however,
complex-valued ones arise in Section 3.

2.2 Computational Algebraic Number Theory

We denote by Q the set of algebraic numbers. For computational purposes we assume a represen-
tation of algebraic numbers (such as that described in [7, Section 4.2.1]) that allows to effectively
perform arithmetic and to compute the roots of polynomials with algebraic coefficients.

Given an exponential polynomial f =
∑m

j=1 Pj (t )eλj t , consider the fieldK = Q(λ1, . . . , λm ). Note

that K is closed under complex conjugation. We can compute a primitive element of K , that is, an
algebraic number θ such that K = Q(θ ), together with a representation of each λj as a polyno-
mial in θ with rational coefficients (see [7, Section 4.5]). From the representation of λ1, . . . , λm as
elements of Q(θ ), it is straightforward to determine maximal Q-linearly independent subsets of
{Re(λj ) : 1 ≤ j ≤ m} and {Im(λj ) : 1 ≤ j ≤ m} (see [13, Section 1]).
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2.3 Transcendental Number Theory

We will need the following two classical results from transcendental number theory [14].

Theorem 2.1 (Gelfond-Schneider). If a,b ∈ Q with a � 0, 1 and b � Q, then ab is
transcendental.

Theorem 2.2 (Lindemann-Weierstrass). If a1, . . . ,an ∈ Q are linearly independent over Q,
then ea1 , . . . , ean are algebraically independent over Q.

An easy consequence of the Lindemann-Weierstrass Theorem is that a non-zero algebraic root

α of an exponential polynomial f (t ) =
∑k

j=1 Pj (t )eλj t satisfies P1 (α ) = · · · = Pk (α ) = 0.

The following lemma, proven in [2], is a consequence of Baker’s theorem on linear forms in
logarithms of algebraic numbers.

Lemma 2.3 ([2, Lemma 13]). Let a,b ∈ R ∩ Q be linearly independent over Q and let iφ1, iφ2 be
logarithms of algebraic numbers, that is, eiφ1 , eiφ2 ∈ Q. There exist effective constants C,N ,T > 0
such that for all t ≥ T , at least one of 1 − cos(at + φ1) > C/tN and 1 − cos(bt + φ2) > C/tN holds.

Our results on the Bounded Zero Problem depend on Schanuel’s Conjecture, a unifying con-
jecture in transcendental number theory [14], whose statement generalizes many of the central
results in the field (including Theorems 2.1 and 2.2). Recall that a transcendence basis of a field ex-
tension L/K is a subset S ⊆ L such that S is algebraically independent overK and L is algebraic over
K (S ). All transcendence bases of L/K have the same cardinality, which is called the transcendence
degree of the extension.

Conjecture 2.4 (Schanuel’s Conjecture, see [14]). Let a1, . . . ,an be complex numbers that
are linearly independent over Q. Then the field Q(a1, . . . ,an , e

a1 , . . . , ean ) has transcendence degree
at least n over Q.

2.4 Diophantine Approximation

Another key tool is a version of Kronecker’s theorem in Diophantine approximation.

Theorem 2.5 (Kronecker, see [5, Chap. 7, Sec. 1.3, Prop. 1.7]). Let λ1, . . . , λm and x1, . . . ,xm be
real numbers. Suppose that for all integers u1, . . . ,um such that u1λ1 + · · ·+umλm ∈ Z, we also have
u1x1 + · · ·+umxm ∈ Z. Then for all ε > 0, there exist p ∈ Zm and n ∈ N such that |nλj − x j −pj | < ε
for all 1 ≤ j ≤ m. In particular, if 1, λ1, . . . , λm are linearly independent over Z, then for all x ∈ Rm

and ε > 0 there exist n ∈ N and p ∈ Zm such that |nλj − x j − pj | < ε .

A direct consequence is the following:

Proposition 2.6. Let a1, . . . ,am ∈ R ∩Q be linearly independent over Q and let φ1, . . . ,φm ∈ R.
Given x ∈ R, denote by x mod 2π the unique value x ′ ∈ [0, 2π ) such that x − x ′ ∈ 2πZ. Then the
image of the mapping h(t ) : R≥0 → [0, 2π )m given by

h(t ) = ((a1t + φ1) mod 2π , . . . , (amt + φm ) mod 2π )

is dense in [0, 2π )m . Moreover, the set

{h(t ) | (a1t + φ1) mod 2π = 0}
is dense in {0} × [0, 2π )m−1.

Proof. For the first part of the claim, it is clear that 1,a1/2π , . . . ,am/2π are rationally linearly
independent and hence, by Kronecker’s Theorem (Theorem 2.5), the set {h(t ) | t ∈ N} is dense in
[0, 2π )m . It follows that {h(t ) | t ∈ R≥0} is also dense in [0, 2π )m . For the second part, note that
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the first coordinate of h(t ) is zero precisely when t = −φ1/a1 + 2nπ for some n ∈ Z. At such a time
we have h(t ) = (0,д(n)), where

д(n)
def
=

〈(
n

2πaj

a1
+
a1φ j − φ1aj

a1

)
mod 2π : 2 ≤ j ≤ m

〉
.

As above, we have that {1, 2πa2/a1, . . . , 2πam/a1} are linearly independent over Q, so applying
Kronecker’s Theorem (Theorem 2.5), we have that {д(n) : n ∈ N} is dense in [0, 2π )m . �

We will also need the following quantitative version of the one-dimensional case of Kronecker’s
Theorem.

Theorem 2.7 (Chebyshev, see [12, Theorem 440]). If α ∈ R \ Q and β ∈ R, then there are
infinitely many pairs of integers l ,k with k > 0 such that k |kα + l + β | < 2.

2.5 Semi-algebraic Sets

A subset of Rn is semi-algebraic if it is defined by a Boolean combination of constraints of the
form P (x1, . . . ,xn ) > 0, where P is a polynomial with real algebraic coefficients. A partial function
f : Rn → R is semi-algebraic if its graph is a semi-algebraic subset of Rn+1. The Tarski-Seidenberg
theorem [4, Section 1] states that the semi-algebraic sets are closed under projection and are there-
fore precisely the first-order definable sets over the structure (R, <,+, ·, 0, 1).

Let (i1, . . . , in ) be a sequence of zeros and ones of length n ≥ 1. An (i1, . . . , in )-cell is a subset
of Rn , defined by induction on n as follows:

(i) A (0)-cell is a singleton subset of R and a (1)-cell is an open interval (a,b) ⊆ R.
(ii) Let X ⊆ Rn be a (i1, . . . , in )-cell and f : X → R a continuous semi-algebraic function. Then
{(x , f (x )) ∈ Rn+1 : x ∈ X } is an (i1, . . . , in , 0)-cell, while {(x ,y) ∈ Rn+1 : x ∈ X ∧ y < f (x )}
and {(x ,y) ∈ Rn+1 : x ∈ X ∧ y > f (x )} are both (i1, . . . , in , 1)-cells.

(iii) Let X ⊆ Rn be a (i1, . . . , in )-cell and f ,д : X → R continuous semi-algebraic functions such
that f (x ) < д(x ) for all x ∈ X . Then {(x ,y) ∈ Rn+1 : f (x ) < y < д(x )} is a (i1, . . . , in , 1)-cell.

A cell in Rn is a (i1, . . . , in )-cell for some (unique) sequence (i1, . . . , in ). The following is a funda-
mental result about semi-algebraic sets [1, 19]:

Theorem 2.8 (Cell decomposition theorem). Given a semi-algebraic set E ⊆ Rn , one can
compute a partition of E as a disjoint union of cells E = C1 ∪ · · · ∪Cm .

We will need the following two simple results about the real exponential function.

Proposition 2.9. There is a procedure that, given a semi-algebraic setD ⊆ Rn+1 and real algebraic
numbers r1, . . . , rn , decides whether the set S = {t ≥ 0 : (t , er1t , . . . , ern t ) ∈ D} is bounded, and
moreover returns an integer T , such that if S is bounded, then S ⊆ [0,T ], and if S is unbounded, then
(T ,∞) ⊆ S .

Proof. Consider a non-zero polynomial P ∈ R[x0, . . . ,xn] whose coefficients are real algebraic
numbers. Then we can write P (t , er1t , . . . , ern t ) in the form

Q1 (t )eβ1t + · · · +Qm (t )eβm t

for non-zero univariate polynomials Q1, . . . ,Qm with real algebraic coefficients and real algebraic
numbers β1 > · · · > βm . It is clear that for t sufficiently large, P (t , er1t , . . . , ern t ) has the same sign
as the leading term Q1 (t ). The proposition easily follows. �

Proposition 2.10. Let д : D → R be a bounded semi-algebraic function with domain
D ⊆ Rn . Let r = (r1, . . . , rn ) be a tuple of real algebraic numbers and T1 an integer such that

Journal of the ACM, Vol. 70, No. 4, Article 26. Publication date: August 2023.



26:6 V. Chonev et al.

er t = (er1t , . . . , ern t ) ∈ D for all t > T1. Then the limit д∗ = limt→∞ д(er t ) exists and is an algebraic
number, and there are effective constants T2, ε > 0 such that |д(er t ) − д∗ | < e−εt for all t > T2.

Proof. Since д is semi-algebraic, there is a non-zero polynomial P with real algebraic coeffi-
cients such that P (x ,д(x )) = 0 for all x ∈ D (see [1, Proposition 2.86]). In particular, we have
P (er t ,д(er t )) = 0 for all t > T1. Gathering terms, we can rewrite this equation in the form

Q1 (д(er t ))eβ1t + · · · +Qm (д(er t ))eβm t = 0

for non-zero univariate polynomials Q1, . . . ,Qm with real algebraic coefficients and real algebraic
numbers β1 > · · · > βm . Without loss of generality, assume that Q1 is monic.

Ifm = 1, then for all t > T1 we haveQ1 (д(er t )) = 0. Thus,д(er t ) is equal to some root ofQ1 for all
t > T1. Then by Proposition 2.9 there existsT2 and a rootд∗ ofQ1 such thatд(er t ) = д∗ for all t > T2.

