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Spin and Susceptibility Effects of Electromagnetic Self-Force in Effective Field Theory

Gustav Uhre Jakobsen 1, 2, ∗

1Institut für Physik und IRIS Adlershof, Humboldt Universität zu Berlin,
Zum Großen Windkanal 2, 12489 Berlin, Germany

2Max Planck Institut für Gravitationsphysik (Albert Einstein Institut), Am Mühlenberg 1, 14476 Potsdam, Germany

The classic Abraham-Lorentz-Dirac self-force of point-like particles is generalized within an effec-
tive field theory setup to include linear spin and susceptibility effects described perturbatively, in
that setup, by effective couplings in the action. Electromagnetic self-interactions of the point-like
particle are integrated out using the in-in supersymmetric worldline quantum field theory formalism.
Divergences are regularized with dimensional regularization and the resulting equations of motion
are in terms only of an external electromagnetic field and the particle degrees of freedom.

Self-force describes the fascinating phenomenon of an
object being accelerated by a force generated by itself.
The well-known Abraham-Lorentz-Dirac (ALD) equa-
tion [1–5] describes this effect for the most basic point-
like charged particles and the resulting back-reaction bal-
ances radiation of energy described by the Larmor for-
mula. The physical objects of interest generally have
finite extent and properties such as angular momentum
(spin) and dipole susceptibilities. For spin, adequate gen-
eralizations of the Lorentz force and corresponding ALD
self-force have been considered by many authors [6–14].
One motivation for this line of work is the classical de-
scription of the electron [15] which may e.g. be modeled
as a charged sphere for which several self-force results are
known [16, 17].
Recently, an analogous problem in gravity of describ-

ing the early inspiral of two point-like compact bod-
ies and their radiation have gained importance for the
data analysis of gravitational wave signals observed on
earth [18, 19]. Here, one sets up an effective field theory
(EFT) capturing the body degrees of freedom by world-
line fields with the most basic field given by the world-
line parametrization zµ(τ) [20, 21]. Spin and finite size
effects are then described by effective couplings whose
value may in each case be determined from a matching
to the physical object of interest. Such a worldline EFT
has had great success in describing compact bodies in
gravity [22–24] but may also be applied to electromag-
netic interactions [17, 25–27].
In the same context of gravitational wave physics,

quantum field theoretic methods have been used ad-
vantageously to describe classical physics [28–31]. In
this spirit, classical dynamics as described by world-
line EFT may be considered as the tree-level contribu-
tions of a worldline quantum field theory (WQFT) [32–
41]. This gives rise to an efficient diagrammatic ap-
proach to solving the classical equations of motion. In
this action-based framework, causal boundary conditions
are imposed with the Schwinger-Keldysh in-in prescrip-
tion [37, 42–50]. Several state of the art results in the
perturbative expansion of gravitational scattering have
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been computed with the WQFT [34, 36, 38, 39, 41] (see
also [27, 51–56] for additional work with WQFT).
In worldline EFT, the relativistic angular momentum

of the point-like particle is described by an antisymmet-
ric worldline tensor field Sµν(τ). Half of its degrees of
freedom are constrained by requiring symmetry of the
action under small shifts of the worldline trajectory [57]
so that the dynamics involves only a spacial spin vector.
At the level of the action, one must usually introduce a
co-moving frame in order to describe the spin kinemat-
ics [56, 58, 59]. This, however, is avoided by expressing
the spin tensor in terms of anti-commuting Grassmann
vectors ψµ(τ) which, inspired by previous work [12, 60–
69], was first proposed in this context in the framework
of WQFT [34, 35]. Here, the worldline shift symmetry
becomes a supersymmetry (SUSY).
Self-interaction of point-like particles generally lead to

divergent expressions which, however, from the perspec-
tive of EFT is not surprising as the small scale physics
has been integrated out. Instead, the EFT must be reg-
ularized and in the present case we will use dimensional
regularization. Thus, also in the classical setting, even-
tual divergences must be absorbed into counter terms of
the action [20, 70–73].
In this letter, we compute novel spin and susceptibil-

ity corrections to the electromagnetic self-force of point-
like particles described by a worldline EFT. The compu-
tational method innovates on earlier work and presents
a very streamlined approach for deriving self-force cor-
rections in worldline EFT. In particular, computations
are carried out diagrammatically using the in-in SUSY
WQFT formalism and reduce to the evaluation of a num-
ber of tree level Feynman diagrams. A major motivation
for this innovation is its future generalization and appli-
cation to the gravitational setting and in particular the
perturbative self-force expansion of extreme mass ratio
binaries [44, 74–76].
EFT of Point-Like Particles. — Our system will be

described by the following action S:

S = Skin + Sint + SEM + Sext . (1)

The first two terms will describe kinematics and elec-
tromagnetic (EM) interactions of the point-like particle.
The third term is the kinetic action of the EM potential

http://arxiv.org/abs/2311.04151v1
https://orcid.org/0000-0001-9743-0442
mailto:gustav.uhre.jakobsen@physik.hu-berlin.de


2

in Lorentz gauge,

SEM = −
∫

ddx
[1

4
Fµν(x)Fµν (x) +

1

2

[

∂µA
µ(x)

]2
]

, (2)

with arbitrary dimension d for the use of dimensional reg-
ularization and field strength tensor Fµν = 2∂[µAν] where
square brackets denote averaged anti-symmetrization.
We use units such that the speed of light and vacuum per-
mittivity and permeability are all unity c = ǫ0 = µ0 = 1.
Finally, the last term of Eq. (1), Sext, describes external
sources of the EM potential. We do not make any as-
sumptions on Sext which could for example be given by
a second copy of the worldline action in which case we
would describe the relativistic EM two-body problem.
Let us first consider the interaction terms of the point-

like particle which we model as follows:

Sint = −
∫

dτ
(

q ż ·A(z)− q

m
żµSµνEν(z) + |ż|U

)

,

U =
gq

2m
S · B(z) +

cB
2
B2(z) +

cE
2
E2(z) . (3)

Here, zµ = zµ(τ) is the worldline of the point-like parti-
cle with total charge q and mass m and we use dots to
denote differentiation with respect to τ and the short-
hand |ż| =

√
ż2 with factors of |ż| ensuring explicit time

reparametrization invariance. The particle has (intrin-
sic) relativistic angular momentum Sµν(τ) with Pauli-
Lubanski vector Sµ = m

2 ǫ
µνρσSνρżσ/|ż|. The electric and

magnetic fields Eµ(z) and Bµ(z) are defined implicitly by
a decomposition of the field strength tensor Fµν(z),

Fµν(z) =
1

|ż|
(

2E[µ(z)żν] + ǫµνρσB
ρ(z)żσ

)

, (4)

where the vectors are assumed to be orthogonal to the
body frame (B · ż = E · ż = 0). Here, and in the follow-
ing, we often leave time-dependence of worldline fields
implicit.
In Eq. (3), the spin-induced magnetic field is mea-

sured by the g-factor g and susceptibility effects by cB
and cE describing magnetization and electric polariza-
tion respectively. The interactions Eq. (3) are invariant
(at leading order in spin and susceptibility) under small
shifts of the trajectory δzµ where the spin tensor trans-
forms as δSµν = 2mδz[µżν]/|ż| and the Pauli-Lubanski
vector is invariant. For the use of dimensional regulariza-
tion we rewrite the action in terms of Fµν and Sµν which
is carried out explicitly in the supplementary material.
If one assumes L ∼ q2/m to be the only scale of the

point-like particle, one finds Sµ ∼ Lm and cE/B ∼ L3.
Generally, however, the point-like particle could have ad-
ditional intrinsic scales in which case the power counting
of the EFT would become more complex. The inclusion
of higher order spin or susceptibility corrections or other
finite size effects in the EFT is an interesting problem
with much work done in the gravitational context [59, 77–
80].
Let us turn to the kinetic action Skin which, as dis-

cussed in the introduction, is conveniently written in

terms of anti-commuting (Hermitian) Grassmann vectors
ψµ(τ) related to the the spin tensor as Sµν = −imψµψν .
Using also the Polyakov form of the point mass action,
we get [35, 38, 40]:

Skin = −m
2

∫

dτ
(

ż2 + iψ · ψ̇
)

. (5)

At this point, the shift symmetry becomes a SUSY with
δzµ = iηψµ and δψµ = −ηżµ and global Grassmann pa-
rameter η. We will gauge-fix the SUSY with the covari-
ant spin supplementary condition Sµν żν = 0 and time
reparametrization invariance with proper time ż2 = 1
and assume these constraints in the following.
Worldline Equations of Motion. — The EOMs are

derived from the principle of stationary action and for
the trajectory we find the force fσ = mz̈σ to be:

fµ = qEµ(z) + (ηµν
⊥
∂ν − z̈µ)U (6)

−ηµν
⊥

d

dτ

[((g − 2)q

2m
S +

(

cE + cB
)

B(z)
)

× E(z)
]

ν
,

Here, we use a projector ηµν
⊥

= ηµν − żµżν and note that
proper time implies ż · f = 0. We define the body frame
cross product of any two vectors uµ1 and uµ2 by,

(u1 × u2)
µ = ǫµνρσu

ν
1u

ρ
2ż

σ , (7)

which implies ǫ1230 = 1.
We will focus on the (SUSY invariant) Pauli-Lubanski

vector Sµ(τ) as the physical spin variable which is given
in terms of the Grassmann vectors by Sµ = −im2 (ψ×ψ)µ.
Using the chain rule and principle of stationary action for
the Grassmann vectors one arrives at the following spin-
precession for Sµ (the BMT equation [8, 27]):

ηµ
⊥ν Ṡ

ν = T µ =
gq

2m

(

S ×B(z)
)µ

. (8)

Here, we introduced the torque T µ and focused only on
the spacial components as the time component of Ṡµ in
the direction of żµ is straightforwardly determined from
differentiation of the constraint S · ż = 0.
Worldline Quantum Field Theory. — The WQFT

formalism offers a streamlined diagrammatic approach
to solving the classical EOMs (6) and (8) [32–41]. The
central idea is that the classical dynamics described by
the worldline EFT may be considered as the tree level
contributions (~ → 0) of a quantum field theory defined
from the (worldline) action S where both the EM po-
tential and the worldline fields are promoted to quantum
fluctuating fields.
The propagating fields will be (perturbative) fluctua-

tions defined in background expansions of both the EM
potential and the worldline fields. For the EM potential,
we define the perturbation ∆Aµ = Aµ − Aµ

ext as an ex-
pansion around the (external) potential Aµ

ext(x) sourced
by the current of Sext such that:

∂2Aµ
ext(x) = − δSext

δAµ(x)
. (9)
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For the worldline fields, it is convenient to collect them
in a single superfield Zµ = {zµ, ψµ}. This is expanded
around straight line motion at a reference time τ̄ ,

Zσ(τ) =
{

zσ(τ̄ )+
(

τ− τ̄
)

żσ(τ̄ ), ψσ(τ̄ )
}

+∆Zσ(τ) , (10)

with fluctuation ∆Zσ = {∆zσ,∆ψσ} and boundary con-
ditions ∆z(τ̄) = ∆ż(τ̄ ) = ∆ψ(τ̄ ) = 0.
The key observation of the WQFT formalism is that

the (off-shell) one-point functions in the ~ → 0 limit are
exactly equivalent to the solutions of the classical EOMs:

∆Aµ(k) = , ∆Zσ(ω) = . (11)

Here, the blobs represent the WQFT one-point func-
tions with wiggly lines identifying photons ∆Aµ and solid
lines the superfields. In addition, it is convenient to
work in momentum and frequency space indicated by kµ

and ω and defined by d-dimensional and one-dimensional
Fourier tranforms respectively.
The WQFT Feynman rules are straightforwardly de-

termined from the action [32, 35, 40] and have the fol-
lowing three important properties. First, the background
expansion introduces one-point vertices which lead to an
infinite series of tree diagrams. Second, the interaction of
one-dimensional superfields with d-dimensional photons
conserves only one component of the photon momenta
and the unconstrained integration on the remaining (spa-
cial) components leads to loop-like integrations within
the tree diagrams. Third, in order to arrive at causal
dynamics, retarded propagators are used exclusively and
all point toward the single outgoing line which, formally,
is imposed by the in-in formalism [37].
A simple example of a vertex rule is given by the inter-

action of a photon with a worldline trajectory fluctuation,

∆Aµ(−k)
∆zσ(ω)

