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Abstract

This thesis explores the photoionization dynamics in atoms using phase-locked two-color

pulses, a high-frequency extreme ultraviolet (XUV) and a low-frequency infrared (IR)

pulse, with the focus on extending the understanding of the interaction between the IR field

and the outgoing electrons. To achieve this, a multi-sideband RABBITT (reconstruction of

attosecond beating by two-photon transitions) technique was developed.

An attosecond-beamline is constructed which includes a femtosecond IR laser, a high-

order harmonic generation module for producing XUV pulses, an interferometer, and a

reaction microscope. The setup enables angle-differential and coincidence measurements

of photoionization and photodissociation processes with attosecond precision in a pump-

probe configuration.

The XUV pulse initiates the photoionization process, and the resulting photoelectron

interacts with the IR field, exchanging several photons as it escapes the ionic potential.

Depending on the combination of XUV and IR photon exchanges, and/or the angular-

momentum channels involved, the photoelectrons can reach the same state via different

quantum paths. The resulting signal in the photoelectron spectrum is the coherent superpo-

sition of all these distinct quantum paths, which oscillates as the temporal delay between

the XUV and IR pulses varies, creating an interferogram.

The recorded angle-differential photoelectron interferograms in helium and argon en-

able the extraction of information on the relative amplitudes and phases of the dipole tran-

sition matrix elements associated with the many-order continuum-continuum transitions.

We compare the experimental results with ab initio theoretical calculations based on

solving the time-dependent Schrödinger equation and use a few-level-model simulation to

understand the impact of different parameters on the photoelectron interferogram and the

extracted information.
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Zusammenfassung

Ziel dieser Arbeit ist es, das Verständnis der Photoionisationsdynamik in Atomen mit Hilfe

von Zweifarbenpulsen, einem hochfrequente extrem ultraviolette (XUV) und einem nieder-

frequente infrarote (IR) Puls, zu erweitern mit besonderm Fokus auf die Wechselwirkung

zwischen dem IR-Feld und den austretenden Elektronen. Um dies zu erreichen, wurde eine

Mehrseitenband-RABBITT-Technik (“reconstruction of attosecond beating by two-photon

transitions”) entwickelt.

Zur Durchführung dieser Studie haben wir eine Attosekunden-Strahlführung konstru-

iert, die einen Femtosekunden-IR-Laser, einen Aufbau zur Erzeugung von Oberwellen ho-

her Ordnung (die XUV-Pulse), ein Interferometer und ein Reaktionsmikroskop umfasst.

Der Aufbau macht es möglich, Winkeldifferenzial- und Koinzidenzmessungen von Photo-

ionisations- und Photodissoziationsprozessen mit Attosekundenpräzision in einer Pump-

Probe-Konfiguration durchzuführen.

Der XUV-Puls löst den Photoionisationsprozess aus. Das Photoelektron wechselwirkt

mit dem IR-Feld und tauscht mehrere Photonen aus, während es dem Ionenpotential ent-

kommt. Je nach Kombination von XUV- und IR-Photonenaustausch und/oder den beteilig-

ten Drehimpulskanälen können die Photoelektronen dieselbe kinetische Energie über ver-

schiedene Quantenpfade erhalten. Das daraus resultierende Signal im Photoelektronen-

spektrum ist die kohärente Überlagerung all dieser unterschiedlichen Quantenpfade. Es

oszilliert, wenn die zeitliche Verzögerung zwischen den XUV- und IR-Pulsen variiert wird,

wodurch ein Interferogramm entsteht.

Die aufgezeichneten winkeldifferentiellen Photoelektronen-Interferogramme in Helium

und Argon ermöglichen die Extraktion von Informationen über die relativen Amplituden

und Phasen der Dipolübergangsmatrixelemente, die mit den Kontinuum-Kontinuum-Über-

gängen höherer Ordnung des entweichenden Elektrons im IR-Feld verbunden sind.

Wir vergleichen die experimentellen Ergebnisse mit theoretischen Berechnungen, die

auf der Lösung der zeitabhängigen Schrödinger-Gleichung basieren. Zusätzlich verwenden

wir eine ”Few-Level-Simulation”, um die Auswirkung verschiedener Parameter auf das

Photoelektronen-Interferogramm und die extrahierten Informationen zu verstehen.
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Chapter 1

Introduction

The interaction between light and matter has been a subject of scientific research for cen-

turies. With advancements in laser technology and charged fragment detection systems, our

understanding of this interaction has significantly improved.

The past century has witnessed remarkable progress in the development of laser technol-

ogy, which began in 1960 with the development of the first laser by Theodore Maiman [1].

Since then, lasers have undergone continuous improvement and found applications in nu-

merous fields. Notably, the development of mode-locking and pulse compression tech-

niques has enabled the generation of ultra-short laser pulses in the picosecond and fem-

tosecond regimes [2,3]. In 2018, Donna Strickland and Gérard Mourou received the Nobel

Prize in Physics for their pioneering work on chirped pulse amplification [4], which rev-

olutionized laser technology by making it possible to generate high-intensity femtosecond

laser pulses.

The development of high-intensity ultrashort lasers has paved the way for the discovery

of high-order harmonic generation (HHG). This process was first experimentally observed

in the early 1990s by McPherson [5], and almost simultaneously by Ferray and L’Huillier

at CEA-Saclay [6]. HHG occurs due to the highly nonlinear interaction between a medium

and a high-intensity laser pulse. This interaction converts the long-wavelength laser pulse

into spatially and temporally coherent radiation in the extreme ultraviolet (XUV) and soft

X-ray spectral ranges. It was later demonstrated that the XUV radiation emitted in the

HHG process by few tens of femtosecond pulses corresponds to a train of attosecond pulses

(1 as=10−18 s) [7,8]. By using only a few-cycle pulse to drive the HHG process, it is possible

to generate a single attosecond burst lasting less than 50 attoseconds [9]. The emergence

of table-top XUV attosecond pulses has transformed the investigation of electron dynamics

in matter, which was previously only accessible through the use of large-scale synchrotron

facilities, facilitating the growth of attosecond science.

Along with the advancements in light sources, improvements in particle detection and
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imaging technologies have been equally crucial for enhancing our ability to measure pho-

toionization dynamics. Compared to the detectors used in the past, such as photographic

plates and cloud chambers, modern time-of-flight spectrometers like Magnetic bottles [10],

Velocity Map Imaging (VMI) [11], and Reaction Microscope (ReMi) [12] offer significant

improvements in target selectivity and energy resolution. The ReMi detector, for example,

enables the coincidence detection of charged particles (electrons and ions) and their mo-

mentum vectors. This allows for a complete measurement of the energy and momentum of

the particles produced in a photoionization process.

Photoionization is a fundamental process that occurs when an atom or a molecule ab-

sorbs photons, resulting in the release of electrons. Due to the wave-particle duality of

matter, the emitted photoelectron can be described as a wave packet with a specific am-

plitude and phase. While the amplitude of the electron wave packet can be determined

through ionization cross-section measurements, determining the phase often requires the

use of interferometric methods. Interference occurs when two or more coherent waves

meet at the same point in space and time, generating a density distribution that depends on

the relative phases and amplitudes of the contributing waves.

The photoelectron angular distribution (PAD) is a common way to study these interfer-

ences, where the yield of emitted electrons varies with the emission angle. This angular

distribution is a result of the coherent superposition of all the constituent partial waves of

photoelectrons generated during the process of photoionization.

In the context of two-color photoionization processes, an interference pattern can be

observed in the photoelectron energy distribution in the spectral domain. This pattern arises

as a result of a coherent superposition of continuum states that are created through different

ionization pathways.

In this thesis, the RABBITT technique (reconstruction of attosecond beating by inter-

ference of two-photon transitions) [13] is utilized. This method involves ionizing a target

using an XUV pulse in the presence of a phase-locked IR pulse, and then recording the

resulting photoelectron spectrum. By varying the temporal delay between the two pulses,

the intensity of the photoelectron signal is modulated, creating an interferogram. Analyzing

this inter-ferogram allows for the extraction of the phase of the electron wavepacket (EWP).

Furthermore, RABBITT has found applications in characterizing attosecond pulse trains

(APT) generated in the HHG process [7] and studying photoionization and photo-dissociation

dynamics across various systems [14–17].

This thesis focuses on investigating the XUV-IR photoionization dynamics in argon

and helium, with particular emphasis on detecting continuum-continuum (cc) transitions

of photoelectrons using the RABBITT technique. Specifically, the XUV pulse creates an

electron wavepacket that propagates in the ionic potential in the presence of the IR pulse.
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As the EWP escapes, it accumulates a phase that depends on the form of the long-range

potential of the ion and the order of interactions with the IR field. This phase information

is then imprinted on the photoelectron interference pattern. The photoelectron spectrum

reveals multiple peaks resulting from various orders of continuum-continuum transitions.

We investigate the contribution of these many-order continuum-continuum transitions in the

XUV-IR delay induced modulation of the photoelectron signal at varying kinetic energies

and emission angles.

The thesis is structured as follows:

Chapter 2 provides the necessary theoretical background to establish the important as-

pects of the thesis. It includes a brief discussion on ultra-short laser pulses, the high-order

harmonic generation process, and photo-ionization processes. The chapter also provides

a brief discussion on the photo-electron interferometry technique, primarily the standard

RABBITT scheme, and its extension to 3-SB RABBITT.

In chapter 3, we use a few-level-model simulation to explain the oscillation in the photo-

electron yield and retrieve the phases of the oscillation. We demonstrate how different

parameters, specifically the transition amplitude, the phase, the IR intensity, and the XUV-

APT spectrum affect the measured result.

In chapter 4, we include the three publications on which this thesis is based. Publica-

tion I details the attosecond beamline built at the MPIK in Heidelberg. Publication II delves

deeper into the theory of the 3-SB RABBITT setup. Publication III shows the results from

the very first 3-SB RABBITT measurements in argon. We explain the angle-integrated os-

cillation phase and the angle-resolved phases. We also compare the experimental data with

theoretical predictions from fully quantum-mechanical, many-electron calculations carried

out within the R-matrix (close-coupling) with time dependence (RMT) approach.

In chapter 5, we present unpublished results from 3-SB RABBITT experiments in he-

lium at three IR intensities.

In chapter 6, we summarize the results of this thesis and give an outlook.



Chapter 2

Theoretical Background

This chapter provides the necessary theoretical foundation for understanding the pump-

probe photoelectron interferometric method used to study photo-ionization dynamics. An

overview of ultra-fast laser pulses, second-order harmonic generation, and high-order har-

monic generation is presented, all of which are helpful in understanding the experiment.

Next, different mechanisms involved in the photoionization process, such as single- and

multi-photon ionization and Above Threshold Ionization (ATI), are introduced to provide

a groundwork for further understanding of the underlying physics. Finally, the chapter ex-

plores the photoelectron interferometric technique, specifically focusing on the standard

1-SB RABBITT method and its extension to the 3-SB RABBITT technique, which helps

understand the analysis of the experimental data.

2.1 Ultrashort Pulses

The generation of ultrashort pulses has led to significant advancements in various scientific

fields, including physics, chemistry, biology, materials science, and engineering. These

pulses possess an extremely short duration, typically in the femtosecond range, enabling

the investigation of ultrafast processes. In this section, we provide an overview of the

description, and propagation of ultrashort laser pulses. The influence of the magnetic field

component is significantly weaker in light matter interaction compared to the electric field

component. Consequently, in the description of many light-matter interaction processes,

the magnetic field can often be disregarded. In the time domain, a pulse can be exclusively

expressed using the electric field as:

Ẽ(t) = E(t)ei(ωt+ϕ(t)). (2.1)

Here E(t) is the envelope of the field, ω is the carrier frequency, and ϕ(t) is a slowly-varying

phase. The electric field can also be presented in the spectral domain through its Fourier

4
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transform:

Ẽ(ω) = E(ω)eiϕ(ω). (2.2)

The spectral phase is often expanded around the central frequency (ω0) in a Taylor series:

ϕ(ω) = ϕ(ω0) + ϕ′
0(ω − ω0) +

1

2!
ϕ′′
0(ω − ω0)

2 +
1

3!
ϕ′′′
0 (ω − ω0)

3 + ..., (2.3)

where

GD : ϕ′
0 =

∂ϕ(ω)

∂ω

∣∣∣∣
ω0

; GDD : ϕ′′
0 =

∂2ϕ(ω)

∂ω2

∣∣∣∣
ω0

; TOD : ϕ′′′
0 =

∂3ϕ(ω)

∂ω3

∣∣∣∣
ω0

. (2.4)

The first term in equation (2.3) is the absolute phase. It is also often called the carrier-

envelope phase (CEP) and describes the relative phase difference between the carrier wave

and the envelope of the pulse. The CEP becomes important when the pulse is only a few

cycles long. In particular, it determines the electric field of the pulse near its peak, which

can significantly affect the way the pulse interacts with matter.

The coefficient of the second term is called the group dispersion (GD). Group dispersion

results in a translation of the entire pulse in the time domain. The quadratic term in the ex-

pansion is called group-delay dispersion (GDD). A positive GDD causes the low-frequency

components of the pulse to arrive later than the high-frequency components, resulting in

a broadening of the pulse duration. The fourth term in the Taylor expansion, called third-

order dispersion (TOD), describes the third-order variation of the group delay with respect

to the optical frequency. The presence of TOD makes the pulse asymmetric in time. Gen-

erally, the first few terms of the Taylor expansion, up to the TOD, provide a comprehensive

description of the dispersion properties of a material or optical system.

2.2 Second-order Harmonic Generation (SHG)

Second-order harmonic generation (SHG) is a coherent nonlinear optical process that in-

volves the interaction of a laser field with a medium to generate a new beam at twice the

original frequency. Nonlinear crystals, such as potassium dihydrogen phosphate (KDP),

beta-barium borate (BBO), lithium niobate (LiNbO3), and lithium triborate (LBO), are

commonly used for SHG. In our experiment, we used BBO for SHG. For SHG, the nonlin-

ear material must have a non-zero second-order susceptibility, which is the coefficient that

relates the polarization of the material to the square of the electric field. When the electric

field of the incoming photon is strong enough, it induces a polarization in the material that

oscillates at twice the frequency of the electric field. This oscillating polarization then emits

a new photon at the second harmonic frequency. The resulting SHG pulse has a shorter du-

ration than the original pulse, since it has a higher frequency. The efficiency of the SHG
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process depends on the intensity of the input pulse, the non-linearity of the material, and

the phase-matching conditions [18]: ISHG ∝ |deff|2 L2 sinc2(∆kL
2

)I2fundamental, where L is the

length of the crystal, λ is the wavelength of the fundamental wave, |deff| is the magnitude

of the effective second-order nonlinear coefficient of the crystal, ∆k is the phase mismatch,

and Ifundamental is the intensity of the fundamental wave. A thicker crystal can result in higher

efficiency, but it also typically leads to a narrower phase-matching bandwidth, which can

limit the spectral range of the generated second-harmonic signal.

2.3 High-order Harmonic Generation (HHG)

High-order harmonic generation (HHG) is a highly nonlinear optical process where a strong

pulsed laser beam is focused onto a gas jet or solid material, leading to the generation of

coherent radiation in the extreme ultraviolet (EUV) and soft X-ray regions.

Figure 2.1. Illustration of the three-step model of HHG. Figure taken from [19]

The mechanism of HHG can be understood through the semi-classical three-step model

proposed by Corkum [20]. In this model, the laser field is strong enough to significantly

distort the electron binding potential within the atom. As shown in the figure 2.1, the process

unfolds in three steps: In the first step, the strong electric field of the laser pulse bends

the Coulomb potential of the atom, and the electron tunnels out of the lowered potential.

Subsequently, in the second step, the electron is accelerated by the electric field of the laser,

acquiring kinetic energy in the process. In the third step, when the sign of the laser’s electric

field changes, the electron is accelerated back towards the parent ion, potentially leading to

a recombination event. When the electron recombines with the parent ion, its kinetic energy

and the binding energy is converted into a short burst of light.

During each cycle of the laser field, the three-step process occurs twice, resulting in the

emission of a pulse every half cycle. If the driving field consists of multiple cycles, the



High-order Harmonic Generation (HHG) 7

entire process repeats multiple times, generating a train of pulses. This periodicity in time

gives rise to a frequency comb in the spectral domain, where two consecutive peaks of the

comb are separated by a distance of 2ω, i.e., twice the frequency of the driving field. In

a centro-symmetric generation medium, only odd harmonics are emitted. The bandwidth

of each harmonic in the spectra depends on the pulse duration of the driving field. When

the driving field is sub-cycle, the process generates a single attosecond pulse with a broad

frequency spectrum.

Depending on the time the electron tunnels out of the potential, it may follow different

trajectories before recombining with the parent ion. The electron that acquires the largest

kinetic energy leaves the atom approximately 0.31/ω after each peak of the laser field and

generates photons with a maximum energy (cut-off energy) given by [21]:

EΩ = Ip + 3.17Up ; Up(eV ) = 9.33 I(1014W/cm2)λ2(µm2). (2.5)

where Ip is the ionization potential of the atom and Up is the ponderomotive energy which

is determined by the laser wavelength (λ) and intensity (I).

Electrons that tunnels out earlier or later than this time (0.31/ω ) will have less kinetic

energy upon return, and these trajectories are referred to as long and short trajectories,

respectively. The radiation emitted from these electrons is chirped, and the photon energy

depends on the time of recombination with the parent ion. Short-trajectory harmonics have

a positive chirp, while long-trajectory harmonics have a negative chirp. This means that for

short trajectory radiation, the higher the harmonic order, the later is the emission time.

As can be seen from equation 2.3, using atoms with higher ionization potentials, in-

creasing the laser intensity (I), and using longer laser wavelengths can increase the cut-off

of the HHG process. However, increasing the intensity is limited by the saturation inten-

sity, beyond which the neutral medium depletes severely, thus resulting in rapid decrease in

efficiency. As the wavelength of the laser increases, the electron spends more time in the

continuum region before it recombines with the parent ion. This extended time in the con-

tinuum region results in increased spatial dispersion of the electron wave packet, leading to

a decrease in the recombination efficiency. Consequently, the efficiency of HHG conversion

also decreases as the wavelength increases.

Therefore, achieving a balance between generation efficiency and energy cut-off is cru-

cial. Factors such as the laser wavelength and intensity, gas pressure and composition,

and laser beam focusing conditions also affect HHG efficiency. Phase-matching is a major

challenge in HHG, as the generated EUV and soft X-ray photons are highly susceptible to

dispersion in the medium.

In a gaseous medium, the wavevector-mismatch is a function of harmonic order and has
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four contributions [22]:

∆kq = ∆ke
q +∆kn

q +∆kg
q +∆kd

q . (2.6)

Here, ∆ke
q and ∆kn

q describe the mismatch due to plasma and neutral gas-dispersion, ∆kg
q

is the mismatch due to geometry of the focus, and ∆kd
q is the dipole phase mismatch. The

four contributions should be balanced against each other to minimize the overall mismatch.

The mismatches ∆kn
q and ∆ke

q have opposite signs and scale linearly with pressure. The

pressure can be increased to increase the flux but increasing the pressure too much results

in re-absorption of the generated XUV beam. While a high driving intensity is desirable to

increase the cutoff, increasing the intensity creates more free electrons, thereby increasing

the contribution of plasma dispersion ∆ke
q .

The dipole phase mismatch (∆kd) is a function of the spatial and temporal intensity

distribution of the laser beam. It can be minimized by moving the focus across the gas

medium. Since the dipole phase-mismatch depends on the spatial gradient of the laser

intensity, it changes sign before and after the focus. The dipole wave-vector mismatch can

be countered by the geometrical wave-vector mismatch by keeping the generation point

a little behind the focus. In the experiment, therefore, one has to play with the medium

length and density, focal condition, pulse duration, and intensity to optimize the conversion

efficiency and the cutoff energy.

2.4 Photoionization

Photoionization is the process in which an atom or molecule absorbs a photon of sufficient

energy, causing one or more electrons to be ejected from the atom or molecule. Depending

on the frequency and intensity of the incident light, as well as the binding energy of the

electrons in the system, different mechanisms of photoionization can occur. These are

schematically illustrated in Figure 2.2. The most straightforward photoionization process

is Single-Photon Ionization (SPI), where the energy of a single photon is greater than the

minimum energy required to remove an electron from the system in its ground state:

A+ h̄ω = A+ + e−. (2.7)

The excess energy from the absorbed photon is mainly transferred to the ejected elec-

tron, rather than the recoiling ion, due to the conservation of total momentum and the large

mass difference between the ion and electron. As a result, the kinetic energy of the ejected

electron can be determined by the equation: Ee
kin = h̄ω − Ip, where h̄ω represents the

energy of the absorbed photon and Ip is the ground-state ionization potential of the sys-

tem. In multi-electron systems, electron-electron correlation effects can cause the energy
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(a) (b) (c) (d)

𝐼𝑝

𝑉𝑡𝑜𝑡 = 𝑉𝑐 + 𝑉𝐹

Figure 2.2. Photoionization processes in an atomic system. (a) Single-Photon Ioniza-

tion (SPI), (b) Multi-Photon Ionization (MPI), (c) Above-Threshold Ionization (ATI), and

(d) Tunnel Ionization (TI).

from the absorbed photon to be shared between multiple electrons, leading to simultaneous

ionization plus excitation or the removal of additional electrons. Single-photon ionization

spectroscopy generally employs XUV (Extreme Ultraviolet) or soft X-ray (SXR) sources.

The rate of single-photon ionization varies linearly with the pulse intensity (I):

Γ(1) ∝ σ(1)(ω)
I(ω)

h̄ω
(2.8)

where σ(1) is the single-photon ionization cross section.

When the energy of a single photon is insufficient to ionize the target, the combined

energy of several photons can overcome the ionization potential of the system and lead to

the ejection of an electron.

A+ nh̄ω = A+ + e−; Ee
kin = nh̄ω − Ip. (2.9)

The rate of this process, called multi-photon ionization (MPI), scales as the nth power of

the intensity [23]:

Γ(n) ∝ σ(n)(ω)

(
I(ω)

h̄ω

)n

. (2.10)

Here σ(n) is the n-photon ionization cross section, and n is the minimum number of photons

needed for ionization.

In multi-photon ionization, the atom can even absorb more than the minimum number

of the photons required to ionize the atom, leading to photoelectrons with higher kinetic

energy. This process is called above-threshold ionization (ATI). ATI can be identified in the

kinetic-energy spectrum of the ejected electrons by discrete peaks at intervals of the photon

energy:

A+ (n+ s)h̄ω = A+ + e−; Ee
kin = (n+ s)h̄ω − Ip. (2.11)

The ionization rate of ATI is given by [24]:

Γ(n+s)(I) ∝ σ(n+s)(ω)

(
I(ω)

h̄ω

)n+s

. (2.12)
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When a strong laser pulse interacts with an atom or molecule, the oscillating electric

field can temporarily modify the potential barrier that an electron would typically encounter.

The effective potential barrier is the sum of the static Coulomb potential of the ion and a

time-dependent linear potential due to the laser’s electric field. As the laser electric field

amplitude oscillates and changes sign, the effective potential oscillates as well, alternately

lowering and raising the barrier. If the potential barrier is lowered enough by the laser elec-

tric field, the electron can tunnel through the barrier and escape from the atom or molecule.

However, this tunneling process must occur within the half period of each laser cycle, be-

cause the laser field changes sign every half period. If the electron does not tunnel out

within this time frame, the lowered potential barrier will be increased again when the field

changes sign, making tunneling less likely during this cycle. In addition, tunneling in cycles

is exponentially favored near the peak of the envelope.

While MPI and tunneling ionization both require a strong laser field, the Keldysh param-

eter (γ) is a useful quantity for distinguishing between these two regimes. This parameter

is defined as the ratio of the tunneling time of an electron through a potential barrier to the

period of the laser field [25]. It can be expressed as γ = ω
√

2Ip/E0, where ω is the fre-

quency and E0 is the maximum amplitude of the laser field. When the Keldysh parameter

is much greater than 1, the dominant ionization process is multi-photon ionization, while

for values much smaller than 1, tunneling ionization becomes dominant.

For γ ≪ 1, the tunneling rate can be approximated as [26]

Γtunnel ∝ Nexp

(
− 2(2Ip)

2/3

3E0

)
, (2.13)

where N is a slowly-varying function that depends on the cycle-averaged field intensity.

When the electric field of the laser pulse exceeds the Coulomb field experienced by the

electron in the bound state, the electron can freely escape the Coulomb potential of the ion.

This process is known as over-the-barrier ionization (OBI).

Laser-assisted photoionization

We now discuss a laser-assisted photoionization process, where a system is ionized in the

presence of two synchronized fields: a high-frequency XUV field and a low-frequency IR

field. The XUV field generates photoelectrons through single-photon ionization, which

contribute to the mainband (M0) with a kinetic energy given by EM
kin = h̄Ω − Ip, where

Ip is the ionization potential and h̄Ω is the energy of the XUV photon. In the presence

of residual ion potential, the emitted photoelectron can interact with the IR field, resulting

in the formation of sidebands with higher or lower kinetic energy. In the photoelectron

spectrum, these sidebands are spaced apart by the energy of the IR photon and their kinetic

energy is determined by the number of IR photons exchanged. The kinetic energy of the
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nth sideband is thus expressed as h̄Ω± nh̄ω− Ip, where n is the net number of IR photons

absorbed (+) or emitted (-). The process is illustrated in Figure 2.3. It should be noted

that in the absence of intermediate resonances, the likelihood of the IR field being absorbed

before the XUV field to generate photoelectrons is much lower than the probability of the

XUV photon being absorbed first, followed by the IR photons. Therefore, these transitions

are not depicted in Figure 2.3.

𝐼𝑝
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𝑆−1
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Yield
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𝑆1

Figure 2.3. XUV-IR photoionization diagram. The XUV photon absorption creates a main

peak (M0) in the photoelectron spectrum (PES) and absorption of IR photons then cre-

ates positive sidebands (S1, S2, ...) and emission of IR photons creates negative sidebands

(S−1, S−2, ...).

A common approach to determine the yield of the n-th sideband in XUV-IR two-color

photoionization involves treating the one-photon XUV ionization as a first-order pertur-

bation, while the interaction between the photoelectron and the IR field is handled non-

perturbatively through the strong-field approximation (SFA) [27, 28]. Under this frame-

work, and if the kinetic energy of the emitted photoelectron is significantly greater than the

energy of the IR photon, the population of the n-th sideband can be approximated as

S±n ∝ J2
±n(α⃗0 · k⃗)| ⟨k⃗| r⃗ · E⃗XUV |i⟩ |2, (2.14)

where α⃗0 = E⃗IR/ω
2 and ⟨k⃗| r⃗ · E⃗XUV |i⟩ is the dipole transition amplitude in XUV absorption

creating a photoelectron with asymptotic momentum k⃗.

When the argument of the Bessel function is less than the order n, i.e., (α⃗0 · k⃗) < n,

the population of the n-th sideband in the continuum-continuum transition increases with

the final momentum of the photoelectron. In the weak-field limit, one can use perturbation

theory to estimate the population of the sidebands. However, estimating the population

of higher-order sidebands requires the calculation of higher-order dipole-matrix elements,

which is very challenging for n > 1.
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2.5 Photoelectron Interferometry

Photoelectron interferometry is a versatile and powerful technique used for studying the dy-

namics of photoionization processes. The first step involves ionizing an atom or molecule

with a laser pulse, creating a photoelectron with a specific energy and momentum. A second

laser pulse is then used to perturb the photoelectron wavepacket, resulting in an interference

pattern. By analyzing this interference pattern, valuable information about the ionization

process can be obtained, such as the relative phases and amplitudes of the different ioniza-

tion pathways, and the lifetimes of the excited states involved.

Two commonly used variants of this technique are RABBITT [7] and attosecond streak-

ing [29]. In both techniques, an XUV pulse is used to initiate the electron dynamics, and an

IR pulse is employed to probe the temporal evolution of the electron dynamics by varying

the delay between the two pulses. However, the two techniques differ in their pump-pulse

characteristics and probe-pulse intensities. In the attosecond streaking method, a single at-

tosecond pulse (SAP) serves as the pump, and a few-cycle IR pulse with high intensity acts

as the probe. In contrast, the RABBITT technique uses an attosecond pulse train (APT) as

the pump and typically a longer IR pulse with lower intensity.

Since RABBITT was used in the present work, only this technique will now be de-

scribed in some detail. A separate subsection is devoted to the extension of the standard

one-sideband (1-SB) version to a three-sideband (3-SB) mode. 3-SB RABBITT contains

additional information that is not accessible through 1-SB RABBITT and was specifically

developed for this thesis.

2.5.1 1-SB RABBITT

RABBITT employs a two-color pump-probe scheme, where a superposition of an XUV-

APT (pump) and a phase-locked IR pulse (probe) is used to photoionize a target, and the

kinetic energy spectrum of the resulting photoelectron is measured as a function of the

pump-probe delay. As the delay between the XUV-APT and IR pulse is varied, the photo-

electron yield in the recorded spectra oscillates, and these oscillations encode the time delay

information in the photoionization process.

The XUV spectrum, generated in the HHG process, typically comprises several odd

harmonics of the IR pulse. Consequently, the ionization by the XUV pulse produces photo-

electrons with kinetic energies that correspond to these harmonics:

Ekin(Mq+1) = h̄(q + 1)ω − Ip; q ∈ even number (2.15)

These photoelectron peaks created directly by the XUV field are known as the main peaks

or mainbands (M ). They are separated by twice the photon energy of the HHG driving
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field. When the photoelectrons created by the XUV pulse interact with the residual ion and

the IR probe pulse, the kinetic energy of the photoelectrons can change. This change in

energy occurs in steps that are multiples of the energy of the IR photons. As a result, new

peaks in the photoelectron spectrum appear at energies in between the main peaks. These

peaks are called sidebands (S). Their energies are given by:

Ekin(Sq) = h̄(q ± 1)ω ∓ h̄ω − Ip; q ∈ even number (2.16)

𝑀𝑞+1

𝐼𝑝

𝐻𝑞−1 𝐻𝑞+1

𝑀𝑞+3

𝐻𝑞+3

𝑀𝑞−1

𝑆𝑞

𝑆𝑞+2

ۧ|𝑔
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Figure 2.4. Energy diagram showing two sets of quantum paths leading to the formation of

sidebands.

Figure 2.4 illustrates two sets of possible quantum paths leading to the same energy

states of the respective sidebands. These arise from different combinations of XUV and

IR photons. The sideband Sq, for example, can be generated in two distinct pathways: the

first path involves the absorption of an XUV photon from the (q−1)th harmonic (Hq−1)

followed by the absorption of an IR photon, which we refer to as the absorption path (’a’).

The second path involves the absorption of the next energetic harmonic Hq+1 followed by

the emission of an IR photon, which we refer to as the emission path (’e’). The sideband

signal is formed by adding coherently all the quantum paths that lead to the same energy

state. Note that the intensities of the mainbands, which are formed by the absorption of the

XUV photons, are slightly weakened due to the redistribution of the flux into the sidebands.

When the IR field is weak, the transition to the SB can be modeled using second-order

perturbation theory. The two-photon transition element that corresponds to the absorption

of the XUV photon followed by the IR photon can be expressed as:

A(2)(k⃗q; Ω, ω) =− iẼΩẼω lim
ε→0+

∑∫
i

⟨k⃗q| z |i⟩ ⟨i| z |g⟩
ϵg + Ω− ϵi + iε

=ẼΩẼωM
(2)(k⃗q; Ω, ω). (2.17)
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Here ϵg is the ground-state energy. The sum/integral include all intermediate states denoted

by |i⟩, including the discrete Rydberg states and the ionization continuum. ẼΩ = EΩe
i ϕΩ

and Ẽω = Eωe
i ωτ (for absorption) are the complex electric-field amplitudes of the XUV-

pump (Ω) and IR-probe (ω) pulses, respectively. τ is the temporal delay between the XUV

and IR pulses. Both fields are polarized in the z direction, which is the chosen quantization

axis.