Ifm > 1, since д is a bounded function, for all t > T1 we have���Q1 (д(er t ))��� = ���Q2 (д(er t ))e (β2−β1 )t + · · · +Qm (д(er t ))e (βm−β1 )t ��� ≤ Me (β2−β1 )t (5)

for some constant M . Let Q1 have degree d . Since Q1 is monic, Equation (5) implies that the

distance of д(er t ) to a root of Q1 is at most (Me (β2−β1 )t )1/d . Hence, there exists a root д∗ of Q1 and
effective constants ε,T2 > 0 such that |д(er t ) − д∗ | < e−εt for all t > T2. �

3 BOUNDED ZERO PROBLEM

In this section we show that the Bounded Zero Problem is decidable. Recall that in this problem
we are given a real-valued exponential polynomial f and a bounded interval I , and we wish to
determine whether f (t ) = 0 for some t ∈ I . A natural approach is to apply numerical zero-finding
techniques. The main obstacle here is to bound the required precision, e.g., consider how one might
determine numerically whether a local minimum of f is a zero. To circumvent this obstacle, we
first write f as a product of irreducible factors, working over a certain ring of Laurent polynomials,
and study the zeros of the factors separately. This factorization allows us to discount repeated real
zeros (assuming Schanuel’s Conjecture). Note that the factors of a given real-valued exponential
polynomial may be complex-valued.

3.1 Zero Finding

In this section we describe a method for deciding whether an exponential polynomial f : C →
C has a zero in a given bounded open interval (a,b) in the real line. The idea is to cover the
interval (a,b) by disks in the complex plane and determine the number of zeros of f in each disk
using the argument principle in complex analysis. Such an approach underlies several root-finding
algorithms for polynomials (see, e.g., [15]); however, in the absence of root separation bounds for
exponential polynomials, we require additional assumptions on f in order to distinguish real from
imaginary roots. Establishing these conditions ultimately relies on Schanuel’s Conjecture.

Recall the following classical theorem of complex analysis:

Theorem 3.1 (Argument Principle). Let f : C→ C be a holomorphic function andC a positively
oriented simple closed contour in C on which f has no zeros. Then∮

C

f ′(z)

f (z)
dz = 2πiN , (6)

where N denotes the number of zeros of f in the region enclosed by C , where each zero is counted as
many times as its multiplicity.

We briefly explain how to evaluate integrals of the form in Equation (6) in case f is an expo-
nential polynomial and C is a circular contour that does not contain a root of f . We assume that
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Fig. 1. Root-finding procedure for exponential polynomials.

f has algebraic coefficients andC has center p + qi and radius r for some p,q, r ∈ Q. Consider the
parameterization γ : [0, 1]→ C ofC given by γ (t ) = p +qi + re2π it . Then the integral in Equation

(6) can we written in the form
∫ 1

0
д(t )dt for the function

д(t ) =
f ′(γ (t ))γ ′(t )

f (γ (t ))
.

Now it is straightforward to compute a constant L1 > 0 such that f ◦ γ is L1-Lipschitz. By
approximating the value of f at sufficiently many values on C , one can compute ε > 0 such that
| f (z) | > ϵ for all z ∈ C . Using this lower bound, we can in turn compute a constant L2 > 0 such
that the function д(t ) is L2-Lipschitz. It follows that for all n > 0,

������
∫ 1

0

д(t )dt − 1

n

n∑
k=1

д

(
k

n

) ������ ≤
L2

n
.

Thus, we can approximate the integral in Equation (6) to arbitrary precision and thereby
determine N .

Proposition 3.2. Let f : C → C be an exponential polynomial with algebraic coefficients and
exponents. Assume that all real zeros of f are simple and that complex zeros of f come in complex-
conjugate pairs (i.e., for all z ∈ C, f (z) = 0 iff f (z) = 0). Then we can decide whether f has a zero in
a given open interval (a,b) with rational endpoints.

Proof. We argue that the procedure in Figure 1 determines whether f has a zero in the interval
(a,b).

If the procedure terminates in Line (4), then the output is correct by a direct application of
Theorem 3.1. If the procedure terminates in Line (3), then the output is correct by the assumption
that the real roots of f are simple and complex roots come in conjugate pairs; in conjunction with
Theorem 3.1, this entails that Nj is odd just in caseCj contains a real root. It remains to argue that
the procedure always terminates.

For a given value of k , Line (2) succeeds if f has no zero on any of the contours Cj . Since f
has only finitely many zeros in any bounded region of the complex plane, for k sufficiently large
the body of the for loop will terminate. Moreover, for k sufficiently large, each contour Cj will
enclose at most one real root and no complex roots and thus the whole procedure will halt. Thus,
termination is assured if we evaluate the loop for all values of k in parallel in a fair way (e.g., divide
the computation into phases such that in themth phase one executesm steps of the loop body for
k = 1, . . . ,m). �
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3.2 Laurent Polynomials

Fix non-negative integers r and s , and consider a single variable X and tuples of variables Y =
〈Y1, . . . ,Yr 〉 and Z = 〈Z1, . . . ,Zs 〉. Consider the ring of Laurent polynomials

R := C[X ,Y1,Y
−1
1 , . . . ,Yr ,Y

−1
r ,Z1,Z

−1
1 , . . . ,Zs ,Z

−1
s ],

which can be seen as a localization of the polynomial ring

A := C[X ,Y1, . . . ,Yr ,Z1, . . . ,Zs ]

in the set of monomials in variables Y1, . . . ,Yr and Z1, . . . ,Zs . The multiplicative units of R are
the non-zero monomials in variables Y1, . . . ,Yr and Z1, . . . ,Zs . As the localization is a unique
factorization domain, R is itself a unique factorization domain [8, Theorem 10.3.7]. From the proof
of this fact it moreover easily follows that R inherits from A the properties that a polynomial
with algebraic coefficients factors as a product of irreducible polynomials that also have algebraic
coefficients and that this factorization can be effectively computed [16].

We define an involution on R (that is, a self-inverse ring automorphism) as follows. Given a
polynomial

P (X ,Y ,Z ) =
n∑

j=1

α jX
ujY1

vj,1 . . .Yr
vj,rZ1

w j,1 . . .Zs
w j,s ,

where α1, . . . ,αn ∈ C, define

P�(X ,Y ,Z ) :=

n∑
j=1

α jX
ujY1

vj,1 . . .Yr
vj,rZ1

−w j,1 . . .Zs
−w j,s .

As we will see shortly, the mapping (−)� on R corresponds to a natural operation on exponential
polynomials.

Consider an exponential polynomial f : C→ C given by

f (z) :=

n∑
j=1

Pj (z)eλj z ,

where λ1, . . . , λn ∈ C are algebraic numbers and P1, . . . , Pn ∈ C[z] are univariate polynomials with
algebraic coefficients. Let {a1, . . . ,ar } be a basis of theQ-vector space spanned by {Re(λj ) : 1 ≤ j ≤
n} and let {b1, . . . ,bs } be a basis of the Q-vector space spanned by {Im(λj ) : 1 ≤ j ≤ n}. Without
loss of generality we may assume that each characteristic root λ is an integer linear combination of
a1, . . . ,ar and ib1, . . . , ibs . Then eλz is a product of positive and negative powers of ea1z , . . . , ear z

and eib1z , . . . , eibs z . It follows that there is a Laurent polynomial P ∈ R such that

f (z) = P (z, ea1z , . . . , ear z , eib1z , . . . , eibs z ). (7)

Given the exponential polynomial f in Equation (7), we are led to define f � : C→ C by

f �(z) := P�(z, ea1z , . . . , ear z , eib1z , . . . , eibs z ).

Clearly f � is an exponential polynomial and, by definition of P�, we have f �(z) = f (z) for all
z ∈ C.

Since the polynomial P in Equation (7) can be written as a product of irreducible factors in
the ring of Laurent polynomials R, the exponential polynomial f can be written as a product of
exponential polynomials of the form

д(z) = Q (z, ea1z , . . . , ear z , eib1z , . . . , eibs z ) (8)

with Q ∈ R irreducible. We now classify such exponential polynomials into two types.
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Let {a1, . . . ,ar } and {b1, . . . ,bs } be Q-linearly independent sets of real algebraic numbers and
consider the exponential polynomial д in Equation (8). We say that д is a Type-1 exponential poly-
nomial if Q is irreducible and if Q and Q� are not associates in R (i.e., Q is not the product of Q�

with a monomial in Y1, . . . ,Yr ,Z1, . . . ,Zs ). We say that д is a Type-2 exponential polynomial if Q is
irreducible and if Q and Q� are associates in R.

Example 3.3. A simple example of a Type-2 exponential polynomial is д(z) = 1 + eiz . Here
д(z) = Q (eiz ), whereQ (Z ) = 1+Z is an irreducible polynomial that is associated with its conjugate
Q�(Z ) = 1 + Z−1 (since Q = ZQ�).

3.3 Conditional Decidability

In this section we present a decision procedure for the Bounded Zero Problem.
Since the ring R has factorization into irreducibles, an arbitrary exponential polynomial can

be written as a product of Type-1 and Type-2 exponential polynomials. Moreover, as noted above,
this factorization can be computed from f . Thus, it suffices to show how to decide the existence of
zeros of Type-1 and Type-2 exponential polynomials. We will handle both cases using Schanuel’s
conjecture via the following proposition.

Proposition 3.4. Given non-negative integers r and s , let {a1, . . . ,ar } and {b1, . . . ,bs } be Q-
linearly independent sets of real algebraic numbers. Furthermore, let P ,Q ∈ R be two polynomials
that have algebraic coefficients and are coprime in R. Then the equations

P (t , ea1t , . . . , ear t , eib1t , . . . , eibs t ) = 0 (9)

Q (t , ea1t , . . . , ear t , eib1t , . . . , eibs t ) = 0 (10)

have no common solution t ∈ R \ {0}.

