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SUMMARY
Branching allows neurons to make synaptic contacts with large numbers of other neurons, facilitating the
high connectivity of nervous systems. Neuronal arbors have geometric properties such as branch lengths
and diameters that are optimal in that they maximize signaling speeds while minimizing construction costs.
In this work, we asked whether neuronal arbors have topological properties that may also optimize their
growth or function. We discovered that for a wide range of invertebrate and vertebrate neurons the distribu-
tions of their subtree sizes follow power laws, implying that they are scale invariant. The power-law exponent
distinguishes different neuronal cell types. Postsynaptic spines and branchlets perturb scale invariance.
Through simulations, we show that the subtree-size distribution depends on the symmetry of the branching
rules governing arbor growth and that optimal morphologies are scale invariant. Thus, the subtree-size
distribution is a topological property that recapitulates the functional morphology of dendrites.
INTRODUCTION

Branchedmorphologies are fascinating because they are ubiqui-

tous in the natural world and often have high complexity.1–4 In the

case of neurons, themorphology of dendritic trees is functionally

important because it defines where the cell can receive synaptic

inputs from other neurons and how these inputs are integrated to

allow signal transmission and computation.5 The morphologies

of dendrites are shaped during development by many cellular

and molecular mechanisms including branching, elongation

and retraction,6,7 self-avoidance,8 and morphogen gradients.9

The resulting geometries, and in particular the lengths and

spatial arrangements of the individual branches, often optimize

electrical signaling by minimizing propagation times between

sites of input and output.10–17 Intracellular transport within

branches delivers materials and nutrients to support the growth

and activity of the cell.18 Branch diameters, another important

geometric property of neurons, may optimize the distribution of

materials for growth and homeostasis19–21 and the transfer of

electrical currents.17 Thus, the geometry of dendritic arbors—

the lengths and diameters of their neurites—is functionally

important because it constrains the transport of signals and ma-

terials within the cell. In this paper we asked whether the topol-

ogy of dendritic arbors, those network properties that are

invariant under deformations (homeomorphisms) of the arbor’s

geometry, is also important for neuronal function or growth.

The great diversity of the branching patterns of neurons22 has

spurred efforts to use topological concepts, in addition to geom-

etry, to categorize neuronal morphologies into smaller numbers
C
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of distinct classes.22–25 One avenue is topological data analysis

(TDA), an approach to the analysis of data using techniques from

topology to obtain information that is independent of the partic-

ular metrics26; this approach can reveal a system’s intrinsic

structure and distinguish that structure from other structures

and noise.27–29 The topological morphology descriptor (TMD),

based on TDA, encodes the spatial structure of branched trees

as a ‘‘barcode’’ and has been found to be useful for categorizing

neurons.30 In addition to TMD, which includes geometric infor-

mation, there are several other topological measures that have

been used to characterize the branchingmorphology of neurons.

These include tree asymmetry,31,32 Strahler ordering,33–35 and

subtree persistence.36 Because the genetic networks respon-

sible for pattern formation are frequently conserved through evo-

lution, organisms of different size often have neuronal structures

that scale geometrically.37 Even for individual neurons, one

might anticipate that repetitive application of a single set of

pattern-formation rules6,7,38 could generate arbors with similar

geometric properties at different length scales, such as the

fractal dimension.39,40 Are there analogous topological proper-

ties that scale, and are these features functionally important?

In this study, we analyzed invertebrate41,42 and vertebrate

(NeuroMorpho.Org)43 neurons and discovered a topological

property of dendrites, the subtree-size distribution, that is often

scale invariant. To appreciate the notion of topological scale

invariance, we need some definitions. Each node or branchpoint

in a tree defines a subtree comprising the set of branches that

are distal to the node. We define the size of the subtree as the

number of terminal branches, or tips, that the subtree supports.
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Figure 1. Subtree-size distributions for class IV sensory neurons follow a power law

(A) Dendritic arbor of a 96-h class IV neuron visualized with a GFP-tagged membrane marker by spinning-disk confocal microscopy (see STAR Methods).

(B) Dendrogram of the upper half of the arbor in (A).

(C) Subtree-size distribution for seven different dorsal class IV neurons from larval segments A3 to A5. The subtree size equals the number of tips. The solid

symbols correspond to the cell in (A) and (B). The solid black line is the reducedmajor axis (RMA; see STARMethods) fit to all the log-log data: the slope is�1.40 ±

0.04 (error stands for standard deviation from the RMA fitting). This corresponds to a perfection index of 0.70. The insets show a perfect tree (lower left) and a

maximally imperfect tree (upper right) with slopes �2 and 0, respectively.
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Because the number of tips is onemore than the number of inter-

nal branches (those segments between two branchpoints), tip

number is approximately one-half the total branch number and

so serves as a proxy for subtree size. We found that for many

neurons, the distribution of subtree sizes follows a power law,

meaning that the distribution is linear when plotted on a log-log

axis. This implies that the subtree-size distribution is scale

invariant in the following sense: the distribution of subtrees of

size cn (where c a constant) is proportional to the distribution

of subtrees of size n (Newman et al., 200544 and STARMethods,

where we show that scale invariance is equivalent to a power

law). Because different classes of neurons have different expo-

nents in the power law (the slopes of the log-log plots), scale

invariance can be used to distinguish cell types based on their

topology. Through simulation, we show that scale invariance

arises from iterative growth processes such as the Galton-

Watson (GW) process.45,46 The exponent depends on the bifur-

cation probability, the probability that a given dendritic tip will

branch rather than terminate, as well as on the relative frequency

of branching on internal, non-terminal branches. Furthermore,

the presence of postsynaptic spines on mammalian neurons

and of branchlets on Drosophila class III dendritic arborization

(da) sensory neurons leads to characteristic deviations from a

power law, suggesting that the spines and branchlets arise

through different growth mechanisms compared to the proximal

branches. Thus, the subtree-size distribution is a topological

property that reflects the underlying branching morphogenesis

of dendritic arbors and distinguishes the morphologies of

different neuronal types.