As mentioned above, the sideband signal is formed by adding coherently all the quantum

paths that lead to the same energy state:

Sq(k⃗q, τ) ∝
∣∣∣A(2,a)(k⃗q; (q − 1)ω, ω) +A(2,e)(k⃗q; (q + 1)ω,−ω)

∣∣∣2
∝

∣∣A(2,a)
∣∣2 + ∣∣A(2,e)

∣∣2 + 2
∣∣A(2,a)

∣∣ ∣∣A(2,e)
∣∣ cos(arg(A(2,a)A(2,e)∗))

∝
∣∣A(2,a)

∣∣2 + ∣∣A(2,e)
∣∣2 + 2

∣∣A(2,a)
∣∣ ∣∣A(2,e)

∣∣ cos(2ωτ −∆ϕXUV −∆ϕatom)

(2.18)

Here ∆ϕXUV = (ϕq+1 − ϕq−1) is the phase difference (atto-chirp) between the harmonic

fields (q + 1) and (q − 1), while∆ϕatom = arg
[
M (2,a)M∗(2,e)] is the phase difference

between the dipole transition matrix element constituting the absorption and the emission

paths.

Equation 2.18 again states that the yield of the sideband depends on the phase difference

between two different paths. This phase difference can be varied by adjusting the temporal

delay between the XUV and IR pulses, resulting in a delay-dependent oscillation of the

yield. The yield oscillates at twice the IR photon frequency as the delay between the two

pulses is varied. One can fit this yield oscillation to a cosine form, I0 + I1cos(2ωτ − ϕR),

and thereby retrieve the phase and the contrast of the oscillation. The extracted phase is

referred to as the RABBITT phase (ϕR) or simply the oscillation phase in this thesis. It is a

composite term, which contains the spectral phase difference of the two harmonics involved

in the two distinct paths and the phase difference of the two-photon dipole matrix elements

describing the two distinct transition paths:

ϕR = ∆ϕXUV +∆ϕatom. (2.19)

It is often convenient to express the phase in terms of the time as: τR = ϕR

2ω
. Hence the

RABBITT phase can be written in terms of time as:

τR = ∆ϕXUV /2ω +∆ϕatom/2ω (2.20)

The RABBITT technique was initially utilized to measure the spectral phases of the

harmonics, ∆ϕXUV , in order to characterize the XUV-APT generated in the HHG process

[7]. Assuming that the atomic phase varies smoothly with energy and that ∆ϕXUV is much
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larger than ∆ϕatom, the retrieved oscillation phase can be approximated as the spectral phase

difference between two adjacent harmonics, i.e., ϕR ≈ ∆ϕXUV .

Since its introduction, RABBITT has been widely employed to measure relative photo-

emission time delays in a variety of systems, including atoms, molecules, and metal sur-

faces [14, 16, 30–32]. Similar to the concept of group delay in optics, a time delay for

an electron wave-packet can be defined by taking the spectral derivative of its phase. In

photoionization experiments, the relative photoemission delay between two electron wave-

packets can be related to the difference in their spectral phase derivatives. To determine the

relative photoemission time delay in two different photoemission processes using the RAB-

BITT technique, the first step is to measure the relative atomic phase difference (∆ϕatom)

corresponding to the two processes. The atomic phase ϕatom, which is the phase of the

two-photon dipole matrix element, can be decomposed into two terms [33]:

ϕatom = η + ϕcc. (2.21)

Here η is called the Wigner phase, which is the phase of the dipole matrix element cor-

responding to single-photon ionization by the XUV, while ϕcc is called the continuum-

continuum coupling phase (cc-phase). The latter corresponds to a phase change due to the

interaction of the photoelectron with the Coulomb field of the residual ion and the IR field.

The concept of time delay in quantum mechanics was first introduced by Eisenbud [34]

and later developed further by Wigner and Smith [35, 36] in the context of scattering pro-

cesses. The EWS (Eisenbud-Wigner-Smith) time delay, also known as the Wigner delay, is

defined as the spectral derivative of the scattering phase accumulated by the partial waves of

the scattered particle as it passes through a short-range attractive potential. It is interpreted

as the difference between the expected time of arrival of a wave packet at a detector in the

absence of the potential and the actual time of arrival in the presence of the potential. The

time delay can be positive or negative, depending on the energy of the incident particle and

the properties of the potential. The photoionization process is considered a half-scattering

process, hence in a photoionization measurements the Wigner delay corresponds to the

photoionization delay. As mentioned above, it is the spectral derivative of the phase of the

single-photon dipole matrix element.

From the RABBITT measurement, one can only get the total oscillation phase ϕR. Con-

sequently, in order to measure the atomic phase difference (∆ϕatom), one needs to first

know the group delay of the XUV pulse train. In practice, the XUV group delay is often

the dominant part of the total RABBITT phase and cannot neglected. Therefore, a common

approach is to make a relative measurement by comparing two different ∆ϕatom values,

which may correspond to electrons originating from different orbitals [14] or from different

species [17].
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Furthermore, even in the relative measurement of the atomic phase shift, one needs to

know the continuum-continuum phase (ϕcc) in order to extract the relative Wigner phase

from the relative phase of the two-photon matrix element. Numerous theoretical studies

have been conducted [33,37,38] to evaluate ϕcc. It was found that ϕcc is a universal quantity,

since it is mainly determined by the long-range Coulomb potential of the residual ion, rather

than the properties of the short-range potential. To estimate the value of ϕcc, an asymptotic

approximation was introduced [33] to derive an analytic expression for ϕcc. In the asymp-

totic approximation, ϕcc is indeed independent of the details of the short range-potential of

the ionic species and also independent of the angular momentum of the continuum states

involved.

However, angle-resolved RABBITT measurements in helium demonstrated that ϕcc

does depend on the angular momentum of the continuum states [39]. Subsequent stud-

ies [40, 41] then showed that while ϕcc depends on the orbital angular momentum it still

remains nearly universal in a sense that it doesn’t depend on the species but only on the

kinetic energy and the angular momenta. These experimental studies of ϕcc involved re-

trieving the amplitude and phase of the constituent partial waves of the electron wave packet

(EWP) through a multi-dimensional fitting procedure of the angle-resolved delay-dependent

photoelectron yield.

2.5.2 3-SB RABBITT

This thesis employs a novel variation of the standard RABBITT technique, called the three-

sideband (3-SB) RABBITT technique, to study the continuum-continuum phase. Unlike

previous methods that only probed single continuum-continuum transitions, our new ap-

proach allows us to investigate many-order transitions.

To implement the 3-SB RABBITT technique, the separation between the harmonics in

the XUV spectra is adjusted. First, a second-harmonic generation of the fundamental laser

pulse is performed, and this second harmonic is then used to drive the HHG. This results

in an XUV spectrum containing odd harmonics of the second harmonic of the fundamen-

tal pulse. Two consecutive peaks in the XUV spectrum are now separated by four times

the frequency of the fundamental pulse that is still used as the probe. As a result, photo-

ionization in the superposition of the XUV-APT and the IR fields leads to the formation of

three sidebands between two mainbands, as shown in Figure 2.5.

For each sideband, Figure 2.5 shows the two lowest-order transition paths that deter-

mine the delay-dependent oscillation in the photoelectron yield. We have omitted the other

paths, which might contribute significantly to the yield but do not contribute much to the

oscillations. (See publication II [42] for details.) To induce the oscillation in the yields of
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Figure 2.5. Transition diagram showing the formation of mainbands (M ) via single photo-

ionization by the harmonics (H) in the XUV pulse and the three sidebands (S: lower, central

and higher) formed by the absorption or emission of multiple probe photons.

the sidebands, there must be interference between at least two paths involving distinct har-

monics. The oscillations observed in the lower (Sl) and higher sidebands (Sh) are mainly

due to the interference between a two-photon path and a four-photon path, whereas the

oscillation in the central sideband (Sc) results from the interference between two terms of

the same (third) order. The transition amplitudes of each quantum path can be described

using lowest-order perturbation theory. To obtain delay-dependent yields of the sidebands,

we again consider the coherent sum of two distinct absorption and emission paths. As

discussed in detail in Publication II, the relevant formulas are:

Sq,l(k⃗l, τ) ∝
∣∣∣A(2,a)(k⃗l; (q − 1)ω, ω) +A(4,e)(k⃗l; (q + 1)ω,−3ω)

∣∣∣2
∝

∣∣∣Ẽq−1ẼωM
(2,a)
q,l + Ẽq+1Ẽ

∗3
ω M

(4,e)
q,l

∣∣∣2
∝ I l0 + I l1 cos(4ωτ −∆ϕXUV −∆ϕl

atom + π) (2.22)

Sq,c(k⃗c, τ) ∝
∣∣∣A(3,a)(k⃗c; (q − 1)ω, 2ω) +A(3,e)(k⃗c; (q + 1)ω,−3ω)

∣∣∣2
∝

∣∣∣Ẽq−1Ẽ
2
ωM

(3,a)
q,c + Ẽq+1Ẽ

∗2
ω M (3,e)

q,c

∣∣∣2
∝ Ic0 + Ic1 cos(4ωτ −∆ϕXUV −∆ϕc

atom) (2.23)

Sq,h(k⃗h, τ) ∝
∣∣∣A(4,a)(k⃗h; (q − 1)ω, 3ω) +A(2,e)(k⃗h; (q + 1)ω,−ω)

∣∣∣2
∝

∣∣∣Ẽq−1Ẽ
3
ωM

(4,a)
q,h + Ẽq+1Ẽ

∗
ωM

(2,e)
q,h

∣∣∣2
∝ Ih0 + Ih1 cos(4ωτ −∆ϕXUV −∆ϕh

atom + π) (2.24)

Here, ∆ϕ
l/c/h
atom is the phase difference between the absorption and emission dipole matrix

elements, denoted as M (a) and M (e), respectively. These matrix elements correspond to

different orders in the lower, central, and higher sidebands. We see that the oscillations in

the yields of all three sidebands occur at the same frequency (4ω) as the delay is varied.
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Additionally, the XUV-group delay contribution is the same in all three sidebands, since

they are generated by the same pair of harmonics.

The atomic phase information contained in the three sidebands, therefore, can provide

insights into the multi-order continuum-continuum interaction. Publication II [42] delves

deeper into this topic by utilizing perturbation theory and the asymptotic approximation to

study multi-photon continuum-continuum transitions and uncover further details about the

atomic phases of the three sidebands. In the 3-SB RABBITT measurements, the oscillation

phase (ϕR) is expressed in units of time as τR = ϕR

4ω
.

In systems where ionization occurs through a single angular-momentum channel, such

as atomic hydrogen and helium, the Wigner phase contribution is the same for all three

sidebands, and any discrepancy in the atomic phase among the sidebands originates solely

from the continuum-continuum coupling [43]. However, in systems involving multiple

angular-momentum channels in the XUV ionization process, like argon, the Wigner phase

associated with each channel contributes differently to the atomic phases of the three side-

bands [44]. As a result, the RABBITT phase becomes a complex function of the angular-

momentum-dependent transition amplitudes and their associated phases. By analyzing the

RABBITT phase at different emission angles, one can still extract information about the

ratios of the transition amplitudes and the phase differences between different channels,

although direct information about the continuum-continuum phase alone is not possible.



Chapter 3

Few-Level Model Simulation

In this chapter, we conduct simulations based on the few-level model (FLM) to explore the

phases of oscillation of sidebands and their angle-dependence in both the 1-SB and 3-SB

RABBITT schemes. The FLM is a modification of the two-level model, where the system

now comprises a ground state and several discrete excited states. The system undergoes

excitation by an XUV pulse, which transfers a portion of the population from the ground

state to the excited states, and an IR pulse redistributes the population among the excited

states. To characterize the system, we assign an amplitude and phase for each dipole transi-

tion. We perform RABBITT simulation by varying the XUV and IR temporal delays while

monitoring the population of the excited states as a function of the delay. The population of

these states oscillates with the delay, and the phases of these oscillations is retrieved for the

further analysis.

We begin by defining the time-varying interaction Hamiltonian of the system as H(t) =

H0 + H ′(t), where H0 represents the unperturbed Hamiltonian and H ′(t) represents the

perturbation induced by the external field. In the length gauge of the dipole approximation,

H ′(t) can be expressed as r⃗ · E⃗(t), where E⃗(t) = E⃗XUV(t) + E⃗ IR(t) denotes the total electric

field of co-linearly polarized IR and XUV pulses. The time-dependent wavefunction of the

system can be expressed as a sum of the eigenstates of the field-free Hamiltonian written as

|Ψ(t)⟩ =
∑
j

cj(t)e−iωjt |ϕj⟩ . (3.1)

Here, cj(t) represents the time-dependent coefficients, ωj is the energy of the j-th eigenstate

denoted as |ϕj⟩.
We substitute the wavefunction expressed in terms of stationary states (given by equa-

tion (3.1)) into the time-dependent Schrödinger equation (TDSE), i∂t |Ψ(t)⟩ = H(t) |Ψ(t)⟩,
and project it onto ⟨ϕi|. This yields a set of differential equations that describe the time evo-

lution of the time-dependent population coefficients.
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Figure 3.1. Energy levels in the FLM (a). Upper panel of (b) shows temporal variation in

population of ground state (grey, left y-axis), states directly connected via XUV pulse (pur-

ple, right y-axis) and states coupled by IR pulse (red, right y-axis). Lower panel displays

total population change over time (black, left y-axis) and temporal profile of normalized

XUV (purple) and IR (red) fields (right y-axis).

d

dt
ci(t) = −i

∑
j

µijE(t)e−iωjitcj(t) (3.2)

Here, µij represents the dipole matrix element for the transition from the j-th to the

i-th energy level, and ωji denotes the energy difference between the two levels. We use the

Runge-Kutta method to solve the set of coupled differential equations (3.2) numerically to

obtain the time-dependent population coefficients cj(t).

The model features a system consisting of a finite number of discrete energy levels, as

illustrated in Figure 3.1(a). The ground state is assigned an energy of zero (E0 = 0), while

the other states have energies higher than the hydrogen atom’s ionization potential of 13.6

eV. While we refer to the states above the ionization threshold as continuum states in this

chapter, they are actually discrete. We limit our analysis to a few discrete energy states

above the ionization threshold that are equally spaced and can be resonantly excited by the

pump or probe pulses. The spacing between adjacent levels in the continuum is equal to the

energy of a single probe photon (Eph).

We express the dipole matrix elements responsible for coupling the ground state to the
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continuum states via a single-photon ionization as

µ0,j = D̃(kj)e−iη(kj), (3.3)

where kj represents the momentum of the jth state.

We employ the momentum representation of the ground state in atomic hydrogen [45]

to determine the amplitude of the dipole transition matrix element:

D̃(kj) =
2
√
2Z5/2

π(k2
j + Z2)2

(3.4)

The phase term η of the dipole matrix element corresponds to the single-photon ionization

phase. To express this phase, we use the Coulomb phase shift, which is defined as [45]:

η(kj) = Γ

(
1 + ℓ− i

Z

kj

)
; ℓ = 1(s → p) & j > 0 (3.5)

Here, ℓ represents the angular momentum quantum number of the jth state.

We describe the matrix element responsible for coupling within the continuum as

µi,j =
ki + kj

2
e−iϕcc(ki,kj); i, j > 0 (3.6)

Here, ki and kj are the momenta of the two states, and ϕcc(ki, kj) is the phase associated

with the coupling. This phase is obtained from the asymptotic approximation, as stated

in [33]:

ϕcc(ki, kj) = arg
[
(2kj)

iZ/kj

(2ki)iZ/ki
Γ[2 + iZ(1/kj − 1/ki)]

(kj − ki)iZ(1/kj−1/ki)

]
. (3.7)

At the beginning, when the fields are not present, the system is in its ground state with

c0 = 1 and ci = 0 for i > 0. When the laser field is introduced, the population of the

ground state starts to distribute among the states that can be resonantly coupled by the

field. The upper panel of Figure 3.1(b) illustrates how the population of the ground state

(grey) and all the states that the XUV and IR pulses can resonantly couple evolve over time.

Specifically, the purple line represents the total population of all states directly connected by

the XUV pulse, while the red line shows the population of all states coupled by IR pulses.

In the lower panel, the black line displays the total population of all states, which remains

almost constant at 1, thus conserving the norm. Additionally, the temporal profiles of the

normalized XUV (purple) and IR (red) fields are shown on the right side.

3.1 1-SB RABBITT

For the 1-SB RABBITT simulation, we used a Fourier-limited Gaussian pulse centered

around 800 nm with a temporal duration of 25 fs for the probe pulse and an XUV pulse
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Figure 3.2. Normalized XUV-APT field (black) and the probe field (red) (a) Fourier spectra

of the XUV-APT (b).

train of 25 fs. The peak intensity of the XUV pulse was set at 2.38 × 10−8 a.u., while that

of the IR pulse was 1.4× 10−6 a.u. [1 a.u. = 3.51× 1016 W/cm2.] Figure 3.2(a) displays

the normalized field amplitudes of the probe pulse (red) and the XUV pulse train (black),

with an inset showing two attosecond bursts in each period of the probe pulse. Figure 3.2(b)

shows the XUV-spectrum containing 12 odd harmonics of 800 nm (H9, H11, ...., H31). The

strength of each harmonic was chosen arbitrarily.

We varied the temporal delay between the XUV and IR pulses from τ = 0 to τ = 2T0

in increments of T0/20, solving equation 3.2 at each delay step. The population of all states

|ci(τ)|2 was then recorded at the end of each calculation.

The results are presented in Figure 3.3, where Figure 3.3(a) depicts the population of

the continuum states at the end of calculation when only the XUV pulse is included (black).

The red curve represents the population when both pulses are used. It is averaged over

all the delay steps. The false colormap in Figure 3.3(b) illustrates the population change

of the states as a function of delay (RABBITT trace), with the colormap scale chosen to

highlight the yield oscillations in the weaker sidebands. As the temporal delay is varied,

the population of both the mainbands and the sidebands undergoes oscillations at twice the

frequency of the probe pulse. In addition, the oscillations in the mainbands are out of phase

with those in the adjacent sidebands.

To extract the phases of the oscillations, the population of the states is fitted to a cosine

functional form given by:

|cq(τ)|2 = Aq +Bqcos (2ωτ − ϕq
R) (3.8)

In Figure 3.4(a), the retrieved phase (ϕR) of the 2ω oscillation for the mainbands (yellow

squares) and sidebands (red circles) at different kinetic energies are shown. To correct for
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Figure 3.3. Normalized XUV-only PES (black) and the delay-integrated PES in RABBITT

scan (red) (a). RABBITT spectrogram (b).
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Figure 3.4. The phase retrieved from the oscillation in the sidebands (red circle) and main

bands (yellow square) from the FLM RABBITT calculation (a). The phase of the sideband

obtained from the RABBITT trace generated in FLM (black star), and TDSE calculation

(yellow triangle) and the analytically estimated phase (black star) (b).

the out-of-phase oscillation between the sidebands and mainbands, an additional π phase

was subtracted from the mainband before plotting in Figure 3.4(a).

Figure 3.4(b) compares the retrieved phase values (ϕR) of the sidebands obtained from

the FLM simulation (red circles), TDSE simulation (yellow triangles), and analytical input

phase (black stars). The analytical phase is given by

ϕana
atom(kq) = η(kq+1) + ϕcc(kq, kq+1)− η(kq−1)− ϕcc(kq, kq−1) (3.9)

The FLM simulation reproduces the analytical phase, which represents the phase difference

between the two paths following step-wise transitions.
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Figure 3.5. XUV-only (black) PES and delay integrated PES in the RABBITT scan at

varying probe intensities normalized to the XUV-only PES.

To highlight the impact of IR intensity on oscillation phase, we performed a RAB-

BITT scan using three probe intensities: I0(= 1.4 × 10−6a.u., I1 = 6I0), and I2 = 10I0).

Additionally, a second-order chirp with a value of (ϕXUV = 0.01 fs2) was introduced to

the XUV-APT. To simplify the analysis, the Wigner and cc-coupling phases were disabled

(η = ϕcc = 0). Figure 3.5 illustrates the delay-integrated photoelectron spectrum obtained

from RABBITT scans performed at three different probe intensities, accompanied by the

PES obtained with XUV-only. With an increase in the IR intensity, depletion of the main-

bands begins on the high-energy side. At the highest IR intensity, the delay-averaged yield

of the sidebands above the 20th band exceeds that of the next mainbands.

Figure 3.6(a) presents the RABBITT spectrogram at probe intensity I0, while Figure

3.6(b) exhibits the oscillation in the sideband yield for various IR intensities (I0, I1, and I2).

Figure 3.6(b) shows the oscillation in the sideband yield for various IR intensities (I0, I1,

and I2). To maintain consistency in the scale, for each intensity calculation, the sideband

yield is first integrated over the entire delay range and then subtracted from the delay-

dependent yield to eliminate the background. The resulting signal is then normalized to its

maximum value before being plotted in Figure 3.6(b). Figure 3.6(c) presents the Fourier

transform of these oscillations. When the IR intensity is at its lowest value, the yield of the

sidebands shows purely sinusoidal oscillations, and the Fourier spectrum exhibits only one

peak at 2ω. As the IR intensity increases, the oscillations become distorted, and additional

peaks at 4ω and 6ω start to emerge. At the highest IR intensity used, the 4ω peak becomes

more prominent than the 2ω peak for the highest energy sideband (S28). These results

suggest that the contribution of higher-order transitions depends not only on the IR intensity

but also on the energy of the sideband. This phenomenon occurs because the coupling in

the continuum increases with both the momentum of the photoelectron and the IR intensity.

For arbitrary probe intensity, the delay dependence of the photoelectron signal can then
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Figure 3.6. RABBITT spectrogram at I0 (a), the yield line out of the SBs at varying IR

intensities (b), and corresponding Fourier spectra (c) shown for I0 (red dot), I1 (green star),

and I2 (purple triangle).

be decomposed into the overtones of 2ω:

S(τ) = A+Bcos(2ωτ − ϕR) +Bcos(4ωτ − ϕ2R) + Ccos(6ωτ − ϕ3R) + ... (3.10)

In Figure 3.6(b), the red curve shows the delay-dependent yield of the sidebands, while

the black curve shows the fit to the functional form A + Bcos(2ωτ − ϕR) + Bcos(4ωτ −
ϕ2R)+Ccos(6ωτ−ϕ3R). For all three applied IR intensities, Fig. 3.7 displays the retrieved

phase ϕR corresponding to the 2ω oscillation of the yield.

As the IR intensity is increased, we note a significant deviation in the retrieved os-

cillation phase, with the most substantial deviation being observed in the highest energy

sideband. At low intensities, the 2ω oscillation in the qth-SB is dominated by transition

scheme (TA), and the oscillation phase is simply the group delay of the two neighboring

harmonics (ϕq
R = ϕq−1

XUV − ϕq+1
XUV ).

As the intensity increases, the likelihood of nth-order interactions increases as In, caus-

ing higher-order IR photon exchange originating from the distant mainband and ending

up to the sideband (Sq) to become more substantial. These higher-order transitions also
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Figure 3.7. Oscillation phase corresponding to 2ω oscillation at probe intensity I0 (red

circle), I1 (green star), and I2 (purple triangle).
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Figure 3.8. Interference schemes that cause delay-dependent oscillations in the sideband

yield. TA, TB, and TC lead to oscillations at 2ω, with TA being dominant at low intensity.

TD and TE result in oscillations at 4ω, while TF leads to oscillations at 6ω. The oscillation

phases for each interference are also indicated.

contribute to the 2ω oscillation through schemes TB and TC .

Schemes TD and TE result in yield oscillation at 4ω, and TF at 6ω. Since every order

of interaction adds a π/2 phase, the oscillation phase (ϕq
R) obtained from TB and TC has an

extra π phase compared to that obtained from TA. As a result, the relative magnitude of the

2ω oscillation may start to decrease with increasing IR intensity, since the oscillation due

to TB and TC is opposite to that of TA. This is why the peak corresponding to 4ω oscillation

in Figure 3.6(c) is higher than that of 2ω for S28 at the IR intensity I2. Furthermore, the

interference between transition terms involving different harmonic pairs contains different
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oscillation phases, and the resultant phase of 2ω oscillation in the sideband signal is the

average of all the ϕq
R weighted according to their relative interference amplitude.

The effect of the higher-order terms on the retrieved phase becomes even more signif-

icant when the magnitude of the two adjacent main peaks is imbalanced, which occurs in

the high-energy region where the magnitude of the mainbands decreases rapidly with en-

ergy due to decreasing harmonic strength as well as the decreasing ionization cross section.

As a result, the interference of the two lowest-order terms (TA) involving adjacent main-

bands is incomplete, resulting in weaker oscillation, while the oscillation resulting from the

interference of higher-order transition paths involving two strong lines, but both from the

lower-energy side (TB), can become stronger, thereby significantly altering the retrieved

phase. This is illustrated in Figure 3.7, which shows that the phase varies rapidly with in-

tensity beyond S20, because the harmonics in the XUV spectrum decrease after H19, and

the higher-order interference term (TB) becomes comparable in strength to the lowest-order

interference term (TA).

There are additional transition pathways up to fourth-order that are possible but not

shown in Figure 3.8. These pathways involve back and forth transitions between the two

continuum states. Since each transition accumulates a phase of π/2, interference involving

these pathways can also contribute to the reduction of oscillation contrast.

Angle-dependence

Up to this point, the energy levels used in the simulation did not incorporate any orbital

quantum numbers. To account for the angular dependence in the RABBITT phase, we split

each energy level used in the simulation into five degenerate states corresponding to the five
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Figure 3.9. Transition scheme between degenerate energy states with different orbital quan-

tum numbers.
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angular momentum states (ℓ = 0, 1, 2, 3, 4 : s, p, d, f , g), as illustrated in Figure 3.9. We

ignore the role of magnetic quantum numbers.

Only transitions that satisfy the dipole selection rule of ∆ℓ = ±1 are allowed. The

magnitude and phase of the dipole transition matrix element now depend not only on the

kinetic energies but also on the orbital angular momentum of the two states. We used the

Fano-propensity rule to assign the magnitudes of these matrix elements, which suggests

that the absorption (emission) of a photon in a dipole transition tends to increase (decrease)

the angular momentum [41, 46, 47].

We investigate two scenarios: one where the initial state has zero angular momentum in

the s-state (ℓi = 0), and the other where the system starts in the p-state (ℓi = 1). In Figure

3.10 (a), the transition amplitudes for absorption from the ground state (s or p) to different

angular momentum states of the continuum states are plotted as a function of kinetic energy.

The information displayed in Fig.3.10 (a) regarding the p → s and p → d transitions was

obtained from reference [41]. As for the s → p transition, its values were generated as

Aw
abs(s → p) =

√
(Aw

abs)
2(p → d) + (Aw

abs)
2(p → s). (3.11)

The single-photon ionization phase for the transition from the initial angular momentum

state (ℓi) to the final angular momentum state (ℓ) is now expressed as

ηℓ,ℓi(k) = ηℓ(k)−
πℓ

2
+ δℓ,ℓi(k). (3.12)

(a) (b)

Figure 3.10. Dipole coupling amplitude (relative) (a) and phase (b) for transitions from the

ground state to continuum states through different angular-momentum channels.

Figure 3.10(b) presents the kinetic-energy dependence of the phase of the dipole ma-

trix elements, which describe the transition from the ground state to the continuum states

through different angular-momentum channels via single-photon absorption. To improve

the representation of the single-photon ionization phase, a short-range correction with δ0,1(k) =
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Figure 3.11. Amplitude ratio of transitions with increasing and decreasing orbital angular

momentum (a), and the phase of the dipole matrix element corresponding to the increase

and decrease of the angular momentum during absorption and emission in the continuum

(b) , as a function of kinetic energy.

1.2π and δ2,1(k) = 0 [41] was added to the hydrogenic Wigner phase. Additionally,

δ1,0(k) = 0 was arbitrarily assigned.

Figure 3.11 (a) presents the ratio of transition amplitudes for increasing and decreasing

ℓ states during IR photon absorption in the continuum. The values for ℓ = 1, 2, 3 were

obtained from reference [41], while the values for the remaining ℓ states were artificially

generated. Figure 3.11 (b) displays the kinetic energy dependence of the phase of the dipole

matrix element corresponding to the increase or decrease of angular momentum during

absorption and emission in the continuum.

We utilized the same XUV and IR pulses as those described in the previous section.

Both pulses were Fourier-limited and had a duration of 25 fs, as shown in Figure 3.2. The

XUV pulse intensity remained unchanged at 2.38× 10−8 a.u. For the IR pulse, we selected

the lowest peak intensity (1.4× 10−6 a.u.) utilized in the previous section. This allowed us

to focus on two-photon transitions for the sidebands while safely ignoring any higher-order

contributions.

To incorporate the dependence of the yield and oscillation phase on the electron emis-

sion angle, we first multiply the population coefficients cq,ℓ of all the angular momentum

states of the qth energy state with their corresponding spherical harmonics and then add

them coherently:

Sq(τ, θ) =

∣∣∣∣∣
5∑

ℓ=0

cq,ℓ(τ)Yℓ,0(θ)

∣∣∣∣∣
2

. (3.13)

Here, Sq(τ, θ) represents the signal in the qth sideband, cq,ℓ(τ) is the population coefficient
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Figure 3.12. First six orthonormalized spherical harmonics as a function of polar angle.

of the ℓ th angular momentum state of the q th sideband at the end of the calculation for

the XUV-IR temporal delay τ , Yℓ,0 is the spherical harmonic of order ℓ, and θ is the angle

between the photoelectron momentum and the polarization of the XUV and IR pulses.

When the ground state is an s-state, a two-photon interaction creates a sideband that oc-

cupies both s and d states. Both absorption (Hq−1 + ω) and emission (Hq+1 − ω) pathways

can lead to population in the s and d states of the sideband. The absorption and emission

pathways leading to the same angular momentum state of the sideband interfere with each

other (s − s or d − d), resulting in a delay-dependent oscillation in the population of that

angular momentum state. Similarly, the absorption and emission pathways leading to dif-

ferent final angular momentum states of the sideband also interfere with each other (s− d),

producing an oscillation in the population that varies with the delay. The phase of the os-

cillation depends on the angular momentum channels involved in the ionization step and in

the cc transition. As the magnitude of the spherical harmonic changes with the polar angle,

this also leads to an angle-dependent yield variation in the sideband and a change in the

overall oscillation phase of its yield. This can be expressed as:

Sq(τ, θ) = Aq
0(θ) + Y0,0(θ)Y0,0(θ)C

q,a
s Cq,e

s cos(2ωτ + ϕs,s
R )

+ Y2,0(θ)Y2,0(θ)C
q,a
d Cq,e

d cos(2ωτ + ϕd,d
R )

+ Y0,0(θ)Y2,0(θ)
(
Cq,a

s Cq,e
d (cos(2ωτ + ϕs,d

R ) + Cq,a
d Cq,e

s cos(2ωτ + ϕd,s
R )

)
= Aq

0(θ) +Bq(θ)cos(2ωτ + ϕq
R(θ)). (3.14)

Here, Aq
0(θ) represents all contributions that do not participate in the delay-dependent os-

cillation. Cq,a/e
ℓ denotes the transition probability to the ℓth angular momentum state of the

qth sideband via the path involving harmonic (a : Hq − 1) or the harmonic (e : Hq+1). The
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Figure 3.13. RABBITT phase as a function of sideband energy for ground states with (a)

ℓi = 0 and (b) ℓi = 1. The red circles represent the angle-integrated phase, while the golden

stars and brown triangles show the phase from each individual ℓ channel.

phase difference between the two interfering transition paths is denoted by ϕℓ′,ℓ
R , where ℓ

and ℓ′ represent the final angular momentum states with possible values of 0 or 2.

Since both the single photoionization and the cc-coupling phase vary with the angular

momentum, the phase of each distinct transition term depends not only on the final an-

gular momentum states but also on all the intermediate angular momentum states that are

encountered in reaching the final state. In the case of angle-integrated measurements, the

interference between two different final ℓ states, such as s− d and d− s, vanishes. There-

fore, the resulting RABBITT phase (ϕR) is the weighted average of the RABBITT phases

of each individual ℓ state.