Proof. Consider a solution t � 0 of Equations (9) and (10). By passing to suitable associates,
we may assume without loss of generality that P and Q lie in A, i.e., that all variables in P and
Q appear with non-negative exponent. Moreover, since P and Q are coprime in R, their greatest
common divisor R in A is a monomial. In particular,

R (t , ea1t , . . . , ear t , eib1t , . . . , eibs t ) � 0.

Thus, dividing P andQ by R, we may assume that P andQ are coprime inA and that Equations (9)
and (10) still hold.

Since coprime univariate polynomials cannot have a common root, we may assume without loss
of generality that r + s ≥ 1. By Schanuel’s Conjecture, the field

Q(a1t , . . . ,ar t , ib1t , . . . , ibst , e
a1t , . . . , ear t , eib1t , . . . , eibs t )

has transcendence degree at least r + s over Q. Since a1, . . . ,ar and b1, . . . ,bs are algebraic over Q,
writing

S := (t , ea1t , . . . , ear t , eib1t , . . . , eibs t ),

it follows that the field Q(S )/Q also has transcendence degree at least r + s over Q.
Equations (9) and (10) say that S is a common root of P and Q . Pick some variable σ ∈ {x ,yj , zj :

1 ≤ i ≤ r , 1 ≤ j ≤ s} that has positive degree in P . Then the entry of S corresponding to σ (where
t corresponds to x , eaj t to yj , and ebj t to zj ) is algebraic over the remaining entries of S . We claim
that these remaining entries of S are algebraically dependent and thus S comprises at most r +s−1
algebraically independent elements, contradicting Schanuel’s Conjecture. The claim clearly holds
if σ does not appear in Q (for then Q gives the desired algebraic relation). On the other hand,
if σ has positive degree in Q , then, since P and Q are coprime in A, the multivariate resultant
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Resσ (P ,Q ) is a non-zero polynomial in which the variable σ does not appear and which vanishes
at S (see, e.g., [9, Page 163]). Thus, the claim also holds in this case. We thus obtain a contradiction
and conclude that Equations (9) and (10) have no non-zero solution t ∈ R. �

Theorem 3.5. The Bounded Zero Problem is decidable assuming Schanuel’s Conjecture.

Proof. Consider an exponential polynomial

f (z) = P (z, ea1z , . . . , ear z , eib1z , . . . , eibs z ), (11)

where {a1, . . . ,ar } and {b1, . . . ,bs } are Q-linearly independent sets of real algebraic numbers, and
P ∈ R is irreducible. We show how to determine whether f has a zero in a bounded interval
I ⊆ R≥0 with rational endpoints.

If r = s = 0, then f (z) is a polynomial with algebraic coefficients and deciding the existence
root in I is straightforward.

If r and s are not both zero, then any root of f (z) must be transcendental by Theorem 2.2 (see [2,
Theorem 8] for details). Thus, we may assume without loss of generality that I is an open interval.
We continue by considering separately the cases of Type-1 and Type-2 exponential polynomials.

Case (i): f is a Type-1 exponential polynomial. By assumption, P and P� are irreducible and are
not associates in R. Thus, they are coprime in R. We claim that the equation f (z) = 0 has no
solution z ∈ R. Indeed, if z ∈ R is a zero of f , then

f �(z) = f (z) = f (z) = 0 ;

that is, z is a common zero of f and f �. It follows that

(z, ea1z , . . . , ear z , eib1z , . . . , eibs z )

is a common zero of P and P�, contradicting Proposition 3.4.

Case(ii): f is a Type-2 exponential polynomial. We wish to use the zero-finding procedure of
Section 3.1 to determine whether f has a zero in the open interval I . To this end we must show
that the complex zeros of f come in conjugate pairs and all its real zeros are simple.

Considering complex zeros first, note that by the assumption on f we have P� = UP for some
unit U ∈ R. It follows that

f (z) = 0 ⇔ f �(z) = 0 (since P� = UP )

⇔ f (z) = 0

⇔ f (z) = 0.

Thus, z is zero of f iff z is a zero of f .
We next show, assuming Schanuel’s Conjecture, that the zeros of f are all simple. We have

f ′(z) = Q (z, ea1z , . . . , ear z , eib1z , . . . , eibs z ),

for some polynomial Q ∈ R. We claim that P and Q are coprime in R. Since P is irreducible, P and
Q can only fail to be coprime if P divides Q .

If P has degree k > 0 in X , thenQ has degree k − 1 in X and thus P cannot divideQ . (Recall that
all polynomials in R have non-negative degree in the variableX .) On the other hand, ifX does not
appear in P , then we can write P =

∑
u,v αu,vY

uZv , where αu,v ∈ C for all u ∈ Zr and v ∈ Zs .
We then have Q =

∑
u,v αu,vβu,vY

uZv , where

βu,v :=

r∑
j=1

ajuj + i
s∑

j=1

bjvj .

Journal of the ACM, Vol. 70, No. 4, Article 26. Publication date: August 2023.



On the Zeros of Exponential Polynomials 26:11

By the rational linear independence of {a1, . . . ,ar } and {b1, . . . ,bs }, the numbers βu,v are pairwise
distinct and non-zero. Since P is not a unit, it has at least two monomials. We conclude that P does
not divideQ and hence P andQ are coprime. From Proposition 3.4 we conclude that the equations
f ′(z) = f (z) = 0 have no solution z ∈ C. �

4 DECIDABILITY FOR ONE AND TWO INDEPENDENT FREQUENCIES

Define a frequency of an exponential polynomial to be the imaginary part of one of its exponents.
In the following subsections we consider exponential polynomials with, respectively, one and two
rationally linearly independent frequencies. In each case our goal is to determine whether a given
exponential polynomial f has infinitely many real zeros and, if f has only finitely many zeros, to
obtain an effective constant T such that all positive real zeros of f lie in the interval [0,T ].

4.1 One Independent Frequency

Theorem 4.1. Let f (t ) =
∑k

j=1 Pj (t )eλj t be an exponential polynomial whose set of frequencies
spans aQ-vector space of dimension at most one. Then we can determine whether {t ∈ R≥0 : f (t ) = 0}
is bounded and, if so, we can compute an integer T such that {t ∈ R≥0 : f (t ) = 0} ⊆ [0,T ].

Proof. Write λj = aj + ibj , where aj ,bj are real algebraic numbers for j = 1, . . . ,k . By assump-
tion, there is a single real algebraic number b such that each bj is an integer multiple of b. For each
integer n, both cos(nbt ) and sin(nbt ) can be written as polynomials in sin(bt ) and cos(bt ) with
integer coefficients. If follows that

f (t ) = Q (t , ea1t , . . . , eak t , cos(bt ), sin(bt )),

for some polynomial Q with algebraic coefficients.
Write R := {t ≥ 0 : sin(bt ) ≥ 0} and R′ := {t ≥ 0 : sin(bt ) ≤ 0}. We show how to determine

boundedness of {t ∈ R : f (t ) = 0}. The procedure to decide boundedness of {t ∈ R′ : f (t ) = 0}
can be obtained with minor modifications.

Consider the semi-algebraic set

E :=
{
(u,x ) ∈ Rk+1 × [−1, 1] : Q

(
u,x ,
√

1 − x2
)
= 0)

}
and note that for t ∈ R we have f (t ) = 0 if and only if (t , eat , cos(bt )) ∈ E, where eat denotes
(ea1t , . . . , eak t ). Let E = C1 ∪ · · · ∪Cm be a cell decomposition of E, and define

Z j = {t ∈ R : (t , eat , cos(bt )) ∈ Cj }, j = 1, . . . ,m.

Then {t ∈ R : f (t ) = 0} = Z1 ∪ · · · ∪ Zm .
Fix j ∈ {1, . . . ,m}. We show how to decide whether Z j is bounded and, in case Z j is bounded,

we show how to compute an upper bound on Z j . This suffices to prove the theorem. To this end,

write D j ⊆ Rk+1 for the projection of Cj ⊆ Rk+2 on the first k + 1 coordinates. We consider two
cases.

The first case is that {t : (t , eat ) ∈ D j } is bounded. By Proposition 2.9, we can compute an upper
bound T of this set. But then T is an effective upper bound on the set Z j .

The second case is that {t : (t , eat ) ∈ D j } is unbounded. We claim that Z j is also unbounded.
Indeed, observe that by Proposition 2.9, the set {t : (t , eat ) ∈ D j } contains an unbounded interval
(T ,∞). Note also that, by definition of a cell, there exists a continuous semi-algebraic function ξ
with domain D j such that (u, ξ (u)) ∈ Cj for all u ∈ D j . Then for all t ∈ R,

f (t ) = 0 ⇐= (t , eat , cos(bt )) ∈ Cj

⇐= (t , eat ) ∈ D j ∧ ξ (t , eat ) = cos(bt )

⇐= t ∈ (T ,∞) ∧ ξ (t , eat ) = cos(bt ).
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Now ξ (t , eat ) is a continuous function with domain (T ,∞) that takes values in [−1, 1]. Furthermore,
R∩(T ,∞) contains infinitely many intervals over which cos(bt ) runs from+1 to−1. Thus, there are
infinitely many t ∈ R such that ξ (t , eat ) = cos(bt ) and hence f has infinitely many zeros in Z j . �

4.2 Two Independent Frequencies

In this section we consider exponential polynomials whose frequencies span a two-dimensional
vector space over Q. We show that the Infinite Zeros Problem is decidable under the additional
assumption that the coefficient polynomials are all constants. (The results in Section 6 show that
dropping this additional assumption would entail significant new results about Diophantine ap-
proximation of algebraic numbers.) Our strategy is to reduce the Infinite Zero Problem to the
question of whether a linear flow on a two-dimensional torus hits infinitely often a certain shrink-
ing target set.

Theorem 4.2. Let f (t ) =
∑k

j=1 Pje
λj t be an exponential polynomial whose coefficient polynomials

P1, . . . , Pk are constant and whose frequencies span a two-dimensional vector space over Q. Then we
can decide whether {t ∈ R≥0 : f (t ) = 0} is bounded and, if so, we can compute an integerT such that
{t ∈ R≥0 : f (t ) = 0} ⊆ [0,T ].

