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Supplemental Methods
Study design
Expressive vocabulary scores were analysed as part of two developmental stages: an early phase
(15-18 months, infancy) and a late phase (24-38 months, toddlerhood). The early phase reflects a
developmental window during which children produce their first words, usually in isolation (1). During the
late phase, children start to use word combinations and more complex grammatical structures (2,3).
Receptive vocabulary scores were only studied for the late phase (24-38 months, toddlerhood), as
parents tend to underestimate receptive vocabulary in children below the age of two years compared to
direct assessment of child receptive language using a preferential looking task (4). In addition, the
availability of receptive vocabulary scores in infants is low and there was little evidence (P<0.05) for Single-
Nucleotide Polymorphism (SNP) heritability at 15 months of age within the Avon Longitudinal Study of
Parents and Children (ALSPAC)(5). However, this does not exclude the existence of individual genetic

variants that have an effect on vocabulary size.

Early vocabulary cohort descriptives

Up to seven population-based cohorts participated in this study, as described below. To capture
the entirety of common genetic variation within the general population, we did not exclude children with
neuro-developmental conditions, and those individuals are included at population-based prevalence rates.

Avon Longitudinal Study Parents and Children: Pregnant women resident in Avon, UK with

expected dates of delivery 1st April 1991 to 31st December 1992 were invited to take part in the Avon
Longitudinal Study of Parents and Children (ALSPAC)(6,7). The initial number of pregnancies enrolled is
14,541 (for these at least one questionnaire has been returned or a “Children in Focus” clinic had been
attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062

live births and 13,988 children who were alive at 1 year of age.



When the oldest children were approximately 7 years of age, an attempt was made to bolster the
initial sample with eligible cases who had failed to join the study originally. As a result, when considering
variables collected from the age of seven onwards (and potentially abstracted from obstetric notes) there
are data available for more than the 14,541 pregnancies mentioned above. The number of new pregnancies
not in the initial sample (known as Phase | enrolment) that are currently represented on the built files and
reflecting enrolment status at the age of 24 is 913 (456, 262 and 195 recruited during Phases II, lll and IV
respectively), resulting in an additional 913 children being enrolled. The phases of enrolment are described
in more detail in the cohort profile paper and its update. The total sample size for analyses using any data
collected after the age of seven is therefore 15,454 pregnancies, resulting in 15,589 foetuses. Of these
14,901 were alive at 1 year of age.

A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, attended clinics
at the University of Bristol at various time intervals between 4 to 61 months of age. The CiF group were
chosen at random from the last 6 months of ALSPAC births (1,432 families attended at least one clinic).
Excluded were those mothers who had moved out of the area or were lost to follow-up, and those partaking
in another study of infant development in Avon.

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the
Local Research Ethics Committees. Consent for biological samples has been collected in accordance with
the Human Tissue Act (2004). Informed consent for the use of data collected via questionnaires and clinics
was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee

at the time.

Please note that the study website contains details of all the data that are available through a fully

searchable data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-

data/).


http://www.bristol.ac.uk/alspac/researchers/our%E2%80%90data/
http://www.bristol.ac.uk/alspac/researchers/our%E2%80%90data/

Barwon Infant Study: The Barwon Infant Study (BIS) is a prospective birth cohort with antenatal

recruitment based in the Barwon region of Victoria, southwest of Melbourne, Australia. From June 2010 to
June 2013, a birth cohort of 1,074 mother—infant pairs (10 sets of twins) was recruited using an unselected
antenatal sampling frame (8). Eligibility criteria, population characteristics, and measurement details have
been described previously (8). In brief, women were recruited prior to 28 weeks’ gestation between 2010
and 2013, and infant exclusion criteria were: [1] delivery before 32 weeks, [2] serious neonatal illness, [3]
major congenital malformation or genetic disease and [4] family having moved out of the Barwon Statistical
Division by the time of birth. Informed consent was obtained from pregnant mothers. Mother—infant pairs
were reviewed at regular intervals at birth; 4 weeks; 3, 6, 9, 12 and 18 months; 2 years and 4 years; with
review at 7-10 years in progress. Further details of the cohort are available through the Barwon Infant Study
cohort website (https://www.barwoninfantstudy.org.au/index.cfm). A short-form adaption of the
MacArthur Communicative Development Inventories: Words and Sentences was completed for a
subsample of N=431 children at the 2-year-old review alongside other neurodevelopmental assessments.
The current analysis was restricted to those children determined to be of European ancestry based on their
genetic data (N=383). Ethics approval for the study was obtained from the Barwon Health Human Research

Ethics Committee (HREC 10/24).

Copenhagen Prospective Studies on Asthma in Childhood: The Copenhagen Prospective Studies on

Asthma in Childhood is a clinical study with multiple cohorts (COPSAC2000 and COPSAC2010). The
COPSAC2010 cohort is a population-based prospective mother-child cohort comprising 700 children born
to unselected mothers (during 2009-10) from Zealand, Denmark. The cohort was enrolled at age 1 week
and attended the research clinic for clinical examinations at ages 1, 3, 6, 9, 12, 18, 24, 30 and 36 month

and yearly hereafter till age 8 years.

Language development was assessed with the Danish version of The McArthur Bates

Communicative Development Inventory (CDI) through questionnaires filled by parents as described


https://www.barwoninfantstudy.org.au/index.cfm

elsewhere (9). Genotyping and imputation for the COPSAC2010 cohort has been described elsewhere (10).

The Ethics Committee for Copenhagen and the Danish Data Protection Agency approved this study.

Early Language in Victoria Study: The Early Language in Victoria Study (ELVS) is a longitudinal,

community cohort study that comprehensively tracked the language development of a large group of
children (>1,900) born in the surrounds of Melbourne, Victoria (Australia). ELVS was designed to fill
knowledge gaps about language development and factors that predict later outcomes, including service
costs and health-related quality of life. The children were recruited between 8 and 10 months of age and
have been followed across key developmental transitions, including infancy and early childhood, middle
childhood to adolescence and most recently into early adulthood. Data were obtained via multi-source
informants, direct assessment and linkage to nationally acquired academic achievement data. ELVS
operates from Melbourne, Australia, and is funded by the Australian National Health and Medical Research
Council (#237106, #436958, #1041947). Ethical approval has been obtained from the Royal Children’s
Hospital Human Research Ethics Committee (27078/33195). A number of ELVS sub-studies investigate
different areas of communication development, including stuttering, autism and bilingual language
development. Full details of the study and the ages at which data were collected are available on the
Lifecourse website (https://lifecourse.melbournechildrens.com/cohorts/elvs/) and in Reilly et al

(2018)(11).

Generation R Study: The Generation R Study (GenR) is a prospective cohort study from fetal life

onwards that included pregnant women living in Rotterdam, the Netherlands, with an expected delivery
date between April 2002 and January 2006 (N=9,778). The main aim of this study is to identify early
environmental and genetic factors that affect growth, health and development (12). The Generation R
Study is multidisciplinary, and both prenatal and postnatal measures have included multiple domains of
growth, health and development. Rotterdam is an ethnically diverse city and this is reflected in the

Generation R participants. Of the enrolled mothers, 42% were of non-Dutch ethnic background, largely


https://lifecourse.melbournechildrens.com/cohorts/elvs/

made up by mothers from Surinamese (9%), Turkish (7%) and Moroccan (3%) background (12,13). Data
have been collected in children up until the mean age of 13 years, with current on-going data collection at
mean age 17 years. Study protocols were approved by the local ethics committee, and written informed

consent and assent was obtained from all parents and children.

