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Abstract

Inquiries into properties of brain structure and function have progressed due to
developments in magnetic resonance imaging (MRI). To sustain progress in investi-
gating and quantifying neuroanatomical details in vivo, the reliability and validity of
brain measurements are paramount. Quality control (QC) is a set of procedures for
mitigating errors and ensuring the validity and reliability of brain measurements.
Despite its importance, there is little guidance on best QC practices and reporting
procedures. The study of hippocampal subfields in vivo is a critical case for QC
because of their small size, inter-dependent boundary definitions, and common arti-
facts in the MRI data used for subfield measurements. We addressed this gap by sur-
veying the broader scientific community studying hippocampal subfields on their
views and approaches to QC. We received responses from 37 investigators spanning
10 countries, covering different career stages, and studying both healthy and patho-
logical development and aging. In this sample, 81% of researchers considered QC to
be very important or important, and 19% viewed it as fairly important. Despite this,
only 46% of researchers reported on their QC processes in prior publications. In
many instances, lack of reporting appeared due to ambiguous guidance on relevant
details and guidance for reporting, rather than absence of QC. Here, we provide

recommendations for correcting errors to maximize reliability and minimize bias.
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1 | INTRODUCTION

Continuing developments in magnetic resonance imaging (MRI) have
allowed progressively deepening inquiries into properties of brain
structure and function. This progress has in part enabled the develop-
ment of well-defined and anatomically grounded segmentation proto-
cols for various neuroanatomical regions that can be visualized on MR
images. To sustain progress in investigating and quantifying neuroana-
tomical details in vivo, the reliability and validity of brain measure-
ments are paramount.

Hippocampal subfields are small regions, sometimes less than a
millimeter in thickness, that are defined by contiguous boundaries and
are distinct in their cytoarchitecture, neurochemistry, and function
(Duvernoy, 2005; Insausti & Amaral, 2012). In the context of hippo-
campal subfields, valid in vivo structural measurements start with the
acquisition of appropriate MR images (i.e., high-resolution T,-
weighted images, see http://www.hippocampalsubfields.com/people/
acquisition-working-group and Yushkevich et al., 2015 for details),
which are segmented and labeled based on anatomical atlases devel-
oped to reflect underlying cytoarchitecture. The Hippocampal Sub-
fields Group (HSG; hippocampalsubfields.com) was established in
2013 with the aim of developing a harmonized protocol for the seg-
mentation of hippocampal subfields for high-resolution T,-weighted
MRI data (Olsen et al, 2019). In our prior publications we have
reviewed common imaging methods and recommended best practices
for MRI protocol design for measuring hippocampal subfields in vivo
(Wisse et al., 2020). In that prior study, we emphasized that reliable
application of boundary definitions is needed to maintain confidence
in hippocampal measurement results. Although the problems arising
from variations in scan quality and segmentation accuracy are not
unique to hippocampal subfields, because of the small size of the tar-
gets and different application of labels along the anterior-posterior
axis, the consequence of measurement error is disproportionately
high to this set of regions. Therefore, consistent applications of quality
control (QC) of collected scans and segmentation accuracy
(i.e., detecting deviations in labeling of regions from the defined pro-
tocol), are important for ensuring reliable and valid measurement of
hippocampal subfields.

There are multiple consequences of poor QC or lack thereof for
statistical analysis of MRI data and the validity of inferences drawn
from a study, including systematic bias of hippocampal segmentation
errors that overestimate volumes and obscure age-related differences

(Wenger et al., 2014), erroneous age-related conclusions (Ducharme
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We also summarize threats to segmentation accuracy, review common QC methods,
and make recommendations for best practices and reporting in publications. Imple-
menting the recommended QC practices will collectively improve inferences to the

larger population, as well as have implications for clinical practice and public health.

best practices, hippocampal subfields, MRI, quality control, segmentation

et al., 2016; Monereo-Sanchez et al., 2021), incorrect determination
of clinical status (Bedford et al., 2023), and data loss in groups prone
to lower quality MR images that contributes to under-representation
in the literature (Gilmore et al., 2021). Collectively these data quality
issues limit validity of the inferences pertaining to the population of
interest. We discuss these issues from a research methods and statis-
tical methods perspective, with the proposed QC steps as an impor-
tant way of mitigating their consequences.

