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 107 
Membrane inlet mass spectrometry (MIMS) 108 

Membrane inlet mass spectrometry (also termed as ‘membrane introduction mass 109 
spectrometry’ or ‘membrane interface mass spectrometry’) (MIMS) was first used in 1963 (Hoch 110 
and Kok 1963) to separate volatile organic compounds from water or air by a thin membrane and 111 
has been employed in on-line and real-time analyses in industrial processes (e.g., fermentation, 112 
water chlorination) and environmental monitoring (e.g., urban air plumes, municipal tap water) 113 
(Ketola et al. 2002). Based on our knowledge, the first application of MIMS to wetland samples 114 
for determination of carbon dioxide (CO2) and methane (CH4) concentrations was conducted by 115 
Lloyd et al. (1986). Since then, MIMS has been used in the study of greenhouse gases (GHGs) in 116 
marine sediments (Bell et al. 2012), peat cores (Benstead and Lloyd 1996; Beckmann et al. 117 
2004), wetland soils (Askaer et al. 2010; Elberling et al. 2011), terrestrial ecosystems, and 118 
grassland systems (Sheppard and Lloyd 2002). 119 

This approach typically uses a semi-permeable polymer to enrich certain analytes from 120 
gaseous or liquid samples. As solutions tangentially cross the membrane, analytes are partitioned 121 
across the membrane while the bulk of the matrix is rejected. Analytes pass through the 122 
membrane at rates that depend on their solution concentration, their solubility in the membrane, 123 
and their diffusivity in the membrane. Analyte concentration is at maximum on the high-pressure 124 
side (sample side) of the membrane and falls to a minimal value on the vacuum side. These 125 
separated analytes are then directly transferred as mixtures (often using a helium carrier gas 126 
acceptor phase) to a mass spectrometer for their subsequent resolution and measurements. 127 

The MIMS device consists of a vacuum inlet fitted with a permeable silicone tube. The 128 
inlet allows gas to pass into the vacuum system, where it is routed through a cold trap (typically 129 
dry ice) and into a quadrapole mass spectrometer. Water from samples or a standard is pumped 130 
through the membrane using a peristaltic pump. Partial pressure data are acquired on the data 131 
acquisition system in multiple ion-monitoring mode and can be processed using standard 132 
spreadsheet software. 133 

Typically, a long stainless steel gas inlet capillary probe (1.56 mm outside diameter, 0.5 134 
mm inside diameter) with a 50 µm diameter orifice near the tip, is used to insert into the soil core 135 
(Sheppard and Lloyd 2002). The advantage of MIMS is that it can be used to quantify a number 136 
of gas species, continuously and simultaneously, and it can record spatial and temporal variations 137 
in subsurface gas concentrations as low as 1 µM (Lloyd and Scott 1985; Lloyd and James 1987). 138 
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Based on the mass-to-charge ratio (m/Z) of characteristic positive ions of gases, a variety of 139 
gases can be monitored (e.g., m/z = 15: CH4, m/z = 32: oxygen (O2), m/z= 44: CO2). This 140 
technique enables the direct measurement of multiple gas species throughout soil cores with 141 
minimal disturbance. The MIMS device is also a field portable instrument (Etzkorn et al. 2009). 142 
Perhaps the only disadvantage is the high operating cost for purchasing and maintaining the 143 
instrument. Although the instrument is considered portable, the gas chromatography–mass 144 
spectrometry power requirement access to remote areas is still a difficult task. 145 
 146 
Macroalgae: Nutritional values and chemical analysis 147 

Marine macroalgae (seaweeds, kelp) are an economically valued, renewable resource of 148 
food, biofuel, and biofertilizer. Food consumption of brown, red, and green macroalgae can be 149 
largely attributed to its nutrition properties, which also make it sought-after for fodder, fertilizer, 150 
cosmetics, and medicines (Robledo and Freile Pelegrín 1997; Dawes 1998; McHugh 2003; 151 
Banerjee et al. 2020). In terms of human consumption and nutrition, macroalgae are excellent 152 
sources of proteins, lipids, carbohydrates, minerals, vitamins, antioxidants, and phytochemicals, 153 
and thus provide numerous health benefits (Table S1; Parekh and Chauhan 1982; Kumari et al. 154 
2010; Holdt and Kraan 2011; van Ginneken et al. 2011; Banerjee et al. 2020; Ganesan et al. 155 
2020; Lozano Muñoz and Díaz 2022). Globally, it is estimated that around 8 million tons of 156 
macroalgae are harvested annually to support its many uses (McHugh 2003). The exploitation of 157 
marine algae for nutritional purposes is primarily based on its biochemical constituents (Parekh 158 
and Chauhan 1982). Macroalgae show great variation in nutrient content based on species, level 159 
of maturity, geographical distribution, and environmental conditions like seawater temperature, 160 
salinity, light, and nutrients (Dawes 1998). 161 
 162 
Protein, carbohydrate, lipid, and astaxanthin chemical analyses 163 