The Growing Up in Australia: Longitudinal Study of Australian Children study: The Growing Up in

Australia: Longitudinal Study of Australian Children study (LSAC) includes prospective birth (B) and kinder
(K, not further considered in the EAGLE consortium) cohorts that aimed to be broadly representative of the
Australian population (14). The B-cohort recruited 5,107 0-1-year-olds in 2004, with continued in-home
follow-up every 2 years. The Child Health CheckPoint module was one-off physical health and biomarkers
assessment, nested between LSAC’s 10-11 year and 12-13 year waves, for 1,874 B-cohort families, at either
an assessment centre or home visit, and including biospecimen collection for DNA extraction (15). The
Australian Institute of Family Studies (AIFS) Ethics Committee approved each wave of LSAC. The AIFS Ethics
Committee (14-26) and Melbourne’s Royal Children's Hospital Human Research Ethics Committee
(33225D) approved the CheckPoint wave. Written informed consent and assent was obtained from all

parents for LSAC, and from all parents and children for the CheckPoint.

The Raine Study: The Raine Study is a prospective pregnancy cohort where 2,900 mothers (Gen1)

were recruited between 1989 and 1991 (16,17). Recruitment took place at Western Australia’s major
perinatal centre, King Edward Memorial Hospital, and nearby private practices. Women who had sufficient
English language skills, an expectation to deliver at King Edward Memorial Hospital, and an intention to

reside in Western Australia to allow for future follow-up of their child (Gen2) were eligible for the study.

The Raine Study is known as one of the largest successful prospective cohorts richly phenotyped at
multiple time points over pregnancy, infancy, childhood, adolescence, and young adulthood. The mothers

(Gen1) completed guestionnaires regarding their children (Gen2), and the children (Gen2) had physical



examinations at ages 1, 2, 3, 6, 8, 10, 14, 17, 20 and 22 years. Ethics approval for the original pregnancy
cohort and subsequent follow-ups were granted by the Human Research Ethics Committee of King Edward
Memorial Hospital, Princess Margaret Hospital, the University of Western Australia, and the Health

Department of Western Australia.

Twins Early Development Study: The Twins Early Development Study (TEDS) is a longitudinal twin

study that recruited over 16,000 twin pairs born between 1994 and 1996 in England and Wales through
national birth records (18). More than 10,000 of these families are still involved in the study. TEDS was, and
still is, a representative sample of the population in England and Wales. Rich cognitive and behavioural data
have been collected from the twins from infancy to emerging adulthood, with data collection at ages 2, 3,
4,7,8,9,10,12, 14, 16, 18, 19 and 21, enabling longitudinal genetically sensitive study designs. Data have
been collected from the twins themselves (including extensive web-based cognitive testing), and from their
parents and teachers. Genotyped DNA data are available for 10,346 individuals (who are unrelated except
for 3,320 dizygotic co-twins). Ethical approval was received from King’s College London Research Ethics

Committee (Reference number PNM/09/10-104).

Early vocabulary assessment

The CDIs were developed to assess language and communication development in young children
(19), whereas the Language Development Survey (LDS) aims to identify children with language delays (20).
Vocabulary scores were primarily assessed in English (ALSPAC, BIS, LSAC, the Raine Study and TEDS), but
also in Danish (COPSAC, Danish adaptation of the MacArthur CDI:Words & Sentences (21)) and Dutch
(GenR, N-CDI-2A (22) and LDS (20)). Previous research showed that children follow similar patterns of
language acquisition across different languages (23) and that CDI vocabulary assessments are comparable
across different cultures, including English, Dutch and Danish (24). The instruments selected in this study

have been extensively validated, especially for expressive vocabulary (21,25-30). The correlation between



parental CDI assessment and child task performance (20-30 months of age) for word comprehension and
production is moderate to high (r=0.55 and r=0.67, respectively)(29), suggesting the validity of studied
measures. A strong correlation of 0.79 was also reported between parent-assessed (CDI) and laboratory-
assessed expressive vocabulary in 24-month old children (25). For expressive vocabulary assessed using the
Dutch adaptation of the LDS, a Pearson correlation of 0.68 with formal language assessment at 24 months
was found (30). Notably, the LDS and CDI have high concurrent validity, with a correlation of 0.95 for total
vocabulary scores at 23 to 25 months of age (26). Nonetheless, parental assessments of receptive
vocabulary in children below the age of two may underestimate children’s vocabulary (31) or show low

validity (32).

Analyses of longitudinal data from the Wordbank (http://wordbank.stanford.edu/), including
children with more than ten CDI:Words & Sentences assessments over 20 months, showed longitudinal
stability, suggesting that CDI measurement error is low when studied across close intervals (33). These
findings are consistent with moderate-to-strong correlations observed for CDI scores at one-year intervals

(rp=0.47-0.63) (5,34), demonstrating the reliability of the CDI scores.

Early-phase expressive vocabulary: During the early phase (15-18 months, infancy), expressive

vocabulary size was assessed using an abbreviated form of the MacArthur CDI:Words & Gestures (35) in
the ALSPAC cohort (15 months: N=6,741). Early-phase expressive vocabulary was defined by this
instrument as the total number of words a child could “say and understand” and thus jointly represents
expressive and receptive vocabulary. Within GenR (18 months: N=2,058), expressive vocabulary was
assessed using a Dutch adaptation of the short-form version of the MacArthur CDI (N-CDI-2A)(22). This
form included the response “say” in addition to “say and understand”, so early-phase expressive vocabulary

was defined as the number of words that fell into either of these categories.


http://wordbank.stanford.edu/

Late-phase expressive vocabulary: During the late phase (24-38 months, toddlerhood), expressive

vocabulary size was assessed with an abbreviated version of the MacArthur CDI:Words & Sentences (19) in
ALSPAC (24 months: N=6,208; 38 months: N=6,291), the corresponding Danish adaptation (21) in COPSAC
(24 months: N=487), and using the LDS (20) in GenR (31 months: N=1,825) and the Raine Study (26 months:
N=980). Adapted forms of the MacArthur CDI (MCDI)(27,36) were used to assess expressive vocabulary in
BIS (30 months: N=383), LSAC (34 months: N=1,134), and TEDS (24 months: N=5,515). For CDI vocabulary
assessments, late-phase expressive vocabulary was defined as the number of words that fell within the
category “says” and/or “says and understands”. For LDS vocabulary assessments, late-phase expressive
vocabulary was defined as the total number of words spontaneously produced by a child from a given list
of words. The LDS and CDI have high concurrent validity, with a correlation of 0.95 for total vocabulary

scores at 23 to 25 months of age (26).

Late-phase receptive vocabulary: Late-phase receptive vocabulary scores were only available in

ALSPAC (38 months: N=6,291) and assessed using an abbreviated form of the MacArthur CDI:Words &
Sentences (19)(Table S1). Late-phase receptive vocabulary score was defined as the number of words a
child could understand, regardless of whether they also produced the word, and encoded as “understand”

plus “say and understand”.