Although most brain MRI studies report using some form of QC,
and despite occasional calls for its standardization (e.g., Backhausen
et al., 2021), there are limited QC guidelines recommended in the lit-
erature, especially in relation to specific and widely studied anatomic
structures such as the hippocampus. When testing hypotheses involv-
ing MRI-derived measurements, QC provides a means to mitigate
measurement error that can lead to Type | and Type Il errors, and sub-
sequently improves the reproducibility of results (Elyounssi
et al., 2023). Therefore, reporting QC details of the segmentations are
necessary to support interpretation of hippocampal subfield measures
correlated with function and cognition across the human lifespan, and

potential application as biomarkers of disease processes.

2 | SURVEYONAQC

Currently neither concrete recommendations for QC best practices
for hippocampal subfield measurement nor minimum reporting stan-
dards exist in the literature. As investigators concerned with assessing
the role of hippocampal subfields in development, aging, cognition,
and neuropathology, our goal is to provide a guide to QC that will be
effective in this specific application to subfield segmentation.

We began to address this goal with an extensive survey to assess
the views and approaches to QC of hippocampal subfield segmenta-
tion in the HSG community, distributed using the HSG's listserv, social
media, and website. Survey responses were collected from 11 July
2022 to 14 October 2022. The survey was completed by 37 respon-
dents each representing a different laboratory spanning 10 different
countries and four continents. Respondents' research represented the
study of hippocampal subfields across the lifespan (from O years to
75+ years) and in healthy and diseased populations (see Data S1 for
detailed breakdown of respondent demographics).

Of the 37 respondents, 81% considered QC to be “very important
or important” and 19% considered QC to be “fairly important.” While
all respondents considered QC to be important to some degree, only
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FIGURE 1 lllustration of
the QC process and
investigator-guided decision
making for data quality. Green
checkmarks indicate passed QC,
while red cross marks indicate
failed QC.
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46% reported on their QC practices in prior publications. This
response highlights the mismatch between the importance of QC and
the inconsistent standards of reporting QC in published studies. In
many instances, this may not be due to absence of QC but merely
ambiguous guidance on relevant details to report (see Data S1 for

detailed survey results).

3 | QCGUIDELINES
Here we provide guidance covering the various decision points investiga-
tors may encounter during the QC process. We take an a la carte
approach and anticipate an investigator may choose to implement some
or all of the practices we review, and that this will vary across studies.
Our intention is to provide an overview of each stage of QC to allow for
the investigator to make informed decisions for their study and follow
best practice recommendations on reporting the procedures they imple-
ment. The purpose of this guide is to improve the quality of data and
transparency in reporting within the hippocampal subfields literature.
Although the many protocols to delineate hippocampal subfields
vary meaningfully in both their label composition and defined bound-
aries (Yushkevich et al., 2015), a common set of QC procedures will
be applicable to any manual or automated segmentation protocol. In
the following sections, we propose best practices for QC of acquired
MR images and labeling to measure hippocampal subfields. Our appli-
cation focuses on T,-weighted images, the sequence used for hippo-

campal subfield segmentation by most survey respondents (76%). We
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also provide concrete suggestions and illustrations of how to identify,
correct, and report segmentation errors. Below, we briefly address
several topics related to the QC process, such as excluding data of
questionable quality, measuring the reliability of QC interventions,
reducing bias in subfield measurement, and special considerations for
implementing QC procedures in longitudinal studies (see schematic

summary of QC procedures in Figure 1).

4 | QCOFMRIMAGES

Quality of MR images directly affects the reliability and validity of seg-
mentations, and by extension, the reproducibility of results. Two
related aspects of MR image QC are the identification of artifacts
affecting overall image quality and image features that impede the
ability to visualize neuroanatomical landmarks. Prior to segmenting
hippocampal subfields (either manually or automatically), a critical first
step in the QC process is assessing the quality of acquired images for
imaging artifacts, poor contrast, and insufficient landmark visualiza-
tion. Reviewing MR images at the time of acquisition (i.e., “Image
Acquisition at Scanner”, Figure 1) is the first step of QC. It provides
the only opportunity to reacquire images deemed to be of low or
insufficient quality and mitigate data loss. When feasible, allocating
additional time for repeated scans can reduce the amount of data lost
(Andersen et al., 2019; Mortamet et al., 2009), especially when work-
ing with special populations (e.g., young children; Davis et al., 2022;
Greene et al., 2016).
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Pass Check Fail

