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Abstract 

Phylodynamic methods have lately played a key role in understanding the spread of infectious diseases. During the coronavirus disease 
(COVID-19) pandemic, large scale genomic surveillance has further increased the potential of dynamic inference from viral genomes. 
With the continual emergence of novel severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants, explicitly allow-
ing transmission rate differences between simultaneously circulating variants in phylodynamic inference is crucial. In this study, we 
present and empirically validate an extension to the BEAST2 package birth–death skyline model (BDSKY), BDSKY𝜆, which introduces 
a scaling factor for the transmission rate between independent, jointly inferred trees. In an extensive simulation study, we show that 
BDSKY𝜆 robustly infers the relative transmission rates under different epidemic scenarios. Using publicly available genome data of 
SARS-CoV-2, we apply BDSKY𝜆 to quantify the transmission advantage of the Omicron over the Delta variant in Berlin, Germany. We 
find the overall transmission rate of Omicron to be scaled by a factor of two with pronounced variation between the individual clus-
ters of each variant. These results quantify the transmission advantage of Omicron over the previously circulating Delta variant, in a 
crucial period of pre-established non-pharmaceutical interventions. By inferring variant- as well as cluster-specific transmission rate 
scaling factors, we show the differences in transmission dynamics for each variant. This highlights the importance of incorporating 
lineage-specific transmission differences in phylodynamic inference.
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Introduction
Recent epidemic outbreaks, such as those caused by HIV, 
Ebolavirus, and severe acute respiratory syndrome coronavirus 
type 2 (SARS-CoV-2), have proven the relevance of phylodynamic 
models for inferring viral transmission dynamics and predicting 
disease spread (Dennis et al. 2014; Holmes et al. 2016; Attwood 
et al. 2022). In a phylodynamic framework, properties of key 
epidemiological parameters, such as the growth rate and repro-
ductive number, can be deducted directly from phylogenies recon-
structed based on viral genomic data (Grenfell et al. 2004; Pybus 
and Rambaut 2009; Kühnert, Wu, and Drummond 2011; Attwood 
et al. 2022). Evolutionary relationships of pathogen sequences are 
commonly inferred in combination with a coalescent or birth–
death model as the underlying tree generating process. The coa-
lescent is a probabilistic model that traces the ancestry of a study 
population backwards in time while the birth–death process is a 

stochastic model that reconstructs the evolutionary process for-
ward in time. For details on the model differences see for example 
Boskova, Bonhoeffer, and Stadler 2014; Volz and Frost 2014.

To infer phylogenetic trees, the Bayesian statistical framework 
has become extensively used as it enables the incorporation of 

complex demographic models while simultaneously accounting 

for phylogenetic uncertainty. Currently, one of the most preemi-

nent software platforms to conduct Bayesian phylodynamic anal-

ysis is Bayesian Evolutionary Analysis by Sampling Trees (BEAST2), 

which employs a Markov Chain Monte Carlo (MCMC) algorithm to 

draw samples from the posterior distributions of the parameters 
under scrutiny (Bouckaert et al. 2019). Within the BEAST2 frame-

work, numerous population dynamic models have been developed 

(Pybus, Rambaut, and Harvey 2000; Drummond et al. 2005; Stadler 

et al. 2013). In the birth–death skyline model (BDSKY) (Stadler et al. 
2013), changes in population size over time are described through 
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2 Virus Evolution

birth (transmission), death (recovery), and sampling (sequencing) 
events. Through time, these events occur randomly, governed by 
their respective rate parameters: the transmission rate 𝜆, recovery 
rate 𝜇, and sampling rate 𝜓. These rates are piecewise constant, 
allowing for changes in the transmission dynamics through time.