Single-variant association analysis

Genome-wide association study per cohort: Within each cohort, vocabulary scores were adjusted

for age, sex, age? and their interaction effects, as well as ancestry-informative principal components (that
differed by cohort) and other study-specific covariates, such as genotyping array and/or batch, defined by
the local genome-wide association study (GWAS) analyst. Vocabulary scores were rank-transformed to

achieve normality and allow for comparisons of genetic effects across different psychological instruments.
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Single-Nucleotide Polymorphism (SNP)-vocabulary associations were estimated within each cohort
using a linear regression of rank-transformed residuals on posterior genotype probability using SNPTEST
(37), Proabel (38) and GEMMA (39) software, assuming an additive genetic model, except for the LSAC
cohort. For LSAC, a linear regression of rank-transformed residualised vocabulary scores on bestguess
genotypes was performed with PLINK 1.9 (40) using imputed markers (INFO>0.3), as posterior genotype
probability data were not available (Table S4). Analyses were restricted to unrelated individuals (IBD<0.125)
except for GWAS analyses of twin samples (TEDS) that were performed using GEMMA (39) following a linear
mixed-model approach. This method accounts for relatedness among individuals using a genetic-
relationship matrix (GRM) derived from high-quality, directly genotyped markers. GRM off-diagonal
elements >0.05 capture relatedness for closely related individuals (41,42), while other elements of the GRM

were set to zero.

Quality control at summary statistic level: GWAS summary statistics from all cohorts underwent

extensive quality control using the EasyQC R package (43) (v9.2): variants that had low (i) imputation quality
(INFO<0.6 for SNPTEST, PLINK and GEMMA association analyses and INFO<0.5 for Proabel association
analyses), (ii) minor allele count (MAC<10), or (iii) effect allele frequency (EAF<0.005 or EAF>0.995) were
excluded. In addition, marker names were harmonised, and alleles were aligned against Haplotype
Reference Consortium (HRC) r1.1 reference data. Variants with missing or mismatching alleles were
dropped, as well as all insertions/deletions, duplicate SNPs and multi-allelic SNPs. Finally, variants with an
EAF that deviated >0.2 from the frequency in the HRC r1.1. reference data were excluded. All association
analyses were applied with genomic control (44) for variant discovery and without genomic control for

follow-up analyses.

Single-trait meta-GWAS (stage 1): As part of analysis stage | (Figure 1), fixed-effect meta-analyses

were carried out for early-phase expressive vocabulary using METAL software (45). This approach includes

a meta-analysis across effect size estimates reported by each individual cohort, weighted by the inverse of
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the corresponding standard error (45). As late-phase expressive vocabulary included longitudinal
assessments of the same ALSPAC children at 24 and 38 months (Table S1), a fixed-effect meta-analysis was
carried out excluding ALSPAC expressive vocabulary at 38 months to ensure the independence of GWAS
summary statistics across cohorts. The derived METAL output was then jointly analysed with the GWAS
results for ALSPAC expressive vocabulary at 38 months using multi-trait analysis of genome-wide
association (MTAG)(46). This method exploits genetic relationships among traits and provides a generalised
inverse-variance-weighted meta-analysis estimate by integrating GWAS summary statistics across
correlated phenotypes while allowing for overlapping samples (46). As late-phase receptive vocabulary

scores were only available for ALSPAC, no meta-analysis was performed.

Multi-trait meta-GWAS (stage 1l): As part of analysis stage Il, multi-trait meta-analyses were

performed with MTAG (46) combining vocabulary summary statistics with moderate-to-strong genetic
correlations (rg=0.65) to increase statistical power (Figure 1). Late-phase expressive vocabulary, the most

powerful measure, was included as the outcome in all multi-trait meta-analyses.

Sensitivity analyses for MTAG: To assure robustness of our findings, sensitivity analyses were

conducted for all meta-analyses performed with MTAG. MTAG analyses combining low-powered traits
(mean x? statistic <1.02), such as ALSPAC expressive vocabulary at 38 months and late-phase receptive
vocabulary, may lead to bias and an increased false discovery rate (46). Therefore, MTAG-derived estimates
for each meta-analysis estimates were compared against fixed-effect meta-analysis estimates for late-
phase expressive vocabulary (the most powerful fixed-effect meta-analysis, see above). For each meta-
analysis, we compared beta coefficients and standard errors across all SNPs (Nsnps=7,343,861-7,355,069),

as well as across a subset of highly-associated SNPs (P<5x107®, Nsnps=37).
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FUMA analyses

Gene-based GWASs: Gene-based GWASs were conducted with Multi-marker Analysis of GenoMic

Annotation (MAGMA, v1.08) according to a SNP-wide mean model (47), as implemented within FUMA
software (v1.3.6a)(48). SNPs were mapped to genes using positional mapping based on the 1000 Genomes
Phase 3 European reference panel (release 20130502) and a Okb window, consistent with default MAGMA
settings. SNPs were mapped to <18,896 protein-coding genes. Assuming 2.38 independent vocabulary
measures, estimated with a Matrix Spectral Decomposition (matSpD)(49) of bivariate genetic correlations
(see Main), this resulted in a genome-wide gene-based significance threshold of 1.11x107°
(0.05/18,896/2.38). Gene-based GWAS results subsequently served as input for gene-set and gene-

property analyses (see below).

Gene-set analyses: MAGMA-based gene-set analyses (v1.08)(47) were performed as implemented

within FUMA software (v1.3.6a)(48). This competitive test was conditioned on gene size, gene density, and
the inverse of the mean minor allele count in the gene (47). Association was investigated with up to 4,527
gene ontology (GO) biological pathways that were derived from MsigDB v7.0 (50) and contained between
10 and 200 genes to avoid bias related to gene-set size (51). The multiple-testing-adjusted threshold was

defined at P<4.64x107°(0.05/4,527/2.38).

Gene-property analyses: MAGMA (47) gene-property analyses were performed in FUMA

(v1.3.6a)(48) to assess whether common genetic variation related to vocabulary was enriched for
expression in certain tissues and/or developmental periods of interest. For these analyses, gene expression
data were obtained from 30 broad tissue types and 54 specific tissues derived from the GTEx v8 RNA-
sequencing database (52), as well as gene expression data for 29 different age groupings and 11
developmental stages from BrainSpan (53). The multiple-testing-adjusted threshold was defined at
P<1.69x10*, accounting for the total number of gene expression data sets and independent vocabulary

measures investigated (0.05/124/2.38).
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High-Definition Likelihood SNP-heritability and genetic correlation analyses

SNP-heritability (SNP-h?) and bivariate genetic correlations (rg), as captured by GWAS summary
statistics, were estimated using High-Definition Likelihood (HDL)(54). HDL is a full likelihood-based method
that extends the Linkage Disequilibrium Score (LDSC) regression formula by including non-diagonal
elements of Z-score covariance matrices. Compared to LDSC, HDL estimates SNP-h? and rg with increased
accuracy (54). HDL-SNP-h? analyses were conducted using a pre-computed reference panel for European-
ancestry populations based on 1,029,876 high-quality UK Biobank imputed HapMap3 SNPs if >99% of them
were available, following HDL recommendations (54). Otherwise, a reference panel based on 769,306 high-
quality UK Biobank imputed HapMap2 SNPs was used. These reference panels were created previously,
and details, including quality control, are described elsewhere (54). Eigenvalues and eigenvectors were

derived by HDL, selecting values that resulted in the most stable heritability estimate.