No visible artifacts or minor artifacts
detected throughout the image set

Artifacts: N/A

Moderate artifacts detected on many
slices or heavy artifacts detected on a
contained number of slices (1-2 slices)

Artifacts: Motion

Heavy artifacts detected throughout
the image set

Artifacts: Banding, ringing, and motion

FIGURE 2

Examples of the quality of T,-weighted images according to rating categories of “Pass” (left panel), “Check” (middle panel), and

“Fail” (right panel). In this example, image quality rated as “Pass” and “Check” are considered passable. However, those in the “Check” category
may be at higher risk of subsequent segmentation errors. The types of imaging artifacts present in the example images are noted.

Across the investigators surveyed by the HSG, over 89% of
respondents reported conducting QC of MR images, and 94%
of those exclude images due to quality issues. Segmentation of hippo-
campal subfields relies on the visualization of specific landmarks, typi-
cally on T,-weighted high-resolution images (Wisse et al., 2020,
Data S1), in order to determine outer boundaries of the hippocampus
and the inner boundaries between subfields (see Section 4.2). Thus,
our discussion and illustration of QC for MR images in the following
sections are applied in the context of hippocampal subfield measure-
ment from oblique coronal T,-weighted scans with high in-plane reso-
lution and orientation roughly orthogonal to the hippocampus as
recommended by the HSG (for a discussion of T,-weighted image QC
not specific to hippocampal subfields see Alfaro-Almagro et al., 2018;
Rosen et al., 2018).

41 | MR image artifact identification

41.1 | Description of the problem

MR images are prone to artifacts during acquisition due to a variety of
factors, including participant movement, metal implants, magnetic
field inhomogeneities related to head geometry and tissue compart-
ments, and mechanical faults in the gradient coils. These result in sub-
optimal image quality and the ensuing “artifacts.” These artifacts
affect the quality of the data, which in turn reduces the quality of the
segmentation. Although images do not need to be perfect to have
valid measurements of brain structures, there is a minimum standard
of data quality that often leads investigators to exclude scans as a first
step in QC.
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Among surveyed investigators, motion artifacts (e.g., ghosting)
and susceptibility artifacts (e.g., image distortion due to metallic dental
work) (Figures 2 and S1) were the most common examples of imaging
artifacts flagged in QC of T,-weighted images. Motion artifacts can
degrade the clarity of the image due to blurring of boundaries
between tissue compartments and loss of image contrast (Reuter
et al.,, 2015). Of note, the majority of respondents identified problems
related to motion as the most common cause of exclusion (70%).

Ghosting artifacts, like rings or streaks from motion, and recon-
struction errors, manifesting as alternating bright and dark lines near
high contrast boundaries, are common in MR images (Bellon
et al., 1986). Moreover, susceptibility artifacts, caused by local mag-
netic field inhomogeneities, distort tissue appearance. For instance,
metallic implants like dental work can lead to pronounced inhomoge-
neities in the static magnetic field (By), affecting image reconstruction
(Bellon et al., 1986). Motion and susceptibility artifacts are exacer-
bated at higher field strengths (Dietrich et al., 2008) and lead to insuf-
ficient image contrast that could severely distort hippocampal subfield

segmentation.

4.1.2 | Review of current approaches and
recommendations

As an overall summary of image quality, a practice noted by a number
of investigators surveyed is to quantify the image signal-to-noise ratio
(SNR) and contrast-to-noise ratio (CNR). MR image SNR is the propor-
tional mean signal of a region of interest to background noise (typi-
cally the standard deviation of the signal sampled from air space),

whereas CNR refers to comparison of the mean signal in a region of
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interest to a reference region (e.g., gray matter to white matter) in
proportion to background noise. Thus, SNR provides a global estimate
of image quality, whereas CNR provides a local estimate of contrast
between tissue types. Additional inspection of the MR image for arti-
facts can be performed manually or with automated tools (detailed
below).

Manual image quality screening procedures

Qualitative review is a common approach in assessing the quality of
MR images. This type of approach entails the visual inspection of all
images in a data set, which is usually done by one or more trained
raters. Manual QC procedures are based on investigator judgment
and experience. As some degree of imaging artifact is often tolerated
during segmentation, the rater decides whether artifacts are severe
enough to undermine confidence in subsequent segmentation, includ-
ing anticipating a critical segmentation failure with automated soft-
ware. Based on the results of the inspection, low-quality images are
often excluded from the data set.