Proof. Write aj = Re(λj ) for j = 1, . . . ,k . Let b1,b2 be real algebraic numbers, linearly inde-
pendent over Q, such that Im(λj ) is an integer linear combination of b1 and b2 for j = 1, . . . ,k . For
each n ∈ Z, sin(nb1t ) and cos(nb1t ) can be written as polynomials in sin(b1t ) and cos(b1t ) with
integer coefficients, and similarly for b2. It follows that we can write f in the form

f (t ) = Q (ea1t , . . . , eak t , cos(b1t ), cos(b2t ), sin(b1t ), sin(b2t ))

for some polynomial Q with real algebraic coefficients that is computable from f .
Write R := {t ≥ 0 : sin(b1t ) ≥ 0 ∧ sin(b2t ) ≥ 0}. We show how to decide boundedness of
{t ∈ R : f (t ) = 0}. The cases for the other three sign conditions on sin(b1t ) and sin(b2t ) follow
mutatis mutandis.

Define a semi-algebraic set

E := {(u,x ,y) ∈ Rk × [−1, 1]2 : Q (u,x ,y,
√

1 − x2,
√

1 − y2) = 0}.

Then for t ∈ R we have f (t ) = 0 if and only if (eat , cos(b1t ), cos(b2t )) ∈ E, where a = (a1, . . . ,ak ).
Now consider a cell decomposition E = C1 ∪ · · · ∪Cm , and define

Z j := {t ∈ R : (eat , cos(b1t ), cos(b2t )) ∈ Cj }, j = 1, . . . ,m. (12)

Then {t ∈ R : f (t ) = 0} = Z1 ∪ · · · ∪ Zm . We now analyze the boundedness of each component Z j .

Fix j ∈ {1, . . . ,m}. We show how to decide boundedness of Z j . To this end, write D j ⊆ Rk for

the projection of the corresponding cell Cj ⊆ Rk+2 on the first k coordinates.
First, suppose that {t ∈ R : eat ∈ D j } is bounded. Then, by Proposition 2.9, we can compute

an upper bound T of this set, entailing that Z j ⊆ [0,T ]. On the other hand, suppose that {t ∈ R :
eat ∈ D j } is unbounded. Then, by Proposition 2.9, this set contains an unbounded interval (T ,∞)
for some T ∈ N. Write I = [−1, 1] and define functions д1,д2,h1,h2 : D j → I by

д1 (u) = inf {x ∈ I : ∃y (u,x ,y) ∈ Cj } д2 (u) = inf {y ∈ I : ∃x (u,x ,y) ∈ Cj } (13)

h1 (u) = sup{x ∈ I : ∃y (u,x ,y) ∈ Cj } h2 (u) = sup{y ∈ I : ∃x (u,x ,y) ∈ Cj }. (14)

These functions are all semi-algebraic; hence, by Proposition 2.10, the limits д∗i := limt→∞ дi (eat )
and h∗i := limt→∞ hi (eat ) exist for i = 1, 2 and are algebraic numbers. Clearly we have д∗1 ≤ h∗1 and
д∗2 ≤ h∗2. We now consider three cases according to the strictness of these inequalities.
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Case I: Suppose that д∗1 = h
∗
1 and д∗2 = h

∗
2. We show that Z j is bounded and that we can compute

T2 such that Z j ⊆ [0,T2].
By Proposition 2.10, there exist T1, ε > 0 such that for all t > T1 and i = 1, 2,

|дi (eat ) − д∗i | < e−εt and |hi (eat ) − h∗i | < e−εt . (15)

Then for t ∈ R such that t > T1 we have

t ∈ Z j ⇐⇒
(
eat , cos(b1t ), cos(b2t )

)
∈ Cj (by Equation (12))

=⇒ д1 (eat ) ≤ cos(b1t ) ≤ h1 (eat ) and д2 (eat ) ≤ cos(b2t ) ≤ h2 (eat ) (by Equations (13) and (14))

=⇒ ��cos(b1t ) − д∗1 �� < e−εt and ��cos(b2t ) − д∗2 �� < e−εt (by Equation (15)). (16)

Writeд∗1 = cos(φ1) andд∗2 = cos(φ2) for someφ1,φ2 ∈ [0,π ]. Since | cos(φ1+x )−cos(φ1) | ≥ x3/3
for all x sufficiently small (by a Taylor expansion), the inequality in Equation (16) implies that for
some k1,k2 ∈ Z,

|b1t − φ1 − 2k1π | < 3e−εt/3 and |b2t − φ2 − 2k2π | < 3e−εt/3. (17)

Combining the upper bounds in Equation (17) with the polynomial lower bounds from Lemma 2.3
(i.e., that either for some N and all t sufficiently large, either |b1t − φ1 − 2k1π | > 1/tN or |b2t −
φ2 − 2k2π | > 1/tN ), we obtain an effective bound T2 for which t ∈ Z j implies t < T2.

Case II: Next, suppose that д∗1 < h∗1. In this case we show that Z j is unbounded. The geometric
intuition is as follows: imagine a particle in the plane whose position at time t is (cos(b1t ), cos(b2t )),
together with a “moving target” whose extent at time t is Γt := {(x ,y) : (eat ,x ,y) ∈ Cj }. Intuitively,
such a particle must reach Γt for arbitrarily large values of t since its orbit is dense in [−1, 1]2 and
Γt “converges” to a subset of [−1, 1]2 that has positive dimension.

Proceeding formally, first notice that Cj cannot be a (. . . , 0, 1)-cell or a (. . . , 0, 0)-cell, for then
we would have д1 (u) = h1 (u) for allu ∈ D j and hence д∗1 = h

∗
1. Thus,Cj must either be a (. . . , 1, 0)-

cell or a (. . . , 1, 1)-cell. In either case,Cj includes a cell of the form {(u,x , ξ (u,x )) : u ∈ D j ,д1 (u) <
x < h1 (u)} for some continuous semi-algebraic function ξ .

Let c,d be real algebraic numbers such that д∗1 < c < d < h∗1. Write c = cos(ψ ′) and d =
cos(ψ ) for 0 ≤ ψ < ψ ′ ≤ π . By Proposition 2.10, the limits limt→∞ ξ (eat , c ) and limt→∞ ξ (eat ,d )
exist and are algebraic numbers in the interval [−1, 1]. Let θ ,θ ′ ∈ [0,π ] be such that cos(θ ) =
limt→∞ ξ (eat ,d ) and cos(θ ′) = limt→∞ ξ (eat , c ).

Since cos(θ ), cos(θ ′), cos(ψ ), and cos(ψ ′) are algebraic, ei (θ ′−θ ) and ei (ψ ′−ψ ) are also algebraic,

and hence by the Gelfond-Schneider theorem (Theorem 2.1), the quotient θ ′−θ
ψ ′−ψ

is either rational or

transcendental. In particular, we know that it is not equal to b2

b1
, which is algebraic and irrational.

Let us suppose that θ ′−θ
ψ ′−ψ

> b2

b1
(the converse case is almost identical). Then there exists θ ′′ with

θ < θ ′′ < θ ′, such that

θ < θ ′′ +
b2

b1
(ψ ′ −ψ ) < θ ′. (18)

Since 2π ,b1,b2 are linearly independent over Q, it follows from Proposition 2.6 that
{(b1t ,b2t ) mod 2π : t ∈ R≥0} is dense in [0, 2π )2. Thus, there is an increasing sequence t1 <
t2 < · · · , with b1tn ≡ ψ mod 2π for all n, such that b2tn mod 2π converges to θ ′′. Then, defining

s1 < s2 < · · · by sn = tn +
ψ ′−ψ

b1
, we have b1sn ≡ ψ ′ mod 2π for all n and, by Equation (18),

lim
n→∞

b2sn = lim
n→∞

b2tn +
b2

b1
(ψ ′ −ψ ) = θ ′′ +

b2

b1
(ψ ′ −ψ ) < θ ′ (mod 2π ).
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Let η(t ) = ξ (eat , cos(b1t )) − cos(b2t ). Then for t ∈ R such that д(eat ) < cos(b1t ) < h(eat ),

η(t ) = 0 =⇒ cos(b2t ) = ξ (eat , cos(b1t ))

=⇒ (eat , cos(b1t ), cos(b2t )) ∈ Cj

=⇒ t ∈ Z j (by Equation (12)).

Now limn→∞ η(tn ) = cos(θ ) − cos(θ ′′) > 0 and limn→∞ η(sn ) < cos(θ ′) − cos(θ ′) = 0. Moreover,
for n sufficiently large we have [tn , sn] ⊆ R. It follows that η(t ) has a zero in every interval [tn , sn]
for n large enough. We conclude that Z j is unbounded.

Case III: Finally, the case д∗2 < h∗2 is symmetric to Case II. �

5 DECIDABILITY UP TO ORDER EIGHT

We now shift our attention to the low-order case. The main results of this section establish decid-
ability of the Infinite Zeros Problem and conditional decidability of the Zero Problem for exponen-
tial polynomials of order at most 8.

5.1 Known Decidable Cases

First, we recall some simple criteria on the dominant terms of an exponential polynomial that
make it easy to decide whether it has infinitely many zeros.

Lemma 5.1. Let f be an exponential polynomial that has a single dominant term that is moreover
associated to a real exponent. Then f has finitely many nonnegative real zeros, all lying in an interval
[0,T ] for some effectively computable constant T .

Proof. Suppose that f has dominant term Atder t for real algebraic numbers A � 0 and r and

a nonnegative integer d . Then we can write
f (t )

er t td = A + д(t ), where |д(t ) | = O (1/t ). Moreover,

the constants in the asymptotic notation are effective and hence we can compute the desired
threshold T . �

Lemma 5.2 ([2, Theorem 11]). An exponential polynomial that has no dominant term associated
to a real exponent has infinitely many zeros.