Figure 3.13 shows the RABBITT phase obtained from the delay-dependent signal of

each individual angular momentum state (ϕℓ,ℓ
R ) of the sidebands, as well as the angle-

integrated RABBITT phase (ϕR). To retrieve the oscillation phase from each ℓ state of the

sideband, we fit the delay-dependent population of each ℓ state to the following functional

form:

| cq,ℓ(τ)|2 = A+B cos(2ωτ − ϕℓ,ℓ
R ). (3.15)

When the initial state is an s-state, the only bound-continuum transition possible is

through an s → p transition. As a result, the Wigner contribution will be the same in

all the different RABBITT phases (ϕℓ′,ℓ
R ) corresponding to different angular momentum

channels, regardless of the cc-transition channels. The difference between ϕs,s
R and ϕp,p

R

is thus solely due to the difference in the cc-phase (ϕcc), which depends on the angular-

momentum channels. As the kinetic energy increases, the dependence of ϕcc on ℓ reduces

(c.f. 3.11), resulting in ϕs,s
R and ϕp,p

R becoming more similar.

When the ground state is a p-state, however, the sidebands will consist of a mixture of

p and f states. In both the absorption and emission paths, there are two possible distinct

channels to reach the p-state of the sideband: p → s → p or p → d → p. Consequently,
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the p-state of the sideband will have a combination of two different Wigner phases: η0,1

and η2,0. In contrast, the f -state of the sideband can only be accessed through a single

channel p → d → f , and therefore will contain only the Wigner phase η2,0. The RABBITT

phases (ϕℓ′,ℓ
R ) that result from the interference between the final angular-momentum states of

the absorption and emission paths will have distinct Wigner phase contributions depending

on the specific path taken. As the kinetic energy increases, the single-photon transition

amplitude decreases, with a faster rate for p → s compared to p → d, as depicted in

Figure 3.10. Consequently, at higher kinetic energy, the p → d channel dominates the

single-photon transition, reducing the contribution of the Wigner phase corresponding to

the p → s transition (η0,1). This leads to a decrease in the difference between ϕp,p
R and ϕf,f

R ,

as shown in Figure 3.13(b).

We now present an explanation for the angular variation in the RABBITT phase. It is

worth repeating that the oscillation phases arising from the interference of different angular-

momentum channels are unique. As Equation 3.14 indicates, the weight of these inter-

ference terms is modulated by the associated spherical harmonics, resulting in an angle-

dependent overall retrieved phase.

Figure 3.14 illustrates the angle-dependent overall RABBITT phase (ϕR(θ)), as well as

the various RABBITT phases (ϕℓ′,ℓ
R ) obtained from considering the possible interferences

between transitions ending up in different or the same angular-momentum states of SB12.

Figure 3.14 (a) illustrates the case when the system starts in ane s-state, while Figure 3.14

(b) represents the case when the system begins in a p-state.

The horizontal lines in panels (a) and (b) correspond to the interference between the

absorption and emission paths that end in the same final ℓ state, as indicated by the yel-

low triangle (ϕs,s
R or ϕp,p

R ) and the brown diamond (ϕd,d
R or ϕf,f

R ), respectively. To obtain

these lines, the delay-dependent signal from each individual angular-momentum state was

isolated using Equation (3.14). The lines with a sharp π-jump represent the interference

between the absorption and emission paths ending in different final ℓ states, shown as green

squares (ϕs,d
R or ϕd,s

R in (a) and ϕp,f
R or ϕf,p

R in (b)).

To obtain the oscillation phase of the cross-term interference, the first step is to iso-

late the cross-term interference signal S ′
q(τ, θ) by subtracting the signal in the individual

angular-momentum states from the total angle-dependent signal Sq(τ, θ) of the sideband.

This can be achieved as:

S ′
q(τ, θ) =

∣∣∣∣∣∑
ℓ

cq,ℓ(τ)Yℓ,0(θ)

∣∣∣∣∣
2

− | cq,ℓ1(τ)Yℓ1,0(θ)|2 − | cq,ℓ2(τ)Yℓ2,0(θ)|2 (3.16)

Note that ℓ1 = 0 and ℓ2 = 2 for an s ground state while ℓ1 = 1 and ℓ2 = 3 in the case of

a ground p-state. We then fit the delay-dependent signal of S ′
q(τ, θ) again to a cosine form

(A+B cos(2ωτ − ϕℓ1,ℓ2
R )) and retrieve the phase of the cross-term interference.
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Figure 3.14. ϕR retrieved from individual ℓ channels (pink star and golden triangle) and

including all the ℓ channels (red circle) in SB12. The system starts in either an s-state (a) or

a p-state (b).
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Figure 3.15. Angle-dependence of the RABBITT phase (ϕR) for different sidebands in the

case of the ground state being an s-state (a) or a p-state (b).

The cross-term oscillation phase in Figure 3.14 (a) exhibits a π-jump due to the sign

change in the coefficient Y0,0(θ)Y2,0(θ) at 54.7◦. In Figure 3.14 (b), on the other hand, the

phase jump occurs at 39◦ due to the sign change in the coefficient Y1,0(θ)Y3,0(θ). The angle-

resolved RABBITT phase is the average of all these phases, taking into account the transi-

tion amplitudes and the amplitudes of the corresponding spherical harmonics, as shown in

equation 3.14.

In the vicinity of zero degree, the RABBITT phase (ϕR(θ)) varies slowly with respect

to the angle. As the angle increases, the weight of Y2,0(θ) decreases, while Y0,0(θ) remains

constant. Consequently, the RABBITT phase ϕR(θ) shifts towards ϕs,s
R . At θ = 54.7◦, Y2,0

becomes zero, resulting in the RABBITT phase being the same as the s-channel phase, i.e.,

ϕR(θ = 54.7◦) = ϕs,s
R . Beyond 54.7◦, the RABBITT phase ϕR(θ) continues to decrease

with increasing θ, following the phase of the cross term, thereby indicating a significant
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weight of this term. This behavior is attributed to the propensity rule, where photon emis-

sion primarily creates an electron in the s-state, while photon absorption creates a predom-

inantly d-state photoelectron. As a result, the interference between the two terms has a

higher weight compared to the terms with identical final ℓ state.

Figure 3.14 (b) illustrates the scenario where the initial state is a p-state. The phase

difference among the three interfering terms in this case is much larger than that in the

ℓi = 0 case, resulting in a more significant variation in ϕR(θ) even before the appearance

of an angular node. At θ = 39◦, Y3,0 vanishes, causing the RABBITT phase to match the

p-channel phase. Around 39◦, the cross-term undergoes a π jump, causing ϕR(θ) to shift to-

wards the negative cross-term phase. The magnitude of the spherical harmonics (|Y1,0Y3,0|)
peaks near 57◦ and declines thereafter. Moreover, the cross-term is not as pronounced in

this case. Although the absorption process favors transitions to the f -state over the p-state

due to the propensity rule, there are two ways to reach the p-state, and only one way to

reach the f -state, making the overall transition amplitude to the p-state comparable to that

of the f -state, even for absorption. Therefore, at larger angles, the contribution of the cross-

terms decreases faster than that from same-channel interference, resulting in ϕR(θ) moving

towards the weighted average of ϕp,p
R and ϕf,f

R .

Figure 3.15 displays the angle-dependent RABBITT phase for different sideband orders.

In both cases, where (a) ℓi = 0 and (b) ℓi = 1, the variation of ϕR with angle becomes flatter

as the sideband order increases. This is because the difference in ϕℓ′,ℓ
R corresponding to

different angular-momentum states decreases with increasing kinetic energy. Additionally,

the angle at which the phase varies significantly shifts to higher values, indicating that the

ratio of the magnitudes of the cross-channel interference to the same-channel interference

decreases with kinetic energy.

3.2 3-SB RABBITT

To simulate 3-SB RABBITT, the XUV-APT is modified such that the frequency peaks in

its spectrum are separated by four times the fundamental frequency.

The XUV spectrum is now composed of nine odd harmonics of the second harmonic

of the probe frequency, namely H5, H7, ..., H21, as shown in Figure 3.16 (a). The spectral

height of the harmonics is chosen arbitrarily. Figure 3.16 (b) displays the temporal profiles

of the Fourier-limited 25-fs XUV field (in black) and the probe field (in red), along with

four attosecond bursts every optical cycle of the probe pulse in the inset. The intensity of

the XUV-APT is retained at IXUV = 2.38× 10−8 a.u., similar to the previous case.

The numerical approach used in the 1-SB RABBITT simulation is also applied in the

3-SB RABBITT simulation. The coupling strength and phases remain the same. To start
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Figure 3.16. Spectral profile of the XUV pulse (a) and the temporal profiles of the XUV

(black) and IR (red) fields (b).

with, we present the FLM simulation of the 3-SB RABBITT without any ℓ-degeneracy.

The simulation result with a probe intensity of IIR = 5 × 10−6 a.u. is shown in Figure

3.17. The upper panel displays the PES generated by the XUV-APT (black) only, and the

PES averaged over the entire delay scan (red). The lower panel shows the 3-SB RABBITT

spectrogram on the colormap. The colorplot scale range is selected to clearly exhibit the

oscillations in the higher and lower sidebands.

As the delay between the XUV and IR pulses is scanned, we observe oscillations in

the signals of both the sidebands and the mainbands. The dominant frequency of these

oscillations is 4ω, and the signal can be represented as A + B cos (4ωτ − ϕR) as a function

of delay.
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Figure 3.17. (a) 3-SB RABBITT trace; (b) XUV-only PES (black) and delay-integrated

PES (red) in the RABBITT scan.
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Figure 3.18. RABBITT phase of three sidebands vs. kinetic energy of the central sideband.

(a) Relative phase difference (b). The input phase (black dot), phase retrieved from the

FLM simulation (blue circle), and the phase retrieved from the TDSE simulation in atomic

hydrogen (green square) for the central sideband (Sc) (c).

Due to the increase in coupling strength between neighboring states with increasing

kinetic energy, the sideband oscillations are more noticeable at higher energies compared to

those near threshold. We extracted the oscillation phases in the yield of all three sidebands

and removed the extra π-phase from the lower and higher sidebands. The resulting phases

are plotted as a function of the kinetic energy of the central sideband in the upper panel of

Figure 3.18 (a). In Figure 3.18 (b), we plot the phase differences between the lower and

higher sidebands relative to the central sideband. We observe that the phases in all three

sidebands are almost identical, with a minor difference in the lower sideband of the 6th

SB group. Figure 3.18 (c) compares the analytical or input phase (represented by a black

dot), the retrieved oscillation phase from the FLM 3-SB RABBITT simulation (shown as

a cyan circle), and the ϕR obtained from a TDSE simulation of 3-SB RABBITT in atomic

hydrogen (as described in paper II, [42]).

The analytical (or input) phase is obtained by considering step-wise transitions and ac-

cumulating the phase contributions from each photon interaction. For the three sidebands,

the analytical phases can be calculated using the following equations:

ϕana
atom(kl,q) = (η(kq+1) + ϕcc(kh,q, kq+1) + ϕcc(kc,q, kh,q) + ϕcc(kl,q, kc,q))

− (η(kq−1) + ϕcc(kl,q, kq−1)). (3.17a)

ϕana
atom(kc,q) = (η(kq+1) + ϕcc(kh,q, kq+1) + ϕcc(kc,q, kh,q))

− (η(kq−1) + ϕcc(kl,q, kq−1) + ϕcc(kc,q, kl,q)). (3.17b)

ϕana
atom(kh,q) = (η(kq+1) + ϕcc(kh,q, kq+1))

− (η(kq−1) + ϕcc(kl,q, kq−1) + ϕcc(kc,q, kl,q) + ϕcc(kh,q, kc,q)). (3.17c)
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Figure 3.19. XUV-only (black) PES and delay integrated PES in the RABBITT scan at

varying probe intensity intensities normalized to the XUV-only PES.

(a) (b) (c)

Figure 3.20. Retrieved RABBITT phases of the three sidebands (upper panel) and the

relative phase difference within the group (lower panel) at IR intensity I0 = 3×10−6 a.u. (a),

I1 = 2 I0 (b), and I2 = 3.33 I0 (c).

Here, kq±1 represents the momentum of the q ± 1 mainband, and kl/c/h,q represents the

momentum in the lower/central/higher sideband of the qth group. It is important to note

that ϕcc(ka, kb) ≈ −ϕcc(kb, ka), as verified by Equation 3.7. Consequently, the analytically

estimated oscillation phase in the lower, higher, and central sidebands is the same. Since

the FLM simulation also follows step-wise transitions, the phase retrieved from the three

sidebands also yields the same result (cf. Fig. 3.18). However, very close to threshold,

ϕcc(ka, kb) ̸= −ϕcc(kb, ka), which leads to a slight deviation in the phase of the lower side-

band of the 6th sideband group (cf. Fig. 3.18b). It is worth mentioning that the equations

in 3.17 assume that only two transition paths dominate the yield oscillations, which holds

true only for a weak IR field.

We now investigate the effect of increasing the IR intensity on the phases of the three

sidebands. To highlight the effect, we add a group delay dispersion of 0.015 fs2 to the

spectrum of the XUV-APT and turn off the atomic phases for simplification. Figure 3.19
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displays the delay-integrated PES from the 3-SB RABBITT scan at three different IR in-

tensities, I0 = 3 × 10−6 a.u. (a), I1 = 6 × 10−6 a.u. (b), and I2 = 10 × 10−6 (c). Figure

3.20 shows the retrieved ϕR from all three SBs at increasing IR intensities. At the lowest IR

intensity, I0, the three sidebands have nearly identical phases due to the negligible influence

from higher-order terms. However, increasing the IR intensity leads to deviations, mainly

observed in Sh near threshold and Sl at higher kinetic energy regions. These deviations are

partly due to the specific spectral profile of the XUV pulse, which affects the contribution

of higher-order transitions differently in the lower and higher energy regions.

Let’s first examine the lowest energy group, SB6. The 9th mainband has a much

stronger signal than the 5th mainband, and we also know that the cc-coupling strength

increases with energy (c.f. Sec. LAP ). As a result, the oscillation amplitude arising from

the interference of (M9 − 5ω and M7 − ω) cannot be neglected compared to the oscillation

amplitude from the interference of (M5 + 3ω and M7 − ω). The two interference terms

will have different phases, and the resulting phase is a weighted average of the two. As the

IR intensity increases, the overall 4ω oscillation phase retrieved from the higher sideband

of group SB6 changes due to the increasing contribution from higher-order terms. On the

high-energy side, the harmonic strength decreases with energy, making the effect of higher-

order terms more prominent in the lower sideband. For instance, in sideband group 18

(SB18), the 15th mainband signal is much stronger than that in the 19th mainband, making

the oscillation amplitude from the interference of (M15 + 5ω and M17 + ω) non-negligible

compared to the oscillation amplitude from the interference of (M17 + ω and M19 − 3ω).

This changes the phase of the lower sideband.

Angle-dependence

Up until now, the oscillation phase obtained from the FLM simulation of 3-SB RABBITT

does not account for angle-dependence due to the absence of angular momentum states. To

introduce angle-dependence, we modify the simulation by dividing each energy level into

eight degenerate ℓ states. We then follow the same procedure as in the angle-dependent

FLM simulation of 1-SB RABBITT to extract the angle-dependence of the oscillation

phase. It is important to remember that the dipole selection rule allows only transitions

that result in a change in the orbital quantum number by one, denoted as ∆ℓ = ±1. We

incorporate the propensity rule for transitions to different ℓ states and make the Wigner (η)

and cc-coupling phase dependent on the ℓ-states, as illustrated in Fig. 3.10 and 3.11. Two

cases are considered, one where the ground state is an s-state, and the other where it is a

p-state.

The transition diagram in Figure 3.21 depicts the various ℓ channels involved in transi-

tions from (a) s-state and (b) p-state. Only the lowest-order paths necessary for generating
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Figure 3.21. Transition diagram for 3SB-RABBITT through various angular-momentum

channels for the system starting in ℓi = 0 (a) and ℓi = 1 (b).

oscillations in the yield of sidebands are displayed. Specifically, for the lower sideband,

the diagram shows second-order absorption paths (Hq−1 + 1ω) and fourth-order emission

paths (Hq+1 − 3ω). Similarly, for the higher sideband, the diagram displays fourth-order

absorption paths (Hq−1 + 3ω) and second-order emission path (Hq+1 − ω). Finally, for

the central sideband, the diagram illustrates third-order absorption paths (Hq−1 + 2ω) and

emission paths of the same order (Hq+1− 2ω). For the angle-resolved FLM simulation, we

employed Fourier-limited XUV and IR pulses, each with a duration of 25 fs (FWHM), as

illustrated in Figure 3.16. Similar to the previous section, the intensity of the XUV pulse

was fixed at 2.38 × 10−8 a.u. For the IR pulse, we specifically opted for the lowest peak

intensity used in the previous section, which was 3 × 10−6 a.u. This choice allows us to

confidently disregard any higher-order contributions not depicted in Figure 3.21.

Upon examining Figure 3.21 (a), we observe that when the system is initially in an

s-state, the three-photon transition to the central sideband (Sq,c) leads to the population

of p and f angular states through both absorption and emission pathways. On the other

hand, the two-photon transition to Sq,l (Sq,h) populates s and d states while the four-photon

transition to Sq,l (Sq,h) populates s, d, and g states. The angle-integrated phase ϕR in the

three sidebands is the weighted average of the oscillation phases retrieved from each final

ℓ state. Since there is no interfering partner for the g state, it does not contribute in the

angle-integrated calculation of ϕR.

Likewise, when the ground state is a p-state (Fig. 3.21 b), the central sideband is a

mixture of s, d, and g states that are populated by both absorption and emission paths.

The angle-integrated ϕR of the central sideband is the weighted average of the oscillation

phase in each of the three angular states. In the lower and higher sidebands, a four-photon
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Figure 3.22. Angle-dependent RABBITT phases for three sidebands of groups 8, 10, and

12 with ℓi = 0 (a-c) and ℓi = 1 (d-f).

transition from the p state creates an h state. However, since this state cannot be reached

via the two-photon path, it does not contribute to the angle-integrated ϕR.

In Figure 3.22, we observe the dependence of the retrieved ϕR on the photoelectron

emission angle for all three SBs of groups 8, 10, and 12, depicted in panels (a), (b), and

(c) for when the system starts in an s-state, and in panels (d), (e), and (f) for when it

begins in a p-state. The insets in panels (a), (b), and (c) reveal that as we progress to

higher kinetic energies, from group 6 to group 10, the phase difference within each group

decreases. Additionally, the variation in phase with angle becomes flatter, and the π jump

appears more abrupt as the kinetic energy increases. These observations can be attributed to

the decreasing disparity in the cc-coupling phases among different ℓ states at higher kinetic

energies, resulting in a reduced discrepancy in the oscillation phases ϕℓ′,ℓ
R that arise from the

interference between different channels.

In order to shed some light on the angle-dependent behavior of the RABBITT phases of

the three sidebands, we adopt a similar approach as in the case of one-sideband RABBITT.

We first isolate the signal from each angular momentum state and subsequently retrieve

the oscillation phase based on equation 3.15. We then separate the cross-term interference

signal using equations 3.16 and retrieve the associated oscillation phase.

Let’s focus on one specific group of sidebands, namely S8, and analyze the angle-
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Figure 3.23. Oscillation phases (ϕℓ′,ℓ
R ) retrieved from the same-channel and cross-channel

interferences, as well as the overall angle-dependent phase considering all ℓ-states in the

central sideband for systems starting with ℓi = 0 (a) and ℓi = 1 (b).

dependence of the oscillation phase in more detail. In Figure 3.23, the oscillation phases

(ϕℓ′,ℓ
R ) retrieved from the same-channel and cross-channel interferences, as well as the over-

all angle-dependent phase considering all ℓ-states in the central sideband for systems start-

ing in an s- or a p-state, are illustrated. When the system begins in an s-state with ℓi = 0,

the central sideband has only one cross-channel interference, p−f , and its phase undergoes

a discrete π jump at 39◦, which corresponds to the node in Y3,0. For ℓi = 0, the differences

in ϕℓ′,ℓ
R resulting from the interference between different possible angular momentum states

(ℓ′, ℓ) are very small. As a result, the overall RABBITT phase shows a small gradual change

with angle until it reaches the nodes of the spherical harmonics, where it experiences a sud-

den π jump. The subsequent change in the angle-dependence after the node in the f -wave

relies on the relative weights and phases of the three interference terms. The overall angle-

dependent behavior of the RABBITT phase for the central sideband reveals that beyond an

emission angle of 65◦, the weight of the cross-term (p− f ) exceeds the combined weight of

the same-channel interference, resulting in a decrease in the overall angle-dependent phase.

Figure 3.23(b) depicts the angle-dependence of the central sideband for ℓi = 1. In this

case, the differences in ϕℓ′,ℓ
R are relatively large compared to the ℓi = 0 scenario. Conse-

quently, the overall RABBITT phase demonstrates a more pronounced variation with angle

even before encountering the π jump at the node positions of the spherical harmonics. It is

observed that the angle-dependent phase undergoes rapid changes that align with the nodes

of the Y2,0Y4,0 term. This behavior indicates a strong weight of the d− g interference term

in shaping the angle-dependent phase.

Next, we examine the lower and higher sidebands for the case where the system starts
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Figure 3.24. Oscillation phases (ϕℓ′,ℓ
R ) retrieved from same-channel and cross-channel in-

terferences, and overall angle-dependent phase (ϕR(θ)) in the lower (a) and higher (b) side-

bands for an initial ℓi = 0 state.

in an s state. As shown in Figure 3.24(a), the oscillation phase ϕR(θ) exhibits only a slight

variation with angle until it reaches 70◦. The oscillation phase corresponding to the d − g

interference undergoes three discrete π jumps, but ϕR(θ) remains almost constant at the

first two jumps. Furthermore, ϕR(θ) does not change significantly when the phase of the

s − g interference term undergoes the first jump. These observations suggest that the tran-

sition amplitude to the g state is relatively weak compared to the s and d transition am-

plitudes. This preference for the s and d states over the g state aligns with the propensity

rule. Furthermore, the transition probability to the g state is relatively weak due to the fact

that emitting three probe photons offers only one possible way to reach the g state, while

there are two ways to reach the s state and three ways to reach the d state. Compared to

the same-channel interference, the interference between s and d does not generate a very

strong oscillation. Therefore, we do not immediately observe a change in the oscillation

phase ϕR(θ) following the node in Y2,0(θ). Instead, the change in ϕR(θ) is only noticeable

after 70◦ when the combined amplitudes of the cross-channel interferences of s − d and

d− g become stronger than the amplitude of rest of the terms.

Looking at the higher sideband in Figure 3.24 (b), we observe that the angle-dependent

phase follows the node of Y2,0(θ) and drops significantly after 54◦, indicating a large ampli-

tude in the d-state for one of the paths. In spite of the propensity rule favoring the popula-

tion of the g-state via the four-photon transition over the d-state, the fact that there are three

ways to reach the d-state and only one way to reach the g-state in the four-photon transition

results in the net d-state transition amplitude dominating the g-state transition amplitude.

Moreover, the emission path favors the population of the s-state over the d-state due to the
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Figure 3.25. Oscillation phases (ϕℓ′,ℓ
R ) retrieved from same-channel and cross-channel in-

terferences, and overall angle-dependent phase (ϕR(θ)) in the lower (a) and higher (b) side-

bands of group 8 for initial ℓi = 1 state.

propensity rule, thereby leading to a strong interference amplitude in the s− d channel.

Now we examine the angle-dependence of the RABBITT phase for the lower and higher

sidebands when the system initially starts in a p state. Figure 3.25(a) displays the oscilla-

tion phases (ϕℓ′,ℓ
R ) retrieved from both same-channel and cross-channel interferences, as

well as the overall angle-dependent phase considering all ℓ-states in the lower sideband.

We observe that the overall angle-dependent oscillation phase ϕR(θ) follows the angular

variation of the product of the spherical harmonics Y1,0Y3,0. Around 39◦, where Y3,0 has

a node, ϕR(θ) becomes nearly equal to ϕp,p
R . After that it starts to decrease, following the

phase of the p − f interference term. As the magnitude of Y1,0Y3,0 decreases after 57◦,

the total RABBITT phase is dominated by the same channel interference terms (p − p and

f − f ). Furthermore, since the propensity rule disfavors the transition to the h-state, the

contribution of any cross term involving the h-state is negligible.

For the higher sideband shown in Figure 3.25(b), the RABBITT phase (ϕR(θ)) initially

starts above the p − p, f − f , and p − f interference terms. This indicates that the weight

of the cross term involving the h state is not negligible near zero degrees. This is due

to the propensity rule favoring the transition that increases the angular momenta during

absorption. The RABBITT phase starts to vary early following the first node in Y5,0 at 23◦

and reaches its first minimum around 50◦. It then begins to increase following the phase of

the f − h interference term. Beyond 66◦, ϕR(θ) starts to go down again due to increased

angle-dependent weights of p− f and f − h.

We also notice that when the system starts in the p state, the change in ϕR(θ) occurs

much more gradually, instead of exhibiting sharp jumps after the nodes in the spherical

harmonics. This is because of the relatively large difference in the oscillation phase of the

individual interference terms, causing the RABBITT phase to vary significantly with angle
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even before reaching the nodes. Furthermore, since there is no single strong cross term that

can counter the strength of the weight of the rest of the interference amplitudes, there is no

jump of π, but only small variations instead.

3.3 Summary

3-SB RABBITT involves multiple transitions in the continuum, and the retrieved phase

depends on several factors. FLM simulation allows us to examine the impact of various

parameters individually. The transitions in the FLM occur stepwise. At each transition, two

types of phases are acquired: the spectral phase of the laser pulse and a dipole transition

phase. The retrieved phase from the oscillation of the population is the phase difference of

the two paths. We discovered that the retrieved phase varies as the IR intensity is increased,

with higher-order contributions containing the different spectral phase of the harmonics, and

higher-order transition phases mixing in the retrieved phases of oscillation. The deviation

in the retrieved phase depends on the relative strength of two adjoining mainbands, which

is determined by the spectral amplitude of the harmonics and the ionization cross-section.

When the two adjoining mainbands have very different amplitudes, interference between

the transition paths involving these two nearest bands will be incomplete, resulting in small

oscillations. However, higher-order transition paths involving distant but strong mainbands

may compete with the lowest-order path and produce comparable oscillation amplitudes.

We observed that the FLM simulation for 3-SB RABBITT yields the same phase in all

three sidebands at the lowest applied intensity, due to the stepwise nature of the FLM.

We also found that choosing the Wigner phase and the cc-coupling phase depend on the

angular momentum of the states causes the population of the different angular momentum

states of the same energy to oscillate with different phases, thus resulting in the overall

oscillation phase of the sideband depending on the emission angle. Although the angle-

dependent oscillation phases of the three sidebands behave differently, the FLM simulation

still predicts the angle-integrated phase to be the same across all three sidebands within any

given group.

A relatively small difference in the cc-coupling phase for different ℓ channels results

in a small variation in the angle-dependent oscillation phase ϕR(θ). However, when the

interference between the absorption and emission paths ending up in different angular mo-

mentum states becomes strong, this may result in a sharp change in ϕR(θ) at the angular

position where the spherical harmonics corresponding to these two ℓ states have nodes.

Overall, the FLM has been instrumental in visualizing the behavior of RABBITT phases

as a function of intensity, emission angle, and other parameters like angular momentum

dependent Wigner and cc-phases.



Chapter 4

Publications

This chapter contains the three publications on which the thesis is based. Before inserting

the original publication, a brief description of the work is provided.

4.1 Publication I: High-repetition rate attosecond beam-

line for multi-particle coincidence experiments

This paper outlines the experimental arrangement used to perform the measurements dis-

cussed in this thesis and related publications. The experimental setup consists of a femto-

second CPA laser, a non-linear pulse compression system, a high-order harmonic genera-

tion unit, a Mach-Zehnder interferometer, and a reaction microscope. The attached paper

provides a summary of the design and capabilities of the system for investigating photo-

ionization dynamics on the attosecond time scale. The paper primarily focuses on the con-

ventional 1-SB RABBITT setup, followed by a description of the modification required for

the 3-SB setup.

In addition, the appendix of this thesis provides further details on the laser system, inter-

ferometer, data acquisition process, and the technique used to reconstruct the momenta and

energies of charged particles, as well as the momentum resolution and angular acceptance

of the reaction microscope.

45



Research Article Vol. 30, No. 8 / 11 Apr 2022 / Optics Express 13630

High-repetition rate attosecond beamline for
multi-particle coincidence experiments
HEMKUMAR SRINIVAS,1,3 FARSHAD SHOBEIRY,1,4 DIVYA BHARTI,1

THOMAS PFEIFER,1,2,5 ROBERT MOSHAMMER,1,6 AND ANNE
HARTH1,7

1Max-Planck Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
2Center for Quantum Dynamics, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
3hemkumar@mpi-hd.mpg.de
4shobeiry@mpi-hd.mpg.de
5thomas.pfeifer@mpi-hd.mpg.de
6r.moshammer@mpi-hd.mpg.de
7anne.harth@mpi-hd.mpg.de

Abstract: In this paper, a 3-dimensional photoelectron/ion momentum spectrometer (reaction
microscope) combined with a table-top attosecond beamline based on a high-repetition rate (49
kHz) laser source is presented. The beamline is designed to achieve a temporal stability below 50
attoseconds. Results from measurements on systems like molecular hydrogen and argon dimers
demonstrate the capabilities of this setup in observing the attosecond dynamics in 3D while
covering the full solid angle for ionization processes having low cross-sections.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photoionization studies on atoms and molecules have been revolutionized since the first measure-
ment involving the generation and characterization of attosecond pulses two decades ago [1].
Attosecond pulses have since then been instrumental in observing the ultrafast electron dynamics
in atoms and molecules. Although they were initially limited to atomic systems in the gas phase
only, attosecond pulses now aid the understanding of dynamics in systems of increasing size and
complexity such as liquids [2] and solids [3].

XUV attosecond pulses are created through the process of high-harmonic generation (HHG)
[4] from femtosecond IR pulses. This has been studied extensively with a variety of HHG
targets over the years [5], in order to obtain photon energies up to 100 eV or more. In parallel,
femtosecond laser systems have also undergone sophistication in terms of pulse energies and
wavelength tunability. Most schemes utitilize Ti:Sapphire laser oscillators or amplifiers as the
starting point. These systems deliver the necessary pulse energy for HHG but they are typically
limited to repetition rates of only a few kHz.

To successfully perform either single- or multi-coincidence photoelectron/-ion spectroscopy of
atomic or molecular targets, generic Ti:Sapphire systems fall short considering that many processes
of interest have moderate cross-sections (≈ 10 kBarn). This often results in measurements lasting
several days to obtain a statistically significant number of data points. To drastically shorten
the data acquisition time, novel laser systems providing pulses at repetition rates of 100 kHz
or more have been developed in the recent years [6–9], which have been used for HHG. These
include fiber-based amplifiers e.g. [6], nonlinear post-compression of thin-disk lasers [7] or
OPCPA based systems such as the one described in [9], used to perform pump-probe experiments
in [10]. With pulse energies comparable to those from Ti:Sapphire systems, these fiber-based
systems are ideally suited for multi-coincidence momentum spectroscopy. Using a 3-dimensional
photoelectron/ion momentum spectrometer (reaction microscope or REMI [11]) along with

#454553 https://doi.org/10.1364/OE.454553
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attosecond pulses allows to temporally resolve combined electron and nuclear dynamics, by
means of kinematically complete measurements on their natural time scale.

Attosecond beamlines with high-repetition-rates for photoelectron spectroscopy exist and have
been reported in [10,12–15], with Ref. [10] even demonstrating the ability to perform coincidence
measurements. XUV attosecond beamlines (based on Ti:Sapphire systems) combined with a
REMI exist as well and have been reported in [16], [17] and [18]. All these systems lack either
the ability to study processes with low cross-sections due to their repetition-rate (latter case) or
from providing complete momentum information for both ions and electrons (former case).