Raters' review of image quality is sometimes reported in methods
sections of papers, but the specific procedure is rarely explicated. In
some applications, the QC decision appears to be a binary choice
(i.e., include or exclude), whereas in other instances, an ordinal rating
scale may be used to describe the quality of the image or severity of
artifacts (e.g, O =no artifact/pass, 1= minimal artifact/check,
2 = severe artifact/fail). We recommend using a rating system (either
a binary or multi-point ordinal scale) to determine if an image is of suf-
ficient quality for segmentation (Figure 2). This approach aids investi-
gators in specifying the operational criterion used to determine the
image quality as sufficient and improves the transparency and repro-
ducibility of the methods. For examples of scales and criteria related
to imaging artifacts see Backhausen et al. (2021), Ding et al. (2019),
and Rosen et al. (2018). Because of subjectivity in this procedure,
describing the criteria for the decision and the reliability of the proce-
dure (e.g., kappa statistics between- or within-rater; minimum 0.75
indicates a strong level of agreement; Fleiss et al., 2003) is important
for ensuring the quality of the generated data and reproducibility of
the findings.

Automated image QC methods

As manual image quality evaluation can be labor intensive and time
consuming, especially when working with large data sets, automated
approaches present an efficient alternative. There are several auto-
mated tools available to assess the quality of MR images (e.g., MRIQC,
Esteban et al., 2017; LONI QC, Kim et al., 2019) and a semi-
automated approach using machine learning (Ding et al., 2019). These
tools provide internal consistency and easy-to-read outputs with
user-rating options (e.g., html pages for MRIQC). Some of the tools
also provide volumes of the structures in question and flag statistical
outliers, which is particularly useful in dealing with very large data sets
(see Measurement Data Screening section for additional information on
statistical outliers). We recommend reporting the parameters for
exclusion and the level of artifacts or image quality tolerated by the
automated method (e.g., Ding et al., 2019). An optional addition for
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those who use a quantitative SNR or CNR measurement is to exclude
scans with low ratios in the areas of interest (i.e., hippocampus) com-
pared to the reference region, with SNR <40 and CNR <10 (Magnotta
et al., 2006). A caveat to this recommendation is that the procedures
were developed for the data collected in healthy participants and have
not been validated in the images with significant structural pathology
(e.g., hippocampal sclerosis in temporal lobe epilepsy).

Automated approaches have high internal consistency. However,
it is important to note that their application to detecting poor image
quality may have some disadvantages. These tools can be used with
little user knowledge of relevant parameterization programmed into
the method, and users may be unable to change certain steps or
parameters during the automated assessment. Moreover, automated
methods may not be as accurate as experienced human raters in
detecting subtle distortions in images. In choosing between manual
and automated procedures, the investigators can weigh their knowl-
edge of the methods against the expertise of the team and

available time.

One final note

During QC decisions, investigators should consider the context of the
population under study. For example, individuals with more severe
diseases are likely to have more artifacts on MRI. In these instances,
extremely conservative QC practices may lead to disproportionately
excluding persons with high disease severity, which leads to another
form of bias due to underrepresentation of the population under
study. Therefore, an investigator may use their knowledge of the pop-
ulation in evaluating the risk-benefit tradeoff of their data QC

practices.

4.2 | QCOFLANDMARK VISIBILITY

421 | Description of the problem

Brain region segmentation in manual and automated protocols is
based on anatomical landmarks that are visible on MRI and correlate
with histologically identifiable macro- and micro-structural tissue fea-
tures. As the correspondence of MRI labels to histology constitutes
the basis of construct validity of in vivo measurements, any artifact or
distortion that interferes with visualization of key landmarks in the
segmentation protocol weakens the validity (Wisse et al., 2020).