=4πδ
(

k ·ż−ω
)

eik·(z−τ ż)k[σην]µ żν+...
∣

∣

∣

τ→τ̄
,

(12)

with the ellipsis indicating spin and susceptibility correc-
tions. Generally, the vertex rules have up to two photon
legs and any number of superfield legs. They conserve en-
ergy and depend on the worldline background variables
zσ(τ̄ ), żσ(τ̄ ) and ψσ(τ̄ ), on the external EM potential
Aµ

ext and on the momenta and frequencies of the incom-
ing and outgoing fields. Due to the background expan-
sion around Aµ

ext, the photons ∆A
µ(x) interact only with

the point-like particle (and not the external current).

The classical EOMs now take the form of off-shell, re-
cursive Berends-Giele like relations [39, 40, 81]:

=
∞
∑

n=0

1

n!

[

n + n +
1

2
n

]

,

=

∞
∑

n=0

1

n!

[

n + n

]

.

(13)

The first line corresponds to the worldline EOMs where
the first term represents the force (or torque) evaluated
on the external EM fields and the next two terms have
one or two insertions of the perturbation ∆Aµ(x). This
force is expanded in the worldline fluctuations around
the background time τ̄ which explains the presence of
any number n of fluctuations. When evaluated at the
background time itself in time domain, only finitely many
terms in the sum on n are non-zero. Such an evaluation
at τ̄ will be our goal after integrating out ∆Aµ(x) below.
The second line of Eq. (13) describes the coupling of ∆Aµ

to the current of the point-like particle.

Integrating Out Self-Interactions. — Self-interactions
are now straightforwardly integrated out by eliminating
∆Aµ(x) from the system of equations (13) leading to the
following regulated EOM:

=
∑

[

1

n!
n

+
1

n!m!
n m

+
1

n!m!l!
n m l

+
1

2n!m!l!
n m l

+O(c2E/B)

]

. (14)

Here, the sum extends over all numbers n, m and l of
superfields. The goal will be to evaluate the right-hand-
side in time domain at the background time τ̄ . Its general
structure is a sum of (j+1)-point WQFT diagrams con-
nected with j superfields where only photons ∆Aµ(x)
propagate within the diagrams. The first term corre-
sponds to the force (or torque) evaluated on the external
EM fields and the three next terms are self-force correc-
tions.

A generic multi-point WQFT diagram with (j+1) su-

perfield legs takes the schematic form,

j
∆Zσ0(−ω0)

∆Zσ1(ω1)

∆Zσj(ωj)

=2πδ
(

ω0−
j

∑

i=1

ωi

)

Mσ1...σj
σ0

(ω1, .., ωj) ,

(15)
with amplitudeM which depends only on the frequencies
and worldline background parameters. Here, the big solid
blob signifies any of the multi-point WQFT diagrams of
Eq. (14) where we have amputated all (incoming) su-
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perfields and external propagators. In order to keep the
discussion simple, we ignore the case of the external EM
potential Aµ

ext in the schematic form, though its inclusion
is straightforward.
Let us consider the contribution of the multi-point

WQFT diagram Eq. (15) to the regulated EOM Eq. (14)
in time domain evaluated at τ̄ . We thus integrate the
multi-point diagram against j superfield fluctuations and
integrate on ω0 with a Fourier factor exp(−iω0τ̄ ) at which
point all frequencies become derivatives of the time do-
main superfields:

Mσ1...σj

σ0

[

i
d

dτ1
, .., i

d

dτj

]

j
∏

i=1

∆Zσi
(τi)

∣

∣

∣

∣

τi→τ̄

. (16)