Although Ref. [10] presents ion-electron coincidence measurements with a high-repetition
rate laser, their effusive target limits the ability to perform ion momentum spectroscopy. In our
setup, we have a target that is cold (<5K in the jet direction and ≈100 mK in the perpendicular
direction) and dilute, which provides us with excellent resolution for ion momentum spectroscopy.
This is seen in the results presented in Sec. 4.1, showing joint energy distributions obtained from
ion and electron momenta. We therefore present kinematically complete measurements using a
high-repetition rate attosecond source in combination with a REMI.

The generated XUV attosecond pulses reach photon energies up to 40 eV. The beamline
comprising an interferometer is used to perform XUV-IR pump-probe measurements on noble
gases and molecules. Results from RABBITT [1] measurements on argon and H2 demonstrate
the capabilities of the setup. In addition, we present an upgrade to the system with the goal to
perform multi-color pump-probe measurements, demonstrating the high stability of the attosecond
beamline.

2. Experimental setup

This section describes the experimental setup in detail (shown in Fig. 1). It consists of four main
parts: the driving laser, the HHG source with the interferometer, a focusing element and the
reaction microscope (REMI). The section ends with a description of the active phase-stabilization
of the interferometer.

Fig. 1. The constituent parts of the attosecond beamline: The CPA laser, the XUV-IR
interferometer and the HHG chamber, toroidal mirror chamber and the differential pumping
stages connected to the reaction microscope (REMI).
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2.1. Driving laser

A commercial laser from AFS (ActiveFiber Systems GmbH, Jena) is the front-end of the
attosecond beamline. The laser system comprises a fiber-based Chirped Pulse Amplifier (CPA)
[19] which works on the coherent combination of several phase-locked individual amplifiers
as explained in Refs. [20–22]. The CPA delivers pulses with a duration of approximately 250
fs (sech2 fit), 2 mJ pulse energy. To reduce the pulse duration, the pulses are coupled into an
argon gas (2 bars) filled hollow-core fiber (HCF) [23]. The spectrally broadened pulses are
temporally compressed to approximately 40 fs using chirped mirrors, with a pulse energy of 1
mJ. For further pulse compression, the output of the first HCF can be coupled into a second
HCF, bringing the pulse duration down to approximately 8 fs. All the experiments presented in
this paper were performed with 40 fs pulses. These pulses are steered to an interferometer for
XUV-IR pump-probe experiments. The laser has variable repetition rates - 49 kHz, 75 kHz and
147 kHz. The pulse energy is unaffected by choice of the repetition rate and all experimental
results presented here were obtained using a repetition rate of 49 kHz. This repetition rate was
chosen to ensure that all the ions of interest have a time-of-flight that would be less than the
time between two consecutive IR pulses, thereby simplifying the data acquisition. Moreover,
the count rate of the ions/electrons was sufficient to acquire a statistically significant number of
events for the various ionization processes.

2.2. Interferometer

The Mach-Zehnder arrangement is shown in Fig. 2. The incoming beam, 10 mm in diameter is
split into two parts using a mirror with a 3.5 mm central hole (HMBS in Fig. 2). This results in a
splitting of the beam into fractions of 85/15 (reflection/transmission). The beam path through the
HHG chamber (reflected part) forms the pump (or ionizing) arm of the interferometer while the
rest forms the probe arm.

Fig. 2. Schematic drawing of the interferometer including the HHG and recombination
chambers. Legend: HMBS - holey mirror beam splitter, FL - focusing lens, NZ - gas nozzle,
PC- differential pumping cone, DM - dump mirror, IR- iris, ALF - aluminium filter, RM -
recombination mirror, PZT - piezo stage, DL - diverging lens.

The transmitted beam is reflected by a retro-reflector mounted on a piezoelectric translation
stage, before it is diverged using a lens of focal length f= -25 mm in order to match the



Research Article Vol. 30, No. 8 / 11 Apr 2022 / Optics Express 13633

divergence of the XUV beam in the pump arm. The piezoelectric stage for delay control offers
a step-resolution of 5 nm. The IR and XUV beams are collinearly merged by a recombination
mirror (RM) which is again a mirror with a central hole (3.5 mm diameter).

2.2.1. High-harmonic generation

The reflected intense annular beam is focused with a lens of 50 cm focal length to a spot size
of approximately 100 µm, right below the exit of a gas nozzle. The gas nozzle is mounted in
a vacuum chamber and XUV radiation is generated through the process of HHG [4]. With a
backing pressure of 700 mbar before the nozzle, the chamber pressure reaches about 9x10−3

mbar. The hole diameter of the cylindrical nozzle is 150 µm.
The generated XUV radiation co-propagates with the annular driving IR radiation. The IR

radiation is removed through several steps. First, after a distance of 50 cm from the HHG target,
the XUV radiation that is located in the center of the IR beam is spatially separated with the
help of an additional holey mirror (DM in Fig. 2). The intense IR beam is reflected by the holey
mirror and guided to a beam dump outside the vacuum chamber in order to reduce the heat load
inside the chamber. In addition, the beam transmitted through the holey mirror passes through an
iris which cuts down the remaining IR radiation that might still surround the XUV beam. The
iris is not actively cooled since the residual IR cut out by the iris does not cause any significant
heating. Finally, an aluminium filter with about 200 nm thickness then filters out any remaining
IR radiation along with the lowest order harmonics from the XUV beam. Using this annular beam
method protects the aluminium filters from damage due to heating by the residual IR radiation
that co-propagates with the XUV.

2.3. Toroidal mirror

The XUV-pump and IR-probe beams are together focused using a toroidal mirror (TM) (Fig. 3)
onto a supersonic gas target inside the reaction microscope (REMI). The TM is designed in a way
that it images both, the XUV source point and the virtual IR focus inside the REMI. The mirror
has a B4C coating (30 nm thickness) on top of an aluminum layer (30 nm), which at a grazing
incidence angle of 8o is designed for high reflectivity of the XUV and IR wavelengths around
1030 nm. The total distance between the HHG source point and the gas-jet is 2.6 m. Under
normal operating conditions, the pressure inside the mirror-chamber is in the order of 10−7 mbar.

Fig. 3. Schematic of the toroidal mirror mounted on four different stages. The lowest is a
translation stage moving the whole mirror on the sagittal plane. Two goniometers in between
are used to rotate the mirror along the Pitch and Roll axes ( Axes A and B respectively in
the figure). The upper-most stage rotates the mirror around the Yaw axis (Axis C). Figure
adapted from [24].
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2.4. Differential pumping stages and reaction microscope

The toroidal mirror chamber is followed by a differential pumping stage since the REMI requires
to be operated at a pressure of 10−10 mbar or below. The differential pumping stages create a
smooth pressure gradient between the mirror chamber and the REMI from 10−8 mbar to 10−11

mbar.
The reaction microscope ( [11,25]) employs a supersonic gas-jet for target delivery and it can

detect ions and electrons in coincidence (see Fig. 4). The gas jet is 1 mm in diameter at the focus
of the XUV and IR. The target is internally cooled by supersonic expansion to a few Kelvins,
thereby leading to a very narrow momentum distribution of the gas particles. This is achieved
by taking a gas reservoir at room temperature (≈ 300 K) with a backing pressure of a few bars
and allowing it to undergo expansion through a 30 micron diameter nozzle (technical details
from Ref. [24]) into a chamber with a few millibars of pressure. This leads to the formation of a
gas-jet which afterwards passes through two skimmers with diameters of 150 µm and 200 µm.
The distance between the nozzle and the reaction volume is 115 mm, while the nozzle-skimmer
distance is about 7 mm.

Fig. 4. Schematic of the reaction microscope. Figure taken from [26].

Electrons and ions created in the center of the REMI by the interaction of XUV and IR beams
with the gas-jet are guided to their respective MicroChannel Plate (MCP) detectors using co-axial
homogenous electric and magnetic fields. The electric field used for accelerating the charged
particles is between 3 - 12 V/cm and the magnetic field applied is between 4 and 10 Gauss,
thereby providing a 4π acceptance for electrons with kinetic energies up to 22 eV and ions with
kinetic energies up to 3 eV.

Along with the MCP detectors, Delay-line Anodes [27] provide the position of the electron
and ion hits. The detection system therefore provides the time of flight of the charged particles
and their respective hit positions on the detector. This enables a complete reconstruction of the
momentum components (see [11]) of all charged fragments detected in coincidence.

In order to avoid false hits due to scattered light in the REMI that causes secondary electron
emission, the XUV and the IR beams are dumped onto a slightly bent tubular extension at the
end of the REMI.
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2.5. Stability of the beamline

The beamline requires a high level of stability to measure photoionization time delays in the
order of a few tens of attoseconds. Patricularly, the temporal jitter while performing delay scans
should be less than about 100 attoseconds [28]. Additionally, interferometric drifts need to be
minimized and compensated to perform measurements lasting several hours for targets with low
ionization cross-sections. These requirements call for having an active-stabilization system with
closed-loop control to reduce both the long-term drifts and short-term jitter. To achieve this, the
interferometer is extended as shown in Fig. 5.

Fig. 5. Schematic drawing of the interferometer with drift stabilization. The extended part
of the interferometer is in the region shaded green. Legend : HMBS - holey-mirror beam
splitter, FL - focusing lens, HHG - HHG chamber, DM - dump mirror, ALF - aluminium
filter, BS - beam splitter, PZT - piezo stage, DL - diverging lens, RM - recombination mirror,
CMOS - camera.

A small portion of the pump IR beam that is reflected to the beam dump by the mirror DM,
is picked up using a rectangular mirror and guided on to a beam splitter. Likewise, a part of
the probe IR beam is guided through a hole in the recombination mirror (RM). By adjusting
the spatial overlap of the beams, interference fringes are obtained on the camera which has an
exposure time of 1/20th of a second. A narrow section of the image having the best fringe
contrast is chosen and cropped. Integrating the cropped image along one axis gives the projection
in the form of a sine wave. Figure 6 is a stack of the sine waves from images acquired every 10th
of a second, over 1 hour. The phase of this sine wave is obtained using methods from Fourier
Transform Interferometry [29,30]. At the beginning of the experiment, a reference image is
captured and the phases of the fringes during the experiment is compared every 1/10th of a
second to this reference. If a phase shift is registered, an error signal proportional to the phase
shift is generated in order to move the piezo stage to compensate the drift. This is conceptually
the same as the method presented in Ref. [31].

Figure 6 shows the phase drift when the interferometer is free-running as well as when the
interferometer is locked to one particular setpoint phase with the active stabilization. The phase
of the free-running interferometer drifts by about π

4 radians after 60 min. Assuming no variation
of the laser’s central frequency and using the relation ϕ = ωIRτ (ωIR - IR frequency, τ - time),
this corresponds to about 400 attoseconds temporal drift. With active stabilization, the drift
is negligible and only a short-term phase jitter of 0.03π radians (≈50 attoseconds (RMS)) is
observed (Fig. 6).

While performing pump-probe delay scans the setpoint phase is incremented in regular intervals
and the piezo stage is moved accordingly. With an increase in the pump-probe delay, the contrast
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Fig. 6. Top: Interference fringes of the free-running interferometer (left) and the stabilized
interferometer (right) over a timeframe of 1 hr. Bottom: Corresponding phase and time
delay shifts of the fringes over 1 hr.

of the interference fringes gradually reduces and the fringes vanish for delays more than the
FWHM of the pulse. To counter this, a band-pass filter is placed in front of the camera which
lets only a narrow band of frequencies. As a result, the interference fringes are visible for a much
longer delay range (100s of femtoseconds).

As seen in Fig. 7, a delay scan from 0 to 8.5 femtoseconds (5π shift in phase) also has
only a short-term jitter below 50 attoseconds (RMS). The phases from the interference fringes
shown here therefore are a part of an ’in-loop’ measurement and may not completely mirror the
phase shifts of the XUV-IR interferometer, since the actual interferometer has two additional
components (ie. the recombination mirror and the toroidal mirror). The stability of the actual
interferometer can be seen in the ’out-of-loop’ measurements explained in Sec. 4.2. The in-loop
and out-of-loop measurements together indicate that XUV-IR pump-probe experiments can be
performed with a sub-50 attoseconds stability.

Fig. 7. Top: Measured phases of the interference fringes along with their respective setpoint
phases, Bottom: Errors in relative delay throughout the delay scan.

The slow drifts which typically occur over a few hours are very efficiently corrected by
this method. The arrangement presented here is comparable to the one presented in [13]
and demonstrates the ability to stabilize the interferometer without the need of an additional
co-propagating CW laser for interferometric feedback, as reported in Refs. [10,12,31].
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The primary temporal information in the experiments presented here is imprinted in amplitude
oscillations of the photoelectron spectrum, with a time period of 1.7 femtoseconds (Sections
3,4). With interferometer drifts in the order of a few hundred attoseconds per hour, temporal
information is lost when data is taken over a few hours, due to smearing out of the oscillations.
Without the active stabilization, the dataset would require corrections to the phase after every 10
minutes to account for the drift. With the stabilized interferometer, data recorded even over a few
hours do not need any further corrections.

Limitations manifest when a dataset is acquired over very long durations (>12 hrs). This can
be seen with the measurements performed on argon (described in Sec. 4.2). While analyzing the
delay-dependent photoelectron spectrum, a drift of 300 attoseconds was observed over 12 hours.
This might be caused by a combination of factors such as instabilities in the laser performance (i.e.
laser power and beam pointing instabilities), along with the inability to completely eliminate the
effects of thermalization. For such long measurements, the dataset would need a correction, but
only after 6-8 hours. The stabilization is also a vital element for measurements with oscillation
periods less than 1 femtosecond (presented in Section 5.).

3. Characterization of the XUV pulses

3.1. XUV photon flux and spectrum

The XUV photons are generated in the HHG chamber as described in the previous section. The
pulse duration of ≈40 fs (≈ 12 cycles) of the fundamental IR field results in an XUV Attosecond
Pulse Train (APT). The pulse energy is 0.75 mJ. An estimation of the photon flux and spectral
shape of the XUV radiation after it has passed through the aluminium filter, on the target inside
the REMI is possible using the photoelectron spectrum. The XUV spectrum is obtained by
adding the ionization energy(Ip) of the target gas to the kinetic energies of the photoelectrons and
by correcting for variations in ionization over the photon energies. Such a reconstructed photon
spectrum for the XUV ionization of argon is shown in Fig. 8.

Fig. 8. Reconstructed XUV spectrum (after the Al filter) from the photoelectron spectrum
of argon (Ip = 15.8eV). Cross section obtained from Ref. [33]. The area shaded green
represents the harmonics chosen for the attosecond pulse train reconstruction.

For calculating the photon flux of the XUV radiation, the following formula is used:

ϕ =
R

Lnση
. (1)

The factors to be taken into account are: the photoionization rate R (3 kHz), the target density
(n = 1011 atoms/cm3) of the gas inside the REMI, the interaction length L= 1 mm, the detection
efficiency(η ≈ 40 %) and the average ionization cross-section (σ ≈ 25 Megabarn). With these
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values for photon energies between 15-35 eV plugged into Eq. (1), we obtain an XUV photon
flux in the order of 1011 photons/s which corresponds to ≈ 107 photons/pulse. This value is
comparable to the numbers reported in recent publications on HHG with a high-repetition-rate
laser [12,32].

3.2. Attosecond pulse train

The average duration of the pulses in the APT is estimated using the RABBITT method [34].
This method is based on photoionization of atoms or molecules using an APT. The frequency
spectrum of an APT has a comb like structure, also called the harmonics. Thus, when an APT
ionizes an atom, it results in discrete peaks in the photoelectron spectrum. The spacing between
each peak is twice the IR frequency (2ωIR). Adding a phase locked IR field which also spatially
and temporally overlaps with the XUV field, leads to the formation of sideband peaks (Fig. 9) in
between the harmonics. The amplitude of these sideband peaks varies as a function of the time
delay between XUV and IR pulses and are also called sideband oscillations. These sideband
oscillations are the key feature of every RABBITT spectrogram.

Fig. 9. Top: Photoelectron Spectrum from the ionization of argon with XUV+IR, integrated
over all delays. Bottom: Experimental RABBITT trace from the ionization of argon. The
red dots in the top part are the sideband oscillation phases.

A cosine function of the form: Isb = Acos(2ωIRτ + ∆ϕ) is fitted to each individual sideband
oscillation. The phase term ∆ϕ is approximated to be ∆ϕ = ∆ϕXUV + ∆ϕA [35]. ∆ϕXUV stands
for the spectral group delay of the XUV pulses and ∆ϕA is the atomic phase, which contains
information about the atomic potential and the interaction between the IR laser pulse and the
quasi-free electron in the continuum. Since ∆ϕA«∆ϕXUV [35], in this case, the atomic phase can
be neglected and thus ∆ϕ ≈ ∆ϕXUV .

Figure 9 shows a RABBITT trace that was measured by ionizing argon as a target gas in the
REMI. The phases for sidebands 16 to 24 are also plotted in Fig. 9. From the phase difference
between each sideband, the spectral phase of the APT is obtained.

The spectral amplitude of the APT is taken from the reconstructed XUV spectrum (Fig. 8).
Knowing the spectral phases and the spectral amplitude of the APT, the structure of the attosecond
pulses in time is reconstructed with the inverse Fourier transform. With this method, we obtain
an average pulse duration for the XUV pulses in the APT as 410± 30 attoseconds. In comparison,
the Fourier limited pulses in the APT would have a duration of 305 attoseconds (Fig. 10).
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Fig. 10. Reconstructed XUV pulses from the attosecond pulse train. The Fourier Limited
pulses have a duration of 305 attoseconds while the retrieved pulses have a duration of
410 ± 30 attoseconds.

4. Multi-particle coincidence RABBITT measurements

Using the coincidence detection capabilities of the REMI, the various ionization channels in
atomic/molecular photoionization can be studied through XUV-IR pump-probe experiments.
Two examples of attosecond time resolved experiments - the photodissociation of the hydrogen
molecule and the photoionization of argon dimers - are presented here.

4.1. RABBITT with H2

Photoionization of molecules such as H2 often reveal intriguing aspects of molecular dynamics
and corresponding experimental datasets serve as platforms to test the latest theories. Through
RABBITT measurements on such systems, it is possible to observe the coupling of electron-
nuclear dynamics with attosecond precision, by studying dissociation processes [36]. The
cross-section for the dissociation of H2 is 2 orders of magnitude lower than direct ionization,
as seen in Fig. 11, where the Time-of-flight spectrum for ionization by the APT and IR field is
shown. The electrons are mainly from the direct ionization. Even with a high-repetition rate
laser, the data must therefore be acquired over at least a few hours to obtain a significant number
of events from the dissociation channel.

Fig. 11. Time of flight (TOF) spectrum for the ionization of H2 by the APT+ IR. The ratio of
ionization yields from direct ionization to the dissociation channel ( N(H+)

N(H+2 )
) is approximately

0.06. Figure adapted from [24].

Using the ion and electron momenta provided by the REMI, high quality 2-dimensional joint
energy distributions (e.g. Figure 12) can be obtained. In such a distribution, the ion Kinetic
Energy Release(KER) [37] in molecular dissociation is plotted against the respective electron
kinetic energy. With the help of joint energy distributions, the dissociation pathways can be
identified.
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Fig. 12. Bottom: A two dimensional joint-energy distribution of the KER vs electron
kinetic energy for the dissociation of hydrogen in the presence of XUV and IR integrated
over all delays. Top: Electron kinetic energy spectrum obtained by integrating over all KERs.
Figure adapted from [24].

The joint energy distribution obtained by performing an XUV-IR pump-probe measurement
on the H2 molecule and integrating over all delays is shown in Fig. 12. By choosing narrow
KER windows, electrons emerging from various dissociation channels are obtained. For each
dissociation channel, plotting the electron kinetic energy as a function of time-delay gives the
respective RABBITT spectrogram. Two such KER windows are shown in Fig. 12, corresponding
to the Ground state dissociation and the Bond Softening channels. Ground state dissociation
occurs when the molecule dissociates directly upon absorption of one XUV photon, while bond
softening occurs when an IR photon couples the ground state of the molecular ion to the first
excited state of that molecular ion after ionization by XUV [38]. The RABBITT spectrograms for
these channels are shown in Fig. 13. Without being able to map the electron kinetic energies to
their KERs, the total photoelectron spectrum would contain a mix of signals from all dissociation
channels, due to which temporal dynamics cannot be reliably extracted.

Fig. 13. RABBITT trace for electrons from: Left - the ground state dissociation channel
(KER = 0 to 0.38 eV in Fig. 12), Right - the bond softening region (KER = 0.5 to 0.85 eV in
Fig. 12). Figures adapted from [24].

The KER distribution for ground state dissociation exhibits a maximum at zero and a tail
towards larger KERs. For bond softening, the KER exhibits a broad peak with a maximum
around 0.6 eV. Where both the KER distributions overlap, there is an interference between the
two channels. This interference leads to an asymmetric electron emission with respect to the
proton [39,40]. A detailed analysis of the sideband oscillations for the two channels along
with the 3-dimensional momentum distribution of the fragments reveals that this asymmetric
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electron emission can be controlled on a sub-femtosecond timescale by varying the XUV-IR
delay. This finding is also validated by a theoretical model. The results of this experiment are
discussed in detail in a separate publication [41]. This experiment is extremely challenging with a
conventional laser system (Rep.-rate <10 kHz) as such a multi-particle coincidence measurement
would require a long acquisition time, in the order of a few days.

We note that for this measurement, the stabilization was not used. This was because the
interferometer drift stabilization was still being developed while this measurement was performed
and was hence not installed in the beamline. The signal to noise ratio was sufficient enough to
resolve oscillations in a short time window of approximately 10 minutes, demonstrating good
short-term passive stability. However, owing to long-term drifts, the dataset was later corrected
in blocks of 10 minutes. The acquisition time for this dataset was around 15 hours.

4.2. RABBITT on argon

A RABBITT measurement was performed with the active stabilization on, to study the time
resolved photoionization of argon dimers. While performing RABBITT on argon, a significant
number of data points are also obtained from the ionization of argon dimers since the supersonic
gas jet has a small but noticeable contribution of dimers. The fraction of coincidences detected
from the argon dimer is only about 1% of the coincidences detected from the ionization of atomic
argon (Fig. 14).

Fig. 14. Time of flight spectrum of the ions for ionization with the APT and IR. The ratio
of dimers ionized with respect to atomic argon is around 1%.

To eliminate false coincidences, the ion detection rate for the ionization of atomic argon was
maintained at less than one-tenth of the laser’s repetition rate. With the Ar+ ions being detected
at a rate of 3 kHz, the dimer ions were detected at about 30 Hz. To obtain a statistically significant
number of data points, the measurement was run over 12 hours, performing multiple delay scans.
The measurements on argon are also the "out-of-loop" measurements to quantify the interfometer
stability. Although stabilization was on, a small amount of drift was observed upon analyzing the
RABBITT trace of atomic argon. This is because the phase shift in the interference fringes does
not completely mirror the drift in the real interferometer as explained in Sec. 2.5.

The actual drift of the interferometer is obtained by analyzing the phase shift of one sideband
with time. For example, the data taken over 1 hour is divided into four parts and the phase of the
sideband is estimated for each RABBITT trace (Fig. 15). Keeping the sideband phase from the
first part of the measurement as a reference, the phase shifts over one hour can be found. The
mean drift over 1 hour obtained by this method gives a value less than 50 attoseconds. Along
with the information from analyzing the interference fringes in Sec. 2.5, this clearly indicates
that the XUV-IR pump-probe measurements are performed with a sub-50 attosecond stability.
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For the long term stability, the entire dataset over 12 hours was divided into 1 hour slices and
the procedure above was repeated, the phase shift of the sideband was around 300 attoseconds
(≈ 0.2π radians phase shift) over 12 hours. This is because the drift is cumulative and cannot be
fully eliminated by the feedback loop. The oscillation contrast in the RABBITT trace is however
not significantly affected. The dataset hence did not necessarily require a drift correction, since
the oscillation contrast is sufficient to retrieve the phases. The phases retrieved from the sideband
oscillations for electrons in coincidence with Ar+ and Ar+2 respectively, are shown in Fig. 16.

Fig. 15. Top : Projection of the sideband oscillations from a RABBITT measurement on
atomic argon, tracked over 1 hour. Bottom: Phase shift of the sideband oscillations over one
hour, obtained with the cosine fit described in Sec. 3.2.

Fig. 16. Top: Photoelectron spectrum integrated over all delays. Bottom: Experimental
RABBITT trace for the photoionization of argon dimers. The green dots in the top part are
the measured sideband oscillation phases for the dimers and the red dots are the phases from
Fig. 9.

The phases measured in the case of dimers show negligible difference to that of atomic argon.
The reason for this could be the weak Van der Waals potential that binds the argon atoms in the
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dimer. The electron wavepacket exiting such a loosely bound system experiences a phase shift
that is mostly from the Coulomb potential of one of the atoms. Hence, the phases resemble the
case of atomic argon. Further measurements with longer acquisition times are necessary for
an accurate comparison as well as a deeper understanding of how a Van der Waals potential
influences photoionization delays.

However, this experiment demonstrates the ability of the setup to reliably perform coincidence
measurements over several hours or even days and also opens up the possibility of observing
even the dissociation of argon dimers, such as in Interatomic Coulomb Decay [42]. The fraction
of dissociated argon dimers is typically 10−4 times that of atomic argon, thereby requiring the
experiment to be run for at least 48 hours, which is feasible with this system.

5. Towards multi-sideband RABBITT measurements

The photoelectron spectra in conventional RABBITT contain only one sideband in between the
two adjacent high-harmonic bands. The sideband is formed by a two-photon transition process
where the XUV photon causes a bound-continuum transition and the IR probe photon drives
a transition within the continuum. Changing the ratio of the HHG-driving pulse frequency
and the probe pulse frequency allows the number of sidebands between the two high-harmonic
bands in the photoelectron spectrum to vary. The interfering quantum paths lead to the intensity
modulation of the sidebands in the delay scan, involving different numbers of transitions in
the continuum [43,44]. This opens an opportunity to study multi-photon transitions within the
continuum.

In Ref. [43], a new multi-sideband RABBITT scheme has been proposed, that involves using
the second harmonic (λ = 515 nm) of the laser frequency to generate the APT while keeping the
fundamental IR beam (λ = 1030 nm) as the probe. Since subsequent harmonics are now separated
by four times the IR photon energy, the RABBITT spectrum contains three sidebands instead of
one. The modulation frequency for these sidebands is twice that of conventional RABBITT (thus
4ωIR and τSB = 850 as). It is now essential to have a sub-50 attoseconds interferometer stability.
We discuss here the two main modifications done to the setup to study 3-Sideband RABBITT, as
shown in Fig. 17.

Fig. 17. Modified experimental setup for the Multi-Sideband RABBITT measurements.
Note: DCM- dichroic mirror.

First, a telescope is placed in the pump arm to reduce the beam diameter to approximately
4mm. The collimated beam then goes through a BBO crystal, followed by a dichroic mirror
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to separate the fundamental and its second harmonic. A half-wave plate is placed after this in
order to match the polarization of the second harmonic pump with the fundamental probe. The
collimated second harmonic beam is expanded and focused on the HHG target.

Second, in order to operate the drift stabilization with this setup, interference fringes need
to be generated on the CMOS camera. Owing to two different wavelengths of the pump and
probe beams, an additional BBO is used to convert the probe IR beam transmitted through the
recombination mirror (RM in Fig. 5), into its second harmonic. A half-wave plate is placed
after this BBO as well to match the polarizations. Using the drift stabilization system, the
interferometeric jitter in this case also is less than 50 as, and the 4ωIR oscillations in the 3-sideband
RABBITT spectrogram are well resolved. Without stabilizing the interferometer, the oscillations
are not visible, indicating that a very good stability is achieved in the former case. Figure 18
shows one of the first experimental RABBITT traces measured with this configuration. The 4ωIR
oscillations are clearly visible not only in the center sideband, but also in the upper and lower
ones with a good signal to noise ratio. Further analysis of the retrieved sideband phases along
with other results of this experiment will be published elsewhere.

Fig. 18. Bottom: Experimental trace from a 3-Sideband RABBITT measurement on argon,
Top: Photoelectron spectrum integrated over all delays.

6. Conclusion

The successful combination of a REMI with a high-repetition rate laser for attosecond pump-probe
experiments is presented here. To demonstrate the capabilities of the setup, measurements
have been performed with molecular hydrogen and argon dimers on the attosecond timescale.
Both measurements lasted at least 12 hours, confirming the required stability for coincidence
experiments. The experimental setup has been further modified for performing Multi-Sideband
RABBITT measurements. Additionally, work is being carried out to extend the XUV cut-off in
order to obtain photons with an energy higher than 50 eV, which would be crucial for studying
processes such as single-photon double ionization in noble gases. This system provides a
robust tool for performing new and highly demanding experiments that require high-stability, a
high-repetition rate attosecond source and a kinematically complete detection scheme allowing
data acquisition over days.
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4.2 Publication II: Decomposition of the transition phase

in multi-sideband schemes for reconstruction of attosec-

ond beating by interference of two-photon transitions

This paper discusses the adaptation of the RABBITT technique to the 3-SB RABBITT

scheme and examines the information that can be obtained through this method. The phase

information contained within the oscillation of the sideband yield encodes details about

the multi-order interaction of photoelectrons in the continuum. In order to interpret the

measurable phase, we begin by revisiting the commonly used “asymptotic approximation”

for extracting phase information from 1-SB RABBITT measurements. This approxima-

tion is rooted in perturbative theory and involves approximating the intermediate and final

states of the photoelectron with the asymptotic form of the scattering wave. As a result,

the measured phase can be split into two components: a Wigner phase associated with a

single-photon ionization process, and a continuum-continuum phase (ϕcc) linked to addi-

tional single-photon transitions that occur in the continuum [33]. We expand upon this

approximation to accommodate scenarios where there are multiple transitions in the con-

tinuum, and demonstrate that the final phase of the electron wavepacket can still be de-

composed into a single-photon ionization phase and a sequence of continuum-continuum

coupling phases corresponding to each transition.

An ab initio calculation of a 3-SB RABBITT scheme in atomic hydrogen is performed

by solving the time-dependent Schrödinger equation. The phases of the yield oscillations

of the sidebands are analyzed and compared with the analytical phase obtained using the

decomposition approximation. The approximation predicts that the phase of the three side-

bands between consecutive harmonics should be identical. While qualitatively correct, de-

viations from this prediction are observed in the simulation. These deviations are attributed

to the dependence of the continuum-continuum coupling phase on the orbital angular mo-

menta involved.
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Reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) is a technique that
can be used to determine the phases of atomic transition elements in photoionization processes. In the traditional
RABBITT scheme, the so-called asymptotic approximation considers the measured phase as a sum of the Wigner
phase linked to a single-photon ionization process and the continuum-continuum phase associated with further
single-photon transitions in the continuum. In this paper, we extend the asymptotic approximation to multi-
sideband RABBITT schemes. The predictions from this approximation are then compared with results obtained
by an ab initio calculation based on solving the time-dependent Schrödinger equation for atomic hydrogen.

DOI: 10.1103/PhysRevA.103.022834

I. INTRODUCTION

The reconstruction of attosecond beating by interference of
two-photon transitions (RABBITT) technique was originally
introduced for the temporal characterization of attosecond
pulse trains (APTs) produced via high-order harmonic gen-
eration (HHG) [1]. The utility of this technique was later
extended to measure the relative photoionization time de-
lay from different valence shells in argon [2]. Nowadays,
RABBITT is extensively employed to study the attosecond
dynamics in atoms [2–5], molecules [6,7], and solids [8–10].