Of particular importance for hippocampal subfield segmentation
is the visualization of the stratum radiatum lacunosum moleculare
(SRLM), a thin, layered sub-1-mm? structure (de Flores et al., 2020). It
spans the anterior-posterior length of the hippocampus and forms a
layer of the cornu ammonis (CA) regions and subiculum. It also serves
as a critical landmark for determining the internal boundary between
dentate gyrus (DG) and CA subfields, or subiculum (Duvernoy, 2005;
Insausti & Amaral, 2012), and identification of digitations in the hippo-
campal head that determine presentation of the subfields (Adler
et al,, 2018). In T,-weighted images of sufficient quality as we pre-

sume here, the SRLM should be clearly visible across most
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Examples of scan quality ratings based on the landmark visualization of the SRLM, a critical landmark for segmentation in the head

(top panel) and body (bottom panel) of the hippocampus. Additional landmarks, the alveus and uncus, are also depicted. Note: Definitions of
quality may differ between investigators but there should be consistency in the application of operational definitions.

hippocampal slices as a dark band perpendicular to the anterior-
posterior axis of the hippocampus (Figure 3). Notably, among those
survey respondents who conducted QC, the SRLM was the most fre-
quently identified landmark reviewed in QC (42% of investigators).
However, decisions regarding exclusion based on SRLM visibility var-
ied across investigators. For example, multiple respondents noted that
scans were excluded only if there were issues with SRLM visualiza-
tions on multiple consecutive slices, while others did not specify cri-
teria but included SRLM visibility as a factor in a subjective judgment
combining multiple artifacts and problems. See Figure 3 for examples
of different SRLM visualization quality on T,-weighted images.

In addition to the SRLM, other prominent landmarks
(e.g., alveus, fimbria, endfolial pathway, ambient cistern, or uncus)
should be visible depending on specific segmentation atlases used
in order to determine the border of contiguous hippocampal sub-
fields and the anterior-posterior transitions from hippocampal
head, body, and tail. For example, the uncal apex is often used for
identifying the transition from hippocampal head to the body
(Malykhin et al., 2007), which marks a change in the morphometry
of the subfields for labeling. The lamina quadrigemina (LQ) and
visualization of the fornix are additional landmarks used to deter-
mine the posterior boundary of the hippocampal body and transi-
tion to tail. Bender et al. (2018) noted that different ranges can be
established by hemisphere so long as at least one of the four colli-
culi of the LQ is visible. The fornix is also used in some protocols to

define the most posterior slice of the hippocampal body, namely
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the slice before the fornix is fully visible or clearly separates from
the wall of the ventricle (Malykhin et al., 2007, 2010).

Apart from landmarks used to identify anterior and posterior por-
tions of the hippocampus, structures such as the alveus and fimbria
facilitate the identification of outer boundaries to exclude external
white matter and partial voluming with cerebrospinal fluid and choroid
plexus in the gray matter labels. The alveus is a thin white matter
structure enveloping the dorsal aspect of the hippocampus. It appears
as a dark band on T,-weighted images on the dorsal edge of the hip-
pocampus and is contiguous with the fimbria in the posterior hippo-
campus. This structure helps identify the boundary of the
hippocampus and the shape of digitations in hippocampal head and
can aid in identifying the first slice of the hippocampus as it distin-
guishes from the amygdala. Visualized external white matter struc-
tures often serve as a landmark to identify the superior boundary of
the CA regions throughout the length of the hippocampus. In the pos-
terior hippocampus near the tail region, the fimbria is continuous with
the columns of fornix that form a sulcus at the junction with the
DG. In addition, it serves as a posterior landmark to the hippocampus
(for depiction of selected landmarks see Figure 3). While the specific
landmarks referenced may differ between protocols, clear visualiza-
tion of these landmarks is essential to reliably identify the outer
boundaries of the hippocampus and its inner subfield boundaries.

Because of similar decision-making regarding MR image quality, the
procedures for evaluating landmark visibility follow the same steps and

they are often performed together. Although issues of image quality and
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landmark visibility apply to any region of interest, segmentation of hippo-
campal subfields is somewhat unique in its contiguous regions that share
internal boundaries. If one boundary is incorrectly determined due to
poor visualization of a landmark, the error can propagate across all sub-
field measurements, diminishing the validity of each subsequent label. An
additional nuance of hippocampal subfield segmentation is that the label
definitions for a subfield often shift on the anterior-posterior axis, and in
many cases the same region will have separate labels anterior-
to-posterior and by hemisphere. Therefore, depending on the protocol
used, QC decisions may differ by slice, subfield, subregion, or hemisphere.