Since its emergence in late 2019, SARS-CoV-2 has been causing 
fast-growing outbreaks globally. Over the course of the pandemic, 
different variants have shown to bear highly variable transmission 
dynamics. SARS-CoV-2 lineages that show increased transmissi-
bility, disease severity, or decreased response to interventions at 
a degree of public health significance have been designated as 
variants of concern (VOCs) by the World Health Organization. Dur-
ing the first three years of the pandemic new VOCs have emerged 
repeatedly, displacing each other. It is evident that the accumula-
tion of advantageous mutations and subsequent positive selection 
(Martin et al. 2021) has substantially impacted the properties of 
SARS-CoV-2. As a result of these genomic alterations, some strains 
became more effectively transmitted than others. One example 
for this is the Omicron variant, which was first detected in South 
Africa in November 2021 and had at the end of December 2021 vir-
tually replaced all preceding lineages in most parts of the world 
(Viana et al. 2022). The associated parent Pango lineage (Rambaut 
et al. 2020) B.1.1.529 was identified to carry more adaptive muta-
tions than any of the previous VOCs, leading to exceptionally high 
levels of transmission (Martin et al. 2022).

As in the case of SARS-CoV-2, individual lineages of a pathogen 
may demonstrate highly distinctive transmission dynamics. This 
variation needs to be accounted for when epidemiological param-
eters are reconstructed. In this paper, we introduce the BDSKYλ
model, an extension to the existing birth–death skyline model 
that allows the estimation of relative transmission rates between 
jointly inferred trees. This enables the inference of transmission 
differences between outbreak clusters relative to one baseline 
rate. Through a simulation study, we empirically validate and eval-
uate the performance of this approach. We apply the BDSKYλ
model to SARS-CoV-2 data sampled in the federal state Berlin, 
Germany, including the capital city Berlin, during December 2021 
to evaluate the local transmission difference between the Delta 
and Omicron variant. Through the estimation of variant-specific 
properties, our results quantify the substantially higher trans-
missibility of the Omicron over the Delta variant, even in the 
special case of pre-established strict non-pharmaceutical inter-
ventions (NPIs). As, however, extrinsic factors can highly influence 
the observed transmission dynamics, we explore the variability of 
these between same-variant clusters to evaluate the demographic 
impact. Despite the overall substantially higher transmissibility, 
we find pronounced variability in the cluster-specific transmission 
rates, overlapping between variants.

Methods
Birth–death skyline model with transmission rate 
ratios
The BDSKYλ model is an extension to the previously published 
birth–death skyline model and its Bayesian inference implemen-
tation in the BEAST2 package BDSKY. It describes the joint anal-
ysis of multiple trees which share a baseline transmission rate 
that is scaled individually for each tree. Assuming independence 
between trees, the full posterior is calculated using the product 
of all tree-specific phylogenetic likelihoods and tree generating 
probabilities. In the latter, the transmission rate is replaced by 
the product of the baseline transmission rate 𝜆base and its tree-
specific scaling factor r𝜆. When considering the alternative model 
formulation, in terms of epidemiological parameters, the baseline 

effective reproductive number Rbase will depend on the product 
of these two. Supplementary text S1 contains a list of definitions 
for terms used in this study, and Supplementary text S2 a more 
detailed description of the BDSKYλ model. We follow the math-
ematical notation introduced for the birth–death skyline model 
(Stadler et al. 2013). The more technical terms used throughout 
this work, we define as follows: a transmission cluster is a group 
of infected individuals from a panmictic, spatially defined pop-
ulation, with homogenous transmission dynamics starting from 
the index patient of the cluster. The transmission tree is a binary 
tree representation of a transmission process, here assumed to 
arise from a birth–death sampling process. The phylogenetic tree 
is reconstructed from viral genetic sequences. A genetic cluster 
presents a set of viral sequences that is selected based on genetic 
differences. The latter we use as an approximation of transmis-
sion clusters. The method is available on GitHub in the BEAST2 
package BDSKY. As it only introduces one additional new parame-
ter for each tree class, the run time of BDSKYλ is not substantially 
different to a BDSKY analysis.