RABBITT is a pump-probe interferometric technique, in
which an extreme ultraviolet (XUV) APT ionizes a target
gas in the presence of a time-delayed near-infrared (NIR)
pulse, and the kinetic-energy spectra of the photoelectrons are
recorded as a function of the varied relative delay. Without
the NIR probe photon, the photoelectron spectrum consists
of discrete peaks (here also termed “harmonics”) correspond-
ing to the high-order harmonic peaks in the XUV spectrum.
The presence of the probe field leads to the appearance of
sidebands as additional peaks between the discrete harmonic
peaks. In the traditional RABBITT scheme, only one sideband
is formed between two consecutive harmonic peaks. This
requires a minimum of one bound-continuum (bc) transition
and one continuum-continuum (cc) transition. For RABBITT,
two paths leading to the same sideband interfere. As the time
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Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
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delay (τ ) between the pump and probe pulse is varied, the
sideband signal is periodically modulated. The phase of this
delay-dependent modulation is written as

�φ = �φXUV + �φatom, (1)

where �φXUV is the phase related to the average group delay
of the XUV pulses. In many cases, the atomic phase �φatom

can be conveniently split into two contributions:

�φatom = �η + �φcc. (2)

The Wigner-like phase shift �η originates from XUV-driven
bc-transition processes, while the cc-transition phase �φcc is
associated with additional absorption and emission of a probe
photon by the photoelectron. This relation is well accepted
and was derived by Dahlström et al. [11] using the “asymp-
totic approximation,” in which the asymptotic form of the
scattering wave function is used to calculate the two-photon
ionization amplitude. In this approximation, φcc becomes uni-
versal, as it depends on the charge of the residual ion, the
photoelectron’s kinetic energy, and the probe frequency, but
not on the details of the atomic system. Dahlström et al. [11]
formulated an analytical expression of φcc, which is addition-
ally independent of the angular momentum �.

However, the actual φcc does depend on the angular mo-
menta [11–13], and this dependence becomes significant
close to the ionization threshold. Since the � dependence
of φcc decreases with increasing photoelectron energy, we
will generally neglect it in the discussion below, except for
pointing out occasions where this dependence may become
important.

For the one-sideband (1-SB) RABBITT setup, the probe-
field intensity is usually kept low to avoid significant
contributions from multiple cc transitions. Increasing this
intensity leads to the formation of higher-order sidebands,
which then may overlap with the harmonic bands [14]. Lately,
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other forms of RABBITT schemes comprising more than
one sideband between two consequent harmonic photoelec-
tron peaks were also proposed and realized. For example,
a two-sideband (2-SB) RABBITT configuration was used in
an attosecond-pulse shaping measurement [15], and an ex-
perimental technique for a three-sideband (3-SB) RABBITT
scheme was proposed to extract the cc-related phase sepa-
rately by cancelling contributions from the Wigner phase [16].

In all these other schemes, multiple cc transitions are
involved. However, a similar description and interpretation
like Eq. (2) for multiphoton continuum transitions is by no
means obvious. In this paper, we introduce a decomposition
approximation by extending the asymptotic approximation
to higher-order matrix elements as mentioned by Dahlström
et al. [17].

This decomposition approximation leads to the interpre-
tation that the final RABBITT phase is built up from the
phases of stepwise transitions of the photoelectron, i.e., first
the XUV-induced bc transition, and then subsequent cc tran-
sitions, each involving a single IR photon.

This paper is structured as follows. In Sec. II, we outline
the basic equations on which the paper is built. This is fol-
lowed by Sec. III, where we first discuss the well-known 1-SB
case before we introduce the decomposition approximation,
which is then formally applied to the 3-SB case. Details of our
derivation are given in the Appendix. Section IV provides a
brief summary of the ab initio numerical calculations, against
which the predictions of the decomposition approximation are
tested and discussed in Sec. V. We finish with a summary
and an outlook regarding potential consequences for future
experiments.

II. GENERAL FORMULATION

The RABBITT technique is based on the interference of
different quantum paths leading to the same final energy. All
equations in the present paper are written in the nonrelativistic
single-active electron (SAE) picture, assuming that the initial
bound electron has orbital angular momentum �i = 0 (often
omitted in the notation below) and considering linearly polar-
ized electric fields. Unless indicated otherwise, atomic units
are used.

In the framework of time-dependent perturbation theory,
the general expression of the transition amplitude describing
a quantum path from an initial state |i〉 to a final state |�kN 〉
with asymptotic momentum �kN , upon absorption of one XUV-
pump photon (�) and (N − 1) IR-probe photons (ω), is given
by the N th-order matrix element [18]

M (N )
P (�kN )=−iẼ�ẼN−1

ω 〈�kN |z
N−2∏
n=0

[G+(εi +�+ nω)z]|i〉, (3)

where G+ is the retarded resolvent of the free-field Hamil-
tonian, εi is the initial state energy, z is the electric dipole
operator, and P specifies the path by which the final state is
reached.

By projecting the final continuum states for the photo-
electron on a partial-wave basis, the matrix elements corre-
sponding to the different angular momentum channels can be

disentangled as

M (N )
P (�kN ) = Ẽ�ẼN−1

ω

∑
�N

M(N )
P,�N

(kN )Y�N ,0(k̂N ). (4)

The sum over �N represents the possible orbital angular mo-
menta in the final state, and Y�N ,0 are spherical harmonics.
Furthermore, Ẽ� = E�ei φ� and Ẽω = Eωei ωτ (for absorption)
are the complex electric-field amplitudes of the XUV-pump
(�) and NIR-probe (ω) pulses, respectively.

Although much effort has been put into estimating
multiphoton transition matrix elements [19,20], it remains
challenging to accurately calculate the phases of multiphoton
transition elements for a general target other than atomic
hydrogen, even for N = 2. Hence, finding a suitable approxi-
mation seems highly desirable.

III. DECOMPOSITION OF THE RABBITT PHASE

We start this section by applying the asymptotic approxi-
mation to a hydrogenic system to simplify the second-order
matrix element M (N=2). We then extend the ideas behind the
asymptotic approximation to higher-order matrix elements
to arrive at a decomposition relation (see the Appendix for
details) and subsequently apply it to the 3-SB RABBITT case.

A. 1-SB RABBITT

Figure 1(a) shows the energy-level diagram and transi-
tion pathways involved in a traditional (second-harmonic)
1-SB RABBITT scheme. To explain the appearance of
the sideband S, one needs to consider only two paths,
A and B, which can both be described by second-order
electric dipole transitions. Path A corresponds to the ab-
sorption of one XUV photon of energy �q+1 = (q + 1) 2 ω

from the harmonic Hq+1 and emission of one probe (2 ω)
photon, while path B corresponds to the absorption of an XUV
photon of energy �q−1 = (q−1) 2 ω from the lower harmonic
Hq−1 and the absorption of a probe photon. Both paths lead to
the same final continuum state | f 〉 with asymptotic photoelec-
tron momentum k f , thus resulting in the sideband S. Using the
notation of Eq. (4), the two-photon transition amplitudes for
paths A and B are expressed as

M (2,e)
A (�k f ) = Ẽ∗

2ωẼq+1

∑
�

M(2,e)
A,� (k f )Y�,0(k̂ f ), (5)

M (2,a)
B (�k f ) = Ẽ2ωẼq−1

∑
�

M(2,a)
B,� (k f )Y�,0(k̂ f ). (6)

The superscript e (a) indicates the pathway where a probe
photon (2ω) is emitted (absorbed). �(= � f ) is the angular
momentum of the final state (| f 〉).

The angle-resolved sideband signal is formed as the coher-
ent sum of all the quantum paths leading to the same final
momentum state:

S(τ, �k f ) ∝ ∣∣M (2,e)
A (�k f ) + M (2,a)

B (�k f )
∣∣2

. (7)

The phase difference between the absorption and emission
paths is varied by changing the time delay (τ ) between the
pump and the probe pulses. This results in an oscillation of
the sideband signal as a function of the relative pulse delay. In
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(a) (b)

C       D       E         F       G       H         I          J       K           L       M         N 

Ω
2ω
ω

FIG. 1. Energy-level schemes in (a) traditional RABBITT and (b) 3-SB RABBITT. Photoionization by an XUV APT results in the
appearance of harmonic peaks Hq−1 and Hq+1 (with q being an even integer) in the photoelectron spectrum. The XUV spectrum (�) contains
only odd harmonics of the 2 ω pulse. Exchange of NIR probe photons of frequency 2 ω or ω leads to the development of (a) a single sideband
or (b) three sidebands, respectively. Interference among the multiple quantum paths leading to final states with the same energy gives rise to
periodic oscillations in the sideband signal as a function of delay between pump and probe. Only the lowest-order paths required to explain the
oscillations in the signal are shown. Paths in which the probe photon is absorbed before the pump photon are ignored.

the following, we discuss only angle-integrated cases, which
results in Eq. (7) becoming an incoherent sum of partial-wave
contributions, i.e.,

S(τ, k f ) ∝
∑

�

∣∣Ẽq+1Ẽ∗
2ωM(2,e)

A,� (k f ) + Ẽq−1Ẽ2ωM(2,a)
B,� (k f )

∣∣2

∝ I0 + I1 cos(4 ωτ − �φXUV − �φatom ), (8)

where �φXUV = (φq+1 − φq−1) is the phase difference be-
tween the harmonic fields (q + 1) and (q − 1), while

�φatom = arg

[∑
�

M(2,e)
A,� M∗(2,a)

B,�

]
(9)

is the atomic phase.
The atomic phase contains the combined effect of the ion-

izing XUV pump and the NIR probe. It is not obvious whether
the two contributions can be separated to recover the pure
(Wigner-only) photoionization delay. For the 1-SB RABBITT
scheme, Dahlström et al. [11] showed that the atomic phase
can be split into a single-photon ionization phase (η) and the
measurement-induced cc-transition phase (φcc) when using
the asymptotic approximation. They also derived an analytical
expression for φcc corresponding to the single-photon free-
free transition of the photoelectron in the vicinity of the parent
ion:

φcc
k,κ = arg

[
(2κ )iZ/κ

(2k)iZ/k

�[2 + iZ (1/κ − 1/k)] + γ (k, κ )

(κ − k)iZ (1/κ−1/k)

]
.

(10)
Here κ is the wave number of the initial state in the contin-
uum while k is the wave number of the final photoelectron
momentum after the exchange of an NIR photon, Z is the
remaining charge on the parent ion, and γ denotes a long-
range amplitude correction. Details can be found in Ref. [11].

It can be verified that φcc
k,κ = −φcc

κ,k; i.e., the absolute cc phase
for absorption and emission between two given energy levels
is identical.

Using the asymptotic approximation, the phase of the
two-photon ionization amplitudes for any particular transition
channel can be expanded as [11]

arg
[
M(2,e)

A,�

] ≈ −�q+1π

2
+ η�q+1 + φcc

f ,q+1, (11)

arg
[
M(2,a)

B,�

] ≈ −�q−1π

2
+ η�q−1 + φcc

f ,q−1. (12)

The Wigner-like phase η depends on the angular momentum
(�q+1 or �q−1) and the energy (εq+1 or εq−1) of the inter-
mediate state reached upon the XUV absorption, while φcc

depends only on the energy of the two states involved in the
free-free transitions. In special cases, where only one angular
momentum channel (�q+1 = �q−1 = λ) is significant in the bc
transition, the atomic phase shift can be written as

�φatom = arg

[∑
�

M(2,e)
A,� M∗(2,a)

B,�

]
≈ �ηλ + �φcc (13)

with �ηλ =ηλ(εq+1)−ηλ(εq−1) and �φcc =φcc
f ,q+1−φcc

f ,q−1
denoting the Wigner and cc phase differences, respectively.

Equation (13) is the same as Eq. (2) and is broadly
used to measure the Wigner delay in various systems. We
emphasize, however, that φcc here does not depend on the
different angular momenta involved in the cc transitions, and
the bc-transition step contains only one dominant angular mo-
mentum channel. In cases where several angular momentum
channels are involved in the bc transition or φcc depends on
the angular momenta of the final states, the phase extracted
from RABBITT experiments depends on the detection angle

022834-3



DIVYA BHARTI et al. PHYSICAL REVIEW A 103, 022834 (2021)

of the observed electron. The atomic phase �φatom mea-
sured in angle-integrated RABBITT schemes then becomes
the weighted average of the Wigner and cc phases of each
contributing channel.

B. Decomposition approximation

For RABBITT schemes involving more than two photon
transitions (N > 2), the calculation of the necessary matrix
elements becomes an increasingly formidable task. To get
around this difficulty, we apply the ideas of the asymptotic
approximation to estimate the phases of the higher-order ma-
trix elements. Details of our derivation are provided in the
Appendix. This allows us to decompose the phase of higher-
order matrix elements into a sum of the phases generated by
several subsequent single-photon transitions:

arg
[
M(N )

P,�

] ≈ (N − 2)π

2
− λπ

2
+ ηλ + φcc

k2,k1
+ φcc

k3,k2

+ · · · + φcc
kN−2,kN−1

+ φcc
kN ,kN−1

. (14)

The decomposition approximation can be interpreted as a
stepwise buildup of the final phase, starting with promotion
from the initial bound state to a continuum state by the XUV
and followed by N − 1 transitions within the continuum states
driven by the NIR. We emphasize that this approximation
requires that we only have one bc channel (λ) and φcc does
not depend on �.

C. 3-SB RABBITT

As an example, we now apply the decomposition approx-
imation to the 3-SB RABBITT case. In this scheme, the
consecutive harmonic peaks in the photoelectron spectrum are
separated by four times the probe photon energy (ω). Fig-
ure 1(b) shows the 3-SB RABBITT scheme and the dominant
transition paths, up to fourth order, that are involved in the
formation of three sidebands. The population of the center
sideband Sc requires the absorption of an XUV pump photon
(�) and the exchange of at least two probe photons. There are
two dominant paths (H and I) leading to Sc, which can both be
described using third-order matrix elements.

On the other hand, to explain the oscillations of the lower
sideband Sl and the higher sideband Sh, one needs to consider
fourth-order dipole transitions, since at least one such high-
order process has to be involved (e.g., path C for Sl and path
N for Sh). Altogether, there are five transition terms involved:
one second-order and four fourth-order terms. Interference
among the paths D to G, or similarly J to M, however, does
not result in delay-dependent oscillations. Furthermore, the
relation φcc

k,κ = −φcc
κ,k , along with the decomposition approxi-

mation, implies that the phases from back and forth transitions
between the same two energy levels will cancel out. Hence,
apart from a trivial additional π shift, the phases in all fourth-
order absorption paths (E, F, and G) would be the same
as in the second-order absorption path (D). Similarly, there
would be no phase difference between the paths J, K, L, and
M. Within this approximation, therefore, we can ignore the
higher-order paths E to G and K to M, as they will only change

the amplitude but not the phase of the oscillation. This results
in the following equations:

Sl (τ, kl ) ∝
∑

�

∣∣Ẽq+1Ẽ∗3
ω M(4,e)

C,� (kl ) + Ẽq−1ẼωM(2,a)
D,� (kl )

∣∣2

= I l
0 + I l

1 cos
(
4 ωτ − �φXUV − �φl

atom

)
, (15)

Sc(τ, kc) ∝
∑

�

∣∣Ẽq+1Ẽ∗2
ω M(3,e)

H,� (kc) + Ẽq−1Ẽ2
ωM(3,a)

I,� (kc)
∣∣2

= Ic
0 + Ic

1 cos
(
4 ωτ − �φXUV − �φc

atom

)
, (16)

Sh(τ, kh) ∝
∑

�

∣∣Ẽq+1Ẽ∗
ωM(2,e)

J,� (kh) + Ẽq−1Ẽ3
ωM(4,a)

N,� (kh)
∣∣2

= I l
0 + I l

1 cos
(
4 ωτ − �φXUV − �φh

atom

)
. (17)

By applying the decomposition approximation to the various
atomic phase contributions in the above equations, and again
assuming that there is only one partial wave (λ) created in the
XUV ionization process, these phases can be written as

�φl
atom = arg

[∑
�

M(4,e)
C,� M∗(2,a)

D,�

]

≈ �ηλ + φcc
h,q+1 + φcc

c,h + φcc
l,c − φcc

l,q−1 + π, (18)

�φc
atom = arg

[∑
�

M(3,e)
H,� M∗(3,a)

I,�

]

≈ �ηλ + φcc
h,q+1 + φcc

c,h − φcc
c,l − φcc

l,q−1, (19)

�φh
atom = arg

[∑
�

M(2,e)
J,� M∗(4,a)

N,�

]

≈ �ηλ + φcc
h,q+1 − φcc

h,c − φcc
c,l − φcc

l,q−1 − π. (20)

Inserting the relation φcc
k,κ = −φcc

κ,k into Eqs. (18)–(20), we see
that the atomic phases in all three sidebands are the same, ex-
cept for an additional phase of π due to the fact that the higher
and lower sidebands are created, respectively, by interference
of two- and four-photon transitions, while the center sideband
is created by two three-photon transitions. Note, however, that
the final kinetic energies of the photoelectrons in the three
sidebands are different.

IV. NUMERICAL CALCULATIONS

In order to test the validity of the decomposition ap-
proximation, we performed ab initio calculations on atomic
hydrogen to examine the delay-dependent variation in the
sideband signals for the 3-SB RABBITT scheme. We chose a
pump pulse containing eight odd harmonics (5, 7, 9, . . . , 19)
of the generating 400-nm pulse. The pulse duration of each
single harmonic (Eq−1) is 20 fs and the peak intensity is
109 W/cm2. All harmonics are in phase, i.e., �φXUV = 0. The
center wavelength of the probe pulse is 800 nm, the pulse
duration is also 20 fs, and the peak intensity is 1011 W/cm2.

The calculations were performed with a further improved
version of the computer code described by Douguet et al.
[21]. We performed extensive checks to ensure convergence
of the predictions with the number of partial waves included,
independence of the results from both the radial and the time
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FIG. 2. (a) Photoelectron spectrum at maximum overlap between pump and probe (τ = 0). (b) Contour plot of a 3-SB RABBITT spectrum.
(c) Retrieved phases from the sideband oscillations. Inset: Fit of a cosine function (black line) to the photoelectron signals (dots) shown
for the sixth sideband group order. After retrieving the sideband phases (procedure demonstrated in the inset), the additional π shift was
removed from Sl and Sh in (c) for clarity of presentation. �φXUV = 0 in this case. The conversion from phase (left axis) to time (right axis) is
time = phase/(4 ω).

steps in the discretization, and excellent agreement between
the results obtained in either the length or the velocity form of
the electric dipole operator. Given these rigorous tests, we are
confident that the numerical predictions are highly accurate
for this nonrelativistic one-electron problem and hence can be
used to draw reliable conclusions about the validity (or the
lack thereof) of the approximations outlined above.

V. RESULTS AND DISCUSSION

Figure 2(a) exhibits the photoelectron spectrum at zero
time delay (τ = 0) on a base-10 logarithmic scale. The pump-
probe delay-resolved RABBITT scan is shown in Fig. 2(b).
Since the color bar was set to make the intensity oscillations in
the center sideband (Sc) visible, the other sideband oscillations
are saturated with this setting. The inset in Fig. 2(c) shows the
normalized data and the fits of the oscillatory part for the three
sidebands in the lowest SB group. Note that the phase of the
center sideband is π out of phase as shown by Eq. (19). All
the phases were retrieved from the data set shown in Fig. 2(b).
For the data analysis, the sideband signals were integrated
over an energy window of 0.25 eV around the peaks. A
constant component was subtracted from the integrated
sideband signals and then renormalized. To retrieve the phase
information, the data were then fit to a function containing a
cosine term and a quadratic term to account for the decay of
the signal with the delay (see the inset in Fig. 2). To simplify
the comparison, the additional π phases in Sl and Sh were
removed.

As expected, the contrast of the oscillation is best in the
center sideband, because both pathways, H and I, contribute

to its population at the same (third) order. Since the modu-
lations in the lower and higher sidebands originate from the
interference of second-order and fourth-order transition terms,
the depth of the corresponding oscillations is shallow before
renormalization. In Fig. 2(c), the phases of the sidebands at
their respective kinetic energies are plotted.

Figure 3 shows the phase of the center sideband and the
corresponding analytical phase, as expressed in Eq. (19). The

FIG. 3. Phase of the Sc sideband (solid circles) extracted from
the time-dependent Schrödinger equation calculation (see Fig. 2)
and the corresponding analytical phase (dot-dashed line) estimated
from Eq. (19). The difference above 12 eV between the two curves
corresponds to a time delay smaller than 0.01 as.
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(a)

(b)

FIG. 4. (a) Phases of three sidebands, Sc (dots), Sl (stars), and
Sh (triangles), over the sideband group order. (b) Difference in the
phases of nearby sidebands with respect to the center sideband. The
error bar corresponds to the fitting error. The kinetic energy on the
top horizontal axis corresponds to the kinetic energy of the center
sideband.

single-photon ionization phase ηλ for a hydrogenic system is
simply the Coulomb phase:

ηλ(κ, Z ) = arg

[
�

(
λ + 1 − i

Z

κ

)]
. (21)

Here, κ is the momentum of the released photoelectron, while
λ is the orbital angular momentum quantum number. In the
case of atomic hydrogen, there is only one transition channel
available by XUV ionization, which is s → p, i.e., λ = 1. The
single-photon cc-phase contributions φcc for each transition
are calculated using Eq. (10). For more details, see Ref. [11].
By inserting the expressions for η and φcc into Eq. (19), the
analytical phase associated with the center sideband Sc is
obtained.

The agreement between the two curves is remarkable
for photoelectrons with a kinetic energy above 10 eV. Near
threshold, however, the curves diverge. It should be mentioned
that the analytical formula for φcc breaks down at low kinetic
energies. Nevertheless, the good agreement between the an-
alytical phases and the phase retrieved from the numerical
calculation indicates that the decomposition approximation

(a)

s d

p f

s d

p

p

s

g s d
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FIG. 5. Angular-momentum-resolved quantum paths leading to
(a) the lower sideband, (b) the center sideband, and (c) the higher
sideband. The angular momentum state g does not contribute to the
delay-dependent modulation of the angle-integrated sideband inten-
sity. Only the dominant paths from Fig. 1 are shown.

works very well for the center sideband in a 3-SB RABBITT
scheme.

Figure 2(c) is plotted again in Fig. 4(a), but now over
the same sideband group order. We immediately see that the
phases in the neighboring sidebands are not identical, but
the difference between the phases obtained from the three
sidebands steadily decreases with increasing kinetic energy.
The phase difference between Sh and Sl in the same sideband
group corresponds to a time delay of less than 6 as slightly
above a photoelectron energy of 10 eV, but reduces to less
than 2 as beyond 20 eV.

The fact that the phases in the three sidebands (Fig. 4) are
not exactly the same could indicate that the decomposition
approximation is not valid. However, we know from Fig. 3
that the approximation works well for the center sideband.
Therefore, we now discuss the possible origins of the discrep-
ancy, which is clearly visible for the Sh and Sl sidebands.

As mentioned in the Introduction, it has been shown that
the actual φcc depends on the angular momentum of the states
involved in the transitions [11–13]. In that case, back-and-
forth transitions between two energy levels in the continuum
do not cancel out the cc phases, i.e., φcc

k,κ (�k ) 	= −φcc
κ,k (�κ ),

because there might be different channels involved in the
two processes. As a consequence, the second-order absorp-
tion path (D) and the previously neglected fourth-order paths
(E, F, and G) may not have the same phase. Similarly, the
dependence of φcc on the angular momentum may result in a
phase difference between the paths J, K, L, and M even when
the decomposition approximation holds.

The angular momentum dependence of φcc may also
manifest itself when one considers only the dominant paths
contributing to the modulation of all sidebands (see Fig. 5).
If an electron with � = 0 starts in the ground state, the final
wave function of the center sideband photoelectron after inter-
action with three photons will contain orbital angular quantum
numbers � = 1 and � = 3. On the other hand, the lower
(higher) sideband includes quantum numbers � = 0, 2, 4 in
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the emission (absorption) path, and � = 0, 2 in the absorption
(emission) path. Keeping this in mind, all the φcc correspond-
ing to the same energy levels could be different, and hence the
phases in the intermediate sidebands may not be the same.

We conclude that the phase difference between the three
sidebands comes most likely from the neglected � depen-
dence of φcc while the applied decomposition approximation
is reasonable. The good agreement between the �-independent
analytical phase and the retrieved phases from the time-
dependent Schrödinger equation calculation for the Sc (cf.
Fig. 4) can be explained by considering the fact that both
the emission and absorption paths are of the same order and
contain the same set of possible partial waves (p and f ). As
hinted in Refs. [11,12] for 1-SB RABBITT calculations on He
and H, the absolute phase difference between distinct partial
waves for the absorption paths is the same as for the emission
paths. Hence the difference between the two paths nullifies the
effect of the � dependence. This is not true for the lower and
higher sidebands, where the dominant interfering paths are of
different orders.

However, while the angular-momentum dependence is
particularly prominent for low kinetic energies of the photo-
electron, it becomes increasingly negligible with growing
kinetic energy [13]. This parallels our observation of im-
proved agreement between the phases of all three sidebands
in our 3-SB RABBITT scheme. Consequently, for sufficiently
large photoelectron energies, where the angular momentum
dependence of φcc is small, our calculations support the de-
composition approximation to interpret the measured atomic
phase in multi-sideband RABBITT schemes as stepwise one-
photon transitions.

VI. SUMMARY AND OUTLOOK

We studied the formation of sidebands and their oscilla-
tions in the 3-SB RABBITT scheme. The phases retrieved
from the oscillation of the three sidebands contain the phases
of higher-order dipole matrix elements, which are difficult
to interpret. A decomposition approximation was attempted
to simplify the phase extraction of the higher-order matrix
elements as the sum of the phases of sequential one-photon
transitions. The decomposition approximation along with the
assumption that φcc is independent of the orbital angular
momenta involved predicts that the phases extracted from all
sidebands between two consecutive harmonics are the same.

In order to check these assumptions, we performed ab
initio calculations for atomic hydrogen. While the phases in
all sideband groups are not identical, the difference decreases
with increasing kinetic energy. This difference is attributed
to the dependence of φcc on the angular momentum and the
involvement of different � channels in the three sidebands.
We, therefore, conclude that while the decomposition ap-
proximation is an appropriate assumption when describing
a multi-sideband RABBITT scheme, the dependence of φcc

on the orbital angular momenta cannot be neglected for low-
energy sidebands.

Multi-sideband RABBITT provides an opportunity to
probe deeper into the continuum of the ionic species. The
present benchmark studies are important for a planned exper-

iment using an argon target, which is experimentally much
more suitable than atomic hydrogen. We already started nu-
merical calculations for this system and presented preliminary
results at a recent conference [22]. Note, however, that hav-
ing the XUV APT ionize the electron from the 3p bound
orbital leads to continuum s and d waves, thereby further
complicating the interpretation of the RABBITT phase. Work
is currently in progress to address these issues.

In summary, we believe that multi-SB RABBITT opens up
a frontier in the study of transition phases in photoionization
processes. Since many more questions remain, we hope that
the present paper will stimulate further work in this area.
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APPENDIX

In this Appendix, we derive Eq. (14) by generalizing the
asymptotic approximation for the two-photon matrix element
introduced by Dahlström et al. [11]. In order to set the stage
and introduce our shorthand notation for the often lengthy
expressions, we first repeat the key ideas of the above paper
and then apply them to the third- and higher-order matrix
elements.

We begin by explicitly writing Eq. (3) as

M (N )(�kN ; �,ω)

= −iẼ�ẼN−1
ω lim

ε→0+

∫
d3�k′

N−1 · · ·
∫

d3�k′
2

×
∫

d3�k′
1

〈�kN | z |�k′
N−1〉 · · · 〈�k′

2| z |�k′
1〉 〈�k′

1| z |i〉
(εN−1 − ε′

N−1 + iε) · · · (ε1 − ε′
1 + iε)

.

(A1)

Here εi is the initial state energy and εi + � + nω = εn+1. As
in Ref. [11], we neglect all contributions from bound states,
since they are expected to be small if the photon energy for
the bc transition is sufficiently high.

The final and intermediate continuum states are decom-
posed into partial waves as

ϕ�k (�r) = (8π )3/2
∑
�,m

i�e−iη�(k)Y ∗
�,m(k̂)Y�,m(r̂)Rk,�(r), (A2)

where η�(k) denotes the scattering phases, Y�,m the spherical
harmonics, and Rk,� are the radial parts. Splitting the initial
state into its radial and angular parts according to

ϕni,�i,mi (�r) = Y�i,mi (r̂)Rni,�i (r), (A3)
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using z =
√

4π
3 rY1,0(r̂), and inserting Eqs. (A2) and (A3) into

Eq. (A1) yields for N = 2

M (2)(�k2; �,ω) = −i
4π

3
(8π )3/2Ẽ�Ẽω

×
∑
�2,m2

(−i)�2 eiη2Y�2,m2 (k̂2)

×
∑
�1,m1

〈
Y�2,m2

∣∣Y1,0

∣∣Y�1,m1

〉 〈
Y�1,m1

∣∣Y1,0

∣∣Y�i,mi

〉
× T (2)

�2,�1,�i
(k2; �,ω)

= Ẽ�Ẽω

∑
�2

M(2)
�2,m2

(k2)Y�2 (k̂2). (A4)

This defines M(2)
�2,m2

(k2) and simplifies to Eq. (4) of the main
text for �i = mi = 0 and linearly polarized light (m2 = 0).

Defining the first-order radial matrix element

T (1)
�1,�i

(k′
1; �) = 〈

Rk′
1,�1

∣∣ r
∣∣Rni,�i

〉
(A5)

allows us to write the second-order element as

T (2)
�2,�1,�i

(k2; �,ω)

= lim
ε→0+

∫ ∞

0
dε′

1

〈
Rk2,�2

∣∣ r
∣∣Rk′

1,�1

〉
T (1)

�1,�i
(k′

1; �)

εi + � − ε′
1 + iε

. (A6)

The first-order perturbed wave function [11] is defined as

|ρk1,�1〉 = lim
ε→0+

∫ ∞

0
dε′

1

T (1)
�1,�i

(k′
1; �)

∣∣Rk′
1,�1

〉
ε1 − ε′

1 + iε

= P
∫ ∞

0
dε′

1

T (1)
�1,�i

(k′
1; �)

∣∣Rk′
1,�1

〉
ε1 − ε′

1

− iπT (1)
�1,�i

(k1; �)
∣∣Rk1,�1

〉
, (A7)

where P denotes the principal value.
The key in deriving an analytic expression for the contribu-

tion to the phase of the matrix element is to replace the radial
functions of the intermediate and final continuum states by
their asymptotic form

lim
r→∞ Rk,�(r) ≈ Nk

r
sin(kr + φk,�(r)). (A8)

Here Nk ≈ √
2/πk(1 − Z/(2rk2)) is the amplitude of the

asymptotic wave for a long-range potential (−Z/r), and the
asymptotic phase is φk,�(r) = (Z/k) ln(2kr) + η�(k) − π�/2.
Using the same steps and approximations as outlined in
Ref. [11], this leads to the approximate form

lim
r→∞ ρ1(r) ≈ −πN1

r
T (1)(k1)ei(k1r+φ1(r)) (A9)

for the perturbed wave function after further compressing
the notation by defining Rkn,�n ≡ Rn, |ρk1,�1〉 ≡ |ρ1〉, Nkn ≡ Nn,
φkn,�n (r) ≡ φn(r), T (1)

�1,�i
(k1; �) ≡ T (1)(k1), and η�n (kn) ≡ ηn.