RESULTS

Subtree-size distribution and perfection index
In our quest to uncover the underlying growthmechanismsof neu-

rons, we investigated the topological properties of the dendritic
2 Cell Reports 42, 113268, November 28, 2023
arbors of class IV da cells in Drosophila melanogaster larvae

(Figures 1A and 1B). These nociceptive cells form a dense mesh-

work of dendrites just under the cuticle; they detect attacks by the

syringe-like ovipositor barbs of parasitic wasps and trigger

escape responses.47 With dendritic arbors having up to 2,000

branches and 1,000 tips (i.e., terminal branches) by the end of

larval development (5–6 days after egg lay), class IV cells consti-

tute a model system for studying dendrite morphogenesis.41

For a branched tree, such as a dendritic arbor, we define the

subtree-size distribution36,48 as the average number, S, of

branches that support n dendrite tips (or leaves of the tree).

The subtree-size distribution is a topological function that de-

pends on the branching pattern of the dendrite. This is illustrated

by the trees in the insets of Figure 1C. In a perfect, binary tree

(lower left) each tip bifurcates at each branch order. The perfect

tree shown has branch order (or height) 4 and has 24 = 16 tips.

The number of branches that support 16 tips is 1, the number

that supports 8 tips is 2, and so forth. Becausemany tip numbers

have no associated branches (e.g., in this example the number of

branches that support three tips is zero), we bin and average.

Specifically, we take geometrically increasing intervals of branch

number: [0.5,1.5], [1.5,2.5], [2.5,4.5], [4.5,8.5], [8.5,16.5], and

average the number of tips in each interval: Sð1Þ = 16,

Sð2Þ = 8;Sð3:5Þ = 2;Sð6:5Þ = 0:5;Sð12:5Þ = 0:125 (see Figure 1

legend). Sð1Þ equals the total number of tips. In this way, sub-

tree-size distributions are calculated for single arbors. Note

that the average number,S, can be less than 1 due to the normal-

ization by interval size. For a perfect binary tree, the average de-

creases geometrically with a slope of approximately � 2 when

plotted using log-log axes (dashed red line on left). For the maxi-

mally imperfect tree (Figure 1C, upper right), each bifurcation

leads to one terminal tip. In this case, the subtree-size density

is Sð1Þ = 16;Sð2Þ = 1;Sð3:5Þ = 1;Sð6:5Þ = 1;Sð12:5Þ = 1,

which has slope zero on a log-log plot (dashed red line on right,

omitting the first point).



Figure 2. Dendrite subtree-size distributions and perfection indices for neurons in the central nervous systems of vertebrates and in-

vertebrates

(A) Skeletonized guinea pig cerebellar Purkinje cell49 in which branches have been replaced by their center lines.

(B) Subtree-size distributions for four Purkinje cells (orange) and three retinal ganglion cells (magenta): the perfection indices are 0.86 ± 0.02 and 0.76 ± 0.04,

respectively.

(C) Subtree-size distributions for the five Drosophila T5 cells shown in Figure S3. The perfection index is 0.73 ± 0.04. We did not include error bars in (B) and

(C) because they are small.

(D) Perfection indices measured from reconstructed neurons from the morphological database www.neuromorpho.org. Retinal ganglion cells: 0:80± 0:04

(magenta, n = 130 cells); neocortical pyramidal cells: 0:85± 0:06 (blue, n = 165 cells); hippocampal pyramidal cells: 0:78± 0:07 (green, n = 131 cells); moto-

neurons: 0:86± 0:04 (red, n = 56 cells); starburst amacrine cells: 0:79± 0:08 (dark green, n = 27 cells). All errors are standard deviations.
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Based on these empirical properties, if SðnÞ scales linearly

with tip number n (on a log-log plot), with power-law exponent

�a, we define the perfection index b = a=2 (Figure S1). The intu-

ition behind the perfection index is that a ‘‘perfect’’ binary tree,

which is defined as one in which every tip bifurcates at each or-

der, has a perfection index b = 1 (oblique red dashed line in Fig-

ure 1C). A perfection index, b = 0, corresponds to a ‘‘maximally

imperfect’’ tree in which one tip bifurcates and the other termi-

nates (horizontal red dashed line in Figure 1C).

The subtree-size distribution follows a power law for
class IV neurons
The subtree-size distributions for the dendritic arbors of class IV

cells follow a power law: they are straight lines when plotted

against tip number on a log-log axis (Figure 1C). Thus, we can

writeSðnÞ = ntotaln
�a for n between 1 and ntotal. The average value

of the exponent isa = 1:40with corresponding perfection index of

0:70. Thus, class IV cells are imperfect binary trees with slopes

lying between the extremes of perfect and maximally imperfect.