Simulation study
To validate BDSKYλ, we simulated transmission trees under a 
birth–death-sampling model and sequence data along these trees. 
Datasets were then analysed using the BDSKYλ model in BEAST 
v.2.6.6 to confirm that parameters included in the model can be 
accurately re-estimated. Trees were simulated under 10 different 
scenarios with the MASTER package (Vaughan and Drummond 
2013). For each scenario, we simulated 100 replicates after discard-
ing epidemics that died out before the requested number of tips 
(Ntips) was reached. Sequence alignments were simulated under 
the HKY model (Hasegawa, Kishino, and Yano 1985) by assum-
ing a rate of 0.0008 substitutions/site/year (Ghafari et al. 2020) 
and a sequence length of 30,000 bp, corresponding to the genome 
size of SARS-CoV-2 (Wu et al. 2020). The simulation scenarios 
were chosen to resemble transmission dynamics characteristic 
for SARS-CoV-2, with properties extendable to many other mea-
surably evolving pathogen populations. We accounted for higher 
and lower transmission potential, decreasing transmission due to 
interventions, temporal lags in detection, differences in cluster 
sizes, and variation in the number of outbreak clusters.

For all simulation scenarios, we assumed the rate to become 
non-infectious, 𝛿 = 36.5 years−1 (Supplementary text S3). In simu-
lation scenarios 1–7, 9, and 10, transmission rates were selected 
based on previous work (Liu et al. 2020; Liu and Rocklöv 2021). 
With Rbase = 3.0, the transmission rate ratio was set to either r𝜆,low =
1.0or r𝜆,high = 1.666 (i.e. R = 3.0 and R = 5.0, respectively). In sce-
nario 7, we simulated a piecewise decline in the transmission 
rate by setting Rbase, t1 = 3.0 and Rbase, t2 = 2.3. In scenario 8, we 
assumed the same but with lower transmission, i.e. Rbase, t1 = 1.17, 
Rbase, t2 = 0.9, r𝜆,low = 1.0, and r𝜆,high = 1.6. In scenarios 9 and 10, we 
additionally assessed the model’s sensitivity for and behaviour 
with some variation within transmission rate ratio classes. Again, 
Rbase = 3.0 was assumed whereas trees representing the r𝜆,low class 
were simulated by assuming r𝜆,low = 0.8 − 1.2 and trees belonging to 
the r𝜆,high class were reconstructed by assuming r𝜆,high = 1.4 − 1.8. 
Furthermore, in scenarios 2–8, for particular transmission trees, 
the onset of the sampling process was delayed as a detection 
lag of an average 14 days has been identified (du Plessis et al. 
2021). The main differences between simulation scenarios are pre-
sented in Table 1. For details, see Supplementary text S3 and 
Supplementary Table S1. 

For the Bayesian inference, a strict molecular clock model was 
used with a fixed rate of 0.0008 substitutions/site/year. The rate to 
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Table 1. Overview of the main differences between simulation scenarios. Each simulation was run until a specific number of tips (Ntips) 
was reached.

Scenario
Transmission
parameters

Number of simulated 
transmission trees

Number of sampled 
tips Bayesian inference

1 Rbase = 3.0
r𝜆,low = 1.0
r𝜆,high = 1.666

5 Ntips = 25 or
Ntips = 250

r𝜆 and s inferred independently for 
each transmission tree

2 Rbase = 3.0
r𝜆,low = 1.0
r𝜆,high = 1.666

5 Ntips = 25 r𝜆 and s inferred independently for 
each transmission tree

3 Rbase = 3.0
r𝜆,low = 1.0
r𝜆,high = 1.666

5 Ntips = 100 r𝜆 and s inferred independently for 
each transmission tree

4 Rbase = 3.0
r𝜆,low = 1.0
r𝜆,high = 1.666

6 Ntips = 50 r𝜆 and s inferred jointly for trees with 
r𝜆,low  and jointly for trees with r𝜆,high

5 Rbase = 3.0
r𝜆,low = 1.0
r𝜆,high = 1.666

6 Ntips = 10,
Ntips = 20 or
Ntips = 50

r𝜆 and s inferred jointly for trees with 
r𝜆,low  and jointly for trees with r𝜆,high