The second-order matrix element then becomes

T (2)
2 (k2) = 〈R2| r |ρ1〉

≈ T (1)(k1)

i
√

k1k2

∫ ∞

0
dr

(
r − 1

2

(
1

k2
1

+ 1

k2
2

))

× sin(k2r + φ2(r))ei(k1r+φ1(r)). (A10)

After writing the sin term in exponential form, dropping the
fast-oscillating term containing k1 + k2 while keeping the
term with k1 − k2, and introducing the substitution variable
−i (k1 − k2) r, one obtains a � function with complex argu-
ment. Using this function, we find

T (2)
2 (k2) ≈ T (1)(k1)√

k1k2

e−Z (1/k1−1/k2 )π/2

(k1 − k2)2
i�2−�1+1ei(η1−η2 )

× (2k1)iZ/k1

(2k2)iZ/k2

(�[2+ iZ (1/k1 − 1/k2)]+ γ (k2, k1))

(k1 − k2)iZ (1/k1−1/k2)

(A11)

with γ (k2, k1) = iZ (k1−k2 )
2 ( 1

k2
1

+ 1
k2

2
)�[1 + iZ (1/k1 − 1/k2)]

accounting for the effect of the long-range potential [11]. The
phase of the radial matrix element is

arg
[
T (2)

�2,�1,�i
(k2)

] = π

2
(�2 − �1 + 1) + (η1 − η2) + φcc

2,1,

(A12)
where

φcc
2,1 ≡ φcc

k2,k1

= arg

[
(2k1)iZ/k1

(2k2)iZ/k2

(�[2+ iZ (1/k1 − 1/k2)]+ γ (k2, k1))

(k1 − k2)iZ (1/k1−1/k2 )

]
,

(A13)

and we have used that T (1)
�1,�i

(k1) is real. Substituting Eq. (A11)
back into Eq. (A4), the phase of the matrix element for the
transition path �i → �1 → �2 is

arg
[
M(2)

�2,�1,�i
(k2)

] ≈ −π

2
− π�2

2
+ η2 + π

2
(�2 − �1 + 1)

+ η1 − η2 + φcc
2,1 + T (1)

�1,�i
(k1)

= −π�1

2
+ η1 + φcc

2,1. (A14)

Note the cancellations in this formula, particularly the con-
tributions from both i�2 and η2. As will be seen below, these
cancellations are a general pattern when we move to higher-
order matrix elements.

Our approximation for the higher-order matrix elements is
based on the above formalism. Starting with the third-order
element, the equivalent of Eq. (A4) is

M (3)( �k3; �,ω)

= −i

(
4π

3

)3/2

(8π )3/2Ẽ�Ẽ2
ω

×
∑
�3

(−i)�3 eiη3Y�3 (k̂3)

×
∑
�2,�1

〈
Y�3

∣∣Y1,0

∣∣Y�2

〉 〈
Y�2

∣∣Y1,0

∣∣Y�1

〉 〈
Y�1

∣∣Y1,0

∣∣Y�i

〉
× T (3)

�3,�2,�1,�i
(k3; �,ω)

= Ẽ�Ẽ2
ω

∑
�3

M(3)
�3

(k3)Y�3 (k̂3). (A15)
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Here

T (3)
�3,�2,�1,�i

(k3; �,ω) = 〈R3| r |ρ2〉 (A16)

with the second-order perturbed wave function

|ρ2〉 =
∫ ∞

0
dε′

2
|R′

2〉 〈R′
2| r |ρ1〉

(ε2 − ε′
2 + iε)

. (A17)

In the asymptotic approximation, we obtain

ρ2(r) ≈ −πN2

r
T (2)(k2)ei(k2r+φ2(r)) (A18)

and, consequently,

T (3)
3 (k3) ≈ T (2)(k2)√

k2k3

e−Z (1/k2−1/k3 )π/2

(k2 − k3)2
i�3−�2+1ei(η2−η3 )

× (2k2)iZ/k2

(2k3)iZ/k3

(�[2+ iZ (1/k2− 1/k3)]+ γ (k3, k2))

(k2− k3)iZ (1/k2−1/k3 )
.

(A19)

Looking at the phases,

arg
[
T (3)

�3,�2,�1,�i
(k3)

]
= π

2
(�3 − �2 + 1) + (η2 − η3) + φcc

3,2 + arg[T (2)(k2)]

= π

2
(�3 − �1 + 2) + (η1 − η3) + φcc

3,2 + φcc
2,1, (A20)

and, therefore, since the above radial matrix element is inde-
pendent of the intermediate angular momentum �2, we obtain
that

arg
[
M(3)

�3,�2,�1,�i
(k3)

] = −π

2
− π�3

2
+ η3 + arg[T (3)(k3)]

= π

2
− π�1

2
+ η1 + φcc

3,2 + φcc
2,1. (A21)

By repeating the procedure, i.e., straightforward induction, the
phase of the N th-order matrix element can be written as

arg
[
M(N )

�N ;�1
(kN )

] = (N − 2)π

2
− π�1

2
+ η�1

+φcc
k2,k1

+ φcc
k3,k2

+ · · · + φcc
kN ,kN−1

. (A22)

The analytical form of arg[M(N )
�N ;�1

(kN )] only depends on the
angular momenta of the first intermediate state after the XUV
step.
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4.3 Publication III: Multisideband interference structures

observed via high-order photon-induced continuum-

continuum transitions in argon

This publication presents the outcomes of the 3-SB RABBITT measurements conducted in

argon. The XUV-APT is generated using high-harmonic generation in neon gas. Six main

photoelectron peaks were detected, which corresponded to the six odd harmonics of 515 nm

above the ionization threshold. As a result, five sets of sidebands were observed.

We find that the RABBITT phases of the three sidebands obtained from angle-integrated

measurements become increasingly similar as the photoelectron energy increases. However,

some exceptions are observed in the sideband group closest to threshold and also in the

highest energy group. The former are likely due to the coupling to the discrete Rydberg

spectrum while the latter are caused by the presence of higher-order processes.

In argon, XUV single-photon ionization produces photo electrons in two intermediate

orbital angular momentum states, λ = 0, 2, which then interact with the dressing field to cre-

ate sidebands with different possible angular momenta. The distinct Wigner and continuum-

continuum coupling phases associated with individual angular momentum channels result

in variations in the angle-dependence of the RABBITT phases of the three sidebands. To

qualitatively explain this dependence, we utilize a propensity rule to extract information

about the dominant angular momenta involved in forming the sidebands.

At the end of the chapter, we provide additional data that were not included in the

paper. We also showcase predictions obtained from a simulation utilizing the R-matrix

(close-coupling) with time-dependence (RMT) approach, demonstrating the impact of Fano

resonances on the phase of the three sidebands within a group.
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Multisideband interference structures observed via high-order photon-induced
continuum-continuum transitions in argon
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We report a joint experimental and theoretical study of a three-sideband (3-SB) modification of the reconstruc-
tion of attosecond beating by interference of two-photon transitions (RABBIT) setup. The 3-SB RABBIT scheme
makes it possible to investigate phases resulting from interference between transitions of different orders in the
continuum. Furthermore, the strength of this method is its ability to focus on the atomic phases only, independent
of a chirp in the harmonics, by comparing the RABBIT phases extracted from specific SB groups formed
by two adjacent harmonics. We verify earlier predictions that the phases and the corresponding time delays
in the three SBs extracted from angle-integrated measurements become similar with increasing photoelectron
energy. A variation in the angle dependence of the RABBIT phases in the three SBs results from the distinct
Wigner and continuum-continuum coupling phases associated with the individual angular-momentum channels.
A qualitative explanation of this dependence is attempted by invoking a propensity rule. Comparison between the
experimental data and predictions from an R matrix (close-coupling) with time dependence calculation shows
qualitative agreement in most of the observed trends.

DOI: 10.1103/PhysRevA.107.022801

I. INTRODUCTION

The reconstruction of attosecond beating by interference of
two-photon transitions (RABBIT) is a widely employed tech-
nique to measure attosecond time delays in photoionization
processes [1–3]. The extraction of time information from the
RABBIT measurements usually involves retrieving atomic
phases encoded in the delay-dependent modulation of the
sideband (SB) yield. These SBs are traditionally formed
in the photoelectron spectrum by the interaction of two
photons (one pump, one probe) with the target. Spectral har-
monics from an attosecond pulse train (the pump photons)
form discrete photoelectron signal peaks. The presence of
a time-delayed infrared field (the probe photon) then cre-
ates a signal between these main peaks that oscillates with
the time delay. The so-retrieved atomic phase (�φat) from
the RABBIT measurement can be separated into a single-
photon ionization contribution (�η, Wigner phase [4]) and a
continuum-continuum (cc) coupling phase (�φcc) by apply-
ing an asymptotic approximation [5–7].

Variations of the RABBIT scheme, such as 0-SB, 1-SB,
and 2-SB, have been utilized to study dipole transition phases

*bharti@mpi-hd.mpg.de; anne.harth@hs-aalen.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

and attosecond pulse shaping [8–10]. As the name suggests,
in a 3-SB RABBIT scheme, three SBs are formed between
two consecutive main photoelectron peaks [11,12]. The delay-
dependent oscillation in the photoelectron signal of these three
SBs requires more than one transition in the continuum, i.e.,
the absorption or emission of several probe photons. For a
hydrogenic system, we recently [12] extended the asymptotic
approximation to a decomposition scheme, which expands the
phase of the N th-order dipole matrix element M(N ), describ-
ing the absorption of an ionizing extreme ultraviolet (XUV)
photon followed by N −1 infrared (IR) photon exchanges in
the continuum, into a sum of the Wigner phase and N −1 cc
phases.

For atomic hydrogen, where numerical calculations with
high accuracy can be carried out by solving the time-
dependent Schrödinger equation (TDSE) directly, we verified
that the decomposition approximation explains the RABBIT
phases in all three SBs qualitatively [12]. As expected, its
accuracy improves with increasing energy of the emitted
photoelectron. On the other hand, assuming �φcc to be in-
dependent of the orbital angular momenta of the continuum
states leads to deviations from the analytical prediction, par-
ticularly in the lower and the higher SB of the triplet at low
kinetic energies.

Even though starting with a 3p electron still limits the
information that can be extracted due to the combined effect of
at least two Wigner and the cc phases, we decided to perform
the present proof-of-principle study on argon due to its exper-
imental advantages, including a significantly lower ionization
potential than helium, which may be a viable alternative to
atomic hydrogen due to its quasi-one-electron character, as

2469-9926/2023/107(2)/022801(8) 022801-1 Published by the American Physical Society
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FIG. 1. 3-SB RABBIT scheme. Mq−1 and Mq+1 label the main
photoelectron peaks created directly by the odd harmonics (Hq−1 and
Hq+1) of the frequency-doubled fundamental probe frequency in the
XUV pulse, while Sq,l , Sq,c, and Sq,h are the lower, central, and higher
SBs, respectively. These SBs are formed by emission or absorption
of probe photons by the quasi-free photoelectrons. |i〉 denotes the
initial state and Ip is the ionization potential.

long as one of the electrons remains in the 1s orbital, i.e.,
away from doubly–excited resonance states. In argon, the
intermediate orbital angular momentum after the XUV step
is λ=0 or 2, while λ=1 in helium. For the latter target, as
for atomic hydrogen, the dependence on the Wigner phase
would drop out, and the 3-SB setup would provide direct
access to the phase associated with higher-order cc transitions
[11,12]. Nevertheless, a significant strength of our current
setup already lies in the fact that the results within each group
are independent of any chirp in the XUV pulse, because the
XUV harmonic pair is common to all three SBs.

This paper is organized as follows. We begin with a brief
review of the basic idea behind the 3-SB setup in Sec. II. This
is followed by a description of the experimental apparatus in
Sec. III and the accompanying theoretical R matrix (close-
coupling) with time dependence (RMT) approach in Sec. IV.
In Sec. V, we first show angle-integrated data (Sec. V A) be-
fore focusing on the angle dependence of the RABBIT phases
in the three SBs of each individual group in Sec. V B. We
finish with a summary and an outlook in Sec. VI.

II. THE 3-SB SCHEME

In this section, we briefly review the 3-SB scheme intro-
duced in Ref. [11] and the analytical treatment presented in
Ref. [12] as applied to the 3-SB RABBIT experiment.

Figure 1 illustrates only the two most dominant transi-
tion paths for each SB contributing to the oscillation in their
respective yields. The lowest-order transition dominates the
yield, but its modulation requires interference between at least
two distinct paths leading to the same energy. This involves
two different XUV harmonics that are aided by absorption or
emission of near-infrared (NIR) photons. For the lower (l) and
higher (h) SBs, Sl and Sh, the most important interfering paths
are of second (one harmonic and one NIR) and fourth (one
harmonic and three NIR) order, which results in a weak mod-
ulation of the yield. The lowest-order terms contributing to the
buildup of the central (c) SB, Sc, are both of third order (one
harmonic and two NIR). Consequently, interference between
them exhibits the delay-dependent oscillation most clearly.

Mathematically, the angle-integrated yield in the three SBs,
considering only two prominent transition paths, can be writ-
ten as

Sq,l ∝
∑

�,m

∣∣(Ẽq+1Ẽ∗3
ω M(4,e)

�,m (kl,q) + Ẽq−1ẼωM(2,a)
�,m (kl,q)

)∣∣2

= I l
0 +

∑

�,m

Il
�,m cos

(
4 ωτ − �φ

q
	 − �φl,at

�,m

)

= I l
0 + I l

1 cos
(
4 ωτ − φl

R + π
)
; (1a)

Sq,c ∝
∑

�,m

∣∣(Ẽq+1Ẽ∗2
ω M(3,e)

�,m (kc,q) + Ẽq−1Ẽ2
ωM(3,a)

�,m (kc,q)
)∣∣2

= Ic
0 +

∑

�,m

Ic
�,m cos

(
4 ωτ − �φ

q
	 − �φc,at

�,m

)

= Ic
0 + Ic

1 cos
(
4 ωτ − φc

R

)
; (1b)

Sq,h ∝
∑

�,m

∣∣(Ẽq+1Ẽ∗
ωM(2,e)

�,m (kh,q ) + Ẽq−1Ẽ3
ωM(4,a)

�,m (kh,q )
)∣∣2

= Ih
0 +

∑

�,m

Ih
�,m cos

(
4 ωτ − �φ

q
	 − �φh,at

�,m

)

= Ih
0 + Ih

1 cos
(
4 ωτ − φh

R + π
)
. (1c)

Here q labels the SB group, while kl,q, kc,q, and kh,q denote
the final linear momenta of the ejected electron in the lower,
central, and higher sidebands in each group. The subscript
� denotes one of generally several allowed orbital angular
momenta of the ejected electron in the final state and m labels
the magnetic quantum number, which can be 0 or ±1 for the
electron starting in the 3p subshell. Note that m is a conserved
quantity for all orders n of the transition matrix element M(n)

�,m
due to our use of linearly polarized light.

Furthermore, Ẽ	 = E	ei φ	 and Ẽω = Eωei ωτ (for ab-
sorption) are the complex electric-field amplitudes of the
colinearly polarized XUV-pump (	) and NIR-probe (ω)
pulses, respectively. �φat

�,m = arg[M(a)
�,mM∗(e)

�,m ] is the phase
difference between the two matrix elements and a(e) denotes
the pathway involving absorption (emission) of the probe
photons. Finally, �φ

q
	 is the spectral phase difference (XUV

chirp) of two neighboring harmonics.
As seen from Eqs. (1), the yield of each SB is separated

into an average part I0 and another term I1 that oscillates at
4 ω with the delay. As discussed in Ref. [12], every dipole
transition also adds a phase of π/2. Since the two dominant
interfering terms in Sl and Sh are of different orders (second
and fourth), this leads to an additional π phase in Sl and Sh

relative to Sc, where both interfering terms are of the same
(third) order.

The RABBIT phase (φR) includes the spectral phase differ-
ence of the two harmonics and the channel-resolved atomic
phases weighted according to their transition amplitudes. It
is a complex inverse trigonometric function involving many
parameters and hence is best determined by fitting the signal
to the known analytic form given above. Since the three SBs
involve the same pair of harmonics, the contribution of the
XUV group delay (i.e., the chirp) to the oscillation phase is
the same in all three SBs. This is a key advantage of the
3-SB method, since it removes the influence of the XUV chirp
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FIG. 2. Experimental setup. A holey mirror (BS) splits the linearly polarized laser beam between the two arms of the interferometer. In the
pump arm, the HHG process is driven by the second harmonic of the laser beam. The generated XUV and the fundamental probe beam are
recombined and focused onto a supersonic gas jet of argon. The interferometer is stabilized by tracking the movement of the fringes from the
pump and the probe beams.

when we compare the phases of the three SBs only within a
particular group.

III. EXPERIMENTAL SETUP

Figure 2 shows the schematic design of our 3-SB RABBIT
experimental setup. A commercial fiber-based laser delivers
pulses with a duration of approximately 50 fs [full width at
half maximum (FWHM)] at a 49 kHz repetition rate with a
pulse energy of 1.2 mJ and a center wavelength of 1030 nm.
This pulse is split into two parts using a holey mirror (BS) that
reflects ∼85% of the incoming beam in the pump arm, while
the rest passes through the hole into the probe arm. The beam
size of the reflected donut beam in the pump arm is reduced
by a pair of lenses and passed through a 0.5-mm-thick Beta
Barium Borate (BBO) crystal to double its frequency.

The conversion efficiency for the second-harmonic gener-
ation (SHG) by the BBO crystal is 25%−30% . A dichroic
beam-splitter (DBS) filters out the fundamental beam, and a
lens with a focal length of 12 cm focuses the second harmonic
beam inside a vacuum chamber to a focal spot of 30−40 μm
on a jet of neon gas, which results in an XUV frequency comb
through high-harmonic generation (HHG). The gas nozzle has
a diameter of 100 µm and is operated at a backing pressure
of 1.2 bar with a chamber pressure of 5×10−3 mbar. The
generated XUV beam is spatially separated from the annu-
lar second harmonic with the help of an additional holey
dumping mirror (DM). The residual second harmonic passed
through the dumping mirror is weak and does not generate any
visible sidebands. The beam in the probe arm goes through
a retro-reflector mounted on a piezoelectric-translation stage
that offers a step-resolution of 5 nm with closed-loop posi-
tion control. Another holey mirror (RM) recombines the NIR
(probe) and XUV (pump) beams, which are then focused
inside a reaction microscope (ReMi) on a cold gas jet of argon.
The ReMi enables coincident detection and the reconstruction
of the three-dimensional momenta of the ions and electrons
created during the photoionization process [13]. The interfer-

ometer was actively stabilized [14] to achieve a stability of
∼40 as over a data acquisition time of 7 h. The stability of
the interferometer was critical for the successful realization
of the 3-SB scheme since the oscillation period was just
850 as.

IV. THEORETICAL APPROACH

In the theoretical part of this study, we employ the gen-
eral R matrix with time dependence (RMT) method [15]
to generate theoretical predictions for comparison with our
experimental data. In order to calculate the necessary time-
independent basis functions and dipole matrix elements, we
set up the two-state nonrelativistic model introduced by Burke
and Taylor [16] to treat the steady-state standard photoion-
ization process. In this model, multiconfiguration expansions
for the initial (3s23p6)1S bound state and the two coupled
final ionic states (3s23p5)2P and (3s3p6)2S were employed.
We checked that the photoionization cross sections at the
photon energies corresponding to the various HHG lines was
reproduced properly (in agreement with Burke and Taylor [16]
as well as experiments [17,18]) by our RMT model.

The probe-pulse duration was chosen as about twice the
length of the XUV pulse. We emphasize that the present cal-
culation was meant as a supplement to the current experiment,
with the hope of providing additional qualitative insights
rather than quantitative agreement, which would require much
more detailed information about the actual pulses than what
was available. We purposely employed significantly lower
NIR peak intensities (1011 W/cm2) than in the experiment
(∼6×1011 W/cm2). This reduced the number of partial waves
needed to obtain converged results, diminished potential dis-
tortions, and thus made it easier to interpret the spectra.

Specifically, we performed calculations for 11 delays in
multiples of 0.05 NIR periods. For each delay, we needed
about 5 h on 23 nodes using all 56 available cores per node
on the Frontera supercomputer hosted at the Texas Advanced
Computing Center (TACC) [19].
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FIG. 3. (a) 3-SB RABBIT trace, (b) normalized photoelectron spectra generated with the XUV pulse only (dark) and during the RABBIT
measurement integrated over the delays (lighter), and (c) RABBIT phases extracted from all three sidebands. Note that the π phase difference
between Sc and (Sl , Sh), which is clearly seen in the position of the maxima in (a), has been removed for better visibility in (c). The error bars
from the fitting procedure are generally smaller than the symbol size and hence hardly visible. The dashed box from about 6 eV to 21 eV
indicates the sideband groups that we concentrate on for the angle-differential cases.

V. RESULTS AND DISCUSSION

Below we present our results. We start with the angle-
integrated setup in Sec. V A before going into further
detail with angle-resolved measurements and calculations in
Sec. V B.

A. Angle-integrated RABBIT phases

Figure 3 exhibits the results of our 3-SB RABBIT ex-
periment after integrating the signal over all photoelectron
emission angles. To highlight the oscillations, the RABBIT
trace in Fig. 3(a) is plotted after subtracting the average delay-
integrated signal. The delay-integrated photoelectron spectra
(normalized to 1 at the highest peak) are plotted in Fig. 3(b).
Due to the high NIR intensity, some of the main bands are
depleted substantially and appear weaker than the SBs in
their vicinity. The angle-integrated photoelectron spectrum is
integrated over a spectral window of 0.7 eV around the peak
of the SBs.

The RABBIT phase (φR) is extracted by fitting a cosine
function [cf. Eqs. (1)] to these delay-dependent oscillating
signals of the sidebands, as seen in Fig. 4. Due to the large data
set available and the excellent stability of the interferometer,
the phase retrieval generally resulted in error bars smaller than
the symbol size in Fig. 3(c). This gives us confidence in the
results obtained from our extraction procedure. The numerical
values obtained for the various SB groups, as well as the
contrast ratio

γ ≡ max[SB(τ )] − min[SB(τ )]

max[SB(τ )] + min[SB(τ )]
(2)

are listed in Table I. As expected, the highest contrast is
found for the center sideband, due to the same (third) order
of transitions involved.

We note that there are several autoionizing resonances
with principal configuration 3s3p6n� in the SB12 range of
photoelectron kinetic energies, which converge towards the
(3s3p6)2S threshold of the first excited state of Ar+ around
13.5 eV [20]. Early measurements of the (3s3p6np)1Po reso-
nances were reported by Madden et al. [21]. They were also
seen by Burke and Taylor [16] in their photoionization work,
and further resonances with other configurations, which can
be reached by charged-particle or multiphoton impact, were
discussed by Bartschat and Burke [22]. More recently, the

FIG. 4. The delay-dependent photoelectron signal (dots) of the
three sidebands in the SB12 group and fits to a cosine function (lines).
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TABLE I. RABBIT phase extracted from the fitting procedure and the contrast γ of the oscillation.

± 0.07 ± ± ± ±

± ± ± ± ±

± ± ± ± ±

8 10 12 14 16

:

:

ℎ :

γ γ γ γ γ

effect of these resonances on the RABBIT phase in 1-SB
setups was reported by Kotur et al. [23] and Cirelli et al. [24].

Since we used the coupled-state description of Burke and
Taylor [16], we saw resonance effects in test calculations, but
only with appropriate frequencies and sufficiently long pulses,
for which the resonance widths could be well resolved. Note
that these features are very sensitive to small fluctuations in
the frequency and bandwidth of the APT during the XUV
generation process. Therefore, these structures were not seen
in the three experimental data points presented in the SB12

region. We hope to generate additional data with tunable
high-order harmonic frequencies in the future. This will make
it possible to investigate the resonance phenomena in more
detail.

As predicted by our generalized decomposition approxi-
mation [cf. Eqs. (1)], the lower and the higher SBs oscillate
by π out of phase with the central SB. The retrieved RABBIT
phases φR are plotted in Fig. 3(c) after removing the extra π

from Sl and Sh to simplify the comparison. The time-delay
axis on the right side of this panel was created via the conver-
sion τR = φR/(4ω).

Five SB groups are clearly identifiable in Fig. 3(c). While
there are some irregularities in SB8 and SB16, especially with
the phase extracted from Sl , groups SB10, SB12, and SB14 show
the expected trend: The RABBIT phases of the three SBs in
each group are similar, although a small difference remains
visible in SB10. That difference, however, essentially vanishes
in SB12 and SB14.

The irregularity seen in the SB8 group is due to a significant
contribution of another fourth-order transition in the absorp-
tion path of the lowest SB Sl , which involves a transition
from M7 down to the Rydberg states and back up to Sl . The
Rydberg states enhance the strength of this transition and add
a resonance phase that leads to a significant deviation in the
RABBIT phase of Sl compared to the other members of the
SB8 group. Furthermore, due to the low cutoff of the XUV
spectrum based on HHG and the decreasing photoionization
cross section of argon with increasing photon energy, the
strength of the M17 peak is very weak compared to the rest
of the lower main peaks. As a result, higher-order transitions
involving lower main bands also play a significant role in the
oscillation of Sl in the SB16 group, which again affects the
extracted phase.

B. Angle-differential RABBIT phases

We now further increase the level of detail by investigating
angle-dependent RABBIT phases, which is possible due to
the angle-resolving capability of the reaction microscope. For
the reasons given above regarding the additional complexities

associated with the SB8 and SB16 groups, we concentrate the
remaining discussion on SB10, SB12, and SB14.

Figures 5(a)–5(c) show the RABBIT phases extracted
within these groups as a function of the photoelectron emis-
sion angle, which is defined relative to the (linear) laser
polarization vector. The photoelectron signal is integrated
over an angular window of 10◦ for each data point. The angle-
resolved RABBIT phases are shifted to fix the starting phase
of the central sideband in each group to zero. According to
both our experiment and the calculation [Figs. 5(d)–5(f)], the
phase of Sh exhibits a stronger angular dependence compared
to that of Sc and Sl . With increasing photoelectron energy,
the differences diminish in both experiment and theory, with
theory predicting almost no angle dependence in the range of
SB14 plotted.

To explain the angle dependence in the RABBIT phase,
we need to consider the interference among all the angular-
momentum channels of the sidebands accessed through the
absorption and emission paths. We write the signal in com-
pressed form as

Sq(τ, θ ) ∝
∑

�,�′,m

αa
�,mαe∗

�′,mY�,m(θ )Y ∗
�′,m(θ )

× cos
(
4 ωτ − �φ

q
	 − �φat

��′,m
)

∝ I1(θ ) cos[4 ωτ − φR(θ )]. (3)

Here αa and αe are the transition amplitudes involving the
various fields and matrix elements, while �(�′) denotes the
angular-momentum channels accessed through the absorption
(emission) paths.

The dissimilarity in the RABBIT phases [φR(θ )] of the
three SBs can be explained by considering a propensity rule
for the transition amplitudes and the dependence of both the
Wigner and φcc phases on the orbital angular momenta. It is
well known that the Wigner phase depends on the angular
momentum channel. The cc phase has also been shown to
depend slightly on whether there is an increase or decrease
in the angular momentum, while it appears to remain inde-
pendent of the target species [25,26]. Therefore, the atomic
phases (�φat

��′,m) arising from the interference between vari-
ous � channels in the emission and absorption paths are also
expected to differ. Similar to bound-continuum transitions
[27], absorption (emission) within the continuum favors an
increase (decrease) in the angular momentum of the outgoing
photoelectron, especially for low kinetic energies [26,28–31].
The higher SB (Sh) of the group involves the absorp-
tion of three probe photons (Hq−1 + 3 ω) that, according to
the propensity rule, predominantly populate higher angular-
momentum states. Along the other path (Hq+1 − 1 ω) leading
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FIG. 5. Top row: Angle-dependent RABBIT phases extracted from the measurements in group (a) SB10, (b) SB12, and (c) SB14. Bottom
row: Corresponding RMT predictions.

to Sh, the emission of one probe photon mainly creates lower
angular-momentum states. For Sl , emission of three probe
photons (Hq+1 − 3 ω) primarily leads to the population of
lower angular-momentum states. Even though the absorption
path (Hq−1 + 1 ω) to Sl also favors an increase in the photo-
electron’s angular momentum, the possible values reached
by the absorption of a single probe photon remain relatively
small.

The interplay of the propensity rule for transition ampli-
tudes to each � channel and the angle-dependent amplitudes
of the coupled spherical harmonics determine the angular
variation of φR in the three SBs. In cross-channel interference,
� 	= �′, the angle-dependent spherical harmonics undergo a
sign change across their angular nodes, thus resulting in a
phase jump by π . If the relative magnitude of these cross-
channel interferences is significant compared to that of the
same-channel interference terms, � = �′, this can lead to a
rapid variation in the angle dependence of φR in the vicinity
of the nodes [29]. Depending on the value of �φat

��′,m relative
to the average �φat of the interference terms, the additional
π jump at the nodes in Y�,m and/or Y�′,m can drive the angle-
dependent curve downward or upward.

With increasing � value, the position of the first node
in the associated Legendre polynomial of the spherical har-
monic moves to smaller angles. Due to the propensity rule,
the weight of the cross-channel interference term containing
large � values is most significant in the higher sideband. This
results in a relatively early onset of the descent in the angle-
dependent RABBIT phase in the higher sideband. In the lower

sideband, the amplitude of the cross-channel interference term
containing large � values is not very strong; hence, the π

jump across the node does not produce a substantial change
in the overall retrieved phase. With increasing kinetic energy,
for both the absorption or emission of the probe photons, the
transition amplitudes for increasing and decreasing angular
momentum tend to become similar [29]. Hence, the contri-
bution of cross-channel interference containing large � values
decreases with increasing kinetic energy. Thus the π jumps
at the nodes of the corresponding spherical harmonics do not
change the retrieved phase significantly.

Since the retrieved angle-integrated RABBIT phase is the
weighted average of all the channel-resolved RABBIT phases
and the weights of these channels in the Sl , Sc, and Sh SBs are
different, the angle-integrated RABBIT phase in the three SBs
also turns out different. Also, owing to the propensity rule,
the unequal transition probabilities of reaching the various
angular–momentum states of the SBs in absorption and emis-
sion of the probe photons may cause incomplete interference
in the individual � channels, thereby reducing the overall os-
cillation contrast in the angle-integrated photoelectron signal.

Finally, we notice that the scale of the variations in the
angle-dependence of the RABBIT phase depicted in Fig. 5
is smaller in the calculation than in our experiment. Also, the
positions of Sl and Sh relative to Sc appear to be switched.
In addition to always possible shortcomings in the theoretical
model (as sophisticated as it might be) and unknown potential
systematic errors in the experiment, the differences in the
probe intensities and the pulse details, in general, are likely
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responsible for at least some of the discrepancies seen here.
We hope to be able to investigate this in more detail in the
future by performing additional calculations with different
intensities and more time delays.

VI. SUMMARY AND OUTLOOK

In summary, we carried out a proof-of-principle 3-SB
RABBIT experiment in argon. In contrast to more pop-
ular single-SB studies, our technique enables us to focus
on the photon-induced transition phases without distortion
from a possibly unknown or experimentally drifting XUV
chirp. While we confirmed earlier predictions that the angle-
integrated RABBIT phases extracted within a SB group
become increasingly similar, we enhanced the analyzing
power of the setup significantly by resolving the emission
angle with a reaction microscope. By doing so, we could
identify which of the three sideband phases within a group
is most sensitive to a change in the detection angle.

Our experimental efforts were accompanied by numerical
calculations performed with the nonperturbative all-electron
R matrix with time dependence method. There is some qual-
itative agreement between experiment and theory regarding
the general trends observed, but significant differences remain
in the details. Given the remaining limitations and challenges
faced in the present study, especially concerning the details
of the pulse and the argon target, the remaining deviations
between experiment and theory in the quantitative values of
the phases are not too surprising. We hope to address these
issues in future improvements of the setup.

As the next step, we plan to repeat this experiment with
helium, where the contribution of the Wigner phase for an
s → p transition remains the same in all three sidebands.

Any differences in the phases within the group then clearly
indicate the influence of φcc. This switch of targets will require
extending the harmonic cutoff, which is by no means trivial
in our scheme, as the cutoff in the HHG process decreases
with the driving frequency. Using helium instead of argon
also has the advantage of theory likely being more reliable
due to the simplicity of the target. On the other hand, heavier
quasi-two-electron targets with an (ns2)1S outer-shell config-
uration (unfortunately, these are metals that would need to
be vaporized rather than inert gases) would provide a larger
short-range modification of the relevant interaction potential
and therefore may be more suitable to investigate whether φcc

is indeed nearly universal.
Undoubtedly, many open questions will need to be

answered before the effects of the additional continuum-
continuum transitions in single- and multi-SB RABBIT setups
are fully understood. It would be interesting to analyze
whether the SB phases always converge to each other with
increasing energy, whether or not they cross in a predictable
way with increasing emission angle, and how the behavior
depends on the target investigated. While we cannot answer
these questions at the present time, we hope that other groups
will see the work reported in this paper as a worthwhile
inspiration to carry out further studies in this field.
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Publication III: Multisideband interference structures observed via high-order

photon-induced continuum-continuum transitions in argon

4.3.1 Additional Data on Paper III

Sideband group 8

In the paper, it is mentioned that the significant disparity in the RABBITT phase observed

in the lower sideband of group 8 is attributed to the enhanced contribution of a four-photon

path, represented as PC in figure 4.1. To further support this interpretation, additional

experimental data is presented in this section.