The amplitudes M may easily be computed and turn out
to be polynomial in their arguments and finite in d = 4.
In this case the contribution (16) simply becomes a sum
of j superfields ∆Zσ(τ̄ ) multiplied together and each dif-
ferentiated a number (possibly zero) of times. Crucially,
since ∆zσ(τ̄ ) = ∆żσ(τ̄ ) = ∆ψσ(τ̄ ) = 0, the contribution
is non-zero only if each field is differentiated a minimum
number of times. Higher derivatives of ∆Zσ are simply
identical to derivatives of Zσ itself.
We will not carry out power counting of the vertex

rules explicitly but one finds that for a sufficient number
j of superfield legs, there are not enough differentiations
to make the contribution (16) non-zero. In particular,
one needs at most one incoming fluctuation in the first
term of Eq. (14) (i.e. n ≤ 1), at most three fluctuations
in the second (n +m ≤ 3) and at most five fluctuations
in the third and fourth (n+m+ l ≤ 5).
At this point we must only show that the amplitudes

M are polynomial in the frequencies and finite in d = 4.
Non-trivial dependence on the frequencies and eventual
divergencies can arise only from the loop-like integrations
on the photon momenta. The relevant integrals factorize
into one-loop massive tadpoles:

Iµ1...µn(ω) =

∫

ddk
kµ1 ... kµn

(k · ż + iǫ)2 + kµkνη
µν
⊥

δ(k · ż − ω) .

(17)
Here, kµ is the exchanged photon momentum and ω is the
total energy flowing in or out of the self-interaction. As
dictated by the in-in formalism, the photon propagator
is retarded with positive infinitesimal ǫ.
The massive tadpole Eq. (18) is easily computed

within dimensional regularization. Importantly, any
trace ηµ1µ2

Iµ1µ2...µn is zero because the contraction can-
cels the denominator and removes any scales of the inte-
gral. With this regularization, the integral is finite and
assuming all divergences to appear from self-interactions,
they have thus been removed. We can then let d→ 4 and
work in four spacetime dimensions. The dependence on
ω of the tadpole can be determined from dimensional
analysis with Iµ1...µn ∼ ωn+1.
An illustrative example is given by the leading order

self-force contribution where, neglecting spin and suscep-

tibility corrections, one gets:

∆zσ(−ω) ∆zρ(ω′)
= δ(ω − ω′)

q2ω3

3

[

ησρ− żσ(τ̄ )żρ(τ̄ )
]

+ ...

(18)
When inserted in Eq. (16), the corresponding amplitude
gives rise to the ALD self-force.
Self-Force Equations of Motion. — The computation

of the regulated EOM Eq. (14) evaluated at τ̄ may now
be carried out and though there are many diagrams an
automatized evaluation is easily carried out with com-
puter algebra. Since the background time τ̄ is arbitrary,
we may generalize the result to any point of time τ . The
regulated EOM Eq. (14) then results in a regulated force
for the worldline trajectory and a regulated torque for
the Pauli-Lubanski vector.
For the trajectory zµ(τ) we find the schematic form,

maµ = fµ
ext +

q

6π
ηµ
⊥ν

[

qȧν + fν
M + cEf

ν
E +

cEq

6π
fν
Eq

]

+ ...

(19)
with aµ = z̈µ and the ellipsis indicating terms of
quadratic order in spin and susceptibility effects. Here,
the first term fµ

ext is the original force (6) evaluated on
the external EM fields and the square brackets give self-
force corrections with the ALD force in the first term,
spin and magnetization effects in the second and elec-
tric polarization effects in the final two terms. For the
self-force corrections we find,

fµ
M = (ȧ× Ṁ)µ +

d

dτ

[

ȧ×
(

M − q

m
S
)]µ

, (20a)

fµ
E =

...
E

µ
ext(z) +

...
a ν∂

µEν
ext(z) + a2Ėµ

ext(z)− ȧµa·Eext(z)

+
d

dτ

(

3aµa · Eext(z) + (ȧ×Bext(z))
µ
)

,

(20b)

fµ
Eq =

....
a µ + 2äµa2 + 8ȧµȧ · a+ aµ

a4 + 18a · ä+ 19ȧ2

2
,

(20c)

with the magnetic moment Mµ = gq
2mS

µ + cBB
µ
ext(z).