6 Rbase = 3.0
r𝜆,low = 1.0
r𝜆,high = 1.666

36 Ntips = 2 or
Ntips = 50

r𝜆 and s inferred jointly for trees with 
r𝜆,low  and jointly for trees with r𝜆,high

7 Rbase,t1 = 3.0
Rbase,t2 = 2.3
r𝜆,low = 1.0
r𝜆,high = 1.666

6 Ntips = 50 r𝜆 and s inferred jointly for trees with 
r𝜆,low  and jointly for trees with r𝜆,high

8 Rbase,t1 = 1.17
Rbase,t2 = 0.9
r𝜆,low = 1.0
r𝜆,high = 1.6

6 Ntips = 10,
Ntips = 20 or
Ntips = 50

r𝜆 and s inferred jointly for trees with 
r𝜆,low  and jointly for trees with r𝜆,high

9 Rbase = 3.0
r𝜆,low = 0.8 − 1.2
r𝜆,high = 1.4 − 1.8

10 Ntips = 25 r𝜆 and s inferred independently for 
each transmission tree

10 Rbase = 3.0
r𝜆,low = 0.8 − 1.2
r𝜆,high = 1.4 − 1.8

10 Ntips = 25 r𝜆 and s inferred jointly for trees with 
r𝜆,low  and jointly for trees with r𝜆,high

become non-infectious was fixed to its true value (𝛿 = 36.5 years−1). 
Depending on the scenario, transmission rate ratio (r𝜆) and sam-
pling proportion (s) were either estimated independently for each 
transmission tree or jointly for trees belonging to the same tree 
class (Table 1). For all scenarios, one r𝜆 parameter was fixed to its 
true value to inform Rbase and serve as the reference for the rela-
tive transmission rate ratios. Details are given in Supplementary 
text S3 and Supplementary Table S1. The MCMC chain length was 
originally set to 3 × 107–108 steps. In scenario 1, for those simula-
tion replicates for which effective sample size (ESS) values after 
the initial analysis were below 200 but the chain was close to con-
vergence, the MCMC chain was allowed to run for additional 108

steps. For all the simulation scenarios, the following metrics were 
calculated for the inferred parameters of interest (Rbase, r𝜆, and s) 
to evaluate the model performance: median, relative error, rela-
tive bias, relative highest posterior density interval (HPDI) width, 
and the 95 per cent HPD accuracy. Replicates for which not all esti-
mated parameters yielded a minimum ESS of 200 were excluded.

SARS-CoV-2 data analysis
The BDSKYλ implementation allows us to characterize the initial 
epidemic spread of the Omicron variant compared to the Delta 
variant in Berlin. We downloaded from the Global Initiative on 
Sharing All Influenza Data (GISAID) (Elbe and Buckland-Merrett 
2017; Shu and McCauley 2017; Khare et al. 2021) on 29 January 
2022 all sequences that were complete and collected between 

30 November 2021 and 31 December 2021, excluding low cover-
age sequences (>5 per cent of ‘N’s), together with their metadata. 
This time frame starts with the collection of the first Omicron-
assigned sequence in Berlin and spans the first month of sub-
sequent spread. The initial data set comprised 1887 sequences 
in total (Supplementary Table S2), out of which we built a mul-
tiple sequence alignment (MSA) by aligning them to the refer-
ence genome MN908947.3 using the keeplength and addfragments
method in MAFFT v7.453 (Katoh and Standley 2013). To mask 
potential erratic positions in the genome that might interfere 
with phylogenetic inference, we followed recommendations in 
replacing specific genomic positions with an uninformative ‘N’ (De 
Maio et al. 2020). Grouping by the assigned Pango lineages (Ram-
baut et al. 2020) of each sequence, contained in the metadata, 
we identified genetic clusters within each group with Cluster-
Picker1.2.5 (Ragonnet-Cronin et al. 2013). In ClusterPicker, genetic 
clusters can be defined based on a maximum genetic distance 
and/or tree branching support values. As ClusterPicker requires 
as an input both MSA and phylogenetic tree, we constructed 
maximum likelihood substitution trees with IQ-Tree 2.1.3 (Minh 
et al. 2020) individually for each Pango lineage. We then applied 
ClusterPicker with an initial and main support threshold of zero 
and a genetic distance threshold of 0.041 per cent using the p-
distance for A, C, G, and T sites only. The genetic distance thresh-
old was chosen as an upper bound of expected within-lineage 
substitutions over one month (Tay et al. 2022) (see also Supple-
mentary text S4). Excluding clusters of less than four sequences, 
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Table 2. Results from simulation scenarios 1–3. For Bayesian inference, rλ,3 was fixed to its true value (rλ,3 = 1.0) for all scenarios. For 
scenario 1, out of 100 simulation replicates, 84 yielded ESS > 200 for all estimated parameters. For scenario 2, all simulation replicates 
yielded ESS > 200 for all the parameters, whereas for scenario 3 in total 96 replicates yielded ESS > 200 for all estimated parameters.