The subtree-size distribution follows a power law for a
wide variety of neurons
To test whether the perfection-index concept can be generalized

to neurons from other species, we analyzed guinea pig Purkinje

cells (Figure 2A).49–51 Figure 2B shows that the power law holds

with an exponent of 1.72 and corresponding perfection index of

0.86. The plot of normalized residuals for class IV and Purkinje

cells confirmed the goodness of fit (Figure S2). Mouse retinal

ganglion cells52 also satisfied a power law, with a perfection in-

dex of 0.76 (Figure 2B).

Next, we asked whether the power law generalizes to the cen-

tral nervous system of adult flies. We analyzed Drosophila T5

cells, which are in the motion-sensing pathway (Figure S3,
from Scheffer et al.42). T5 cells remain relatively stable in size

during adulthood, in contrast to class IV cells, which grow contin-

uously through larval development.7 As shown in Figure 2C, the

power law holds with an average perfection index of 0.75.

We further analyzed the dendritic trees of different cell types

from the NeuroMorpho database43 including: Purkinje cells

from the cerebellums of guinea pig, rat, andmouse; spinal moto-

neurons from rat and cat; retinal ganglion cells from mouse,

pouched lamprey, and salamander; pyramidal cells in the hippo-

campus of rat, mouse, and guinea pig; pyramidal neurons in the

neocortical layers of rat, mouse, cat, monkey, and human; and

starburst amacrine cells from monkey, mouse, and rabbit. The

power law holds for these neurons, with mean perfection indices

ranging from 0.78 to 0.86 (Figure 2D). While the total range of

indices is small, 0.70 (Drosophila class IV neurons) to 0.86 (cere-

bellar Purkinje cells), the means differ significantly between

different cell types because the standard errors are small

(<0.01). Thus, the perfection index is a metric that distinguishes

different classes of neurons.
Perfection index is unchanged under trimming and
ablation
When we iteratively trimmed the terminal branches of class IV

neurons, the subtree-size distribution still followed a power

law, with a perfection index similar to that of the original neuronal

tree (Figures 3A–3D). Trimmed Purkinje cells also followed a po-

wer law, although the exponents decreased (Figure 3E). When

we randomly ablated internal branches of class IV neurons

(Figures 3F and 3G), the subtree-size distributions continued to

follow power laws (Figure 3H). The perfection indices of both

class IV and Purkinje cells were similar after ablation (Figure 3I).

Thus, the subtree-size distributions are self-similar under these

perturbations, with similar perfection indices.
Cell Reports 42, 113268, November 28, 2023 3
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Figure 3. The perfection index is invariant under branch trimming and ablation
(A–D) (A) Part of a class IV arbor with supported tips colored according to the scale at right. (B) Arbor A after trimming (i.e., removing terminal branches). (C) Arbor A

after trimming a second time. (D) The perfection indices are 0.74 (A), 0.73 (B), and 0.76 (C).

(E) Perfection indices of class IV and Purkinje cells before and after trimming.

(F) Arbor A after randomly ablating 35% of branches.

(G) Arbor A after randomly ablating 69% of branches.

(H) The perfection indices are 0:74 (A), 0:70 (F), and 0:69 (G).

(I) Perfection indices from class IV neurons and Purkinje cells following branch ablation.
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Percolation transition associated with the Galton-
Watson branching process
To gain insight into why neurons have subtree-size distributions

that can be described by a power law with a narrow range of ex-

ponents, we initially studied one of the simplest models for

generating trees, the GW process.45 In a binary GW process,46

each terminal branch (denoted by B) bifurcates into two new ter-

minal branches with probability p, or stops bifurcating to form a

tip (denoted by T) with probability 1 � p:

B/

�
B Prob = p
T Prob = 1 � p

(Equation 1)

When p = 1, the GW process produces a perfect tree, which

is deterministic in the sense that every tree is identical. When p<

1, the GW process produces an imperfect tree, with an arboriza-

tion pattern that varies from tree to tree, even for the same value

of p.

The GW process (illustrated in Figure 4A) produces random

binary trees (gray lines in Figure 4A) that are a subset of a per-

fect tree (black lines in Figure 4A). If the bifurcation probability p

is >0.5, then on average at least one of the terminal branches

will continue to bifurcate. The number of branches is expected

to increase with branch order. Otherwise, when p< 0:5, the

average number of branches will decrease with the branch

order, and growth will almost surely terminate. The critical

bifurcation probability, pc = 0:5, therefore marks a qualitative

change in the behavior of a binary branching process, with su-

percritical (p> 0:5) trees able to reach high branch orders. This

behavior is analogous to a percolation transition, which de-

scribes the emergence of long-range connectivity in random

systems when a critical value, known as the percolation

threshold, is exceeded.53
4 Cell Reports 42, 113268, November 28, 2023
Stochastic simulations showed that the GW process (with

p> 0:5) produces trees whose subtree-size distributions follow

power laws (Figure S4A). The perfection index increased from

0.7 to 1 as p increased from 0.5 to 1 (Figure 4B, black squares).