The forces fµ
M and fµ

E are due to one exchange of ∆Aµ

(second term of Eq. (14)) and fµ
Eq due to two exchanges

(third and fourth terms). Thus double radiation magne-
tization effects are zero at this order. We note that the
time derivatives of the cross product in the first and third
lines also act on the frame (see Eq. (7)).
For the torque on Sµ we find that the self-force correc-

tions vanish at this order such that ηµ
⊥ν Ṡ

ν is given simply
by the original torque Eq. (8) evaluated on the external
(magnetic) field.
Some intuition of the results is achieved by realizing

that the use of dimensional regularization here is equiv-
alent to using a radiative propagator prescription for the
self-interacting photons defined by half the difference of
the retarded and advanced prescriptions. This is in part
seen from the fact that in d = 4 the integral Eq. (18) is
imaginary and thus picks up a sign for the advanced pre-
scription. At leading order one finds Eµ

rad = qȧµ
⊥
/6π and
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Bµ
rad = 0 for the electric and magnetic fields computed in

this way and the latter relation explains the vanishing of
the double radiation magnetization effects and that there
are no leading order self-force corrections to the torque.

The self-force results Eqs. (20) are to the best of our
knowledge new results. In the reviews [11, 14], the case
of spin is described with worldline EOMs equivalent to
Eqs. (6) and (8) and the radiative propagator prescrip-
tion is suggested but not carried out entirely. However, in
Ref. [9] the field strength tensor with the radiative prop-
agator prescription was computed for a generic dipole
moment with which we find complete agreement at inter-
mediate steps in our computation with the magnetic and
electric moments ∂U/∂Bµ = Mµ and ∂U/∂Eµ = cEE

µ.
This provides a strong independent check on both our
spin and suceptibility results. In addition, we find agree-
ment for the instantaneous loss of energy for spin in
Ref. [10]. Finally, in the supplementary material we
apply the same methodology to the finite size coupling
a · E(z) considered in Ref. [17] and find complete agree-
ment except for a relative sign.

Outlook. — We have shown how one may sys-
tematically eliminate electromagnetic self-interactions
in the worldline EFT of point-like particles deriving,
in particular, novel spin and susceptibility corrections
to the ALD self-force. Straightforward generalizations
and perspectives include the addition of higher order
spin and finite size effects, self-force in arbitrary space-
time dimensions [82–87] and classical non-Abelian self-
interaction [14, 51, 88–91].
Furthermore, it would be of great interest to apply this

framework to the gravitational setting where a weak-field
expansion would lead to diagrams similar to the electro-
magnetic ones considered here except for self-interactions
in the bulk giving rise to tail-effects [70, 92]. A gener-
alization to curved space would be equally exciting and
allow for applications to the self-force expansion of ex-
treme mass ratio binaries [44, 93–96].
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SUPPLEMENTARY MATERIAL

Worldline Action in General Dimensions. — All four-
dimensional Levi-Civita symbols are eliminated using the

standard formula:

ǫµ1µ2µ3µ4ǫν1ν2ν3ν4 = −

∣

∣

∣

∣

∣

∣

∣

ηµ1ν1 ηµ2ν1 ηµ3ν1 ηµ4ν1

ηµ1ν2 ηµ2ν2 ηµ3ν2 ηµ4ν2

ηµ1ν3 ηµ2ν3 ηµ3ν3 ηµ4ν3

ηµ1ν4 ηµ2ν4 ηµ3ν4 ηµ4ν4

∣

∣

∣

∣

∣

∣

∣

.

(21)

Using this formula we find the following d-dimensional
expression for the worldline interaction terms:

Sint = −
∫

dτ
(

q ż ·A(z)− q

m

żσF µ
σ (z)S ν

µ żν

|ż| + |ż|U
)

,

U =
gq

2m

(Fµν(z)Sµν

2
+
żσF µ

σ (z)S ν
µ żν

ż2

)

(22)

−cE + cB
2

żσF µ
σ (z)F ν

µ (z)żν

ż2
− cB

4
Fµν(z)F

µν(z) .