Scenario Parameter Truth Median Relative error Relative bias Relative HPD width 95% HPD accuracy

1 Rbase 3.0 3.027 0.063 0.009 0.394 96
rλ,1 1.0 1.013 0.103 0.013 0.561 98
rλ,2 1.0 1.014 0.099 0.014 0.564 96
rλ,3 1.0 1.0 (fixed) – – – –
rλ,4 1.0 1.038 0.102 0.037 0.580 96
rλ,5 1.666 1.639 0.069 −0.016 0.421 99
s1 0.01 0.010 0.079 −0.035 1.137 100
s2 0.01 0.009 0.073 −0.045 1.126 100
s3 0.01 0.010 0.076 −0.030 1.137 100
s4 0.01 0.010 0.072 −0.036 1.135 100
s5 0.001 0.001 0.552 0.404 2.764 98

2 Rbase 3.0 3.061 0.080 0.020 0.402 97
rλ,1 1.0 0.997 0.109 −0.003 0.554 95
rλ,2 1.0 1.002 0.108 0.002 0.558 96
rλ,3 1.0 1.0 (fixed) – – – –
rλ,4 1.0 0.991 0.100 −0.009 0.550 95
rλ,5 1.666 1.574 0.107 −0.055 0.506 92
s1 0.01 0.010 0.072 −0.038 1.132 100
s2 0.01 0.010 0.083 −0.015 1.147 100
s3 0.01 0.010 0.072 −0.020 1.145 100
s4 0.01 0.010 0.065 −0.010 1.153 100
s5,1 0.0 0.0 (fixed) – – – –
s5,2 0.01 0.010 0.051 −0.022 1.172 100

3 Rbase 3.0 3.013 0.039 0.004 0.208 96
rλ,1 1.0 1.006 0.054 0.006 0.294 99
rλ,2 1.0 1.001 0.053 7e-04 0.293 96
rλ,3 1.0 1.0 (fixed) – – – –
rλ,4 1.0 1.008 0.057 0.008 0.295 97
rλ,5 1.666 1.630 0.050 −0.022 0.299 98
s1 0.01 0.01 0.108 −0.027 1.012 98
s2 0.01 0.01 0.115 −0.014 1.021 100
s3 0.01 0.01 0.112 −0.014 1.019 100
s4 0.01 0.01 0.117 −0.022 1.015 100
s5,1 0.0 0.0 (fixed) – – – –
s5,2 0.01 0.01 0.099 −0.030 1.093 100

we set up a first BDSKYλ analysis using BEAST v2.6.6 with the 

remaining 1213 sequences in total. For each genetic cluster, we 
inferred a separate tree, linking the substitution model, base-

line reproductive number, and rate to become non-infectious 
between all trees while linking the transmission rate ratio as 
well as sampling proportion only for same-variant clusters. The 

substitution process was described using an HKY model with a 
fixed rate of 0.0008 substitutions/site/year. As for the simulations, 

for all clusters, the rate to become non-infectious was fixed to 
36.5 years−1 over the whole time span. The baseline reproduc-
tive number was allowed to change on 30 November 2021 and 