Interestingly, bifurcation probabilities larger than the percolation

threshold pc = 0:5 and smaller than 0.7 (Figure 4B, red region)

correspond to the perfection indices observed over a wide vari-

ety of neurons (0.70–0.86).
GW processes with variable bifurcation probabilities
also show power-law behavior
We next asked whether more general growth processes also

lead to subtree-size distributions that follow power laws. In a

generalized GW process the bifurcation probability, pðdÞ, de-
pends on the branch order, d.45 For any tree, we can also mea-

sure the probability, PðdÞ, that branches of order d bifurcate; Fig-

ure 5A shows PðdÞ measured for a class IV cell. Note that the

measured P for a simulated tree does not necessarily equal p

because growth is stochastic; indeed, growth fluctuations may

cause any simulated tree with p< 1 to terminate eventually,

even when p> 0:5 for all d (i.e., PðdÞ = 0 for d sufficiently large).

For a finite tree, the measured bifurcation probability P must fall

below 0.5 at high branch order. For simulated trees, termination

can happen in a number of ways: there might be an abrupt

decrease in p to zero at some branch order, or pmight decrease

to a value close to or below the critical value of pc = 0:5, so that

the tree slowly stops growing as found in class IV neurons (Fig-

ure 5A). We performed simulations using the two branch-or-

der-dependent bifurcation probabilities shown in Figure 5B. In

both cases, the subtree-size distribution SðnÞ vs. n follows a po-

wer law as shown in Figure 5C. Binary trees grown with higher

bifurcation probabilities at lower branch order have higher



Figure 4. Percolation transition associated

with the Galton-Watson branching process

(A) An example binary tree (black lines) superimposed

on a perfect binary tree (light-gray lines) with order 4.

(B) Perfection index b as a function of branching

probability p. For each branching probability, trees

with total tip number of approximately 400 were

analyzed with 100 simulations for each bifurcation

probability. The blue-shaded region corresponds to

the region below the percolation transition. The red-

shaded region corresponds to the perfection-index

range observed in this work. The orange-shaded re-

gion is outside the observed range.Error bars areSDs.
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perfection indices (Figure 5B vs. Figure 5C). This observation is

consistent with the simulation results (Figure 4B), where higher

bifurcation probability leads to higher perfection indices.

Next, we asked whether the correlation between bifurcation

probabilities and perfection indices also applies to real den-

drites. The measured perfection index for Purkinje cells (0.86,

Figure 2B) is larger than that for class IV neurons (0.70, Fig-

ure 1C). Notably, Purkinje cells have a higher bifurcation proba-

bility, P, than class IV cells at lower branch orders, but lower

probability at higher orders (Figure 5A vs. Figure 5D). The higher

perfection indices of Purkinje cells compared to class IV cells

indicate that the bifurcation probability during the early stages

of growth may be an important determinant of the perfection in-

dex. Moreover, simulations performed with measured bifurca-

tion probabilities vs. branch order (Figures 5A and 5D, see

STAR Methods) as input were able to reproduce the experimen-

tally observed perfection indices (Figure S4B). Thus, the subtree-

size distribution of class IV and Purkinje cells are consistent with

GW processes with order-dependent bifurcation probabilities.
Quantifying the degree to which dendritic morphologies
are stochastic vs. deterministic
The correlation between the bifurcation probability in the GW

process and the perfection index allows us to relate the stochas-

ticity of a tree to its perfection index. If the branches with a given

order bifurcate with probability p, the mean number of new

branches at the next higher order is proportional to 2p and the

variance is proportional to 4pð1 � pÞ. Therefore, the variance

in the number of new branches is greatest when p = 0:5, the

percolation threshold, and decreases to zero as p increases to

1. Hence, we can say that for p> 0:5, a smaller bifurcation prob-

ability (lower perfection index) is more stochastic whereas a

larger bifurcation probability (higher perfection index) is more

deterministic. By this measure, the growth rules for mammalian

Purkinje cells are more deterministic and less stochastic than in-

sect class IV neurons.
Density constraints account for why the bifurcation
probability is close to 0.5
We asked why the measured bifurcation probabilities are approx-

imately 0.5 for many branch orders (Figures 5A and 5D). One

possible explanation is that arbor volume constrains bifurcation.

It is clear when considering a perfect tree that the only way to fit

in the highest-order branches is to decrease the spacing between
branches. If the area per branch (in 2D) or the volume per

branch (in 3D) remains constant during growth, however, then

p must decrease. This can be seen by considering a circular

arbor with constant dendrite density. The number of highest-

order branches is proportional to the perimeter, which in turn

is proportional to the radius, which is proportional to the

branch order, d (by the constant density assumption). If all the

peripheral tips were to bifurcate, the number of new branches

in the next growth ring would be proportional to 2d; but the

outer perimeter of the growth ring can only support a number

of branches proportional to the new perimeter ðd + 1Þ. Thus,

we expect p2D/ðd + 1Þ=2d = 1=2+ 1=2d. In 3D, p3D/

ðd+1Þ2=2d2 = 1=2+ 1=d. This shows that a constant branchden-

sity constrains the bifurcation probability to approach 0.5, the

percolation threshold, as observed.
Internal vs. tip branching
Class IV cells grow by a stochastic branching process in which