We investigated evidence for genetic correlation based on GWAS summary statistics for vocabulary
size, created as part of stage |, and several preselected, heritable cognition-, development and health-
related outcomes (SNP-h? P<0.05 and SNP-h? Z-score >4, Table S9). All traits included in HDL-r; analyses
had sufficient SNP overlap (>99%) with either the HapMap2 or HapMap3 reference panel. Genome-wide
summary statistics for the studied cognition-, development and health-related traits are described below

in brief, while more detailed information can be found in the original studies:

Word reading: GWAS summary statistics on word reading(55) (5-26 years, N=27,180) were
obtained from the international GenlLang network (https://hdl.handle.net/1839/c2a16081-d0b7-4a59-
a80f-b9ee72244ae3). Word reading skills were assessed via eleven different validated psychometric tests

that showed little evidence for genetic heterogeneity when jointly analysed (55).

Non-word reading: GWAS summary statistics on non-word reading(55) (5-26 years, N=16,746)

were obtained from the international GenlLang network (https://hdl.handle.net/1839/c2a16081-d0b7-
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4359-a80f-b9ee72244ae3). Non-word reading skills were assessed using eight different validated

psychometric tests that showed little evidence for genetic heterogeneity when jointly analysed (55).

Spelling: GWAS summary statistics on spelling(55) (5-26 years, N=17,278) were obtained from the
international GenlLang network (https://hdl.handle.net/1839/c2a16081-d0b7-4a59-a80f-b9ee72244ae3).
Spelling skills were assessed using eleven different validated psychometric tests that showed little evidence

for genetic heterogeneity when jointly analysed (55).

Phoneme awareness: GWAS summary statistics on phoneme awareness(55) (5-18 vyears,

N=12,411) were obtained from the international Genlang network
(https://hdl.handle.net/1839/c2a16081-d0b7-4a59-a80f-b9ee72244ae3)(55). Phoneme awareness was
assessed using four different validated psychometric tests that showed little evidence for genetic

heterogeneity when jointly analysed (55).

Intelligence: GWAS summary statistics on intelligence across the lifespan(56) (5-98 vyears,
N=279,930) were obtained from the Complex Traits Genetics lab
(https://ctg.cncr.nl/documents/p1651/Savagelansen_IntMeta_sumstats.zip). Each cohort assessed
intelligence with different instruments that were re-defined to index a common latent factor of general

intelligence (56).

Educational attainment: GWAS summary statistics on years-of-schooling(57) (>30 vyears,

N=766,345 excluding 23andMe) were obtained from the Social Science Genetic Association Consortium
(https://www.dropbox.com/s/ho58e9jmytmpaf8/GWAS_EA excl23andMe.txt?dI=0). Educational
attainment (EA) was coded according to the International Standard Classification of Education (1997) scale

(57) and analysed as a quantitative variable defined as an individual’s years of schooling (57).

Infant head circumference: GWAS summary statistics on infant head circumference(58) (6-30

months, N=10,768) were obtained from the Early Growth Genetics Consortium (http://egg-
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consortium.org/HC/EGG_HC_DISCOVERY.v2.txt.gz). Head circumference was measured from the occipital
protuberance to the forehead, using a flexible, non-stretching measure tape following standardized

procedures (58).

Childhood head circumference: GWAS summary statistics on childhood head circumference(59) (6-

9 years, N=10,600) were retrieved via Dr. Beate St Pourcain (beate.stpourcain@mpi.nl). Head
circumference was measured with a measuring tape at the widest horizontal circumference in the majority

of participants (59).

Childhood aggressive behaviour: GWAS summary statistics on childhood aggressive behaviour(60)

(1.5-18 years, N=151,741) were obtained via Prof. dr. Dorret Boomsma (di.boomsma@vu.nl). Aggression
was assessed on continuous scales, with higher scores indicating more aggressive behaviour, using

mothers, fathers, teachers, and self-report based on 26 different instruments (60).

Childhood internalising symptoms: GWAS summary statistics on childhood internalising

symptoms(61) (3-18 vyears, N=64,641) were retrieved via Prof. dr. CM. Middeldorp
(c.middeldorp@ug.edu.au). In the absence of diagnostic data, internalising symptoms were dimensionally
measured and positively scored on continuous scales, with higher scores indicating more internalising

symptoms, based on different raters and instruments (61).

Attention-Deficit/Hyperactivity  Disorder: GWAS  summary  statistics on  Attention-

Deficit/Hyperactivity Disorder (ADHD)(62) were accessed through the Danish Lundbeck Foundation
Initiative for Integrative Psychiatric Research (iPSYCH) and Psychiatric Genetics Consortium (PGC). Analyses
were restricted to individuals of European ancestry (https://ipsych.dk/en/research/downloads/data-
download-agreement-adhd-european-ancestry-gwas-june-2017/). ADHD cases in iPSYCH were identified
from a national research register and diagnosed by psychiatrists at a psychiatric hospital according to

ICD10(63) (F90.0) and identified using the Danish Psychiatric Central Research Register (64). ADHD cases in
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PGC were primarily diagnosed with the Diagnostic and Statistical Manual of Mental Disorders (DSM-III (65),

DSM-IV (65), DSM-IV-TR (65)) or the International Classification of Diseases (ICD-10 (63)).

Autism Spectrum Disorder: GWAS summary statistics on Autism Spectrum Disorder (ASD)(66) were

accessed through iPSYCH and PGC (https://ipsych.dk/en/research/downloads/data-download-agreement-
ipsych-pgc-asd-nov2017/). ASD cases were diagnosed according to ICD-10 (63) and identified using the
Danish Psychiatric Central Research Register (64). Registry-based ASD diagnoses were validated previously
(62,66). Controls were randomly selected from the same nationwide birth cohort and did not have a
diagnosis of ASD or ADHD, or moderate-severe mental retardation (F71-F79)(62,66,67). In addition, data
from five family-based trio samples of European ancestry from the PGC were included (68), which based
an ASD diagnosis on the Autism Diagnostic Interview-Revised (69), the Autism Diagnostic Observation
Schedule (70), and/or the Autism Screening Questionnaire (71). The sample only included individuals of

European ancestry.

Power to detect a genetic correlation between single-trait vocabulary data (stage |) and
educational attainment was calculated via an online tool (https://eagenetics.shinyapps.io/power_website/)
following Dudbridge et al (72). Sample sizes of 8,800, 19,300, 6,300 and 766,300 were used for early-phase
expressive vocabulary, late-phase expressive vocabulary, late-phase receptive vocabulary and educational
attainment, respectively. SNP-h? estimates for these traits are reported in Table S7 and S9. As all traits are
continuous, sample and population prevalence were set to one. Alpha was set to the multiple-testing-

adjusted significance threshold of 5.57x1073.

Polygenic scoring analyses
To increase the portability of polygenic scores sample characteristics such as the socio-economic

status, age or sex differences between base and target samples need to be considered (73). Due to limited
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data availability, only late-phase expressive vocabulary could be studied with out-of-sample prediction in
an age-matching dataset. Specifically, we investigated phenotypic and genome-wide genetic data from
ELVS (74) as the target sample and single-trait late-phase expressive vocabulary summary statistics (stage

[) as the discovery sample.

Phenotypic data: In ELVS, late-phase expressive vocabulary was assessed using an adapted version

of the MacArthur CDI:Words & Sentences at 24 months of age (N=639, Table S1). ELVS CDI vocabulary
scores were adjusted for age, sex, age?, their interaction effects, and the first two principal components,

and rank-transformed.