Theorem 5.3 ([2, Theorem 15]). Consider an exponential polynomial whose dominant exponents
all have constant coefficients, are at least four in number, and have imaginary parts linearly indepen-
dent over Q. Then the existence of infinitely many zeros is decidable. Moreover, if there are finitely
many zeros, then there is an effective threshold T such that all zeros are in [0,T ].

5.2 Two and Three Rationally Linearly Independent Frequencies

In this section we consider certain sub-cases of the Infinite Zeros Problem for exponential poly-
nomials of order at most 8 that are not covered by the results of Section 4. Namely, we consider
exponential polynomials with two rationally linearly independent frequencies and non-constant
coefficients, and exponential polynomials with three rationally linearly independent frequencies.

Lemmas 5.4 and 5.5, below, concern exponential polynomials in which the dominant terms in-
volve linear coefficient polynomials.

Lemma 5.4. LetA,B,C,D,E,a,b, r1 be real algebraic numbers such that a,b > 0 > r1 andA,B � 0.
Let also φ1,φ2,φ3 ∈ R be such that eiφ1 , eiφ2 , eiφ3 are algebraic. Define the exponential polynomial f
by

f (t ) = t (A cos(at + φ1) + B) + (C cos(at + φ2) + D) + Eer1t cos(bt + φ3).

Then it is decidable whether f has infinitely many zeros. Moreover, if f has only finitely many zeros,
then there exists an effective constant T such that all zeros lie in [0,T ].
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Proof. We can assume without loss of generality that a/b � Q, since otherwise f would
have at most one rationally linearly independent frequency and the lemma would follow from
Theorem 4.1.

Considering the dominant term t (A cos(at +φ1) +B), it is clear that if |A| > |B |, then f changes
sign infinitely often, whereas if |B | > |A|, then for t large enough, f (t ) has the same sign as B.
Thus, we can assume |A| = |B |. Dividing f by B, and replacing φ1 by φ1 + π if necessary, we can
moreover assume that f has the form

f (t ) = t (1 − cos(at + φ1))︸������������������︷︷������������������︸
α (t )

+ (C cos(at + φ2) + D)︸��������������������︷︷��������������������︸
β (t )

+ er1tE cos(bt + φ3)︸����������������︷︷����������������︸
γ (t )

. (19)

We now focus on the critical times tj
def
=

2jπ−φ1

a
, j ∈ N, at which the dominant term α (t )

vanishes. Define F
def
= C cos(φ2 − φ1) + D and notice that β (tj ) = F for all j ∈ N.

Case (i). Suppose that F ≤ 0. By the linear independence of a,b and Proposition 2.6, we have
γ (tj ) < 0 for infinitely many j. Thus, f (tj ) = F + γ (tj ) is negative for infinitely many j. But,
considering the dominant term α (t ), it is also clear that lim supt→∞ f (t ) > 0. We conclude that f
has infinitely many zeros.

Case (ii). Suppose that F > 0. We claim that f is ultimately positive. Since lim supt→∞ f (t ) > 0,
it suffices to show that for t sufficiently large, if f ′(t ) = 0, then f (t ) > 0.

Since β is uniformly continuous, there exists δ > 0 such that for all t ∈ R≥0 and j ∈ N such that
|t − tj | < δ we have β (t ) > F/2. Furthermore, since f (t ) ≥ β (t ) − er1t |E |, we have that f (t ) > 0
for all sufficiently large t ∈ R≥0 and j ∈ N such that |t − tj | < δ .

Let t be such that f ′(t ) = 0 and choose j ∈ N such that |at + φ1 − jπ | ≤ π
2 . If j is odd, then

cos(at + φ1) ≤ 0 and hence f (t ) ≥ t + β (t ) + γ (t ) is positive for t sufficiently large. Now suppose
that j is even—say j = 2k for some k . From the equation f ′(t ) = 0 we have

|at sin(at + φ1) | = | cos(at + φ1) − 1 + β ′(t ) + γ ′(t ) | ≤ G (20)

for some positive constant G. It follows that

|t − tj | =
1

a
��at + φ1 − 2kπ �� { defn. of tk , j = 2k }

≤ 2

a
| sin(at + φ1 − 2kπ ) | { since |x | ≤ 2| sin(x ) | for all x ∈ [− π

2 ,
π
2 ] }

≤ 2G

a2t
{ by Equation (20) }.

We conclude that for t sufficiently large, |t − tj | < δ and hence, as observed above, f (t ) > 0. �

Lemma 5.5. Let

f (t ) = t (A1 +A2 cos(at + φ)) +A cos(at + φ1) + B cos(bt + φ2) +C,

where a,b,A,B,C,A1,A2 � 0 are real algebraic and φ,φ1,φ2 are real with a,b positive and
eiφ , eiφ1 , eiφ2 algebraic. It is decidable whether f has infinitely many zeros in [0,∞), and if not, then
a threshold T can be computed such that all zeros of f lie in [0,T ].

Proof. We can assume without loss of generality thata/b � Q, since otherwise the claim follows
from Theorem 4.1. If |A1 | < |A2 |, then f has infinitely many zeros (consider large t such that
cos(at +φ) = ±1), whereas if |A1 | > |A2 |, then the sign of f will eventually match that of A1, so f
has only finitely many zeros. We are left with the case that |A1 | = |A2 |. Dividing f through by A1

Journal of the ACM, Vol. 70, No. 4, Article 26. Publication date: August 2023.



26:16 V. Chonev et al.

and replacing φ by φ + π if necessary, we can write the exponential polynomial as

f (t ) = t (1 − cos(at + φ))︸�����������������︷︷�����������������︸
α (t )

+A cos(at + φ1) + B cos(bt + φ2) +C︸�����������������������������������������︷︷�����������������������������������������︸
β (t )

.

The analysis centers around the behavior of f around the sequence of critical points tj
def
=

2jπ−φ

a
,

j ∈ N, at which the dominant term α (t ) is zero. We distinguish three cases, based on comparing
A cos(φ1 − φ) +C with |B |.

Case (i). Suppose first that A cos(φ1 − φ) + C < |B |. We claim that f has infinitely many zeros.
Writing ε = |B | −A cos(φ1 − φ) −C > 0, we have

f (tj ) = A cos(φ1 − φ) +C + B cos(btj + φ2)

= |B | − ε + B cos(btj + φ2).

By the linear independence of a,b and Proposition 2.6, we have that for infinitely many j, |B | +
B cos(btj + φ2) ∈ [0, ε/2], say, and hence f (tj ) < −ε/2 < 0. Since also lim supt→∞ f (t ) > 0, we
conclude that f has infinitely many zeros, as claimed.

Case (ii). Second, suppose that A cos(φ1 −φ) +C > |B |. We argue that f has finitely many zeros.
To start, we note that for all j ∈ N,

β (tj ) = A(cos(φ1 − φ) +C + B cos(bt + φ2)

≥ A(cos(φ1 − φ) +C − |B |
> 0.

Since moreover β is uniformly continuous, there exists δ > 0 such that β (t ) > 0 for all t ∈ R≥0

and j ∈ N such that |t − tj | < δ . In particular, since f (t ) ≥ β (t ) for all t , we have f (t ) > 0 for all t
and j such that |t − tj | < δ .

Clearly lim inf t→∞ f (t ) > 0. Hence, to show that f is ultimately positive, it suffices to show that
f (t ) > 0 for all sufficiently large t such that f ′(t ) = 0. To this end, let t be such that f ′(t ) = 0 and
choose j ∈ N such that |at +φ − jπ | ≤ π

2 . If j is odd, then cos(at +φ) ≤ 0 and hence f (t ) ≥ t + β (t )
is positive for t sufficiently large. Now suppose that j is even—say j = 2k for some k . From the
equation f ′(t ) = 0 we get that

|at sin(at + φ) | = | cos(at + φ) − 1 + β ′(t ) | ≤ D (21)

for some positive constant D. It follows that

|t − tj | =
1

a
��at + φ − 2kπ �� { defn. of tj , j = 2k }

≤ 2

a
| sin(at + φ − 2kπ ) | { since |x | ≤ 2| sin(x ) | for all x ∈ [− π

2 ,
π
2 ] }

≤ 2D

a2t
. { by Equation (21) }.

Thus, for t sufficiently large, |t − tj | < δ and hence, as observed above, f (t ) > 0.
Case (iii). Finally, suppose A cos(φ1 − φ) + C = |B |. We claim that f has finitely many zeros if

and only if φ1 − φ = kπ for some k ∈ Z.
Suppose first φ1 − φ = kπ for some k ∈ Z. Then |B | = A cos(φ1 − φ) +C = A(−1)k +C , so

f (t ) = t (1 − cos(at + φ)) +A cos(at + φ + kπ ) + B cos(bt + φ2) +C

= (t −A(−1)k ) (1 − cos(at + φ)) + ( |B | + B cos(bt + φ2)).
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For t ≥ |A|, f (t ) = 0 is equivalent to

cos(at + φ) = 1 and cos(bt + φ2) = −sign(B),

which entails that eiat , eibt are both algebraic. Then by the Gelfond-Schneider theorem
(Theorem 2.1), either t = 0 or a/b ∈ Q, which is a contradiction. Therefore, f (t ) has no zeros
t ≥ |A|.

Finally, suppose that φ1 − φ � kπ for all k ∈ Z and A cos(φ1 − φ) + C = |B |. We claim that f
has infinitely many zeros on [0,∞). Without loss of generality, by replacing φ2 with φ2 + π if
necessary, assume that B < 0. Note also that sin(φ1 − φ) � 0.

By Theorem 2.7, there exist infinitely many k ∈ N such that there exists a corresponding l ∈ N
satisfying

������
b

a
k − l +

φ2 − φ b
a

2π

������ <
2

k
. (22)

For each such k , we consider

sk
def
=

1

a

(
2kπ − φ + δ

k

)
,

where δ is a real constant chosen such that sign(δA sin(φ1 − φ)) = 1 and |δ | is sufficiently
small (to be specified later). We will show that f (sk ) ≤ 0 for all sufficiently large k . Since also
lim supt→∞ f (t ) > 0, this suffices to show that f has infinitely many zeros. To this end, we will
separately bound the terms sk (1− cos(ask +φ)), A cos(ask +φ1) and B cos(bsk +φ2) for all k large
enough, and hence bound f (sk ) from above by zero.