new branches can form either on terminal dendrites, which we

call tip branching and is topologically equivalent to tip bifurca-

tion, or on internal (non-terminal) branches.7 The frequency of in-

ternal and tip branching is approximately equal. By contrast,

Purkinje cells in culture grow predominantly by tip branching.6

We therefore analyzed so-called QS growth processes32 that

have a balance between internal and tip branching (here we

considered the one-parameter model54; Figure S6). We found

that internal branching, provided its frequency is less than tip

branching, still gives rise to a power law, and that the perfection

index decreases as the relative frequency of internal branching

increases (Figure S6B). Deviations from a power law occur

when the frequency of internal branching exceeds that of tip

branching (Figure S6C). Thus, more general branching mecha-

nisms that include internal branching also give rise to power

laws, at least over a range of internal branching frequencies,

although the exponents are lower.
Neuronal branching patterns that optimize wiring also
follow a power law
In addition to the GW and QS processes, we also tested whether

other morphogenetic processes give rise to power laws for their

subtree-size distributions. Cuntz et al.13,55 proposed amethod of

constructing branched networks based on an optimal wiring

principle. To connect a given distribution of synapses or a sites

of sensory reception to a single point, the cell body, they
Cell Reports 42, 113268, November 28, 2023 5



Figure 5. The power-law exponent varies

with the order-dependence of the bifurcation

probability in the Galton-Watson process

(A) Bifurcation probabilities as a function of branch

order for class IV neurons.

(B) Two bifurcation probability functions. The blue

curve shows an abrupt decrease of bifurcation

probability from 0.7 to 0 at branch order 15. The red

dashed curve shows a decrease from 0.7 to 0.55 at

branch order 6 and a gradual change from 0.55 to

0.45 from branch order 7 to branch order 40, fol-

lowed by an abrupt change to 0.

(C) SðnÞ vs. n for the two cases in (B) follow power

laws, although the slopes differ. The exponent in

(a) is a = 1:79 and in (b) is a = 1:52.

(D) Bifurcation probabilities as a function of branch

order for Purkinje cells.

In (A) and (D), six neurons were analyzed with

different colors representing different animals. The

bifurcation probability was only calculated for orders

with six or more branches. The black dotted line

shows a bifurcation probability of 0.5. A linear

piecewise fit (dashed red lines) is overlaid.
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extended the concept of a minimum spanning tree to construct

trees that weigh the costs of material (total dendrite length)

against the conduction time (path length to soma) using a single

regularization parameter, the balancing factor, bf. The balancing

factor (BF) has proved to be an effective method to describe a

wide variety of neuronal structures from insect dendrites to

mammalian neurons.13,56 A smaller balancing factor, bf , leads

to a more branched structure, in which the neuron utilizes its

limited cytoskeletal resources more efficiently to fill up a large

space. A larger balancing factor results in fewer bifurcations

and more direct connections to the soma so that conduction

times are reduced.

To test whether trees generated by the balancing-factor (BF)

process display power laws, we randomly distributed points to

mimic synaptic sites and created optimal-wired synthetic trees

starting at the center point according to the balancing factor

from 0 to 1 in steps of 0.1 (Figure 6A). The subtree-size distribu-

tion followed a power law with the perfection index increasing

monotonically from 0.67 to 0.81 as bf increased from 0 to 0:9

(Figure 6B); this falls within the experimentally measured range

of perfection indices. Moreover, this finding is consistent with

the conclusions from previous studies that balancing factors in

the range of 0.0–0.9 can be used to describe a wide variety of

neurons in Drosophila sensory neurons and hippocampal

granule cells.13,56

Comparison between the perfection index and tree
asymmetry
The perfection index is also related to another topological mea-

sure, tree asymmetry.32 The asymmetry of a branchwhosedaugh-

ters support l andm tips (l%m) is defined as ðm � lÞ=ðl +m � 2Þ;
if l=m the asymmetry is zero and if l = 1 the asymmetry is 1. The

asymmetry of the tree is theweightedaverageof thebranchasym-

metry.32We compared the perfection index and the tree asymme-

try for neurons from the NeuroMorpho and Hemibrain datasets
6 Cell Reports 42, 113268, November 28, 2023
(density plot as shown in Figure 6C) and found that the data

cluster around perfection indices of 0.8 and asymmetry 0.5.

When we generated trees using the GW process with different

valuesofp andmeasuredboth theperfection indexand treeasym-

metry, we found that they are inversely correlated, as shown by

the gray dotted curve in Figure 6C, which passes through the

experimental data. This is consistent with our earlier observation

that a higher perfection index is associated with higher symmetry

of the arbors. In earlier studies, tree asymmetry was also found

to be invariant under trimming (terminal pruning) and ablation

(random pruning),57 further highlighting the close relationship be-

tween these two topological measures. Because tree asymmetry

has a larger coefficient of variation compared with the perfection

index, it might better distinguish the morphologies of different

neuronal types.

Two-step growth mechanisms lead to deviations of the
subtree-size distribution from a power law
Next, we askedwhether everymorphogenetic process gives rise

to power-law behavior of the subtree-size distribution. The

answer is no.

There are four classes of sensory neurons that tile the larval

body wall of flies.58 The morphology of class III neurons differs

from that of class IV neurons in having short terminal branchlets

alongmost of their lengths (Figure 7A). The subtree-size distribu-

tion of class III cells shows two phases (Figure 7B): a shallower

slope for small tip numbers (exponent of 0.84) and a steeper

slope for larger tip numbers (exponent of 1.52). When we

removed all the branchlets from a class III neuron, leaving only

the backbone (Figure S5), we found that the subtree-size distri-

bution followed a power law (Figure 7C) similar to that of class

IV neurons with an exponent of 1.50. When we added back

branchlets at random locations along the backbone, we recov-

ered the two-phase behavior of the subtree-size distribution

(Figure 7B). Thus, class III cells have a backbone with a



Figure 6. Perfection indices of trees generated by the optimal wiring and with different asymmetries

(A) Example trees grown from randomly distributed points (left panel) from a root at the center. As the balancing factor (bf) increases, the branches becomemore

radial as the trade-off shifts from smaller total branch length to shorter path distances to the center (see text).