Genetic data: ELVS individuals were genotyped using the Infinium Global Screening Array, and
standard quality control procedures were applied (75). To assure high-quality genetic data, variants with a
call rate <0.98, Hardy-Weinberg Equilibrium <1x10® or minor allele frequency <0.01 were excluded.
Individuals were excluded based on a call rate <0.98, a non-European genetic ancestry, or relatedness with
other participants (IBD >0.125). Cleaned genotype data were imputed using the Michigan Imputation
Server (https://imputationserver.sph.umich.edu/index.html) against the HRC r1.1 reference panel (76). For
polygenic scoring analyses, allele counts for SNPs with an INFO score >0.8, genotyping probability >0.9 in
95% of the individuals and minor allele frequency >0.005 were transformed into bestguess genotypes

(Nsnps=6,675,600).

Polygenic scoring: Posterior SNP effect size estimates from late-phase expressive vocabulary

summary statistics (stage |) were estimated using PRS-CS (77): a Bayesian-based approach that adjusts SNP
effect sizes for LD by applying a continuous-shrinkage parameter. Following the default settings: the global
shrinkage parameter was learned from the data using a fully Bayesian approach, parameters a and b in the
gamma-gamma prior were set to 1 and 0.5, respectively, and 1,000 Markov Chain Monte Carlo iterations

were performed, with 500 burn-in iterations and a Markov chain thinning factor of 5. The 1000 Genomes
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phase 3 European reference panel provided by the authors was used as LD reference panel. Individual-level
polygenic scores in ELVS were created with PLINK(40) (v1.9b3w) and Z-standardised. Finally, vocabulary
measures were regressed on polygenic scores in ELVS using ordinary least square (OLS) regression (R:stats

library, Rv4.1.0), and the phenotypic variance explained was assessed with the regression R?.

Power calculation: Power to detect a genetic relationship was derived following Dudbridge et

al.(72) via an online tool: https://eagenetics.shinyapps.io/power website/. Parameters included for the

discovery trait (meta-GWAS stage |, late-phase expressive vocabulary) were a sample size of 19,300, SNP-
h? of 0.08, and a population and sample prevalence of 1. For the target trait (ELVS, late-phase expressive
vocabulary) these parameters were set at N=600, SNP-h?=0.08, and a population and sample prevalence of

1. The alpha was set at 0.05.

Structural equation modelling

To obtain insight into the developmentally changing genetic correlation pattern of ADHD
symptoms with vocabulary size across infancy and toddlerhood, we applied genetic-relationship-matrix
structural equation modelling (78) (GRM-SEM) using the grmsem R package (v1.1.2,
https://gitlab.gwdg.de/beate.stpourcain/grmsem) and studied individual-level data from the Avon
Longitudinal Study of Parents And Children (ALSPAC) cohort. Note that it is not possible to model residual
(i.e. joint environmental, non-additive-genetic and error) influences with summary-statistic-based SEM
frameworks such as Genomic SEM (79).

Vocabulary data: Data on expressive vocabulary size at 15 months (early-phase expressive

vocabulary), 24 months and 38 months (late-phase expressive vocabulary), as well as receptive vocabulary
size at 38 months (late-phase receptive vocabulary) from ALSPAC children were analysed in a similar way

to the presented meta-GWASs (Table S1, Table S2), except for stricter filtering on relatedness (IBD <0.05)
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(78). This resulted in individual-level genotype and phenotype data for 6,524, 6,014, 6,092, and 6,092
children for expressive vocabulary at 15 months, expressive vocabulary at 24 months, expressive
vocabulary at 38 months and receptive vocabulary at 38 months, respectively.

ADHD symptom score data: ADHD symptom scores in ALSPAC (showing strong genetic correlations

with ADHD status in case-control analyses (80)) were assessed with the hyperactivity subscale of the
Strengths and Difficulties Questionnaire (SDQ)(81) at 7, 10, 12, 13 and 17 years of age using mother reports
and at 8 and 11 years using teacher reports (Table S5). Only pro-rated scores were selected for the current
study. ADHD symptom scores were adjusted for age, sex, their interaction effects and the first two principal
components and then rank-transformed.

SNP-h? analyses: Across ADHD SDQ symptom scores, SNP-h? was estimated using Genome-based

restricted maximum likelihood (GREML) analyses (82,83), as implemented in Genome-wide Complex Trait
Analysis (GCTA) software (84), based on a GRM including high-quality, directly genotyped SNPs only (Nsnps=
465,740). The two ADHD symptom scores with the highest SNP-h? Z-score based on mother- and teacher-
report (Table S5) were selected for subsequent analyses (see below), as disorder-related genetic effects
captured by parent and teacher reports may differ (85).

GRM-SEM analyses: A Cholesky decomposition was fitted to the data using genetic-relationship-

matrix structural equation modelling (GRM-SEM)(78) with the grmsem R package (v1.1.2,
https://gitlab.gwdg.de/beate.stpourcain/grmsem). A Cholesky decomposition is a saturated model that
decomposes the phenotypic variance into as many latent genetic (A) and residuals (E) factors as there are
observed variables, without any restrictions on the structure (86). Subsequently, genetic (rg) and residual
(re) covariance and correlations were estimated as outlined by theory (87). The Cholesky model included
all four early vocabulary measures available in ALSPAC (expressive vocabulary at 15 months, 24 months and
38 months, as well as receptive vocabulary at 38 months) in addition to ADHD symptom scores at 8 and 13

years (in this order). Cholesky decompositions were fitted allowing for missing data.
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Supplemental Note

Polygenic scoring results

Polygenic scoring analyses for late-phase expressive vocabulary showed limited predictive value in
ELVS (B=0.04(SE=0.04), P=0.35, R?=0.14%). The power to detect genetic overlap was, however, low (<0.11)
due to a combination of low SNP-h? and low target sample size (Early Language in Victoria Study(11),

N=639).

Statistical power for single-variant association analyses

The single-variant association analyses with the largest sample size (late-phase expressive and
receptive vocabulary, stage II) had 99% power to detect association with a genetic variant explaining 0.3%
of the trait variance (assuming an additive model, an increaser allele frequency of 0.1 and complete LD
between marker and genetic risk variant)(88). However, the power to detect variants with smaller
contributions to trait variance was modest (e.g. 27% power to detect a genetic variant explaining 0.1% of

the trait variance)(88).
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Supplemental tables

Table S1: Overview of participating cohorts

Analysis Cohort Measure Psychological Raw vocabulary Age (SD) N individuals
Instrument score (SD) in months (males)
MacArthur
Early-phase EV CDI:Words & 14.34(17.84) 15.42(0.98) 6,741(3,445)
Gestures®
MacArthur 64.10(35.20) 24.39(1.02)  6,208(3,197)
ALSPAC Late-phase EV CDI:Words &
Sentences® 113.28(17.5) 38.48(1.19) 6,291(3,226)
MacArthur
Late-phase RV CDI:Words & 109.66(23.78) 38.48(1.19)  6,291(3,226)
Sentences?®
2 BIS Late-phase EV MCDI:UKSF 78.31(20.08) 29.62(1.92) 383(210)
=
O MacArthur
% COPSAC Late-phase EV CDI:Words & 253.00(158.12) 24.18(0.28) 487(256)
€ Sentences
Early-phase V. N-CDI-2A 17.51(17.05) 18.36(0.96)  2,058(1,054)
GenR
Late-phase EV LDS 245.86(53.67) 31.32(2.04)  1,825(937)
LSAC Late-phase EV MCDI 56.95(23.60) 33.51(2.51)  1,134(558)
Raine
Study Late-phase EV LDS 185.60(83.44) 25.52(1.74)  980(504)
TEDS Late-phase EV MCDI 48.66(24.79) 24.48(1.20)  5,515(2,665)
- MacArthur
o ELVS Late-phase EV CDI:Words & 269.82(157.16) 24.13(0.29) 639(314)
Sentences

a. abbreviated form

Expressive and receptive vocabulary size were assessed between 15 and 38 months of age using parental
guestionnaires. Data from seven independent cohorts were studied as part of meta-genome-wide association
analyses. Polygenic scoring analyses were performed the independent ELVS sample. For each cohort, the
psychological instrument, mean raw vocabulary score and age, with corresponding standard deviation, as well as
sample size are reported. The instruments for early vocabulary assessment are described in detail in Supplemental

Methods.