Self-Force due to Effective Coupling a · E. — In order
to compare with the results of Ref. [17], we consider self-
force effects due to the finite size coupling a ·E(z) (with
aµ = z̈µ). We define the following action,

S = −
∫

dτ
[m

2
ż2 + q ż · A(z) + c

a ·E(z)√
ż2

]

, (23)

with finite size coupling c and explicit time
reparametrization invariance of the interaction terms in
order to use proper time.
This action gives rise to the following equation of mo-

tion (with maµ = fµ):

fµ = qEµ(z)+c ηµν
⊥

(24)

×
[

(∂ν + aν)a ·E(z) +
d

dτ

[

a×B(z)
]

ν
+ Ëν(z)

]

.

Using the same methodology as in the main text we de-
rive regularized equations of motion with,

fµ = fµ
ext +

q2

6π
ηµ
⊥ν ȧ

ν + fµ
c , (25)

where the external force fµ
ext is given by Eq. (24) eval-

uated on the external EM fields and the second term is
the ALD self-force. The third term gives the self-force
corrections due to the finite size coupling c and reads:

fµ
c =

qc

3π
ηµ
⊥ν

(

...
a µ + 2ȧµa2 + 6aµa · ȧ

)

. (26)

This result should be compared with Eq. (24) of Ref. [17].
The two results (Eq. (26) and Eq. (24) of Ref. [17]) are
in complete agreement except for an overall factor of 4π
(due to different electromagnetic units) and a relative
sign of the second term.
As with the main results of this letter, the field

strength tensor computed in Eq. (24) of Ref. [9] us-
ing the radiative propagator prescription discussed below
Eqs. (20) provides a strong independent check of the self-
force result Eq. (26). In the case of the finite size term
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ca · E, the electric moment reads, Eµ = caµ, and the
magnetic moment vanishes. Using the results of Ref. [9]
we may compute the radiative electric field Eµ

rad(z) (the
body frame electric field with the radiative propagator
prescription) due to the electric moment Eµ. Inserting,

then, Eµ = Eµ
ext + Eµ

rad and Bµ = Bµ
ext into Eq. (24)

we find exactly the results reported here in Eqs. (25)
and (26) (computed using the methodology of the main
text).
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Flanagan, “Foundations of the self-force problem in
arbitrary dimensions,” Phys. Rev. D 97, 124053 (2018),
arXiv:1804.03702 [gr-qc].

[84] D. Galakhov, “Self-interaction and regular-
ization of classical electrodynamics in higher
dimensions,” JETP Lett. 87, 452–458 (2008),
arXiv:0710.5688 [hep-th].

[85] A. Mironov and A. Morozov, “Radia-
tion beyond four space-time dimensions,”
Theor. Math. Phys. 156, 1209–1217 (2008),
arXiv:hep-th/0703097.

[86] Vitor Cardoso, Marco Cavaglia, and Jun-Qi Guo,
“Gravitational Larmor formula in higher dimensions,”
Phys. Rev. D 75, 084020 (2007), arXiv:hep-th/0702138.

[87] P. O. Kazinski, S. L. Lyakhovich, and A. A. Shara-
pov, “Radiation reaction and renormalization in classi-
cal electrodynamics of point particle in any dimension,”
Phys. Rev. D 66, 025017 (2002), arXiv:hep-th/0201046.

[88] S. K. Wong, “Field and particle equations for the clas-
sical yang-mills field and particles with isotopic spin,”
Il Nuovo Cimento A (1965-1970) 65, 689–694 (1970).

[89] Fiorenzo Bastianelli, Roberto Bonezzi, Olindo
Corradini, and Emanuele Latini, “Particles
with non abelian charges,” JHEP 10, 098 (2013),
arXiv:1309.1608 [hep-th].

[90] Leonardo de la Cruz, Ben Maybee, Donal O’Connell,
and Alasdair Ross, “Classical Yang-Mills observ-
ables from amplitudes,” JHEP 12, 076 (2020),
arXiv:2009.03842 [hep-th].

[91] Leonardo de la Cruz, Andres Luna, and Trevor
Scheopner, “Yang-Mills observables: from KMOC
to eikonal through EFT,” JHEP 01, 045 (2022),
arXiv:2108.02178 [hep-th].

[92] Alex Edison and Michèle Levi, “A
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