Landmark visibility is dependent on the field-of-view (FOV) of the
MR image. The anterior-posterior extent of the FOV is often limited
in common published examples of sequences used to acquire high-
resolution T,-weighted images for subsequent hippocampal segmen-
tation (Seiger et al., 2021). If the landmarks required for the chosen
anatomical segmentation protocol are not visualized in the MR image,
that protocol cannot be applied, and the data deemed insufficient for
segmentation (Yushkevich, Pluta, et al., 2015). Data loss due to this
type of acquisition error could be mitigated by reviewing images at
the time of acquisition. Further, QC decisions may vary depending on
the imaging modality. Extensive discussion of different modality con-
siderations in QC falls outside the scope of this guide. However, to
provide an example, those employing hippocampal subfield segmenta-
tions to estimate the volume of these structures rely on information
across numerous slices whereas those applying segmentations as a

mask in fMRI may use measurements from only a few slices.

422 | Review of current approaches and
recommendations

To our knowledge, there are no automated methods for evaluating
landmark visualization for hippocampal subfield segmentation inde-
pendent of general image quality and artifacts. Therefore, these evalu-
ations are performed manually and completed using software such as
ITK-SNAP (www.itksnap.org; Yushkevich et al., 2006), FreeSurfer's
FreeView application (Fischl et al., 2002), FSLeyes (McCarthy, 2023),
and Analyze (AnalyzeDirect, Overland Park, KS) to view the slice
images. Common practice requires that raters be familiar with neuro-
anatomy on MR images in reference to the protocol used to make
sound judgments about landmark visualization.

Following the recommended practices for QC of MR image artifacts
mentioned in the prior section, we recommend using rating scales to
determine the quality of landmark visualization required for hippocampal
subfield segmentation. For example, on a 3-point scale, scans could be
identified as “Pass/Clearly Visible”, “Check/Somewhat Visible”, or “Fail/
Not Visible” based upon the visibility of the selected landmark
(e.g., SRLM; Figures 3 and S2). This or other similar rating systems could
be used to make determinations of exclusion across the multiple criteria
we have discussed. As noted above, QC decisions may vary across differ-
ent levels of measurement by slice, by region, or by subfield and
hemisphere.

As with artifacts, the rating procedure for landmarks is some-
what subjective, and consistency in the decision within a research
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team applied to a data set should be prioritized. To allow for the
transparency necessary for replication across research groups and
references in the extant literature, we recommend that investiga-
tors describe the rating procedure, including the specific landmarks
examined for the chosen segmentation atlas and criterion used to
determine the rating system (e.g., Table S4). Further, investigators
should report reliability of the raters in the decision (e.g., a kappa
statistic) to demonstrate consistency in the subjective decisions
made using the defined criteria. This will allow some continuity of
methods in the literature, even if different investigators refer to
different criteria based on the study sample (e.g., healthy
vs. patients), segmentation protocol, or imaging modality. When
trained raters cannot clearly identify the landmarks, the scan is
judged to be of insufficient quality and is typically excluded from
measurement.

Finally, like the QC of MR image quality, QC of landmark visibility
should consider the context of the population under study. For exam-
ple, in the context of disease, the SRLM might be more difficult to

visualize with increasing severity.

5 | QCOFHIPPOCAMPAL SUBFIELD
SEGMENTATIONS

The procedure for determining the accuracy of hippocampal subfield
segmentation labels depends on whether the segmentation was gen-
erated using manual or automated methods. Among the survey
respondents, 88% report having employed automated segmentation
methods and 49% used manual segmentation methods for delineating
hippocampal subfields. Many investigators applied either of these
methods depending on the data set.

When using manual segmentation, rater reliability should be
established before segmentation commences. Besides being an indica-
tor for accurate segmentation, a high rater reliability of a manual seg-
mentation protocol also implies accurate identification of severe
segmentation errors that deviate from the protocol during QC. Of the
respondents who used a manual approach for segmenting hippocam-
pal subfields, 77% reported assessing inter- or intra-rater reliability of
the protocol. Whereas QC of the labels may be done concurrently
with manual segmentation, labels from automated segmentation must
be vetted afterward. Additionally for automated segmentation, reli-
ability between the manual and automated segmentation should be
confirmed (e.g., Yushkevich et al., 2010). Even though automated seg-
mentation has high reliability (Bender et al., 2018), it can produce

errors with high consistency.