𝑴𝟕

𝑴𝟗

𝐻7

𝑺𝟖,𝒍

𝐻9

𝑰𝒑

𝑷𝑨

𝑷𝑩

𝐻7

𝑷𝑪

Figure 4.1. Energy-level diagram depicting the three main pathways, PA, PB, and PC ,

which contribute to the generation of the lower sideband in group 8.

This path (PC) involves the emission and absorption of IR photons that connect the

lower sidebands with Rydberg states near the ionization threshold. The interference be-

tween PB and PC leads to yield oscillations at the same frequency 4ω as the interference

between PA and PB, but with an extra π-phase due to the different number of photons in-

volved. Moreover, the oscillation phase arising from the interference between PB and PC

also includes a resonance phase that varies rapidly with the photoelectron energy. The over-

all RABBITT phase is a weighted average of the two interference terms. The amplitude

of PC is significantly enhanced due to resonances with Rydberg states, making it compara-

ble to the two-photon path PA. This leads to a significant deviation in the angle-integrated

RABBITT phase of the lower sideband compared to that of the other sidebands in the group.

Obtained through the analysis of experimental data, Figure 4.2 presents the phase varia-

tion across the peak of the main band (M7) and the three sidebands of group 8. Each subplot

depicts the normalized yield, represented by a black solid line, and the retrieved phases, in-

dicated by dots. The normalization is performed relative to the highest value observed in

the full photoelectron spectrum (PES).

To obtain the phase variation as a function of energy, the angle-integrated photoelectron

yields were binned into an energy window of 0.28 eV with an interval of 0.07 eV across
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(c) (d)

Figure 4.2. The energy-dependent RABBITT phase is shown in (a) for the main band

M7, (b) for the lower sideband Sl,8, (c) for the central sideband Sc,8, and (d) for the higher

sideband Sh,8. The black line represents the yield, and the dots represent the phase.
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Figure 4.3. Angle-dependence of the RABBITT phase in group 8.
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the photoelectron peak. Subsequently, the delay-dependent photoelectron counts in each

energy bin were fitted to a cosine function to retrieve the oscillation phase.

To generate the angle-dependence plot of the RABBITT phase for the three sidebands

shown in Figure 4.3, the electron yield was divided into angle-differential datasets. This

division involved integrating the photoelectron yield over 10-degree angular windows at 5-

degree intervals, where the emission angle was measured relative to the polarization plane

of the laser field. Next, the photoelectron spectra from each angle-differential dataset were

integrated over a 0.7 eV energy window centered around the peak of each sideband. The

resulting angle-deferential delay-dependent signals from each sideband were then fitted to

a cosine function, enabling the extraction of the corresponding phase values.

As can be observed from Figure 4.2, the slope of the phase variation with energy is the

largest in the M7 main band, followed by the Sl,8 sideband. On the other hand, the phase

variation with energy in the central and higher sidebands is negligible. As mentioned earlier

in this section, the energy dependence of the RABBITT phase arises from the involvement

of transition pathways that include Rydberg states. In the case of the main band (M7),

this type of transition can be attributed to a minimum third-order process. Consequently,

it has a significant influence on the phase variation with energy. In the case of the lower

sideband, the corresponding transition is of fourth order, resulting in a detectable yet weaker

influence on the phase variation. The central sideband, involving a transition path with

Rydberg states, is at least fifth-order, leading to a negligible impact on the phase. Similarly,

in the higher sideband, this type of transition plays no significant role in determining the

phase. This also provide an explanation for the distinct behavior of the angle-dependent

phase observed in the lower sideband when compared to the phase dependence of the other

two sidebands within group 8, as depicted in Figure 4.3.

Impact of Autoionizing Resonances

An autoionizing state is an excited state of an atom or molecule where an inner shell elec-

tron is promoted to an energy level located above the ionization threshold. These states are

unstable and rapidly decay through the interaction between the bound-excited and contin-

uum electron states in the system, known as configuration interaction. This results in the

release of the excess energy as a free electron. This interference between the ionization am-

plitudes of the direct and autoionization processes leads to an asymmetric line shape in the

photoionization cross section, known as the Fano profile, which depends on the energy and

width of the autoionizing state and the strength of the coupling between the autoionizing

and direct ionization channels [46].

Autoionizing states have been studied via different techniques, including ion mass spec-

troscopy, transient spectroscopy, and photoelectron interferometry [48–51]. The spectral



Publication III: Multisideband interference structures observed via high-order
photon-induced continuum-continuum transitions in argon 85

D
el
ay

(f
s)

lo
g
1
0
Y
ie
ld

𝜙
𝑅
(r
ad
)

Δ
𝜙
𝑅
(r
ad
)

𝜏 𝑅
(a
s)

Δ
𝜏 𝑅
(a
s)

R
el
at
iv
e
yi
el
d

𝑀7 𝑀9 𝑀11 𝑀13 𝑀15 𝑀17𝑆𝐵8 𝑆𝐵10 𝑆𝐵12 𝑆𝐵14 𝑆𝐵16

(a)

(b)

(c)

(d)

Figure 4.4. (a) Logarithmic colormap of the angle-integrated RABBITT trace, (b) Delay-

integrated photoelectron spectrum normalized to its peak value, (c) Retrieved RABBITT

phase of the sidebands obtained through fitting, and (d) Relative RABBITT phase of the

lower and higher sidebands with respect to the RABBITT phase of the central sideband.

amplitude and phase of autoionized wave packets have also been measured using the Rainbow-

RABBITT approach, in which the frequency of the harmonics is tuned across the auto-

ionizing resonance [47, 52–54]. When the XUV photon energy is scanned across the res-

onance, the direct and autoionization paths compete, leading to rapid changes in both the

photoelectron angular distribution and the yield oscillation phase in the resonant (or near-

resonant) main band and the nearest sideband. In the 3-SB scheme, the phase in all three

sidebands is linked. Therefore, even if the energy of only one main or sideband matches

the energy of an autoionizing state, the impact on the phase is propagated to all three side-
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bands. It is worth noting that the asymptotic approximation cannot be used in the case of

autoionization.

Figure 4.4 displays the results obtained from an RMT simulation of 3-SB RABBITT

in argon, using angle-integrated yields. It is important to note that the RMT calculation

shown in this section is different from the one used in the paper. Specifically, the paper

utilized a 10 fs XUV pulse containing six odd harmonics of 515 nm (i.e., H7, H9, . . . , H17)

with decreasing strength. On the other hand, the RMT calculation presented here utilized

a Fourier-limited XUV pulse of 45-fs duration, comprising six odd harmonics of 515 nm,

labeled as H7, H9, . . . , H17, with equal strength. An XUV pulse intensity of 1×109 W/cm2

and an IR pulse intensity of 3×1011 W/cm2 were used, along with an IR pulse with a central

wavelength of 1030 nm and a duration of 45 fs.

The delay between the two pulses was scanned over a range of one IR cycle in 50 steps.

As the harmonic peaks are very narrow, the photoelectron peaks corresponding to 3s and

3p ionization are well resolved as they are separated by 0.3 eV from each other.

Figure 4.4(a) displays the angle-integrated RABBITT spectrum using a logarithmic col-

ormap chosen to highlight the oscillations, (b) presents the delay-integrated photoelectron

spectrum, normalized to its peak value, and (c) shows the RABBITT phase in the main band

and sidebands obtained from the fitting process, with the trivial π phase removed from the

lower and higher sidebands for better comparison. Finally, panel (d) illustrates the relative

phase of the lower and higher sidebands with respect to the central sideband phase.

Except for group 12, where the autoionizing states lie (marked by the yellow shaded

region), the phase difference decreases monotonically as the kinetic energy increases, as ex-

pected from the decomposition approximation. Since the exact position of the autoionizing

states in the RMT-calculation has not been estimated, we do not know exactly which of the

sidebands lies near these states.

The broad bandwidth of our harmonics spectrum and the limited resolution of the elec-

tron spectrometer make it difficult to observe the presence of autoionizing states in the

experimental data. Nevertheless, by improving the spectrometer resolution and using nar-

row bandwidth XUV harmonics, one can study the effect of autoionizing resonances on the

phase of the three sidebands. It is critical to ensure that the laser parameters remain stable

during the measurement.



Chapter 5

Unpublished Results on Helium

In this chapter, we report the outcomes of 3-SB RABBITT experiments performed on

helium, one of the simplest atoms after hydrogen. The ground state of helium has zero

orbital and spin angular momentum, and the single-photon ionization induced by an XUV

pulse results in the creation of a photoelectron in a well-defined p-state. The excitation of

just a single orbital-angular-momentum channel during the ionization process simplifies the

interpretation of the photoelectron interference patterns resulting from the interaction of the

photoelectron with the IR photons. We begin by presenting the angle-integrated RABBITT

results, followed by a discussion of angle-differential measurements at three different IR

intensities. A key feature of this chapter is the investigation of the threshold sideband,

which arises from a four-photon ionization process. We discuss the information that can

be obtained from the RABBITT phases of this sideband, as well as the potential role of

resonances in its formation.

5.1 Method

The experimental methodology is outlined in Publications I and III, and their associated

appendices. In brief, the laser used in the experiment delivers 50 fs (FWHM) long IR

pulses with a central wavelength of 1030 nm at a repetition rate of 49 kHz and a pulse

energy of 1.2 mJ. The pulse is divided into two arms using a holey mirror, which reflects

approximately 85% of the beam in the pump arm and allows the remainder to pass through

into the probe arm. Within the pump arm, a BBO crystal is employed to produce the second

harmonic (515 nm) of the laser pulse with an efficiency of 25-30%.

To generate the XUV pulses, the second harmonic beam was focused onto an argon gas

jet with a backing pressure of 1.2 bar. The resulting XUV beam was transmitted through a

150 nm thick aluminum film and subsequently focused inside the ReMi onto a supersonic

gas jet of argon. The XUV pulse ionizes the argon atoms and the resulting photoelectron
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Figure 5.1. Reconstructed spectrum of the XUV pulse used in the RABBITT measurement,

normalized to unity at the peak on linear (a) and (b) log10 scales.

spectrum is recorded. To reconstruct the harmonic spectra after the aluminum filter, we

normalized the photoelectron spectrum using the well-known ionization cross sections of

the argon atom [55]. Figure 5.1 displays the reconstructed harmonic spectra, on both a

linear (upper panel) and logarithmic scale (lower panel), which we utilized in generating the

RABBITT traces in this chapter. Above the ionization threshold of helium, there are four

harmonics, namely H11, H13, H15, and H17. Note that their strength decreases significantly

with increasing photon energy. H7 lies at the early transmission edge of the aluminum

filter and is, therefore, severely dampened. The aluminum filter effectively removes all the

harmonics below H7. It is important to note that the width of the harmonic peaks illustrated

in the figure does not reflect the true bandwidth of the harmonics in the XUV. Rather, it

is a convolution of the bandwidth of the harmonics, ionization cross-section, and energy

resolution of the detector. The true width of the harmonics in the XUV spectral has not

been determined. We adjusted the IR intensity in our measurements by utilizing an iris

in the probe arm. We performed RABBITT measurements at three IR peak intensities:

I1 ≈ 5 × 1011 W/cm2 , I2 ≈ 7 × 1011 W/cm2, and I3 ≈ 1.2 × 1012 W/cm2. The IR

and XUV fields were linearly polarized parallel to each other and along the axis of the

spectrometer. The XUV-IR temporal delay was scanned over a range equivalent to one and

a half times the optical cycle of the IR pulse, which corresponds to a value of 5.15 fs. The

delay was sampled at regular intervals of T0/60, where T0=3.44 fs is the period of the IR

pulse. The XUV-IR light interferometer was actively stabilized throughout the experiment

using the method described in Reference [56].
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(a)

(b)

Figure 5.2. Stabilization of the interferometer over the duration of the scan.

Figure 5.2 illustrates the stability of the interferometer during the RABBITT measure-

ment with probe intensity I1. The top panel shows the input phase (in pink) applied to

the probe arm by moving the delay stage, and the retrieved phase (in dark blue) obtained

by Fourier fringe analysis of the images captured on the camera. The bottom panel shows

the difference between the input and retrieved phases.The root-mean-square (RMS) jitter

throughout the entire measurement period is approximately 0.09 rad or equivalently 23 as.

During the data analysis stage, it was discovered that the oscillation phase of a given side-

band was shifting across different scan numbers implying the presence of a long-term drift

in the interferometer with an approximate rate of 80 as/hr . To address this issue, the drift

value was calculated for each iteration of the scanning process by tracking the oscillation

phase of the sideband. Subsequently, the delay axis for each iteration was adjusted by

shifting it according to the calculated drift value.

5.2 RABBITT Trace Analysis

5.2.1 Angle-integrated RABBITT
We first present the results from the angle-integrated RABBITT analysis, where we inte-

grated the photoelectron signal over all emission angles. Figure 5.3 shows the results from

three RABBITT measurements recorded at probe intensities I1 (a), I2 (b), and I3 (c). In

each case, the log-scale colormap in the lower panel shows the RABBITT trace obtained by

subtracting the delay-integrated signal from the original trace to highlight the oscillations.

The upper panel of Figure 5.3 displays the XUV-only photoelectron spectrum (gray line)
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Figure 5.3. Results from the angle-integrated RABBITT measurements taken at peak IR

intensities I1 (a), I2 (b), and I3 (c). The logarithmic colormap in the lower panel displays

the angle-integrated RABBITT traces, while the upper panel shows the XUV-only (gray

line) and the delay-integrated photoelectron spectrum (red line) normalized to the peak

value. The right y-axis shows the phases of the delay-dependent yield oscillations of the

sidebands obtained from our fitting method, along with their fitting errors.
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and the delay-integrated photoelectron spectrum (red line), both normalized to their peak

values and plotted on a logarithmic scale.

Looking at the RABBITT traces, we see that the central sideband displays the clearest

oscillation at all the applied IR intensities. This was expected since both the absorption

and the emission paths that populate the central sideband are of the same order, making the

interference stronger. In the lower and the higher sidebands, the two interfering terms are

of different orders (2nd and 4th ), and hence the contrast in the oscillation is not as good as

compared to that in the central sideband. Also, the RABBITT traces demonstrate that the

oscillation contrast is better for the higher sideband than for the lower sideband. This is due

to the rapid decrease of the main peaks with increasing energy, which makes the amplitude

of the two transition paths in the interference more balanced in case of the higher sideband

compared to the lower sideband. In the case of the higher sideband of group 12 (S12,h), for

example, the upper main peak (M13) is weaker than the lower main peak (M11), resulting in

the magnitude of a three-photon transition from the stronger lower main peak (M11 + 3ω)

becoming comparable to the magnitude of a one-photon transition from the weaker upper

main peak (M13 − ω). Hence the interference of these two terms leads to a strong delay-

dependent oscillation. In contrast, for the lower sideband (S12,l), the magnitude of a one-

photon transition from the lower main peak (M11 + ω) is much stronger than the magnitude

of a three-photon transition from a weaker upper main peak (M13 − 3ω), resulting in poor

contrast of the oscillation. We also observe that even at the lowest applied IR intensity (I1,

Fig. 5.3 (a)), the highest energy main peak M17 is almost entirely depleted, and it starts

to get repopulated as the intensity is increased. The same observation can be made for the

main peak M15, which first depopulates as the IR intensity is increased and then repopulates

on further increment. As for the 16th sideband group, we observe that the contrast in the

lower sideband (S16,l) is very poor at the lowest applied intensity, but it gradually improves

as the IR intensity increases. On the other hand, the contrast of the oscillation in the higher

sideband (S16,h) deteriorates with increasing IR intensity.

When the kinetic energy or the IR intensity is increased, the continuum-continuum cou-

pling becomes stronger, and it becomes crucial to also take into account the higher-order

transitions. Such transitions result in multiple interference terms that can cause the total

yield of the sidebands to vary with the XUV-IR temporal delay. Figure 5.4 shows many-

order transition pathways leading to the lower and higher sidebands of group 16 and the

interference schemes contributing to the oscillations of the yield. At the low IR intensity,

the oscillation in the photoelectron yield of the lower sideband is predominantly influenced

by the interference scheme TA. However, since the upper main peak (M17) is more than one

order of magnitude smaller than the lower main peak (M15), the higher-order transitions

involving the main peaks from the lower energy side become significant.



92 RABBITT Trace Analysis

𝐻17

𝑴𝟏𝟓

𝑴𝟏𝟑

𝑴𝟏𝟕

𝐻15

𝑇𝐴

𝐻17𝐻15

𝑇𝐵

𝐻17𝐻15

𝑇𝐶

𝐻13 𝐻15

𝑇𝐷

𝐻13 𝐻17

𝑇𝐸

𝑴𝟏𝟓

𝑴𝟏𝟑

𝐻17

𝑴𝟏𝟕

𝐻15

𝑇𝐹

𝐻17𝐻15

𝑇𝐺

𝐻17𝐻15

𝑇𝐻

𝐻13 𝐻15

𝑇𝐽

𝐻13 𝐻17

𝑇𝐾

𝑺𝟏𝟔,𝒍

𝑺𝟏𝟔,𝒉

Figure 5.4. Energy diagram showing the many-order transitions to the lower and higher

sideband in group 16. The oscillation of the total yield arises from the interference of two

distinct transition paths involving different harmonics. Specifically, interference schemes

TA, TB, TC , TD, TF , TG, TH , and TI produce oscillations at 4ω, while TE and TK result in

an oscillation frequency of 8ω.

In addition, each dipole transition accumulates a phase shift of π/2. As shown in figure

5.4, the interference schemes TB, TC , and TD involve a different number of photons com-

pared to TA. As a result, the oscillations that come from TB, TC , and TD are shifted by π

relative to the oscillation that comes from TA. This causes a reduction in the oscillation con-

trast in the lower sideband, which can be seen in the RABBITT trace of Fig. 5.3 (a). With

increased IR intensity TD starts to dominate the remaining interference schemes, resulting

in the reappearance of the oscillation in the lower sideband. Although the TE scheme should

produce an oscillation at 8ω, we could not resolve it in our measurements.

In the higher sideband (S16,h) at lower intensities, the TF interference scheme is domi-

nant and thus determines the oscillation in the yield. However, as the intensity increases, the

oscillations resulting from the interference schemes involving other higher-order transitions

(TG, TH , and TJ ) start to become comparable to the oscillation resulting from the lowest-

order interference term (TF ), leading to the deterioration of the overall delay-dependent

oscillation of the yield. The TK scheme should produce oscillations at 8ω, but we also

could not isolate this oscillation either.

In order to determine the phases of oscillation from each sideband, the photoelectron

spectrum was first integrated within an energy window of 0.8 eV across the peak and then

fitted to a cosine function of the form A + Bcos(4ωτ − ϕR). For the lower and higher

sidebands, the trivial π phase was removed from the obtained phases. The retrieved phases

of the oscillations obtained from the fitting process, along with their corresponding fitting
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errors, are shown in the upper panel of Figure 5.3 and also listed in the Table 5.1. In Fig.

5.5(a), we plot the retrieved phase of the central sideband on the y-axis, and the correspond-

ing kinetic energy on the x-axis, for the three RABBITT measurements.

Probe 
Intensity

SB 10 SB 12 SB 14 SB 16

𝑺𝒉 𝑺𝒍 𝑺𝒄 𝑺𝒉 𝑺𝒍 𝑺𝒄 𝑺𝒉 𝑺𝒍 𝑺𝒄 𝑺𝒉

𝑰𝟏
-1.96 
±0.02

0.11 
± 0.02

0 ± 0.01
0.08 
± 0.02

0.52 
± 0.06

0.52 
± 0.01

0.55 
± 0.01

-2.18 
± 0.49

0.67 
± 0.08

0.60 
± 0.06

𝑰𝟐
-1.29 
± 0.01

0.31 
± 0.02

0 ± 0.01
0.07 
± 0.01

0.58 
± 0.04

0.56 
± 0.01

0.58 
± 0.01

-2.46 
± 0.11

0.56 
± 0.04

0.45 
± 0.07

𝑰𝟑
-0.64 
± 0.01

0.32 
± 0.02

0 ± 0.01
0.07 
± 0.01

0.73 
± 0.02

0.53 
± 0.11

0.59 
± 0.01

-2.53 
± 0.05

0.61 
± 0.03

0.11
± 1.40

Table 5.1. (a) Angle-integrated RABBITT phase (in radian) obtained from the fitting pro-

cedure from the measurements at three IR intensities.

𝑆ℎ- 𝑆𝑐
𝑆𝑐- 𝑆𝑙×

(b)

Kinetic Energy (eV)

(a)
𝑆12 𝑆14 𝑆16

Figure 5.5. (a) The upper panel displays the central sideband (Sc) at various intensities,

while the lower panel (b) illustrates the phase of the lower and higher sidebands relative to

the central sideband.

As the absolute phase is unknown, the retrieved phases from the three measurements

were shifted to align the first data point (S12,c) at zero for comparison. The energy-dependent

curve of the phase seems to slightly vary in the three scans, and it is challenging to deter-

mine the cause of this variation. It could be due to changes in the IR intensity, variations

in the group-delay dispersion phase of the XUV pulse during the measurement, or a com-

bination of both. Since the three measurements were conducted on different days, it cannot

be guaranteed that the conditions in the HHG process were consistent throughout the three
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measurements. The lower panel of Fig.5.5 displays the variation in the higher and lower

sidebands relative to the central sideband at three IR intensities. The difference is less

sensitive to the change in the XUV-phases. Within the group, the difference decreases go-

ing from group 12 to group 14, but it increases upon reaching group 16. Specifically, the

lower sideband of group 16 exhibits almost a π change. This is because the contribution of

the higher-order interference terms (TB, TC , and TD) dominates over the lowest-order term

(TA). Since these higher order terms produce oscillations that are π out of phase with those

arising from the lowest order term TA, this results in the observed π change.

5.2.2 Under-threshold RABBITT

Now we focus on the 10th sideband group, where only the higher sideband (S10,h) is de-

tectable above threshold. This sideband can be excited through a two-photon process that

involves absorption of the 11th harmonic from the XUV pulse and emission of an IR pho-

ton (H11 − ω). However, in order to observe oscillations in the yield of this sideband, an

additional path involving another harmonic is necessary. While a six-photon transition to

S10,h can occur via absorption of the 13th harmonic from the XUV pulse and the subsequent

emission of five IR photons, the strength of this transition is extremely weak.

Another pathway that can lead to S10,h involves four-photon ionization driven by the

ninth harmonic from the XUV pulse and three IR photons (H9 +3ω), as shown in Fig. 5.6.

The type of RABBITT measurement where the first photoelectron peak corresponds to a

sideband is commonly known as Under-threshold-RABBITT (uRABBITT). During the

past few years, (uRABBITT) has gained significant interest due to the valuable information

it can provide about the amplitude and phase of the bound-bound (real/virtual) transitions

by analyzing the characteristics of the threshold sideband [57–62].

All of the above studies were conducted within the conventional 1-sideband RABBITT

framework, where the population of the sideband via two-photon ionization (XUV+IR) is

assisted by one of the XUV pulse harmonics being (near)-resonant with one of the discrete

bound states. The oscillation phase of the yield as a function of detuning were investigated

by tuning the harmonics in and out across the (anti) resonance, utilizing a narrow bandwidth

and tunable central laser wavelength laser [60–62]. It has been estimated that the presence

of a discrete resonance adds to the RABBITT phase a phase shift (ϕres) given as [59, 63]

ϕres = arctan

[
1√
π

Γ

∆

]
. (5.1)

Here ∆ is the detuning from the resonance and Γ is the spectral width of the XUV field.

Figure 5.6 illustrates the energy levels of the Rydberg states of the field-free helium atom

[64], along with the XUV and IR photon paths. If the transition encounters any resonance
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Figure 5.6. Energy level diagram showing the formation of the threshold sideband (S10,h).

states below the threshold, the amplitude of this pathway can become very strong. Although

the 9th harmonic is not resonant with any of the bound states, the H9 + 1ω photon energy

is close to the 1s3s level, and the 1s5p state is in resonance with H9+2ω. This four-photon

ionization path (H9 + 3ω) interferes with the two-photon path that involves the absorption

of the 11th harmonic and the emission of an IR photon (H11 − ω) and leads to the delay-

dependent oscillation in the yield. Interference between the four-photon ionization pathway

driven by H9 + 3ω and the two-photon pathway H11 − ω results in oscillations in the yield

of S10,h as a function of the delay. The RABBITT traces shown in Figure 5.3 (a) indicate

that the yield oscillation in S10,h is tilted, suggesting a strong phase variation as a function

of energy across the peak. This tilt can also be seen in the RABBITT trace with the IR

intensity I2 shown in Figure 5.3 (b), but it disappears for the highest employed intensity I3,

as shown in Figure 5.3 (c).

Figure 5.7 displays the angle-delay-integrated yield of S10,h for our three IR intensities.

In each case, the yield of S10,h is normalized with respect to the highest value observed in

the full photoelectron spectrum (PES). At the highest applied IR intensity (I3), the photo-

electron yield of S10,h is highest among the other peaks in the full PES. As the IR intensity

increases, the peak position of S10,h in the kinetic energy distribution shifts towards the

low-energy side due to the pondermotive shift. However, the measured bandwidth of the

distribution remains approximately constant at around 0.25 eV. To obtain the phase variation

as a function of energy, the angle-integrated photoelectron yields were binned into an energy

window of 0.2 eV with an interval of 0.05 eV across the peak of S10,h. Then, the delay-

dependent photoelectron counts in each bin were fitted to a cosine function to retrieve the

oscillation phase. The obtained phase variation as a function of energy is plotted on the

right side in Figure 5.7, since the left panel shows the angle-integrated yield of S10,h and

shares the same energy axis. At the lowest applied IR intensity, the phase across the peak
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Figure 5.7. Variation in phase for the threshold sideband across the peak at different probe

intensities.

initially decreases linearly at a rapid rate and then gradually begins to increase. As the IR

intensity is increased, the rate of the phase change across the peak decreases, but the general

behavior remains the same. This can be attributed to the intensity-dependent Stark shift of

the 1s3s and 1s5p states resulting in the detuning of the resonances.

In our case, there are more than one intermediate resonant states getting excited in the

four-photon ionization process. Estimating the phase variation as a function of detuning to

these states is complicated and not carried out in this thesis.

5.2.3 Angle-resolved phase measurements

To examine the angle-dependence of the RABBITT phases, we analyzed the photoelectrons

emitted at various angles relative to the spectrometer axis. This involved segregating the

data into angle-differential data sets, which were generated by integrating the photoelectron

yield over 10-degree angular windows at 5-degree intervals. The phase of the oscillation in

each sideband was extracted from each angle-differential data set using the same method

as outlined in the angle-integrated case. The photoelectron spectra from each sideband

were integrated over a 0.6 eV energy window centered on the peak, and the resulting delay-

dependent signal was fitted to a cosine function to obtain the phase.

Figures 5.8 and 5.9 illustrate the angle-dependence of the retrieved phases from the three

sidebands in group 12 and group 14, respectively for different IR intensities: (a) I1, (b) I2,

and (c) I3. For better comparison and the fact that we do not know the absolute phase, a

common phase was added to the three sidebands of each group to shift the central sideband

phase to zero at the first data point (5 deg) for each intensity. The statistical uncertainty of
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(a) (b) (c)

Figure 5.8. Angle-dependent phase retrieved from the 12th sideband group in the

RABBITT scans, performed with IR intensities of I1 (a), I2 (b), and I3 (c).

(a) (b) (c)

Figure 5.9. Angle-dependent phase retrieved from the 14th sideband group in the

RABBITT scans, performed with IR intensities of I1 (a), I2 (b), and I3 (c).

the data above 60 degrees was insufficient to reliably retrieve the oscillation phase. After

analyzing the figure, it is evident that the angular dependence of the central sidebands in

both group 12 and 14 remains similar for all three probe intensities. However, the angular

dependence of the RABBITT phase in the higher sideband gradually changes with probe

intensity, whereas the lower sideband shows the strongest variation.

The angle-dependence in the yield of the photoelectron signal or in the RABBITT phase

arises due to the interference of various partial waves excited in the multi-photon transitions.

The angular-momentum-resolved transition diagram for the lowest-order absorption and

emission paths is shown in Fig. 5.10(a). We see that a three-photon transition to Sq,c via

absorption or emission of two probe photons (Hq±1∓ 2, ω) results in excitation of the p and

f angular momentum states. In contrast, the two-photon transition to Sq,l (Sq,h) creates a

mixture of s and d states, while the four-photon transition to Sq,l (Sq,h) excites s, d, and g

states.
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Figure 5.10. Transition diagram including various angular momentum channels (a) and

Polar angle dependence of first few spherical harmonics (b)

In both the absorption and emission processes, there are multiple angular-momentum

channels to form the sideband, and each channel from the absorption path will interfere

with every channel from the emission path. Each interference will result in an oscillation

in the yield as the delay of the XUV-IR pulses is varied. Each interference is characterized

by an oscillation amplitude (Aℓ,ℓ′) and a phase (ϕℓℓ′
R ). The overall oscillation in the signal is

the resultant of all these channel-resolved oscillations and can be written as:

Sq(τ, θ) ∝
∑
ℓ,ℓ′

αa
ℓα

e∗

ℓ′ Yℓ,0(θ)Y
∗
ℓ′,0(θ) cos(4ωτ −∆ϕq

Ω −∆ϕat
ℓℓ′)

∝
∑
ℓ,ℓ′

Aℓ,ℓ′(θ) cos(4ωτ − ϕℓℓ′

R )

∝ I1(θ) cos(4ωτ − ϕR(θ)). (5.2)

Here αa and αe are the transition amplitudes involving the XUV and IR fields and the matrix

elements, while ℓ(ℓ′) denotes the final angular momentum of the sideband reached through

the absorption (emission) path. ∆ϕq
Ω is the spectral phase difference of two neighboring

harmonics.

The oscillation amplitude (Aℓ,ℓ′) of each interference is determined by the magnitude of

the dipole transition matrix elements (αa
ℓ α

e
ℓ′) and the spherical harmonics (Yℓ,0Y

∗
ℓ′,0) associ-

ated with the two angular momentum states of the sideband reached in the absorption and

emission process. As the amplitude of the spherical harmonics varies with the polar angle,

the oscillation amplitude also changes with the angle.

The atomic phase difference (∆ϕat
ℓℓ′) is comprised of both the Wigner phase and the

continuum-continuum transition phase. The Wigner phase contribution is identical in all
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∆ϕat
ℓℓ′ since the ionization process has only one angular momentum channel. However, as

there are multiple angular channels available for continuum-continuum transitions, and the

ϕcc value varies with the angular momentum, the resulting ∆ϕat
ℓℓ′ may differ for different

interfering channels (absorption:ℓ and emission:ℓ′).

Since the interference of two angular momentum channels leads to distinct oscillation

phases (ϕℓℓ′
R ) and angle-dependent oscillation amplitudes (Aℓ,ℓ′(θ)), the overall oscillation

phase retrieved from the experiment (ϕR(θ)) also varies with the emission angle.

The difference in ϕcc for different angular momentum values depends on the kinetic

energy and is relatively small (less than π/10 for kinetic energy above 5 eV), as shown in

Fig. 3.11. Consequently, the differences in ∆ϕat
ℓℓ′ (and thus in ϕℓ,ℓ′

R ) for various interference

terms are also generally very small. Therefore, the change in the oscillation amplitude

(Aℓ,ℓ′) , due to changes in the amplitude of the spherical harmonics with angle, leads to

only a slight variation in the overall retrieved oscillation phase ϕR with angle. However,

a substantial change in ϕR may occur when the electron emission angle approaches the

node position of the spherical harmonics. In cross-channel interference, where ℓ ̸= ℓ′, the

product of the spherical harmonics Yℓ,0(θ)Yℓ′,0(θ) changes signs after their angular nodes

(Fig. 5.10). This effect is equivalent to adding a π phase to the corresponding oscillation

phase ϕℓℓ′
R . Depending on the relative weight of this cross-term interference compared to

the other contributions, the overall retrieved phase ϕR) may exhibit rapid variations near the

node positions.