a Lognormal(0.0,16.0) prior distribution was used in both inter-
vals. The date was chosen as it roughly marks the implementation 
of more strict NPIs in Berlin. The transmission rate ratio was 

fixed to 1.0 for all Delta-associated clusters and estimated using a 
Lognormal(0.0,1.0) prior distribution for Omicron-associated clus-

ters. The sampling proportion was set to 0.0 before 30 November 
2021 and estimated afterwards for both Delta- and Omicron-
associated clusters with Beta(40.0,960.0) as strict prior informa-
tion. The mean value of the prior distribution was set to match 
the extrapolated expected fraction of variant-specific sequences 
in the data set from the calculated fractions of variants in variant-
specific PCR tests in Berlin (https://www.rki.de/DE/Content/InfAZ/
N/Neuartiges_Coronavirus/Situationsberichte/Wochenbericht/

Wochenberichte_Tab.html, last visited 11 July 2023). MCMC chains 
were run for 108 steps and convergence was assessed in Tracer 
v1.7.1 (Rambaut et al. 2018) by ESS values over 200 for all esti-
mated parameters. The resulting posterior distributions of trees 
were summarized into maximum clade credibility trees using 
TreeAnnotator v2.6.0. Custom R and python scripts were used to 
summarise the numerical parameter distributions and to visual-
ize the results, lineage-through-time plots were calculated using 
functions included in the ape package (Paradis and Schliep 2019). 
The second analysis presented in the main text was set up in the 
same way, except that all clusters with less than 20 sequences 
were excluded. This way, the transmission rate ratio could be 
inferred individually for each included cluster, with the ratio for 
the biggest Delta-associated cluster set to one. A range of sen-
sitivity analyses dealing with variant-specific rates to become 
non-infectious, differences in the sampling scheme and minimal 
analysed cluster size are outlined in Supplementary text S5.

Results
Simulation study
We tested BDSKYλ through a simulation study, the results of 
which are summarized in Tables 2–5 and in Supplementary 
Figures S1–S4. In scenarios 1–3 and 9, r𝜆 and s were esti-
mated individually for each transmission tree. For the rest of the 
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Table 3. Results from simulation scenarios 4–6. Transmission rate ratio and sampling proportions were jointly estimated for transmission 
trees belonging to the same tree class. For Bayesian inference, rλ,1 was fixed to its true value (rλ,1 = 1.0). For scenarios 4 and 5, all simulation 
replicates yielded ESS > 200 for all estimated parameters. For scenario 6, in total 98 replicates yielded ESS > 200 for all the parameters.

Scenario Parameter Truth Median Relative error Relative bias Relative HPD width 95% HPD accuracy

4 Rbase 3.0 2.983 0.032 −0.006 0.174 95
rλ,1 1.0 1.0 (fixed) – – – –
rλ,2 1.666 1.630 0.046 −0.022 0.246 97
s1,1 0.0 0.0 (fixed) – – – –
s1,2 0.01 0.012 0.227 0.206 1.082 99
s2,1 0.0 0.0 (fixed) – – – –
s2,2 0.01 0.010 0.122 0.005 1.080 100

5 Rbase 3.0 2.983 0.051 −0.006 0.233 95
rλ,1 1.0 1.0 (fixed) – – – –
rλ,2 1.666 1.598 0.071 −0.041 0.311 91
s1,1 0.0 0.0 (fixed) – – – –
s1,2 0.01 0.013 0.263 0.259 1.212 100
s2,1 0.0 0.0 (fixed) – – – –
s2,2 0.01 0.010 0.082 −0.019 1.120 100

6 Rbase 3.0 2.694 0.102 −0.102 0.191 44
rλ,1 1.0 1.0 (fixed) – – – –
rλ,2 1.666 1.6137 0.062 −0.031 0.297 93
s1,1 0.0 0.0 (fixed) – – – –
s1,2 0.01 0.012 0.169 0.157 1.127 100
s2,1 0.0 0.0 (fixed) – – – –
s2,2 0.01 0.009 0.129 −0.113 1.054 100

Table 4. Results from simulation scenarios 7 and 8. Transmission rate ratio and sampling proportions were jointly estimated for trans-
mission trees belonging to the same tree class. For Bayesian inference, rλ,1 was fixed to its true value (rλ,1 = 1.0). Out of 100 simulation 
replicates, for scenario 7 in total 89 replicates and for scenario 8 in total 99 replicates yielded ESS > 200 for all estimated parameters.