(B) Perfection index b is plotted as a function of balancing factor. The red shadowed region indicates the region that falls within the experimentally observed range

(determined by [mean � 2SD, mean + 2SD]). Each data point is averaged from 100 simulations. Error bars are standard deviations.

(C) A comparison between the tree asymmetry,Ap, and the perfection index, b, measured for 532 cells fromNeuroMorpho andHemibrain databases.Ap = 0.50 ±

0.07 and b = 0:82± 0:07 (mean ± SD, n = 532). The dotted curve is obtained from the GW model.
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perfection index similar to that of class IV cells, with the differ-

ence in the subtree-size distribution arising from terminal

branchlets. This observation suggests that primary branches of

class III cells grow by a developmental mechanism similar to

that of class IV cells, i.e., with bifurcation probability above the

percolation threshold, followed by the random addition of

branchlets, consistent with a recent paper demonstrating that

a two-step model is necessary to describe the class III neuron

morphology.59

Like class III neurons, the subtree-size distributions of pyrami-

dal cells with spines from layer 2/3 of the mouse cortex (Fig-

ure 7D, MICrONs datasets, see STAR Methods) also deviate

from power laws as shown in Figure 7E. The subtree-size distri-

bution showed two phases, a shallow slope (exponent 0.08) and

a steeper slope with (exponent 1.77). When we removed all

spines and measured the subtree-size distribution, a power

law was recovered with an average exponent of 1.6 (Figure 7F).

Note that the pyramidal and Purkinje cells analyzed in Figure 2

did not include spines. Again, adding artificial spines through

simulations recovers the experimental observation as shown in

Figure 7E. It is noteworthy that although the power-law behavior

can be disrupted when internal branching exceeds tip bifurca-

tion, the two-phase behavior cannot be achieved by the QS pro-

cess alone (when S is kept at zero, i.e., one-parameter model,

Figure S6C). This further suggests that a two-step model is

necessary. Thus, subtree-size distributions can deviate from a

power law and exhibit two-phase behaviors, indicating distinc-

tive growth mechanisms.
DISCUSSION

In this study, we found that the subtree-size distribution, which is

a purely topological property of branched networks, follows a

power law for many, but not all, neurons. When the distribution

follows a power law, we can define the perfection index as half

of the power-law exponent; a value of 1 corresponds to a perfect

binary tree in which the number of branches doubles at each or-

der, and a value less than 1 corresponds to an imperfect tree in

which branching is stochastic and eventually terminates. By

analyzing neurons from the NeuroMorpho.Org and Hemibrain

datasets, we found that the perfection index falls within the range

0.70–0.86 for a wide range of vertebrate and invertebrate neu-

rons and that the value of the perfection index distinguishes

different neuronal types: for example, mammalian Purkinje cells

have a perfection index of 0:86 while fly class IV da neurons have

a perfection index of 0:70. Moreover, these values are often

invariant to iterative trimming of terminal branches and ablation

of internal branches, suggesting that in these cells the branching

rulesmay persist as the neuron grows and that the subtree struc-

tures are self-similar. We found exceptions to power laws when

spines and branchlets were included in the analysis, consistent

with these terminal branches arising through growth processes

that differ from those of the backbone arbor. Thus, the sub-

tree-size distribution is a topological property that reflects the

functional morphology of dendrites and, as discussed below,

likely recapitulates the morphogenetic processes, i.e., the

ontogeny, underlying branching.
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Figure 7. Spines and branchlets lead to deviations from a power law

(A) A GFP-labeled 96-h class III dorsal neuron in the A4 segment imaged by spinning-disk confocal microscopy. It has short branchlets along its branches.

(B) The ‘‘two-phase’’ behavior of the subtree-size distribution. The red and blue regions have different slopes (represented by dashed lines).

(C) Subtree-size distributions for backbones of six different class III neurons (with terminal branches trimmed) in the A3 to A5 segments from both dorsal and

ventral sides fit a power law with exponent 1.47 (perfection index 0.74). Error bars are SDs.

(D) A pyramidal cell from layer 2/3 of mouse visual cortex segmented from the MICrONS electron microscopy dataset. It has spines along its length.

(E) Two-phase behavior of the pyramidal cell with spines is observed.

(F) The subtree-size distribution of six trimmed pyramidal cells has a power-law exponent 1.61 (perfection index 0.81). Error bars are SDs.
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To gain a theoretical understanding of the subtree-size distri-

bution and why it follows a power law, we compared the

neuronal data to the predictions of several mathematical

morphogenetic processes, including the GW process in which

tips bifurcate, the QS process,32,60 which has both tip bifurcation

(tip branching) and internal (non-tip) branching, and the optimal-

wiring BF process,13,55 which trades off total branch length

against distance to the cell body. All produce subtree-size distri-

butions that follow power laws and so are consistent with the

observed topologies. In the GW process, the power-law expo-

nent increases with the bifurcation probability, while in the QS

process, the exponent decreases with increasing internal

branching (relative to tip branching). It is likely that the higher

exponent in Purkinje cells than in class IV arises from both ef-

fects. First, at low branch orders, themeasured bifurcation prob-

ability of Purkinje cells is higher than that of class IV cells (Fig-

ure 5D vs. Figure 5A); this is expected to lead to a higher

perfection index. Second, cultured Purkinje cells make fewer in-

ternal branches than tip branches (90% of new branches occur

on terminal branches6 and only 10% on internal branches), while

class IV cells in vivo make similar numbers of terminal and non-

terminal branches7; this difference is also expected to increase

the perfection index of Purkinje cells relative to class IV cells.