In Fig. 5.8(a), in the central sideband , the slow variation in the RABBITT phase below

40 deg is due to the angle-dependent oscillation amplitude (Aℓ,ℓ′(θ)) changing the weight

of the distinct oscillation phases (ϕℓℓ′
R ) with a change in the emission angle. After 40 deg,

the oscillation phase in the cross-channel interference (p− f ) changes by π due to the sign

change in the amplitude coefficient Y3,0(θ).

The rapid variation in the RABBITT phase observed in the central sideband beyond

40 deg indicates that the ratio of the angle-dependent amplitudes of the cross-channel (p−f )

interference to that of the same-channel interferences (p−p and f−f ) is increasing with the

angle. This increasing ratio leads to a monotonic decrease in the overall RABBITT phase,

which holds true for all three applied IR intensities.

For the lower sideband, a four-photon transition populates s, d, and g states, while a

two-photon process populates s and d states. Based on the propensity rule for continuum-

continuum transitions [41], the relative population of the g-state via three IR photon emis-

sion is very weak. Thus the π-jump in the oscillation phase in s−g and d−g cross-channel

interference near 30 deg does not result in a significant variation of the RABBITT phase.

We see a slight variation only after 50 deg, where the magnitude of the d-wave is reduced

and approaches zero at 57 deg.
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For the higher sideband, the three-photon absorption in the continuum creates a g-state

with a significant weight. Thus, we see that the angle-dependence of the higher sideband

starts to vary early following the node position of the g-wave around 30 deg.

Let us now compare the phases of the three sidebands at an electron detection angle

of 5 deg, which corresponds to the photoelectrons collected over an angular range of 0 to

10 deg. At the lowest IR intensity, when higher-order interference terms can be neglected,

the difference in the phases of the three sidebands arises due to the difference in the atomic

phases ∆ϕat
ℓℓ′ . This difference is caused by the dependence of the cc-phase (ϕcc) on the

angular momentum channels, since the Wigner phase remains common and does not af-

fect ∆ϕat
ℓℓ′ . As the kinetic energy of the photoelectron increases, ϕcc becomes increasingly

similar for the various angular momentum channels, resulting in a decreasing difference in

∆ϕat
ℓℓ′ of all three sidebands. Therefore, the overall phase of the three sidebands becomes

similar at 5 deg.

This trend can be seen in Figures 5.8(a) and 5.9(b), where the phase difference be-

tween the central sideband and the higher sideband at 5 deg is smaller in the higher-energy

group 14 than in the lower energy group 12. However, this behavior is not observed for the

lower sideband,i.e the phase difference between the lower and central sidebands at 5 deg

does not decrease as we move from group 12 to group 14. Rather, in group 14, it appears to

have increased even at the lowest applied intensity. Also the angle-dependent phase exhibits

oscillations. This suggests a contribution from higher-order transitions, which can carry the

spectral phase of far-away harmonics and/or have additional π phase shifts due to the in-

volvement of different numbers of photons. When these higher-order transitions interfere

with lower-order transitions, they can result in a different oscillation phase. Depending on

the amplitude of this oscillation, it may alter the overall oscillation phase.

The oscillation in the RABBITT phase of the lower sideband with angle might also be

explained by the presence of higher-order transitions. These transitions create higher angu-

lar momentum states. As a result, the cross-channel interference involving these transitions

will exhibit several angular nodes. The oscillations associated with each channel may have

different phases and amplitudes, which can vary with angle. This can cause an overall

angular modulation in the observed RABBITT phase.

In group 12, as the intensity of the applied IR radiation increases, the lower sideband

displays a strong variation as a function of angle. This behavior can be attributed to the

increasing strength of six-photon transitions involving under-threshold harmonics (H9) and

Rydberg states. These transitions are enhanced due to resonances, resulting in the creation

of higher angular momentum states and a strong angle-dependence of the phase. In contrast,

group 14 exhibits a notable change in the angle dependence of the lower sideband as the

applied IR intensity increases, albeit not as pronounced as that seen in group 12.
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Figure 5.11. Angle-dependent RABBITT phase for the threshold sideband at different

probe intensities.

Figure 5.11 displays the angle-dependence of the RABBITT phase in the threshold side-

band (S10,h). The data points were generated by integrating the photoelectron signal over a

0.6 eV energy window centered on the peak of S10,h and then binned into 10-degree angular

windows at 5-degree intervals. At the lowest applied IR intensity (I1), the phase experiences

an abrupt change of almost π near 55 deg, which indicates the dominance of the s−d cross-

channel interference. As the IR intensity increases, this change becomes smoother, and at

the highest applied IR intensity, the π-jump shifts towards the negative side, suggesting an

additional π phase in the four-photon ionization path.

5.3 Summary and Outlook

In this chapter, we investigated various aspects of 3-SB RABBITT measurements on helium

atoms performed at three different IR intensities. We first compared the angle-integrated

RABBITT phases of the sideband triplet in three groups above threshold. We observed

that the triplet of the first two groups (12 and 14) had similar phases, as expected from the

decomposition approximation [42]. However, the sidebands in the 16th group showed some

deviation due to the significant contribution of higher-order transitions. In addition, we

investigated the threshold sideband, where a four-photon ionization process contributes an

energy-dependent phase to the RABBITT phase. At the weakest applied dressing field, the

four-photon-ionization path encounters at least two discrete resonances, resulting in a rapid

change in the phase of the yield oscillation as a function of energy. However, as the intensity

of the dressing field increases, the resonances are detuned due to the Stark shift of the states,
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and the rate of phase variation as a function of kinetic energy decreases. By studying the

angle-dependence of the yield oscillation phases, we could estimate which angular channels

are most important in the formation of the three sidebands via the absorption and emission

of IR photons.

As we look towards the future, there are several interesting avenues for further research.

To begin with, it would be beneficial to generate a narrow bandwidth and tunable XUV-APT

to study the RABBITT phase of the higher sideband of group 10, S10,h, which involves

four-photon ionization. This would allow us to better understand the underlying physi-

cal mechanisms involved. Another area of interest is the exploration of 3-SB RABBITT

schemes in which two sidebands of the triplet are above threshold while the other one is

below. These sidebands would have similar bound-bound and bound-continuum interac-

tions (three-photon ionization), but different interactions in the continuum. Comparing the

phases of these two groups would provide valuable insights into the ionization process.

To deepen our understanding of the complex dynamics that govern the ionization pro-

cess in helium and other atomic systems, it will be important to further refine our experi-

mental techniques. One important aspect is to push the cutoff of high harmonic generation

(HHG), enabling us to generate a greater number of sideband groups. This expansion in

the spectral range of the XUV will provide us with more data points to study the cc transi-

tions at higher kinetic energy. Additionally, the availability of a tunable laser source would

greatly facilitate the study of different energy levels and resonant conditions. Furthermore,

as part of our future plans, we intend to compare our experimental findings with theoretical

predictions derived from both SAE (Single Active Electron) and RMT calculations. The

calculations will be performed by our collaborators.
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Discussion and Summary

This PhD research aimed to explore the dynamics of photon exchange between a quasi-

free electron and a laser field in a photoionization process. The focus lies on the specific

process, where an XUV pulse ionizes the system in the presence of a phase-locked IR

pulse, and the resulting photoelectrons interact with the IR photons to undergo continuum-

continuum transitions. The goal is to use a new technique called 3-SB RABBITT, which is

an adaptation of the commonly used RABBITT technique (1-SB RABBITT) in attosecond

metrology, to study the amplitude and phase of the outgoing electron wavepacket.

This thesis is based on the following three publications:

• Publication I: High-repetition rate attosecond beamline for multi-particle coincidence

experiments.

• Publication II: Decomposition of the transition phase in multi-sideband schemes for

reconstruction of attosecond beating by interference of two-photon transitions.

• Publication III: Multisideband interference structures observed via high-order photon-

induced continuum-continuum transitions in argon.

Publication I details the attosecond pump-probe beam line setup at the MPIK in Hei-

delberg, which includes a high-repetition-rate and high-average-power IR laser source, an

actively stabilized Mach-Zehnder interferometer, and a reaction microscope. The Mach-

Zehnder configuration enables independent control of the pulse power, polarization, and

frequency of the light sources in the pump and probe arms. However, this configuration

also makes the alignment of the pump (XUV) and probe (IR) pulses more sensitive to

thermal and mechanical disturbances. To address this issue, the interferometer is actively

stabilized to reduce the temporal drift between the pump and probe pulses. The reaction mi-

croscope allows the coincident detection of charged fragments produced in photoionization

and photodissociation, as well as the reconstruction of their full 3D momentum, making
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it possible to analyze their angle-differential behavior. Furthermore, publication I presents

significant results from pump-probe photo-dissociation experiments conducted on molecu-

lar hydrogen and argon dimers. The results showcase that the setup has high stability and

precision, allowing it to perform kinematically complete measurements with attosecond

accuracy.

In this thesis, we show and explain the results from 3-SB RABBITT measurements on

argon and helium. Both the 1-SB and 3-SB RABBITT measurements involve ionizing the

system with an XUV APT in the presence of an IR pulse, and then recording the resulting

photoelectron spectra at varying temporal delays between the two pulses. As the delay

between the pulses is varied, the photoelectron signal exhibits oscillations. The phases

of these oscillations carry information about the dipole transition matrix elements that are

involved in the creation of the photoelectron.

The direct photoionization by XUV APT in the 1-SB RABBITT setup produces discrete

peaks in the photoelectron spectrum referred to as main peaks or main bands. These main

peaks are spaced apart by twice the energy of the probe photon, and the presence of the

probe photon causes an additional discrete peak to appear between the main peaks. This is

called a sideband. On the other hand, in the 3-SB RABBITT setup, the main bands created

directly by the XUV-APT are separated by four times the energy of the probe photon. Then,

with the presence of the probe photon, three sidebands appear between every pair of main

bands. In a 1-SB RABBITT measurement, a single transition in the continuum is sufficient

to produce a delay-dependent oscillation in the photoelectron signal. Also, it is desirable to

keep the IR field weak, so that only a single transition in the continuum can be assumed. The

oscillation observed in the yield of the three sidebands in the 3-SB RABBITT scheme arises

from the interference between quantum paths involving different numbers of transitions in

the continuum. Publication II offers an in-depth analysis of the 3-SB RABBITT scheme

and explores the valuable information that can be obtained through this method. The phase

retrieved from the oscillation in the sideband yield reveals the intricate details of the multi-

order interaction of photoelectrons in the continuum.

We built upon the commonly-used ”asymptotic approximation” in RABBITT measure-

ments, which splits the phase of the two-photon dipole transition matrix element into a

Wigner phase associated with single-photon ionization and a continuum-continuum phase

(ϕcc). To achieve this, we employed perturbation theory and substituted the intermediate and

final states of the photoelectron with their corresponding asymptotic scattering states. Even

when the photoelectron undergoes multiple transitions in the continuum, we demonstrated

that the final phase of the electron wave packet can still be broken down into a single-photon

ionization phase and a sequence of continuum-continuum coupling phases that correspond

to each transition.
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Our collaborators at Drake University in Des Moines (Iowa, USA) performed ab initio

calculations of a 3-SB RABBITT scheme, first in atomic hydrogen and later also in argon,

by solving the time-dependent Schrödinger equation. For atomic hydrogen, we analyzed

the phases of the yield oscillations of the sidebands in detail and compared them with the

analytical phase obtained using the decomposition approximation. The approximation pre-

dicts that the phase of the three sidebands between consecutive harmonics should be the

same, but we observed deviations from this prediction in the simulation, mainly at the low-

est kinetic energy. We attributed the discrepancy to the fact that the real cc-coupling phase

depends on the angular momenta of the continuum states involved in the transitions. How-

ever, these angular momentum-dependent effects are not accounted for in the decomposition

approximation, leading to the observed discrepancy.

Publication III reports the results of first-ever 3-SB RABBITT measurement in argon.

We successfully observed the delay-dependent yield oscillation in all three sidebands and

were able to retrieve the oscillation phases with good accuracy. This again shows the out-

standing stability of the interferometer.

As anticipated, we observed that the oscillation phases retrieved from the three side-

bands belonging to the same group tend to become more similar as the kinetic energy in-

creases. Upon analyzing the oscillation phases as a function of the electron emission angle,

it was found that the angle-dependence of the oscillation phase varied among the three

sidebands of the same group. The lower and higher sidebands in the group have the same

angular parity while the central sideband has the opposite parity. Despite having the same

angular parity, the angle-dependence of the oscillation phase is still somewhat different in

the lower and higher sidebands. The dependence of the RABBITT phase on the photo-

emission angle is strongly influenced by the amplitude and phase of the dipole transition

matrix elements associated with the different quantum paths participating in the interference

resulting in oscillations in the photoelectron yield. The total phase acquired by the electron

wavepacket depends on the intermediate and final angular momentum states traversed in

both the bound-continuum and continuum-continuum transitions.

The transition probability to specific angular-momentum states of the sidebands de-

pends on two factors: a propensity rule, which favors an increase in angular momentum

upon photon absorption and a decrease upon photon emission, and the number of possi-

ble ways in which the particular angular momentum state can be reached. The probability

of transitioning to different final angular momentum states differs between the lower and

higher sidebands due to the difference in the number of probe photons involved in their

absorption and emission paths. Specifically, the lower sidebands involve absorption of one

probe photon and emission of three probe photons, whereas the higher sideband involves

absorption of three probe photons and emission of just one probe photon. As a result,
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the transition probability ratios for the final angular-momentum states excited through ab-

sorption and emission paths differ between the lower and higher sidebands, leading to the

observed difference in angle-dependence.

Furthermore, we observe significantly large deviations in the RABBITT phase among

the three sidebands of the group located nearest to the ionization threshold and at the highest

kinetic energy. These deviations are attributed to the increased contribution of higher-order

transitions. Near the threshold, resonances with Rydberg states enhance the amplitude of

higher-order transitions and alter the relation between the retrieved oscillation phases of

the three sidebands of the group. In the higher-energy region, two factors contribute to the

anomalies: the increased probability of continuum-continuum coupling and the unbalanced

strength of the adjacent mainbands created in direct ionization. As the adjacent mainbands

get depleted, the higher-order transitions originating from stronger lower-energy mainbands

become significant and alter the retrieved oscillation phases of the three sidebands.

Based on theoretical data provided by our collaborators at Drake University, we dis-

covered that the phases of the three sidebands within the autoionizing region exhibited

significant variation within the group. However, due to technical limitations, we were un-

able to observe this phenomenon accurately in our experiment. It is important to note that

the asymptotic or decomposition approximations are only applicable for a “flat” (no reso-

nances) continuum, and a different interpretation is required for the oscillation phases of

the sidebands in the autoionization region.

We performed three-sideband RABBITT measurements in helium using three different

probe intensities. Given that the ground state of helium is an s-state, single-photon ioniza-

tion induced by an XUV pulse selectively generates a well-defined p-state, simplifying the

interpretation of the RABBITT phases of the three sidebands. Specifically, the contribution

of the Wigner phase associated with the ionization by the XUV pulse remains constant in

the RABBITT phase of all three sidebands. The differences in the RABBITT phase among

the sidebands are then directly attributed to the varying contributions of the continuum-

continuum transitions. In our helium measurements, we observed a similar behavior in the

angle-integrated RABBITT phase as we did in our measurements on argon. Specifically,

we observed a decrease in phase difference within the group as the kinetic energy increased.

However, due to a limited number of detectable harmonics above the threshold, we were

only able to compare three groups. In the highest kinetic energy group, the yield oscillation

of the sidebands contained a significant contribution from transitions beyond lowest-order,

resulting in a large change in the relative phase. As we increased the probe intensity, we

observed that higher-order contributions dominated over the lowest-order transition in the

yield oscillation. To explain the angle-dependent behavior of the RABBITT phases of the

three sidebands in helium, we employed a similar approach to the one we used for argon.



107

One interesting aspect of the helium measurement was the lowest energy sideband, where

two of the sidebands were below the ionization threshold. This sideband was formed by

four-photon ionization and showed a rapid variation in phase with energy, which decreased

as the probe intensity was increased.

We also employed a Few-Level-Model simulation to investigate the effect of different

parameters on the retrieved oscillation phase and its angle-dependence. This included ana-

lyzing the impact of dipole transition amplitudes and phases, as well as probe intensity and

XUV spectrum.

Looking ahead, there are several promising directions for future research. One possible

avenue would be to develop a narrow bandwidth and tunable XUV-APT source, which

could be used to investigate the relative RABBITT phases of the three sidebands in the

auto-ionization region of argon, as well as the RABBITT phase of the threshold sideband

in helium, which involves four-photon ionization. Another potential area of investigation

would be to extend the 3-SB RABBITT technique to molecules, in order to study the role of

multi-order continuum-continuum transitions. By pursuing these lines of inquiry, we hope

to gain deeper insights into the underlying physical mechanisms at work in these systems.
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[72] Martin Dürr. Electron Induced Break-up of Helium: Benchmark Experiments on a

Dynamical Four-Body Coulomb System. PhD dissertation, Ruperto-Carola University

of Heidelberg, 2006.



Appendix A

Additional information on the
Experimental Setup

This appendix provides an overview of the experimental setup employed in the study, which

includes a femtosecond CPA laser, a hollow-core fiber system, a high-order harmonics gen-

eration unit, a Mach-Zehnder interferometer, and a reaction microscope. While most of

the beamline information has been published in (Publication I), this section offers a brief

discussion, highlighting details that were not previously covered.

A.1 Laser

The experimental laser system used in this study is a commercially-available high-power

fiber laser from Active Fiber Systems GmbH, and its schematic is depicted in Fig. A.1. The

system contains a Ytterbium-based fiber oscillator generating femtosecond pulses at around

1030 nm, which are then stretched to nanoseconds and passed through a waveshaper. The

Figure A.1. Schematic of the CPA laser. [65]
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waveshaper can be used to optimize the pulse compression at the output. The pulse is am-

plified using preamplifiers and evenly distributed among eight amplifier channels through

polarizing beam splitters and half-wave plates. Each amplifier channel is pumped by a sepa-

rate wavelength-stabilized fiber-coupled pump diode. The amplified output of each channel

is coherently combined while maintaining their relative phases, resulting in constructive

interference [66]. As a result, the system can produce high average power, high-repetition-

rate pulses with high beam quality. Once the amplified pulses are combined coherently,

they are passed through an acoustic-optic modulator (AOM) to select one of three available

repetition rates: 50 kHz, 70 kHz, or 150 kHz. The selected pulses are then directed through

a Treacy-type compressor [3], resulting in pulses that are 250 fs in duration with a pulse

energy of 2 mJ. To achieve even shorter pulse duration, the CPA output is coupled into a

1.15-meter-long hollow-core fiber (HCF) with an inner diameter of 300 microns filled with

argon gas at a pressure of 1-1.8 bar. As the pulse propagates through the HCF, it undergoes

self-phase modulation (SPM), which broadens its spectrum. To compensate for the SPM-

induced dispersion, the pulse is reflected multiple times off chirped mirrors that induce a

group delay dispersion with an opposite sign to that caused by SPM in the HCF. As a result,

the pulse is compressed in time, leading to a final pulse duration of 40 fs with a pulse energy

of 1.2 mJ.

A.2 Interferometer

The interferometer is set up in a Mach-Zehnder configuration, where each arm has a length

of 1.4 m A.2. The laser beam, which is p-polarized and parallel to the optical table, is

split into two arms using a mirror (BS) with a central hole of either 4 mm or 3.5 mm, in

a ratio of 80 : 20(85 : 15). The stronger beam is directed into the pump arm, while the

remaining beam passes through the hole into the probe arm. The reflected donut beam

then passes first through a planoconvex and then a planoconcave lens with focal lengths of

12 cm and −5 cm, respectively, separated by a distance of 5 cm. The slightly diverging

beam then passes through a Beta Barium Borate (BBO) crystal of thickness 0.5 mm and

width of 6 mm. The beam width at the BBO crystal is about 3 mm, which results in a

second-harmonic generation (SHG) conversion efficiency of 25%− 30%. The fundamental

beam is filtered out using a dichroic beam splitter (DBS), and the second harmonic beam is

focused by a lens with a focal length of 12 cm to a spot size of 30− 40 µm on a jet of noble

gas inside a vacuum chamber. This leads to the generation of an XUV pulse train through

high-harmonic generation (HHG). The gas nozzle has a diameter of 100 µm and is operated

at a backing pressure of 0.8− 1.5 bar with a chamber pressure of 1− 8× 10−3 mbar.

The generated XUV beam is separated from the annular second harmonic using an ad-
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Figure A.2. Schematic of the interferometer. Legends: BS: Beam splitter; DBS: dichroic

beam splitter; DM, Dump mirror; RM: Recombination mirror; TM: torroidal mirror; L1

and L4: planoconvex lenses; L2, L3 and L5: planoconcave lenses

ditional holey mirror (DM) with a central hole of 4 mm while the XUV beam with a smaller

divergence than the driving pulse (second harmonic) passes through the hole. After the

dumping mirror (DM), a metallic filter (aluminum, germanium, tin) mounted on a motor-

ized wheel can be introduced to block the lower harmonic in the XUV beam. The XUV

beam then passes uninterrupted through the hole of the recombination mirror (RM) that has

two holes drilled at perpendicular direction.

The beam in the probe arm goes through a retro-reflector mounted on a piezoelectric-

translation stage with a step resolution of 5 nm (P-629.1CL). A plano-concave lens with a

focal length of −25 cm is placed in the probe arm so that the virtual focus of the probe beam

is at the same distance from the recombination mirror as the focus of the high-harmonic gen-

eration (HHG) target. A λ/2 waveplate is used to rotate the polarization of the probe beam.

A motorized mirror reflects the probe beam onto the recombination mirror. This allows a

small part of the probe beam to pass through the hole for interferometer stabilization and the

rest to be reflected and combine with the XUV beam. The recombined IR (probe) and XUV

(pump) beam then make a grazing incidence at 8 degrees onto the toroidal mirror placed

at 2 f from the HHG target and then get focused inside a reaction microscope (ReMi) on a

cold gas jet of gas. The toroid mirror is mounted on three motorized stages that are used

to optimize the focus of the beam inside the ReMi. The toroidal chamber with pressure

1 × 10−7 mbar is connected to the main chamber of the ReMi having a typical pressure of

1× 10−11 mbar trough two differential pumping stages.

In order to find the temporal overlap between the two arms of the interferometer, the

BBO crystal is rotated to have the least conversion of the second harmonic, the gas for the

HHG conversion is cut off, and the pump arm is slightly misaligned to let the IR beam pass

from the holes of the dump mirror and the recombination mirror. The recombined IR beams
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from the pump and the probe arms are projected outside the ReMi by introducing a silver

mirror in the beam path. This mirror must be removed during the experiment; otherwise it

will introduce a huge amount of secondary electrons. The beams are focused on a camera,

and the spatial and temporal overlap is ensured by obtaining the fringes. The intensity of

the probe is adjusted by using an iris to yield the best contrast.

Stabilization

A small extension in the main interferometer is added to stabilize it actively. A plane mirror

mounted on the translation stage reflects a small part of the second harmonic beam from

the Dump mirror towards the second beamsplitter and rest of the second harmonic beam

is dumped outside the chamber. The IR beam coming from the probe arm, which passes

through the hole of the recombination mirror, is passed through another BBO crystal of

1mm thickness and then passes through the beam splitter (BS2). Another λ/2 waveplate is

used to match the polarization of the two green beams from the pump and the probe arm.

The recombined beams are then passed through a bandpass filter to remove the IR beam.

The beam is then projected on the camera. First, the temporal overlap of the pump and the

probe arms of the main interferometer is ensured by obtaining the fringes on the camera

outside ReMi. Then the path length of the extended interferometer is adjusted to obtain

fringes with good contrast. We move the piezoelectric stage and ensure the correlation in

the movement of the fringes on both cameras. At the start of the experiment, the program

moves the delay stage to one end of the scan range and records the fringe pattern at the

camera. The phase of the fringe is retrieved by the Fourier transform and is taken as a

reference phase. During the scan, the delay stage is moved at a fixed step size (∆τ ), and the

reference phase is also adjusted accordingly. The camera captures 20 frames per second.

The phase of the interference fringes from the current camera frame is compared with the

reference phase, and the difference is used as feedback for the delay stage.

A.3 Reaction Microscope

The ReMi spectrometer used in this thesis was built over a decade ago, and more details

about its construction and operation can be found in the following theses: [67–70]. To

ensure some self-consistency, however, we here present a brief summary of details that

were not discussed in Publication I.
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A.3.1 Data acquisition and signal processing

The ReMi detector consists of a pair of Micro Channel Plates (MCP) arranged in a Chevron

configuration and a Delay Line Anode (DLA). When a charged particle enters the MCP

channel, it triggers an avalanche of electrons, causing a drop in the applied voltage and

generating a negative voltage pulse that lasts for approximately 10 ns. The delay line an-

ode consists of a flat insulating plate with two copper wires wound across opposite edges,

forming a 2D grid. These positively biased wires detect the image of the charge cloud that

exits from the rear end of the MCP stack. As this charge cloud travels to the two ends of

the delay lines, it creates two signals from each wire.

The high-bandwidth fast amplifier amplifies both the MCP and DLA signals. To assign

timing information independently of their pulse height, a constant-fraction-discriminator

(CFD) is utilized, which produces a standard NIM output. A reference signal is also gener-

ated by a photodiode, which encodes the arrival time of the laser pulse at the target and is

also sent to the CFD for creating a standard NIM output. The CFD signal is then digitized

using a multi-hit Time-to-Digital Converter (TDC). The timing information of the signals

from the MCP, DLA, and photodiode is stored for further analysis.

In order to calculate the complete momenta of the charged particles, both the time-of-

flight (TOF) for each particle and its corresponding impact coordinates (x, y) on the detector

are required. The time-of-flight is determined by calculating the time difference between

the MCP signal and the photodetector signal. The hit position of the particle on the grid

is determined by analyzing the time difference between two signals originating from the

opposite ends of the DLA wire. Specifically,

x = vsignal(tx1 − tx2); y = vsignal(ty1 − ty2). (A.1)

Here vsignal is the signal velocity in the copper wire.

A.3.2 Momentum reconstruction

Using the information of the TOF and the impact position on the detector, one can recon-

struct the initial momentum vectors of the charged fragments. The longitudinal momentum

of the charged particle, parallel to the spectrometer axis, can be reconstructed from its TOF

(t) as follows:

plongion/e =
Ma

t
− qUt

2a
. (A.2)

Here M and q are the mass and charge of the charged particle, U is the applied voltage,

and a (=154.5 mm) is the distance between the detector and the interaction volume. The

transverse momentum for the ion is obtained as

ptransion =
M

√
(x− x0)2 + (y − y0)2

t
. (A.3)
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Here x0 and y0 are the centers of distribution of the position coordinate on the detector

corresponding to zero transverse momentum. The two orthogonal components of the trans-

verse momentum can be resolved as:

pxion =
(x− x0)M

t
; pyion =

(y − y0)M

t
. (A.4)

Due to the magnetic field, the light electrons move in a helical path. This makes the

reconstruction of their transverse momentum more complex compared to that of the heavy

ions:

ptranse =
eB

√
(x− x0)2 + (y − y0)2

2 |sin(ωct/2)|
(A.5)

Here B is the magnetic field and ωc is the cyclotron frequency. Finally, px and py are

calculated as

pxe = ptranse cosϕ; pye = ptranse sinϕ, (A.6)

where the azimuthal angle is calculated as

ϕe = arctan

(
y − y0
x− x0

)
− ωct

2
. (A.7)

A.3.3 Angular acceptance

Typically, the acceptance of a spectrometer is characterized by the maximum kinetic energy

of a detected fragment over the full solid angle. There is no limit on the maximum kinetic

energy of ions (electrons) that can be detected when emitted in the direction of the ion

(electron) detector. However, the maximum kinetic energy of ions or electrons emitted in

the opposite direction that can be extracted depends on the applied voltage, which can be

determined as

E−z
max = q U. (A.8)

For a spectrometer voltage of 50 V, E−z
max is about 50 eV. This is larger than required for our

experiment.

The detection of charged particles emitted in transverse directions is influenced by vari-

ous factors, such as the length of the spectrometer, the MCP size, the electric and magnetic

fields applied, and the charged particle’s kinetic energy. The electric field guides the ions

towards the ion MCP, whereas the confinement of the electrons primarily relies on the mag-

netic field. The maximum energy of the ion emitted in transverse direction that can be

detected by the spectrometer is

Etrans
ion,max =

q UR2
det

4a2
. (A.9)
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With the MCP plate radius set at Rdet = 40 mm and an acceleration region length of

a = 154.5 mm, the spectrometer can detect ions with a maximum transverse momentum

of about 1.0 eV, which is more than sufficient for ions created in a single-photon ionization

process.

For electron detection, the gyroradius should be smaller than half the MCP radius. The

maximum energy of the electron emitted in transverse direction that can be detected by the

spectrometer is

Etrans
e,max =

(eRdetB)2

8Me

. (A.10)

At an applied magnetic field of 10 Gauss, the maximum kinetic energy of the photoelectron

that can be detected with full solid angle is approximately 35 eV.

A.3.4 Resolution

The resolution of the ReMi depends on various factors such as the strength and homogeneity

of the electric and magnetic fields, the thermal velocity of the target beam, the size of the

interaction volume, and the timing jitter in the digitizing electronics.

In the case of ions, the uncertainty in momentum is primarily influenced by the thermal

velocity distribution of the target species. For helium, with a jet temperature of 1 K and

a jet width of 1 mm, the momentum uncertainty in the jet direction is estimated to be

∆pytherm = 0.26 atomic units (a.u.). In the transverse direction, the momentum uncertainties

are approximately equal, with ∆pztherm ≈ ∆pxtherm = 0.12 a.u. [67, 71, 72]. Moreover, it is

also affected by the uncertainty in determining the impact position on the detector and the

time-of-flight. Specifically:

(∆pz)
2 = (∆pztherm)

2 + (8.039× 10−3 cm a.u.

eV ns

qU

a
δt)2 (A.11)

(∆px)
2 = (∆pxtherm)

2 + (11.6× 10−3 a.u.√
amu eV

√
qUM

2a
δr)2 (A.12)

(∆py)
2 = (∆pytherm)

2 + (11.6× 10−3 a.u.√
amu eV

qUM

2a
δr)2 (A.13)

For an applied voltage of 50 V, assuming a time-of-flight uncertainty of δt ≈ 1 ns, and

a position uncertainty of δr ≈ 1 mm, the estimated momentum uncertainties are as follows:

∆pz ≈ 0.12 a.u. (spectrometer axis); (A.14)

∆px ≈ 0.54 a.u.; (A.15)

∆py ≈ 0.59 a.u. (jet direction). (A.16)

Since the kinetic energy of the photoelectron is much larger than the thermal energy of the

target species, the momentum uncertainty due to the thermal effect can be neglected for the

electrons.
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Figure A.3. Longitudinal (a) and transverse (b) momentum resolution of the electron spec-

trometer. U = 50 V ; B=4.5 Gauss

Next, the uncertainty in the longitudinal momentum of the electron is influenced by the

uncertainty in the time-of-flight:

∆plong =
Mea

t2
δt+

qU

2a
δt. (A.17)

As seen from Eq. (A.17), an increase in the time-of-flight leads to an improvement in the

longitudinal momentum resolution. Finally, the transverse momentum resolution depends

on both the position and the time-of-flight uncertainty:

∆ptrans =
B

2| sin(1
2
ωt)|

√
(∆r)2 +

( r ω δt

2 tan(1
2
ωt)

)
. (A.18)

The transverse component of the momentum resolution is periodic in nature and diverges at

the magnetic node as can be seen in Fig. A.3.
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