Scenario Parameter Truth Median Relative error Relative bias Relative HPD width 95% HPD accuracy

7 Rbase, t1 3.0 2.876 0.078 −0.041 0.415 97
Rbase, t2 2.3 2.338 0.034 0.017 0.175 98
rλ,1 1.0 1.0 (fixed) – – – –
rλ,2 1.666 1.626 0.069 −0.024 0.366 96
s1,1 0.0 0.0 (fixed) – – – –
s1,2 0.01 0.010 0.123 0.010 0.918 100
s2,1 0.0 0.0 (fixed) – – – –
s2,2 0.01 0.010 0.111 −0.017 1.067 100

8 Rbase, t1 1.17 1.260 0.094 0.077 0.343 87
Rbase, t2 0.9 1.008 0.120 0.120 0.084 0
rλ,1 1.0 1.0 (fixed) – – – –
rλ,2 1.6 1.402 0.124 −0.124 0.188 29
s1,1 0.0 0.0 (fixed) – – – –
s1,2 0.01 0.012 0.178 0.152 0.692 93
s2,1 0.0 0.0 (fixed) – – – –
s2,2 0.01 0.010 0.137 −0.01 0.907 100

scenarios, r𝜆 and s were jointly estimated for trees sharing the 

same transmission dynamics. In scenarios 4–6, we further tested 

the impact of the number of taxa on the model performance 

whereas in scenario 7 the effect of a change in the transmission 

rate was evaluated. In scenario 8, we examined how effectively 

the model recovers parameters when an epidemic can be consid-
ered declining (R < 1.0). Lastly, in scenarios 9 and 10, we explored 

the robustness of our model to estimate modest variation in the 
transmission rates of linked trees.

For scenarios 1–3, all the parameters inferred were recov-

ered reliably (Table 2). In each case, the median estimates for 
Rbase, r𝜆, and s were close to the true values and the relative 
HPDI widths were narrow, implying good accuracy and precision. 
In each case, the recovered median values for Rbase (3.01–3.06) 
were marginally higher than the true value, whereas the median

estimates for the transmission rate ratio r𝜆,high were somewhat 
lower (1.57–1.64). Nevertheless, high accuracy was achieved for 
each of the parameters under scrutiny with values ranking from 
92 to 100 per cent.

In scenario 4, transmission trees with Ntips =50 were simulated 

whereas scenario 5 in addition contained trees with 10 and 20 tips 
and scenario 6 further included two-sequence transmission trees. 
The number of tips had a notable impact: for scenarios 4 and 5, 

Rbase was estimated with high 95 per cent HPD accuracy (over 90 per 

cent for both) and median estimates were close to the true value 
(Rbase = 2.95 for both) (Table 3, Supplementary Figure S1). Con-
versely, when two-sequence trees are included, Rbase was under-
estimated, and the accuracy decreased considerably compared to 
the previous simulations (Rbase = 2.69, 95 per cent HPD accuracy of 
44 per cent) (Table 2, Supplementary Figure S1). For scenarios 4–6, 

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article/9/2/vead070/7455321 by M

ax-Planck Society user on 08 January 2024



6 Virus Evolution

Table 5. Results from simulation scenarios 9 and 10. For Bayesian inference, scenario 9, rλ,3 was fixed to its true value (rλ,3 = 1.0). Corre-
spondingly, for scenario 10 rλ,1 was fixed to its true value (rλ,1 = 1.0). For both scenarios, all simulation replicates yielded ESS > 200 for all 
estimated parameters.