First, we consider the dominant term of f (sk ):

sk (1 − cos(ask + φ)) =
2kπ − φ + δ

k

a

(
1 − cos

(
δ

k

))
{ definition of sk }

≤
2kπ − φ + δ

k

a

δ 2

2k2
{ sk > 0 and 1 − cos(x ) ≤ x2/2 }

≤ πδ 2

a

1

k
− φδ 2

2a

1

k2
+
δ 3

2a

1

k3
{ rearranging }

≤ 2πδ 2

a

1

k
{ for large enough k }. (23)

Next we bound the term A cos(ask +φ1). Here note that for a differentiable function f : R→ R
and x0 ∈ R such that f ′(x0) � 0, we have f (x0+ε ) ≤ f (x0)+ε

f ′ (x0 )
2 for all ε with sign(ε f ′(x0)) = −1

and |ε | sufficiently small. Applying this observation to f (x ) = A cosx , for |δ | sufficiently small
we have

A cos(ask + φ1) =A cos

(
φ1 − φ +

δ

k

)
{ definition of sk }

≤A cos(φ1 − φ) − δ

k

A sin(φ1 − φ)

2
{ sign(δA sin(φ1 − φ)) = 1 }. (24)
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Finally, we use Equation (22) to bound B cos(bsk + φ2):

cos(bsk + φ2) { definition of sk }

= cos

(
b

a

(
2kπ − φ + δ

k

)
+ φ2

)
{ rearranging }

= cos �
�2π �

�
b

a
k +

φ2 − b
a
φ

2π
�
	 +

bδ

ak
�
	 { by Equation (22) for some l ∈ N and ε ∈ R with |ε | < 2/k }

= cos

(
2π (l + ε ) +

bδ

ak

)
{ by the inequality 1 − cos(x ) ≤ x2/2 for all x ∈ R }

≥ 1 − 1

2

�����2πε +
bδ

ak

�����
2

{ by the triangle inequality and |ε | < 2/k}

≥ 1 − 1

2k2

(
4π +

b |δ |
a

)2

.

Hence, noting that B < 0, we have

B cos(bsk + φ2) ≤ B �
�1 − 1

2k2

(
4π +

b |δ |
a

)2�
	 . (25)

Combining the above three bounds, we have

f (sk ) = sk (1 − cos(ask + φ)) +A cos(ask + φ1) + B cos(bsk + φ2) +C

{ by Equations (23), (24), and (25) }

≤ 2πδ 2

ak
+A cos(φ1 − φ) − δ

2k
A sin(φ1 − φ) + B �

�1 − 1

2k2

(
4π +

b |δ |
a

)2�
	 +C

{ by A cos(φ1 − φ) +C = |B | and B < 0 }

=
1

k

(
2πδ 2

a
− δA sin(φ1 − φ)

2

)
− 1

k2

B

2

(
4π +

b |δ |
a

)2

.

Since sign(δA sin(φ1 − φ)) = 1, for |δ | small enough we have 2π δ 2

a
− δ A sin(φ1−φ )

2 < 0. Then for all

large enough k , since 1/k2 shrinks faster than 1/k , we will have

sign( f (sk )) = sign

(
2πδ 2

a
− δc

)
= −1.

Therefore, f is negative infinitely often and hence has infinitely many zeros, as claimed. �

Lemma 5.6. Let

f (t ) = 1 − cos(at + φ1) + er1t (B cos(bt + φ2) +C cos(ct + φ3) + D) + er2tE,

where a,b, c,B,C,D,E, r1, r2 are real algebraic; eiφ1 , eiφ2 , eiφ3 are algebraic; at least one of D,E is
equal to zero; a,b, c > 0; B,C � 0; and r2 < r1 < 0. It is decidable whether f has infinitely many
zeros on [0,∞), and if not, then a threshold T can be computed such that if f (t ) = 0, then t ≤ T .

Proof. Since all the coefficient polynomials occurring in f are constant, if {a,b, c} is not a
linearly independent set over Q, then the claim follows from Theorem 4.2. Thus, we may assume
that a,b, c are linearly independent over the rationals.

Next, we argue that if D < |C |+ |B |, then f has infinitely many zeros. Indeed, by Proposition 2.6,
the linear independence of a,b, c entails that the trajectory (at + φ1,bt + φ2, ct + φ3) mod 2π is
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dense in [0, 2π )3, and moreover the restriction of this trajectory to at +φ1 mod 2π = 0 is dense in
{0} × [0, 2π )2. Thus, {B cos(bt + φ2) +C cos(ct + φ3) + D : t ≥ 0 and at + φ1 mod 2π = 0} is dense
in [D − |C | − |B |,D + |C | + |B |]. If D < |C | + |B |, then because r2 < r1 < 0, it will happen infinitely
often that

1 − cos(at + φ1) = 0,

er1t (B cos(bt + φ2) +C cos(ct + φ3) + D) < er1t D − |C | − |B |
2

< −|E |er2t ,

and hence f (t ) < 0. On the other hand, f is also positive infinitely often, so f must have infinitely
many zeros.

Suppose now that D ≥ |B | + |C | > 0. By the premise of the lemma, E = 0, so f has the form

f (t ) = 1 − cos(at + φ1) + er1t (B cos(bt + φ2) +C cos(ct + φ3) + D).

We argue that f has no zeros, except possibly at t = 0. Indeed, we have B cos(bt + φ2) + |B | ≥ 0
andC cos(ct +φ3) + |C | ≥ 0 for all t , so f (t ) ≥ 0 for all t . Then f (t ) = 0 if and only if D = |B | + |C |
and simultaneously

cos(at + φ1) = 1,

cos(bt + φ2) = −sign(B),

cos(ct + φ3) = −sign(C ),

which entails that eiat , eibt , eict are all algebraic. Therefore, by the Gelfond-Schneider theorem
(Theorem 2.1), either t = 0 or a,b, c are rational multiples of one another. The latter possibility
contradicts the linear independence of a,b, c , so we conclude that f has at most one zero. �

Lemma 5.7. Let

f (t ) = 1 − cos(at + φ1) + er1t (Bt cos(bt + φ2) +C cos(bt + φ3) + D) + er2tE,

where a,b,B,C,D,E, r1, r2 are real algebraic; eiφ1 , eiφ2 , eiφ3 are algebraic; at least one of D,E is equal
to zero; a,b > 0; B � 0; and r2 < r1 < 0. It is decidable whether f has infinitely many zeros on [0,∞),
and if not, then a threshold T can be computed such that if f (t ) = 0, then t ≤ T .

Proof. If a/b ∈ Q, then the claim follows from Theorem 4.1, so assume that a,b are linearly
independent over the rationals. Then by Proposition 2.6, it happens infinitely often that 1−cos(at+
φ1) = 0 and Bt cos(bt + φ2) < −|B |t/2, say. For large enough such t , we will have

er1t (Bt cos(bt + φ2) +C cos(bt + φ3) + D) + er2tE < 0,

and hence f (t ) < 0, so f has infinitely many zeros. �

Lemma 5.8. Let

f (t ) = 1 − cos(at + φ1) + er1t (B cos(bt + φ2) +C ) + er2t f2 (t ),

where a,b,B,C, r1, r2 are real algebraic; eiφ1 , eiφ2 are algebraic; a,b > 0 positive; B � 0; r2 < r1 < 0;
and f2 is an exponential polynomial whose dominant exponents are purely imaginary. Suppose also
the order of f is at most 8. It is decidable whether f has infinitely many zeros on [0,∞), and if not,
then a threshold T can be computed such that if f (t ) = 0, then t ≤ T .

Proof. Suppose first a/b ∈ Q. Because of the bound on the order of f , f2 has order at most 3,
so it cannot simultaneously have complex exponents and non-constant coefficients. Thus, either
f has at most one linearly independent frequency or f has constant coefficients and at most two
linearly independent frequencies. Either way, the result follows from Theorems 4.1 and 4.2.
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Therefore, assume now that a,b are linearly independent over Q. By Proposition 2.6, the trajec-
tory (at + φ1 mod 2π ,bt + φ2 mod 2π ) is dense in [0, 2π )2, and moreover the restriction of this
trajectory to at + φ1 mod 2π = 0 is dense in {0} × [0, 2π ).

If |C | < |B |, then we argue that f is infinitely often negative, and hence has infinitely many
zeros. Indeed, |C | < |B | entails the existence of a non-empty interval I ⊆ [0, 2π ) such that

bt + φ2 mod 2π ∈ I implies B cos(bt + φ2) +C < 0.

What is more, we can in fact find ε > 0 and a subinterval I ′ ⊆ I such that

bt + φ2 mod 2π ∈ I ′ implies B cos(bt + φ2) +C < −ε .

Thus, by density, 1 − cos(at + φ1) = 0 and B cos(bt + φ2) + C < −ε will infinitely often hold
simultaneously. Then just take t large enough to ensure, say, |er2t f2 (t ) | < ε/2 at these infinitely
many points, and the claim follows.

If |C | > |B |, then clearly for all large enough t , we have

sign(er1t (B cos(bt + φ2) +C ) + er2t f2 (t )) = sign(C ).

If C < 0, then f has infinitely many zeros (consider t such that cos(at + φ1) = 1), while if C > 0,
then f is ultimately positive.

Thus, suppose now |B | = |C |. Replacing φ2 by φ2 + π if necessary, we can write the function
as

f (t ) = 1 − cos(at + φ1) +Cer1t (1 − cos(bt + φ2)) + er2t f2 (t ).

As a,b are linearly independent, for all t large enough, 1 − cos(at + φ1) and 1 − cos(bt + φ2)
cannot simultaneously be "too small." More precisely, by Lemma 2.3, there exist effective constants
E,T ,N > 0 such that for all t ≥ T , we have

1 − cos(at + φ1) > E/tN or 1 − cos(bt + φ2) > E/tN .