5.1 | QC segmentation error identification

5.1.1 | Description of the problem

Among investigators surveyed, 95% reported reviewing the quality of
subfield segmentations, with 63% providing specific examples
of errors identified. The survey responses notably highlighted that,
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despite differences in existing protocols, there are some common
types of segmentation errors: 36% reported issues related to overesti-
mation (e.g., inclusion of choroid plexus or cerebrospinal fluid, overes-
timation errors due to partial volume effects or voxels erroneously
extending into the fimbria) or groups of pixels labeled unattached to
the hippocampus; 13% reported mislabeling of hippocampal subfields
(e.g., labels overextending internal boundaries, or sulcal cavities
labeled as tissue); and 9% reported underestimation of regions
(e.g., labels not fully extending to the boundary, or groups of pixels
dropped from within the label). Errors in segmentation labels may
result from multiple sources: some related to image quality and land-
mark visualization that we have already discussed, and others reflect-
ing specific properties of the automated software (for example, see
Wang & Yushkevich, 2013). It is important to note that in applying
automated software, the segmentation atlases validated in one data
set can produce segmentation errors when applied to new data sets.
Bias in the frequency or type of errors may also differ depending on
the population under study—for example, certain errors may be more
common in particular populations (patients, childhood development)
as compared to healthy adults (see Box 1). Identifying such errors
using QC allows for the efficiency of an automated approach while
ensuring measurement validity.

Relatedly, hippocampal subfield segmentations can be used to
derive multiple measures from structural images (e.g., volumetry,
thickness, and morphometry), or, when applied as masks in other
imaging modalities, other parameters of interest. The quality of deriv-
ative measurement begins with the quality of segmentation
(Monereo-Sanchez et al., 2021). The guidance provided here facili-
tates a critical first step to prioritize validity and reliability of deriva-

tive MRI measures, and subsequent hypothesis testing.

BOX 1 Considerations of bias and error

Because human raters are prone to error, especially in the
absence of clear rules, high reliability of a manual correction
procedure is important, but even then some error may
remain. The amount of human error introduced can be
indexed by the ICC departure from 1.0 (because automated
segmentation without human intervention shows high con-
sistency) and should be both small and randomly distributed
in order to mitigate bias. Unbiased error is supported if the
frequency of corrected segmentations is not correlated with
demographic features. If segmentation errors correlate with
sample characteristics it leads to systematic bias in the mea-
surement, even if the error is small. For example, in aged
brains the loss of gray-white matter contrast is common,
which could cause more segmentation errors for older
brains as compared to younger ones for a given automated
atlas.

RIGHTS L

5.1.2 | Review of current approaches and
recommendations

Despite the similarity among segmentation error types, there was little
consensus among the survey responders on the steps taken to iden-
tify these errors. Further, these steps can differ within and between
investigators using manual as compared to automatic segmentation
procedures. In both automated and manual segmentation, QC for seg-
mentation errors depends on knowledge of the standard anatomy and
the segmentation atlas or protocol used to define hippocampal sub-
fields. Our key recommended practice is to clearly describe in the
methods section of a paper how segmentation labels were reviewed
for errors.

For manual procedures, labels are commonly reviewed during
segmentation as well as post-segmentation, and so expert knowledge
of the trained, reliable rater is the main requirement for identifying
errors. We recommend investigators report if segmentations were
independently reviewed, and rater reliability for the manual segmenta-
tion protocol, with intra-class correlation (e.g., ICC[2,1], Shrout &
Fleiss, 1979; or effect decomposition methods, see Brandmaier
et al., 2018) if measuring volumes, or report dice coefficients if using
the segmentations as masks on other imaging modalities.

For automated segmentation procedures, the most common
approach to identifying errors is visual inspection of the output using
specialized software to open segmentation files (e.g., ITK-SNAP,
www.itksnap.org; Yushkevich et al., 2006). For those respondents to
the survey who indicated visually inspecting automated segmenta-
tions, 56% sought large or obvious errors. If an investigator is consid-
ering manual correction of automated segmentation errors (e.g., semi-
automated methods), we recommend using segmentation quality rat-
ings to correct only the most severe errors, reducing investigator bur-
den as well as possible introduction of human error in the process.
Scales should have operational criteria to define error severity levels
and establish reliability of the rater(s) (e.g., kappa statistics for within-
or between-rater reliability). Criteria across protocols do not need to
be identical. Instead, the best practice is to provide operational defini-
tions that allow investigators to consistently identify errors that
threaten validity. For example, investigators may define error severity
based on the percentage of the label affected (see Figure 4 for an
example of an error rating scale). Another approach has been to deter-
mine the extent of subfield labels affected on multiple slices along the
longitudinal axis of the hippocampus as an index of severity, and sub-
sequent decision for correction or exclusion (see e.g., Figure 5). There
is also value added by concretely defining specific errors that com-
monly occur (Figure 4) to aid rater training and promote consistency
within and between raters.