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BIS, Barwon Infant Study; CDI,
Communicative Development Inventory; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood; ELVS;

Early Language in Victoria Study; EV, expressive vocabulary; GenR, Generation Rotterdam; LDS; Language

Development Survey; LSAC, Longitudinal Study of Australian Children; MCDI, MacArthur Communicative Development
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Inventory; PGS, polygenic scoring; RV, receptive vocabulary; TEDS, Twins Early Development Study; UKSF, UK short

form

Table S2: Vocabulary assessments in the Avon Longitudinal Study of Parents and Children

E| E| €| E
2 |8 8|8
>
W = = z
A ) N w
© %] %] %]
R (1] © ©
e s = s
= d d d
8 g 5 5
Early-phase EV (15m) | 6,741 | 0.54 0.25 0.22
Late-phase EV (24m) | 5,950 | 6,208 | 0.46 0.40
Late-phase EV (38m) | 6,018 | 5,705 | 6,291 | 0.65
Late-phase RV (38m) | 6,018 | 5,705 | 6,291 | 6,291

Four vocabulary assessments were studied in the Avon Longitudinal Study of Parents and Children. The sample size is
provided on the diagonal, the sample overlap between two datapoints is provided in the lower triangle and pairwise
complete phenotypic (Pearson) correlation coefficients between scores are provided in the upper triangle.

Abbreviations: EV, expressive vocabulary; m, months; RV, receptive vocabulary
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Table S3: Vocabulary assessments in the Generation R Study

Early-phase EV (18m)
Late-phase EV (31m)

Early-phase EV (18m) | 2,058 | 0.45

Late-phase EV (31m) | 1,741 | 1,825
Two vocabulary assessments were studied in the Generation R Study. The sample size is provided on the diagonal, the
sample overlap between the two datapoints is provided in the lower triangle and the pairwise complete phenotypic

(Pearson) correlation coefficient between both scores is provided in the upper triangle.

Abbreviations: EV, expressive vocabulary; m, months; RV, receptive vocabulary
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Table S4: Overview of genotyping, imputation and analysis software

Cohort | ALSPAC BIS COPSAC GenR LSAC Raine Study TEDs
[llumina
® Infinium® [Humini Aff trixG Chi
£ E [llumina [llumina Global [llumina Infinium nhnium uminia ymetrixbenetnip
>0 ) : . Global Human660W (Affy) 6.0 and
55 HumanHap550 Screening Array HumanOmni [llumina 610K . )
2 ® uad chi latform ExomeExoress Screening Quad HumanOmniExpres
3 @ g P P P Array-24 BeadChip sExome-8v1.2 (OEE)
v1.0
MAF >0.01 >0.01 >0.01 >0.01 >0.01 >0.01 >0.01
©  SNPcallrate | 20.99 >0.99 >0.95 >0.95 >0.95 >0.95 >0.99
g HWE >5x107 >5x107 >1x107° >1x10° >5x107 >1x10° >1x10*
o ..
g Indvidual 1, o >0.97 >0.95 >0.95 >0.97 >0.97 >0.99
s call rate
d  NSNPs Affy: 608,517
440,476 451,479 566,755 477,033 468,271 517,183
genotyped ’ ’ ’ ’ ’ ’ OEE: 502,434
Michi Michi
c sanger . Sanger Sanger © |ga.n sanger . I Iga.n Sanger Imputation
o Platform Imputation ) . Imputation Imputation Imputation
= Imputation Server | Imputation Server Server
g Server Server Server Server
Q
£ E:‘;‘zence HRC (r1.1) HRC (r1.1) HRC (r1.1) HRC (r1.1) HRC (r1.1) | HRC (r1.1) HRC (r1.1)
Analysis SNPTEST SNPTEST SNPTEST SNPTEST PLINK Proabel GEMMA
software
Early-phase EV: Early-phase EV:
8,663,580 8,610,574
g
= N SNPs after Late-phase EV: Late-phase EV:
© ac 8,665,928 (24m) | 7,244,741 7,795,895 8,607,086 7,518,913 8,654,834 8,293,360
8,667,217 (38m)
Late-phase RV:
8,667,217

Genotyping data for each cohort were obtained using high-density SNP arrays. Standard genomic quality control procedures were applied and genotypes were
imputed against the HRC rl.1. reference panel (76) using either the Sanger imputation server (EAGLE2 (89) v2.0.5 and PBWT (90) software,
https://imputation.sanger.ac.uk/) or Michigan imputation server (91) (Minimac 3/4 and Shapeit v2.r790, https://imputationserver.sph.umich.edu/). Association
analyses within cohorts of unrelated individuals (IBD<0.125) were performed using SNPTEST (37), PLINK (40) and Proabel (38). Genome-wide association analyses
of related individuals were performed using GEMMA (39).
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https://imputation.sanger.ac.uk/
https://imputationserver.sph.umich.edu/

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BIS, Barwon Infant Study; COPSAC, Copenhagen Prospective Studies on Asthma in
Childhood; EV, expressive vocabulary; GenR, Generation Rotterdam; GWAS, genome-wide association study; HRC, Haplotype Reference Consortium; HWE, Hardy-

Weinberg Equilibrium; LSAC, Longitudinal Study of Australian Children; m, months; MAF, minor allele frequency; RV, receptive vocabulary; SNPs, Single-Nucleotide
Polymorphism; TEDS, Twins Early Development Study
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Table S5: ADHD symptom scores in the Avon Longitudinal Study of Parents and Children

Raw trait

Age (SD)

N individuals

. _h2 _h2 7-
Trait Reporter score (SD) In years (males) SNP-h? (SE) SNP-h? Z-score
3.33(2.35) 6.79(0.11) 5,348(2,782) 0.08(0.06) 1.26
2.90(2.23) 9.65(0.12) 5,516(2,797) 0.08(0.06) 1.19
€ Mother 2.74(2.21) 11.72(0.13)  5,110(2,546) 0.19(0.07) 2.77
o
st
§ 2.90(2.22) 13.16(0.18)  4,929(2,458) 0.22(0.07) 3.16
()
T
2 2.53(2.11) 16.84(0.36)  4,061(1,979) 0.09(0.09) 1.08
2.48(2.62) 8.33(0.31) 3,572(1,801) 0.27(0.10) 2.86
Teacher
2.15(2.60) 11.16(0.33)  4,254(2,132) 0.16(0.08) 2.05

ADHD symptom scores for unrelated children (IBD<0.05) were obtained from the Avon Longitudinal Study of Parents
and Children. ADHD symptoms were assessed with the hyperactivity subscale of the Strengths and Difficulties
Questionnaire (81) as reported by mothers or teachers at different ages. For each assessment, the mean raw trait
score and age, with corresponding standard deviations, as well as sample size are reported. SNP-h? estimates were
derived using Genome-based restricted maximum likelihood (GREML) analyses (82,83), as implemented in Genome-
wide Complex Trait Analysis (GCTA) software (84), based on a genetic-relationship matrix including directly genotyped
SNPs only. SNP-h? Z-scores were calculated by dividing SNP-h? by its standard error.