These two effects are not mutually exclusive. An increase in tip

branching relative to internal branching results in higher branch-

ing probabilities at low branch orders (Figures S6D and S6E).
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Thus, it is likely that multiple developmental differences give

rise to the different topologies of class IV and Purkinje cells.

Power laws in physics are often associated with phase transi-

tions.61 A phase transition that may be pertinent to dendrite

branching is percolation: the GW process has a percolation

threshold when the bifurcation probability is 0.5. Above 0.5,

the number of branches increases, on average, at each order

and below 0.5 it decreases. Any observed finite tree must have

a measured bifurcation probability that decreases below 0.5 at

high orders. Furthermore, as we argued in the results section,

if there is a minimum branch density, space constraints cause

the GW bifurcation probability to approach 0.5. Therefore, there

are theoretical reasons why dendritic trees should have bifurca-

tion probabilities near 0.5, at least at high orders. Consistent with

this argument, measured bifurcation probabilities of both class

IV cells and Purkinje cells both have wide ranges of orders where

Py0:5. Thus, the growth of dendritic arbors is close to a perco-

lation threshold, and this may contribute to the power-law

behavior.

Time-lapse imaging of dendrites in vivo (e.g., class IV cells7) and

in vitro (e.g., Purkinje cells6) shows that morphogenesis often en-

tails iteration of growth rules that remain fairly constant over time.

Two features of the subtree-size distribution likely reflect this iter-

ative process. First, the observation that the subtree-size distribu-

tion is scale invariant (i.e., follows a power law) for many cell types

suggests the branching process is invariant/self-similar over
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development. Second, the observation that trimming and ablating

arbors preserves the power law and its exponent suggests that

later growth occurs by the same rules as earlier growth. In the

cases of class III neurons and mammalian neurons, branchlets

and spines perturb the subtree-size distribution from a power

law, consistent with an altered growth process during develop-

ment. Interestingly, in branchlets59 and spines,62 actin plays a

prominent role, while in of the dendritic shaft or ‘‘backbone,’’ mi-

crotubules are prominent structures that serve as tracks for

long-distance transport.63 Thus, branchlets and spines use

different cytoskeletal machineries compared to the backbone,

and this may disrupt the iterative growth process and perturb

the subtree-size distribution.

In summary, the subtree-size distribution provides a simple

quantitative description of the topology of neuronal morphol-

ogies. While it lacks the richness of other schemes for classifying

neuronal morphology, such as the TMD,30 the power-law expo-

nent can still distinguish different cell types and different growth

rules. The subtree-size distribution simplifies study of the struc-

ture of neurons and thus provides an important additional

constraint that must be fulfilled by other methods for generating

dendritic trees.

Limitations of the study
Despite its success in identifying a consistent signature of den-

dritic structure and evidence for distinct growth processes, our

study has several limitations. First, accurately measuring the

subtree-size function requires a large number of branches, on

the order of 100, limiting its utility to highly branched cells. For

smaller trees other measures like asymmetry32 should be used.

Second, subtree-size distributions are not generative, in the

sense that they can be used to grow arbors; indeed, different

growth processes with different bifurcation probabilities and in-

ternal-to-tip branching ratios can generate similar subtree-size

distributions. Third, asmore neurons are added to the rapidly ex-

panding morphological databases, exceptions to our findings

are likely to increase. Finally, theoretical studies are needed to

establish rigorously whether there exist conditions necessary

and sufficient for scale invariance of subtree-size distributions.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster strains
Drosophila melanogaster larvae were raised on cornmeal-agar medium with glucose and yeast (Glucose D2, Archon Scientific) at 25
�C. 96hr AEL larvae were used for all analyses. For visualization of dendritic morphologies of class III neurons (ddaF), nompC-Gal4

(Stock 36361 from Bloomington Drosophila Stock Center) was crossed with 10XUAS-mCD8GFP (32187). The fly strain ppk-cd4-

tdGFP (a gift from Han Chun (Cornell University)) was used for imaging class IV neurons.