Now, ifC < 0, it is easy to show that f has infinitely many zeros. Indeed, consider the times t where
the dominant term 1−cos(at +φ1) vanishes. For all large enough such t , since |1/tN | shrinks more

slowly than e (r2−r1 )t and | f2 (t ) | is bounded above by a constant (because its dominant exponents
are purely imaginary), we will have

f (t ) = er1t
(
C (1 − cos(bt + φ2)) + e (r2−r1 )t f2 (t )

)
< er1t

(
ECt−N + e (r2−r1 )t f2 (t )

)
≤ er1t 1

2
ECt−N

< 0,

so f has infinitely many zeros. Similarly, ifC > 0, we can show that f is ultimately positive. Indeed,
for all t large enough, we have

f (t ) ≥ er1t
(
C (1 − cos(bt + φ2)) + e (r2−r1 )t f2 (t )

)
> er1t

(
CEt−N + e (r2−r1 )t f2 (t )

)
>
CE

2
t−N

> 0
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or

f (t ) ≥ 1 − cos(at + φ1) + er2t f2 (t )

> Et−N + er2t f2 (t )

>
E

2
t−N

> 0.

Therefore, f has only finitely many zeros, all occurring up to an effective bound. �

5.3 Main Result

We now draw together the lemmas in the previous two subsections to prove the main result of this
section.

Theorem 5.9. It is decidable whether a given exponential polynomial f of order at most 8 has
infinitely many nonnegative real zeros. Moreover, there exists an effective thresholdT computable from
the description of f , such that if f has only finitely many zeros, then they are all contained in [0,T ].

Proof. Suppose we are given an exponential polynomial f of order at most 8. By dividing f
through by er t if necessary, where r is the real part of the dominant exponents of f , we may
assume without loss of generality that r = 0 and that all non-dominant exponents have strictly
negative real part.

Throughout this proof, we will use the following notational conventions. We denote by
r1, r2, . . . the real parts of the non-dominant exponents of f . These are real algebraic numbers
such that 0 > r1 > r2 > · · · . The lowercase letters a,b, c will denote frequencies of f , always real
algebraic and strictly positive. Uppercase letters A,B,C, . . . will denote real algebraic numbers
(of arbitrary sign), while φ,φ1,φ2,φ3 will denote real numbers such that eiφ , eiφ1 , eiφ2 , eiφ3 are
algebraic. For an exponential polynomial f (t ) =

∑m
j=1 Pj (t )eλj t , we say that exponent λj has

multiplicity mul(λj ) := deg(Pj ).
We will now perform a case analysis on the number of dominant exponents. Throughout,

we rely on the equivalent general forms of real-valued exponential polynomials, outlined in
Section 2.1. By Lemma 5.2, it is sufficient to confine our attention to exponential polynomials
with an odd number of dominant exponents. By Lemma 5.1 above, the claim is already proven for
exponential polynomials with a single dominant term, corresponding to a real exponent.

Case I. Suppose first that f has seven dominant exponents: namely 0 and ±ai,±bi,±ci for non-
zero real algebraic numbers a,b, c . The dominant complex exponents must all have multiplicity
one since otherwise the order of f would exceed 8. If mult(0) > 1, then 0 has strictly greater
multiplicity than the other dominant exponents and the claim follows from Lemma 5.1. Thus, we
can assume all dominant exponents have multiplicity one.

The sum of the multiplicities of the dominant exponents is 7, so f can have at most one other,
necessarily real, exponent without exceeding order 8, and this exponent must necessarily have
multiplicity one.

We now consider the dimension of rational vector spaced spanned by {a,b, c}. If the dimension
is at most 2, then the claim follows from Theorems 4.1 and 4.2, whereas if the dimension is 3, then
we are done by Lemma 5.3. This completes Case I.

Case II. Next, suppose f has five dominant exponents: 0 and ±ai,±bi for non-zero real
algebraic numbers a,b. The bound on the order of f guarantees that (mult(±ai ),mult(±bi )) ∈
{(1, 2), (2, 1), (1, 1)}.
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Assume first that (mult(±ai ),mult(±bi )) = (2, 1). (The case (1, 2) is symmetric.) If mult(0) � 2,
then the claim follows from Lemma 5.2, since then f has a single dominant term that corresponds
to a non-real exponent. Thus, assume that mult(0) = 2, so f is given by

f (t ) = t (A1 +A2 cos(at + φ)) +A cos(at + φ1) + B cos(bt + φ2) +C .

The claim is proven for exponential polynomials of this form in Lemma 5.5.
We can now assume that the complex dominant exponents all have multiplicity one:

mult(±ai ) = mult(±bi ) = 1. If mult(0) > 1, then we are done by Lemma 5.1, so assume mult(0) = 1.
If a/b � Q, the claim follows from Lemma 5.3, so assume a/b ∈ Q. If f has no complex exponents
other than ±ai and ±bi , then the Q-span of the frequencies of f has dimension one and the claim
follows by Theorem 4.1. On the other hand, if f has another conjugate pair of complex exponents,
say r1 ± ci with r1 < 0, then by the order bound of 8, f has constant coefficients and the Q-span
of the frequencies has dimension at most two, so the claim follows by Theorems 4.1 and 4.2.

Case III. Finally, we can assume that f has three dominant exponents: one real 0 and a complex
pair ±ai . By Lemmas 5.1 and 5.2, the claim is proven when mult(0) � mult(±ai ). Taking into
account the order bound on f , we have mult(0) = mult(±ai ) ≤ 2. If mult(0) = mult(±ai ) = 2,
then f has the form

f (t ) = t (A cos(at + φ1) + B) + (C cos(at + φ2) + D) + f1 (t ),

where f1 (t ) is an exponential polynomial or order at most 2 whose exponents have strictly
negative real parts. If the exponents of f1 are both real, then the claim follows by Theorem 4.1;
otherwise, the claim follows from Lemma 5.4.

Suppose now mult(0) = mult(±ai ) = 1, so f has the form

f (t ) = A1 +A2 cos(at + φ1) + f1 (t ),

where f1 is an exponential polynomial of order at most 5 whose exponents all have strictly
negative real part, so that f1 (t ) tends to 0 exponentially quickly as t grows to infinity. Notice that
if |A1 | > |A2 |, then f cannot have infinitely many zeros. Indeed, for t sufficiently large we will
have | f1 (t ) | < |A1 | − |A2 |, and the sign of f will match that of A1. On the other hand, if |A2 | > |A1 |,
then f will change sign infinitely often. It remains to consider the case that |A1 | = |A2 |. Moreover,
dividing through by A1 and, if necessary, replacing φ1 by φ1 + π , we can assume without loss of
generality that A1 = 1 and A2 = −1, so that

f (t ) = 1 − cos(at + φ1) + f1 (t ).

Since f1 (t ) converges to zero as t grows to infinity, it is clear that lim supt→∞ f (t ) > 0. Thus, f
has infinitely many zeros if also lim inft→∞ f (t ) < 0.

From here onward, we proceed by performing a case split on the dominant exponents of f1,
that is, the exponents of f of the second-greatest real part. (Note in passing that if f1 is identically
zero, then f has infinitely many zeros, occurring at t such that cos(at +φ1) = 1.) Let the exponents
of f1 have real part r1 < 0.

Case III.1. Suppose first that the exponents of f of the second-largest real part are five in
number, that is, a real frequency r1 and two pairs of complex exponents r1 ± bi , r1 ± ci . By the
order bound on f , mult(r1 ± bi ) = mult(r1 ± ci ) = mult(r1) = 1, so that f has the form

f (t ) = 1 − cos(at + φ1) + er1t (B cos(bt + φ2) +C cos(ct + φ3) + D).

Then the claim follows from Lemma 5.6.
Case III.2. Next, suppose that the exponents of f of the second-largest real part are four in

number, that is, two pairs of complex exponents r1 ± bi , r1 ± ci . Then f is of the form

f (t ) = 1 − cos(at + φ1) + er1t (B cos(bt + φ2) +C cos(ct + φ3)) + er2tD.
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The claim follows from Lemma 5.6.
Case III.3. Next, suppose that the exponents of f of the second-largest real part are three in

number, a real r1 and a complex pair r1 ± bi with mult(r1 ± bi ) ≥ 2. By the order bound on f , we
must have mult(r1 ± bi ) = 2 and mult(r1) = 1, so that f has the form

f (t ) = 1 − cos(at + φ1) + er1t (Bt cos(bt + φ2) +C cos(bt + φ3) + D).

In this case, the claim follows from Lemma 5.7.
Case III.4. Next, suppose that the exponents of f of the second-largest real part are two in

number, a complex pair r1 ± bi with mult(r1 ± bi ) ≥ 2. By the order bound on f , mult(r1 ± bi ) = 2
and f can have at most one other exponent, so that

f (t ) = 1 − cos(at + φ1) + er1t (Bt cos(bt + φ2) +C cos(bt + φ3)) + Der2t .

The claim follows from Lemma 5.7.
Case III.5. Next, suppose that the exponents of f of the second-largest real part are three in

number, a simple complex pair r1 ± bi and a (possibly repeated) real exponent r1.
If mult(r1) > 1, then by Lemma 5.1, f1 is ultimately positive or ultimately negative, depending

on the sign of the leading term of the polynomial associated with er1t . In the former case f is also
ultimately positive, while in the latter case f has infinitely many zeros since f is negative for
arbitrarily large values of t (consider large t for which 1 − cos(at + φ1) = 0).

Therefore, assume mult(r1) = mult(r1 ± bi ) = 1, so that

f (t ) = 1 − cos(at + φ1) + er1t (B cos(bt + φ2) +C ) + f2 (t ),

where f2 is an exponential polynomial of order at most 2 whose dominant exponents have real
part r2 such that r2 < r1. The claim follows from Lemma 5.8.