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; SNP, Single-Nucleotide Polymorphism
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Table S6: MAGMA gene-set and gene-property analyses

Analysis Early-phase EV  Late phase EV Late phase RV
Gene-set 4,527 GO biological pathways P>5x107° P>2x107° P>8x10°
GTEx v8 30 broad tissue types P>0.09 P>0.05 P>0.04
GTEx v8 54 specific tissue types P>0.14 P>0.13 P>0.02
Gene-property
BrainSpan 29 ages P>0.06 P>4x10* P>0.12
BrainSpan 11 developmental periods P>0.07 P>0.11 P>0.12

MAGMA(47) gene-set and gene-property analyses were performed in FUMA (v1.3.6a)(48). Association with 4,527 GO
biological pathways containing between 10 and 200 genes was tested and the significance threshold adjusted for
multiple-testing was determined at P<4.64x10°®, correcting for both the number of gene-sets tested and the estimated
number of independent traits studied. Gene-property analyses were based on gene expression data from 30 broad
tissue types and 54 specific tissue types from the GTEx v8 RNA sequencing database (52). In addition, gene expression
data from 29 different age groupings and 11 developmental stages from the BrainSpan database (53) were utilised.
The lowest P-value obtained for each association analyses is reported. Gene-property analyses were considered
significant if they passed a multiple-testing-adjusted P-value threshold of 1.45x10%.

Abbreviations: EV, expressive vocabulary; GO, gene ontology; RV, receptive vocabulary
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Table S7: SNP-heritability of vocabulary size based on summary statistics

HDL LDSC

meta-GWAS Trait Nind SNP-h?(SE) Z-score P SNP-h?(SE)

Early-phase EV 8,799 0.24(0.02) 8.64 <1x101° | 0.12(0.05)
Stage | Late phase EV 19,296 | 0.08(0.01) 5.53 3x10°8 0.09(0.03)

Late phase RV 6,291 0.20(0.04) 5.21 2x107 0.09(0.07)

EV 22,104t | 0.10(0.01) 6.91 <1x101° | 0.10(0.03)
Stage Il

Late-phase ERV 23,466t | 0.07(0.01) 5.00 5x107 0.11(0.03)

SNP-heritability (SNP-h?) was estimated for both single- (stage |) and multi-trait (stage Il) vocabulary summary
statistics using High-Definition Likelihood (HDL)(54), and LD Score Regression (LDSC)(92) for comparison. SNP-
heritability, corresponding standard error and P-value were estimated with HDL using a HapMap3 reference panel.
SNP-h? Z-scores were calculated by dividing SNP-h? by its standard error. For comparison, SNP-h? estimates derived

using LD Score Regression (LDSC) are also shown.

+ Estimated sample size based on the increase in mean ¥? statistic using multi-trait analysis of genome-wide

association (46).

Abbreviations: EV, expressive vocabulary; ERV, expressive and receptive vocabulary; GWAS, genome-wide association
study; Nina — Number of individuals; RV, receptive vocabulary
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Table S8: Comparison of beta coefficients and corresponding standard errors for MTAG-derived analyses

) Max. | Fixed effect meta- All SNPs P<5x10SNPs
MTAG analysis .
FDR analysis N rs rse N I Ise
Late-phase EV excl.
Late-phase EV (stage I) 0.42 ALSPAC 38m 7,355,069 | 0.84 [ 0.97 | 37 | 0.99 | >0.99
Late-phase EV excl.
EV (stage Il) 0.41 ALSPAC 38m 7,343,861 0.84 |1 0.97 | 37 0.99 | >0.99
Late-phase ERV (stage II) 0.3 |LetephaseEvexc o aoc 060 (077 [ 097 |37 | o099 | 5099
P g ‘ ALSPAC 38m 29 ‘ ‘ ' ‘

For each multi-trait analysis of genome-wide association (MTAG) meta-analysis, beta coefficients and standard errors
were compared with corresponding estimates from fixed-effect meta-analyses for late-phase expressive vocabulary
(stage |, excluding ALSPAC expressive vocabulary at 38 months) across all shared SNP signals (Nsnps=7,343,861-
7,355,069) and across a subset of highly-associated SNPs (P<5x10°, Nsyps=37) using Pearson correlations. Meta-
analysis SNP estimates were robust, despite high maximum false discovery rates.

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; EV, expressive vocabulary; FDR, false
discovery rate; m, months; max, maximum; MTAG, multi-trait analysis of genome-wide association; SNPs, single-

nucleotide polymorphism; ERV, expressive/receptive vocabulary
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Table S9: SNP-heritability of external traits included in genetic correlation analyses

Trait Reference panel SNP-h%(SE) Z-score P N
Spelling HapMap3 0.13(0.02) 5.44 5x10® 17,278
Word reading HapMap3 0.12(0.02) 7.47 <1010 27,180
Non-word reading HapMap3 0.13(0.02) 6.72 <1010 16,746
Phoneme awareness HapMap3 0.12(0.03) 3.98 7x10° 12,411
Intelligence HapMap3 0.17(5x1073) 6.29 <1010 279,930
Educational attainment HapMap3 O.10(2x 3) 43.71 <1010 766,345
Infant head circumference HapMap?2 0.27(0.02) 12.03 <1010 10,768
Childhood head circumference HapMap3 0.26(0.04) 6.29 3x10® 10,600
Childhood aggression HapMap3 0.03(3x10%) 9.79 <1010 151,741
Childhood internalising symptoms HapMap3 0.03(7x1073) 4.50 8x10°® 64,641
ADHD HapMap2 0.22(0.01) 31.28 <10 53,293
ASD HapMap3 0.23(0.01) 26.48 <10 46,350

SNP-heritability, corresponding standard error and P-value were estimated with High-Definition Likelihood (54). SNP-
h? Z-scores were calculated by dividing SNP-h? by its standard error.