The main purpose of identifying errors on a severity scale is not
to have perfect segmentations but rather to identify cases with egre-
gious threats to validity. Multiple investigators reported using a
4-point scale to quantify the severity of segmentation errors as not
present (0), minor (1), moderate (2), or major (3), while others reported
using pass/fail ratings. In addition, 31% of respondents

reported examining inter- or intra-rater reliability of error
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FIGURE 4

Moderate Error
(10-25%)
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Example QC approach using a 4-point error severity scale from a published and validated protocol (Canada et al., 2023). In this

example protocol, errors could be 0: not present (not pictured here), 1: minor (<10% of label affected), 2: moderate (10-25% of label affected), or
3: major (>25% label affected) and were categorized by type using a taxonomy of commonly occurring errors. Only major errors are corrected in
this protocol to mitigate human bias. Overestimated label (OL), underestimated boundary (UB), and dropped pixel (DP) errors are depicted.

identification ratings. To determine severity of errors, some investiga-
tors employ a group review where either the segmentation or screen-
shots are examined by multiple people simultaneously and decisions
on the presence or absence of an error are determined by group con-
sensus. Reporting on the approach(es) that investigators take to iden-
tify segmentation errors, 10% of respondents stated that
segmentation error identification was always completed by multiple
raters, 60% mentioned that errors were sometimes reviewed by more
than one rater, and 30% said that a single rater reviewed errors. Vari-
ability in the number of raters that review segmentation errors across
labs may be due to differences in the availability of personnel; the
notable statistic in this survey is that all respondents indicated some
type of review of segmentations. In cases involving very large data
sets (e.g., Alzheimer's Disease Neuroimaging Initiative (ADNI)
data sets), it may not be feasible to QC all of the collected scans for
segmentation errors, and a random, representative subset can be
reviewed to evaluate a general data quality.

Similar to the judgments of MR image quality, the manual evalua-
tion of segmentation errors is also subjective; thus, it requires stan-
dardized approaches to promote consistent decisions. There are
several resources available to provide some options for standardized
protocols: (1) MAGeT-related QC (https://github.com/CoBrALab/
documentation/wiki/MAGeT-Brain-Quality-Control-(QC)-Guide),

(2) HippUnfold's automated QC (DSC overlap with a deformable regis-
tration), and (3) MRIQC (Esteban et al., 2017). Additionally, the exam-
ples of manual evaluations from Canada et al. (2023) and Wisse
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(https://www.youtube.com/watch?v=XHXu-AGRé6pE) demonstrate
that investigators can use different criteria but similarly implement
the recommended best practice to identify severe segmentation
errors. Using existing QC protocols as a resource provides operational
definitions and criterion that can be applied or modified for an investi-
gator's particular data set.

The inability to confidently appraise or correct segmentations due
to image quality can be a related, but distinct, problem that also can
lead to exclusion of images. However, if an image has passed the QC
for artifacts and landmark visualization, this issue is less likely to occur

(see Section 4).

5.2 | Resegmentation, manual correction, or
exclusion of cases with errors from automated
segmentation

5.21 | Description of the problem

Segmentation errors often affect multiple subfields because they
share boundaries. Following QC of images and segmentations, deci-
sions for resegmentation, correction, or exclusion may differ by subre-
gion or hemisphere. As hippocampal subfields are part of a whole, the
choice to exclude any single subfield label on a particular slice or for a

particular participant would preclude interpretation of generalized
hippocampal effects.
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FIGURE 5

Example QC approach from https://www.youtube.com/watch?v=XHXu-AGRépE for the PMC segmentation atlas (Yushkevich,

Pluta, et al., 2015) applied to data collected using the parameters reported in Daugherty et al. (2016). In this approach, QC mosaic screenshots
generated by the Automatic Segmentation of Hippocampal Subfields (ASHS; Yushkevich, Pluta, et al., 2015) software (a) are examined by
hemisphere using the protocol defined segmentation range (