Protein analysis following the method originally from Lowry et al. (1951). About 0.1 g of 164 
powered macroalgae is extracted with trisodium phosphate (Na3PO4) (buffer pH = 0.7) and 165 
centrifuged. An aliquot of sample extract is added to a reagent of sodium carbonate (Na2CO3) 166 
and another reagent of copper(II) sulfate (CuSO4). Then, Folin-Ciocalteu phenol reagent (2:1) is 167 
added and left undisturbed for 30 minutes for color development. The intensity of the color is 168 
measured at 660 nm. For quantifying the protein content of the sample, a standard curve is 169 
prepared with a known concentration of bovine serum albumin as standard. The value is 170 
expressed in percentage. For additional information regarding protein measurement using the 171 
Folin phenol reagent (Lowry et al. 1951) see reviews by Peterson (1979) and Singleton et al. 172 
(1999), an application by Ledoux and Lamy (1986), and an assessment of the Folin-Ciocalteu 173 
reagent by Everette et al. (2010). 174 

Carbohydrate content can be estimated by using the procedure of Sadasivam and 175 
Manickam (2007). Dried macroalgae powder (0.1 g) is extracted with 80% methanol and 176 
centrifuged. This extraction is repeated twice, and the pooled supernatant is evaporated until the 177 
methanol is removed. The sample extract is then combined with anthrone reagent and the 178 
absorbance is measured at 630 nm using a spectrophotometer. The value is expressed as mg g−1 179 
(dry weight) or percentage using glucose as standard. 180 

The lipid contents of dried macroalgal samples can be determined by continuous 181 
extraction in a lipid extractor (Soxhlet Apparatus, Folch et al. 1957) for 3 hours using petroleum 182 
ether as a solvent. Astaxanthin content can be estimated using the procedure of (Banerjee et al. 183 
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2009). Dried powdered seaweed is extracted with dimethyl sulfoxide and centrifuged until the 184 
extract is colorless. Absorbance is measured at 471 to 477 nm. 185 

Macroalgal biomass often varies seasonally and can be affected by several abiotic and 186 
biotic factors such as salinity, temperature, pH, and nutrient concentrations (Banerjee et al. 187 
2009). Thus, it is important to collect key covariates and ancillary variables when sampling 188 
macroalgae (Fig. S1). 189 

 190 

 191 
Fig. S1 Macroalgal (seaweed) growth on rocky surfaces along the coast of India. Student Prajna 192 
Paramita Mohapatra (Banerjee lab) collecting macroalgae (seaweeds) by hand scraping biomass 193 
from within a sample quadrat from Vishakhapatnam coast of Andhra Pradesh in western Bay of 194 
Bengal, India. Images with permission from Banerjee and Mohapatra 195 
 196 
  197 
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 198 
Table S1. Health benefits of macroalgae, see Lozano Muñoz and Díaz (2022) and citations 199 
within. Photo credit: Kakoli Banerjee 200 

Constituent Percentages 

 Nutrients 

Protein: 12% 

Calories: 2% 

Carbohydrate: 2% 

Dietary Fiber: 1% 

Vitamins 

Vitamin A: 104% 

Vitamin C: 65% 

Folate: 37% 

Riboflavin: 10% 

Minerals 

Manganese: 49% 

Copper: 13% 

Iron: 10% 

Potassium: 10% 

Health Benefits  

Useful in maintaining healthy digestion Helps to prevent colon cancer and leukemia 

Protects skin against harmful effects of ultraviolet B radiation and slows down aging process 

Effective in exerting anti-diabetic effects Helps to detoxify and cleanse body 

Reduces risk of mental deliberation and goiter hypothyroidism 

Helps to strengthen eyes and hairs Benefits in improving heart and dental health 

Prevents threat of stroke and coagulation  Helps to protect against influenza B virus 

Caution: Excess intake may raise levels of thyroid-stimulation hormone. Avoid usage during 
pregnancy and lactation. 

% Daily value per 100 g of seaweed (laver) provides 65% of daily requirement of vitamin C. 

  201 



7 
 

Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does 202 
not imply endorsement by the U.S. Government. 203 
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