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; N—

size

(effective) sample
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Table S10: Genetic correlations with cognition-, development- and health-related outcomes

Trait 1 Trait 2 re(SE) P
Spelling 0.58(0.19) 3x10°3
Word reading 0.33(0.15) 0.03
Non-word reading 0.25(0.18) 0.16
Phoneme awareness 0.22(0.20) 0.28
Intelligence 0.12(0.07) 0.07
Educational attainment -0.01(0.03) 0.71
Early-phase EV -
Infant head circumference 0.02(0.24) 0.94
Childhood head circumference -0.02(0.14) 0.90
Childhood aggression 0.42(0.16) 9x10°3
Childhood internalising symptoms ~ 0.08(0.17) 0.63
ADHD 0.23(0.08) 5x1073
ASD -0.04(0.06)  0.52
Spelling 0.79(0.25) 2x1073
Word reading 0.61(0.17) 4x10*
Non-word reading 0.40(0.19) 0.04
Phoneme awareness 0.66(0.25) 9x1073
Intelligence 0.32(0.08) 8x107°
Educational attainment 0.26(0.05) 6x10°8
Late-phase EV -
Infant head circumference -0.53(0.33) 0.11
Childhood head circumference -0.11(0.15)  0.47
Childhood aggression 0.05(0.14) 0.73
Childhood internalising symptoms ~ -0.08(0.17)  0.65
ADHD 0.02(0.11) 0.88
ASD -0.13(0.08)  0.09
Spelling 0.67(0.48)  0.16
Word reading 0.63(0.41) 0.13
Non-word reading 0.69(0.43) 0.11
Phoneme awareness 0.67(0.48) 0.16
Intelligence 0.36(0.12) 3x10°3
Educational attainment 0.37(0.06) 1x10°
Late-phase RV -
Infant head circumference -0.28(0.38) 0.45
Childhood head circumference 0.17(0.18) 0.35
Childhood aggression -0.49(0.35) 0.16
Childhood internalising symptoms ~ -0.45(0.39)  0.25
ADHD -0.31(0.20) 0.12
ASD -0.03(0.05) 0.56

Genetic correlations (rg) were estimated using summary statistics and High-Definition Likelihood (HDL)(54). The

multiple-testing adjusted significance threshold was determined at P<5.57x1073.

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; EV, expressive
vocabulary, RV, receptive vocabulary
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Table S11: Statistical power for genetic overlap of early-life vocabulary with educational attainment

) rg value
Trait 01 | 02 | 03
Early-phase EV 0.46 1 1
Late-phase EV 0.32 0.97 1
Late-phase RV 0.24 0.92 1

Statistical power to detect genetic overlap between single-trait vocabulary summary statistics and educational
attainment was calculated online (https://eagenetics.shinyapps.io/power_website/) following Dudbridge et al (72).
The exact parameters used to derive power estimates are reported in the Supplemental Methods.

Abbreviations: EV, expressive vocabulary; RV, receptive vocabulary; rg, genetic correlation
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Table S12: Cholesky decomposition of early-life vocabulary size and later ADHD symptoms

Genetic (co)variance Residual (co)variance

Label Factor loading (SE) P Label Factor loading (SE) P
all 0.34(0.07) 1.9x10°® ell 0.94(0.03) <1x107°
a2l 0.20(0.10) 0.04 e21 0.50(0.04) <1x10°%°
a3l 0.14(0.11) 0.21 e31 0.22(0.04) 4.6x10°®
a4l -0.02(0.10). 0.84 edl 0.24(0.04) 4.4x101
a51 0.28(0.13) 0.03 e51 -0.16(0.05) 0.001
a6l 0.27(0.12) 0.03 e61 -0.14(0.04) 0.002
a22 0.33(0.06) 1.7x10% | e22 0.78(0.03) <1x10°%°
a32 0.28(0.09) 0.002 e32 0.32(0.04) <1x10°%°
ad2 0.31(0.08) 9.0x10° | e42 0.22(0.04) 3.4x10°
a52 -0.41(0.11) 3.4x10% | e52 0.04(0.05) 0.46
a62 -0.25(0.12) 0.05 e62 -0.01(0.05) 0.75
a33 0.30(0.08) 3.1x10* e33 0.81(0.03) <1x101°
a43 0.14(0.11) 0.20 e43 0.46(0.03) <1x101°
a53 0.04(0.20) 0.85 e53 -0.11(0.06) 0.05
a6b3 -0.03(0.17) 0.84 e63 -0.04(0.05) 0.45
ad4 0.15(0.08) 0.07 e44 0.74(0.02) 0
a54 0.09(0.19) 0.62 e54 0.04(0.05) 0.43
ab4 -0.34(0.14) 0.01 e64 0.08(0.04) 0.06
a55 -7.1x10°(NA) NA e55 0.84(0.05) <1x107°
a65 -8.7x10%(0.31) 1.00 e65 0.24(0.07) 3.0x10*
a66 -7.8x10°(0.19) 1.00 e66 0.82(0.04) <1x10°%°

Cholesky decomposition of early-life vocabulary scores including infant expressive vocabulary (15 months), toddler
expressive vocabulary (24 and 38 months) and toddler receptive vocabulary (38 months) and childhood and
adolescent ADHD symptom scores (teacher-report at 8 years and mother-report at 13 years), in that order. The
phenotypic covariance of the six measures was dissected into six genetic (A1-A6) and six residual factors (E1-E6).
Analyses were based on all available observations for children across development (N<6,524) and estimated with
Genetic-relationship matrix structural equation modelling (GRM-SEM) (Figure 4). Factor loadings originating from
genetic factors are labelled with ‘a’, whereas factor loadings originating from residual factors are labelled with ‘e’. The
first number indicates the measure onto which the factor loads, while the second number indicates the respective
factor. Individual-level data were retrieved from the Avon Longitudinal Study of Parents and Children.
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Figure S1: Genetic correlations among traits included in High-Definition Likelihood analyses

Genetic correlations (rg) were estimated with High-Definition Likelihood (54) based on genome-wide summary
statistics and. The lower triangle represents rg estimates and corresponding standard errors, with the dotted line
representing an estimate of zero. The upper triangle represents rgy estimates in number format.

a. rg estimates >1 were truncated at 1.

Abbreviatons: ADHD, Attention-Deficit/Hyperactivity Disorder; AGG, aggression; ASD, Autism Spectrum Disorder; EA,
educational attainment; EV, expressive vocabulary; HC, head circumference; INT, internalising symptoms; 1Q, general
intelligence; RV, receptive vocabulary
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Figure S2: Single-variant genome-wide association meta-analyses

Manhattan plot for genome-wide analyses of (A) early-phase expressive vocabulary (N=8,799); (B) late-phase
expressive vocabulary (Nt=19,296) and (C) receptive vocabulary (N=6,291), as estimated using single-trait meta-
analyses as part of stage I. Manhattan plot of multi-trait genome-wide association results (stage Il), as estimated with
MTAG for (D) expressive vocabulary (N*=22,104), representing early- and late-phase expressive vocabulary (stage )
and (E) late-phase expressive and receptive vocabulary (Nt=23,466), representing late-phase expressive and receptive
vocabulary (stage 1). No association passed the genome-wide significance threshold of 2.10x10® (red line), adjusted
for the number of independent traits studied. The blue line represents the unadjusted genome-wide significance
threshold of 5x10°%, variants passing this threshold are labelled in black. Genomic positions are shown according to
NCBI Build 37. Genetic correlations between single-trait vocabulary summary statistics were derived using High-
Definition Likelihood (54).

+ Estimated sample size based on the increase in mean ¥? statistic using multi-trait analysis of genome-wide
association.

Abbreviations: EV, expressive vocabulary; ERV, expressive and receptive vocabulary; HDL, High-Definition Likelihood;
MA, meta-analyses; N, sample size; rg, genetic correlation; RV, receptive vocabulary
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Figure S3: Gene-based genome-wide association meta-analyses

Manhattan plot for genome-wide analyses of (A) early-phase expressive vocabulary, (B) late-phase expressive
vocabulary, and (C) late-phase receptive vocabulary. No associations passed the gene-based genome-wide
significance threshold of 1.11x10°%, adjusted for the number of genes and independent traits studied (red line). The
blue line represents the unadjusted genome-wide significance threshold of 2.64x10%. Genomic positions are shown
according to NCBI Build 37.

Abbreviations: EV, expressive vocabulary; RV, receptive vocabulary
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