Case III.6. Next, suppose that the exponents of f of the second-largest real part are a simple
complex pair r1 ± bi , so that

f (t ) = 1 − cos(at + φ1) + er1tB cos(bt + φ2) + f2 (t ),

where f2 is an exponential polynomial of order at most 3 whose dominant exponents have real
part strictly smaller than r1. Then the result follows from Lemma 5.8.

Case III.7. Finally, if the exponents of f of the second-largest real part comprise a single real
exponent r1, then by Lemma 5.1, f1 is ultimately positive or ultimately negative, depending on
the sign of the leading coefficient of the polynomial associated with er1t . In the former case, f is
also ultimately positive, while in the latter, f has infinitely many zeros.

This completes the proof. �

6 DIOPHANTINE HARDNESS AT ORDER NINE

In this section we show that decidability of the Infinite Zeros Problem at order 9 would entail sig-
nificant new effectiveness results in Diophantine approximation, thereby identifying a formidable
mathematical obstacle to extending the positive results in Sections 4 and 5. Analogous “mathemat-
ical hardness” results can be proven for the Zero Problem (see [6, Chapter 6.4]).

Given a real number α , its Lagrange constant (sometimes called the homogeneous Diophantine
approximation constant) is defined by

L∞ (α ) := inf
{
c > 0 :

����α − n

m

���� < c

m2
for infinitely manym,n ∈ Z

}
.

The Lagrange constant measures how well α can be approximated by rational numbers and is
closely related to the simple continued fraction expansion of α . Specifically, it is shown in [20, pp.
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22–23] that if α is given as a simple continued fraction by the sequence of partial quotients (aj )
∞
j=1,

so that

α = a1 +
1

a2 +
1

. . .

,

then L∞ (α ) > 0 if and only if the sequence (aj )
∞
j=1 is bounded and more generally we have K (α ) ≤

L∞ (α )−1 ≤ K (α ) + 2, where K (α ) = lim supk≥1 ak .
Rational numbers have finite simple continued fraction expansions. It is furthermore well known

that the simple continued fraction expansion of every real algebraic number of degree 2 is periodic
and therefore has bounded partial quotients (and thus also a positive Lagrange constant). However,
nothing is known for real algebraic numbers of degree 3 or more. Guy [10] asks: “ Is there an alge-
braic number of degree greater than two whose simple continued fraction expansion has unbounded
partial quotients? Does every such number have unbounded partial quotients?” Equivalently, one can
ask whether there exists an algebraic number of degree greater than 2 that has a strictly positive
Lagrange constant.

Recall that a real number x is computable if there is an algorithm that, given any rational ε > 0 as
input, returns a rational q such that |q−x | < ε . The main result of this section, Theorem 6.4, shows
that the existence of a decision procedure for the Infinite Zeros Problem entails the computability
of L∞ (α ) for all real algebraic numbers α . (In fact, we would even obtain a single algorithm that
inputs real algebraic number α and rational ϵ > 0 and outputs a rational approximation of L∞ (α )
to within ε .) Now one possibility is that the Lagrange constant L∞ (α ) of every real algebraic
number α of degree greater than 2 is zero, and hence trivially computable. However, the signifi-
cance of Theorem 6.4 is that in order to prove the decidability of the Infinite Zeros Problem, one
would have to establish, one way or another, the computability of L∞ (α ) for every real algebraic
number α .

Letα be a positive real algebraic number and c a positive rational number. Consider the following
functions:

f1 (t ) := et (1 − cos t ) + t (1 − cos(αt )) − c sin(αt )︸���������������������������︷︷���������������������������︸
=:д1 (t )

(26)

f2 (t ) := et (1 − cos t ) + t (1 − cos(αt )) + c sin(αt )︸���������������������������︷︷���������������������������︸
=:д2 (t )

(27)

f (t ) := min( f1 (t ), f2 (t )). (28)

In this section we prove the following result.

Lemma 6.1. (1) If L∞ (α ) < c
2π 2 , then f has infinitely many zeros.

(2) If L∞ (α ) > c
2π 2 , then f (t ) = Ω( 1

t
) and so f has finitely many zeros.

We break down the proof of Lemma 6.1 into several propositions.

Proposition 6.2. Fix ε > 0 and define κc,ε := c2ε (1+ε )
(1−ε )π . Given k ∈ N, let 2πl be the closest integer

multiple of 2π to 2kπα and write δ := 2kπα −2πl . Then the following hold for all k sufficiently large:

(1) If |πkδ | < c (1 − ε ), then f (2πk ) < 0.

(2) If |πkδ | > c (1+ε )
(1−ε ) , then f (2πk ) > κc,ε · 1

k
.

Proof. In general, we have

f (2πk ) = 2πk (1 − cos(2πkα )) − c | sin(2πkα ) |
= 2πk (1 − cos(δ )) − c | sin(δ ) |.
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We proceed to examine the sign of 2πk (1 − cos(δ )) − c | sin(δ ) |.
To show Item 1 we use the following estimates: 1−cosx ≤ 1

2x
2 for |x | ≤ π and (1−ε ) |x | ≤ | sinx |

for |x | ≤
√

2ε . For k sufficiently large, the assumption |πkδ | < c (1 − ε ) implies that |δ | ≤
√

2ε and
hence

2πk (1 − cos(δ )) − c | sin(δ ) | ≤ 2πk 1
2δ

2 − c (1 − ε ) |δ |
= |δ |(πk |δ | − c (1 − ε ))

< 0.

To show Item 2, suppose that |πkδ | > c (1+ε )
(1−ε ) . We will use the estimates | sinx | ≤ |x | for |x | ≤ π

and (1 − ε ) 1
2x

2 ≤ 1 − cosx for |x | ≤
√

2ε . We consider two cases. If |δ | ≤
√

2ε , then

2πk (1 − cos(δ )) − c | sin(δ ) | ≥ 2πk 1
2 (1 − ε ) |δ |2 − c |δ |

= |δ |(πk (1 − ε ) |δ | − c )

> c (1+ε )
(1−ε )π k

(πk (1 − ε ) |δ | − c )

> c (1+ε )
(1−ε )π k

cε

= κc,ε · 1
k
.

On the other hand, if |δ | >
√

2ε , then 2πk (1− cos(δ )) − c | sin(δ ) | ≥ 2πk (1− ε )ε − c | sin(δ ) |, which
is clearly greater than κc,ε · 1

k
for k sufficiently large. �

For all k ∈ N define the interval Iε,k = {t ∈ R≥0 : |t − 2kπ | ≤ 1
k3 }. The following proposi-

tion shows that for t sufficiently large, f (t ) is positive outside
⋃

k Iε,k : so zeros of f have to be
“sufficiently close” to integer multiples of 2π .

Proposition 6.3. For t �
⋃

k Iε,k sufficiently large we have f (t ) > et/2.

Proof. Given t ∈ R≥0, choose k ∈ N so as to minimize |t − 2kπ |. Suppose that t � Iε,k . Then
1

k3 < |t − 2kπ | ≤ π . Using the estimate 1 − cosx ≥ 1
4x

2, valid for all x ∈ [−π ,π ], we have

f (t ) ≥ et (1 − cos t ) − c
= et (1 − cos(t − 2kπ )) − c
≥ et

(
1 − cos

(
1

k3

))
− c

≥ et 1
4k6 − c

≥ et 1
4t 6 − c .

But this lower bound is greater than et/2 for t sufficiently large. �

Proof of Lemma 6.1. We first prove Item 1. Suppose that L∞ (α ) < c
2π 2 . Then there exists ε > 0

such that L∞ (α ) < c (1−ε )
2π 2 . This means that there exist infinitely many positive integers k, l such

that |α − l
k
| < c (1−ε )

2π 2k2 and hence |2πkα − 2πl | < c (1−ε )
π k

. Now, applying Item 1 of Proposition 6.2, we
deduce that f (2πk ) is negative for infinitely many k ∈ N. In view of Proposition 6.3, we conclude
that f has infinitely many zeros.

Toward proving Item 2, suppose that L∞ (α ) > c
2π 2 . Then there exists ε > 0 such that L∞ (α ) >

c (1+ε )
(1−ε )2π 2 . This means that for all k sufficiently large, |α − l

k
| > c (1+ε )

(1−ε )2π 2k2 and hence |2πkα − 2πl | >
c (1+ε )

(1−ε )π k
. Thus, Item 2 of Proposition 6.2 applies.

We want to show that f (t ) = Ω(1/t ). In view of Proposition 6.3, it will suffice to show that
f is bounded below by a positive-constant multiple of 1

t
for all t ∈ Ik with k sufficiently large.

Journal of the ACM, Vol. 70, No. 4, Article 26. Publication date: August 2023.



26:26 V. Chonev et al.

To show this we consider the functions д1,д2 (see Equations (26) and (27)). Indeed, by Item 2 of
Proposition 6.2 we have that д1 (2kπ ) > κc,ε · 1

k
for k sufficiently large. But a direct calculation of

the derivative of д1 shows that for k sufficiently large we have |д′1 (t ) | ≤ tα + 1 + c ≤ 7αk for all
t ∈ Ik . Thus, for all t ∈ Ik we have

д1 (t ) ≥ κc,ε · 1
k
− 7αk · 1

k3 = Ω(1/k ) = Ω(1/t ).

Exactly the same reasoning applies to д2 (t ), and since f ≥ min(д1,д2),we obtain the desired lower
bound for f . �

The main result of the section immediately follows from Lemma 6.1.

Theorem 6.4. Fix a positive real algebraic number α . If the Infinite Zeros Problem is decidable,
then L∞ (α ) can be computed to within arbitrary precision.

Remark 6.5. Let д(t ) = et f (t ), where f is the function defined in Equation (28). Then by
Lemma 6.1, if L∞ (α ) > c

2π 2 , then д has infinitely many zeros, whereas if L∞ (α ) < c
2π 2 , then д

diverges to infinity as t → ∞. Thus, the ability to decide whether an exponential polynomial of
order 9 diverges to infinity in absolute value would also allow to compute the Lagrange constants
of real algebraic numbers to arbitrary precision.
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