METHOD DETAILS

Scale invariance and power laws
We say that a function, fðxÞ, is scale invariant if changing the scale or units of x leaves the shape of f unchanged (except for a

multiplicative constant). In other words, fðlxÞ = gðlÞfðxÞ (Equation 1) where the function g does not depend on x. This is sometimes

called scale-free, but we use the term scale invariance. Because fðl1l2xÞ = gðl1l2ÞfðxÞ = gðl1Þfðl2xÞ = gðl1Þgðl2ÞfðxÞ, we must
12 Cell Reports 42, 113268, November 28, 2023

mailto:joe.howard@yale.edu
https://data.mendeley.com/datasets/z97bs2c8p7/1
https://github.com/Maijia-cpu/Topology-properties-of-neurons/tree/main
https://github.com/Maijia-cpu/Topology-properties-of-neurons/tree/main
https://www.treestoolbox.org/
https://se.mathworks.com/products/matlab.html
https://imagej.net
https://www.graphpad.com/


Article
ll

OPEN ACCESS
have gðl1l2Þ = gðl1Þgðl2Þ (provided f is non-zero). By Cauchy’s multiplicative function equation, gðlÞ is of the form gðlÞ = l�a,

where a is a constant. Substituting x = 1 into Equation 1 gives fðlÞ = gðlÞfð1Þ. After substituting l = x; the required power law fol-

lows: fðxÞ = fð1ÞgðxÞ = fð1Þx�a. This function is linear when plotted on log axes because ln fðxÞ = ln fð1Þ �a ln x. The log-log slope

is �a. It is easy to show the converse is also true: a power law implies scale invariance.

Spinning disk confocal imaging
Embryos were collected for 2 h on apple juice agar plates with a dollop of yeast paste and aged at 25�C in a moist chamber. The

plates containing the first batch of embryoswere discarded as the dendrite morphology of sensory neurons is less consistent in those

animals.65 Larvae were immobilized individually on agarose pads (thickness 0.3–0.5mm) sandwiched between a slide and a cover-

slip. The imaging was done using a spinning disk microscope: the Yokogawa CSU-W1 disk (pinhole size 50 mm) built on a fully auto-

mated Nikon TI inverted microscope with perfect focus system, an sCMOS camera (Zyla 4.2 plus sCMOS), and running Nikon Ele-

ments software. Individual neuron image stacks were acquired with a 60 3 1.2 NA water immersion lens with a z step size 0.16 mm.

Data processing method
To reveal the power-law form of the density distribution it is better to plot the density histogram on logarithmic scales. However, the

right-hand end of the distribution is noisy because of sampling errors. To deal with it, we vary the width of the bins in the density his-

togram and normalize the sample counts by thewidth of the bins they fall in. That is, the number of samples (denoted by
Pn+Dn

n NðnÞ) in
a bin of widthDn should be divided byDn to get a count per interval of n (i.e., average count denoted byM). Note that we only consider

sample counts larger than 10 to reduce the statistical error. The standard deviation of the normalized count is calculated as:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn+Dn
n NðnÞ+2

q
=Dn. Then the normalized sample count becomes independent of bin width on average and we are free to vary

the bin widths as we like. Here we use logarithmic binning.44 We choose a multiplier of 2 and create bins that span the intervals

1.5 to 2.5, 2.5 to 4.5, 4.5 to 8.5 and so forth. The first point Nð1Þ, which is just the total number of leaves (or tips), is neglected in

the fitting unless themaximal tip number is less than 60 or the total number of normalized sample count is less than 5. The normalized

sample counts and the center of the bins are used to plot the results.

Reduced major axis (RMA) linear regression method
In our manuscript, the power law exponent a is obtained using reducedmajor axis (RMA) linear regression on the log-log transformed

data. RMA regression66,67 is often recommended in allometric scaling analysis when it is difficult to establish a cause-effect relation-

ship between the variables x and y. In simple linear regression, it is assumed that y depends on x with additive noise: the slope is

bxy = rxysxy=s
2
x , where rxy is the Pearson correlation coefficient, sxy is the sample cross-correlation and s2x is the sample variance

in x. The RMA slope is the geometrical mean of the two slopes obtained by simple linear regression: bxy (y the dependent variable)

and byx (x the dependent variable): bRMA = signðrxyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bxy=by;x

p
= signðrxyÞ sysx.

Perfection index calculation
A function perfection_tree is made available as part of the TREES Toolbox13 in MATLAB and Github.

Bifurcation probability measurement from experimentally reconstructed neurons
All branches of a reconstructed neuron were classified according to their branch orders d. Within each branch order, the number n of

branches that bifurcate further (generate two daughter branches) was counted. The bifurcation probability at each branch order is

defined as the ratio between n and the total numberm of branches within that branch order. To obtain enough statistics, only branch

orders with total branch number m larger than 6 were used for bifurcation probability calculation.

Methods for MICrONS dataset analysis
Spine data were recovered from an electron microscopy dataset on layer 2/3 of the mouse visual cortex generated by the MICrONS

program. 301 publicly available neuron reconstructions without spines68 were cross-referenced with�3.2 million automatically iden-

tified synapses from the same volume.69 As the synapse dataset is known to contain false-positives, synapses that would imply a

spine length of greater than 4 mm were excluded from our analysis.

Simulating trees with balancing factors
In the functional simulations, the synthetic tree is constrained by the ‘‘density profile’’ of a neuron group and by a balancing factor (bf)13

that weighs two demands: the minimization of resources and the minimization of conduction time. Higher bf values correspond to

increased importance of conduction time minimization relative to resource minimization and vice versa. The simulation was carried

out using the TREES Toolbox package in the MATLAB environment. 3000 random points were generated and synthetic trees starting

at the center point according to the balancing factor from 0 to 1 in the step of 0.1 were created for further analyses. For each balancing

factor, 100synthetic treeswerecreated.Note that thereexist only twoNðnÞ valueswhenbalancing factor is set to1.Thus, the treeperfec-

tion index for bf = 1 is not calculated in Figure 6B.
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