Scenario Parameter Truth Median Relative error Relative bias Relative HPD width 95% HPD accuracy

9 Rbase 3.0 3.065 0.078 0.022 0.388 95
rλ,1 0.8 0.802 0.108 0.002 0.515 94
rλ,2 0.9 0.903 0.115 0.003 0.532 96
rλ,3 1.0 1.0 (fixed) – – – –
rλ,4 1.1 1.084 0.110 −0.015 0.551 91
rλ,5 1.2 1.217 0.115 0.014 0.587 96
rλ,6 1.4 1.399 0.108 −0.001 0.600 95
rλ,7 1.5 1.513 0.109 0.008 0.613 98
rλ,8 1.6 1.605 0.117 0.003 0.619 96
rλ,9 1.7 1.669 0.109 −0.018 0.613 95
rλ,10 1.8 1.785 0.126 −0.008 0.627 97
s1 0.01 0.01 0.076 −0.009 1.134 100
s2 0.01 0.01 0.074 −0.022 1.136 100
s3 0.01 0.01 0.074 −0.030 1.137 100
s4 0.01 0.01 0.067 −0.031 1.143 100
s5 0.01 0.01 0.074 −0.035 1.144 100
s6 0.01 0.01 0.058 −0.024 1.160 100
s7 0.01 0.01 0.067 −0.019 1.166 100
s8 0.01 0.01 0.053 −0.025 1.165 100
s9 0.01 0.01 0.056 −0.026 1.165 100
s10 0.01 0.01 0.053 −0.027 1.166 100

10 Rbase 3.0 2.924 0.038 −0.025 0.184 94
rλ,1 1.0 1.0 (fixed) – – – –
rλ,2 1.6 1.636 0.055 0.022 0.302 96
s1 0.01 0.010 0.131 0.019 1.010 100
s2 0.01 0.010 0.107 −0.003 1.073 100

the transmission rate ratio parameter r𝜆,2 was inferred with rela-
tively high accuracy (95 per cent HPD accuracy of 91–97 per cent), 
even though median values were slightly underestimated.

In scenario 7, a decline in Rbase was recovered with high con-
fidence in both time intervals as the mean estimates were close 
to the truth and the 95 per cent HPD accuracy between 97 per 
cent and 98 per cent (Table 4, Supplementary Figure S2). More-
over, r𝜆,2 was recovered well. Contrarily, in scenario 8, Rbase was 
overestimated, yielding median values of Rbase,t1 = 1.26 and Rbase,t2 =
1.0 (Table 4). Whereas for the majority of simulation replicates, 
the posterior distributions of Rbase,t1 included the true value, for 
Rbase,t2 relative HDPIs were remarkably narrow (width of 0.083). As 
a result, the posterior distributions were constantly above the true 
value (Supplementary Figure S3). Consequently, estimates for r𝜆,2

were notably lower than the true value with a median of r𝜆,2 = 1.40 
and relative bias of −0.12. Due to the overestimation and narrow 
relative HPDI width, the accuracy for Rbase,t2 is zero, whereas for 
r𝜆,2 an accuracy of 29 per cent is achieved.

In scenarios 9 and 10, we assessed the sensitivity of the 
model towards variation in transmission rates within a tree 
class: trees representing the r𝜆,low class were simulated by set-
ting r𝜆,low = 0.8–1.2 and trees belonging to the r𝜆,high by set-
ting r𝜆,high = 1.4–1.8. Transmission rates were inferred indepen-
dently (scenario 9) or jointly for trees belonging to the same 
tree class (scenario 10). For both scenarios, Rbase and the asso-
ciated scaling factors were inferred with high accuracy (95 per 
cent HPD accuracy of 91–98 per cent) (Table 5 and Supplementary 
Figure S4). Scenario 10 shows that in the joint analysis the inferred 
value corresponds to the mean of the combined trees, with
narrow HPDIs.

SARS-CoV-2 data analysis
We applied the presented method to publicly available SARS-CoV-
2 genomes from the federal state of Berlin, Germany, sampled 
during December 2021, with the aim of describing the local trans-
mission advantage of the Omicron over the Delta variant. For this, 
we first inferred one transmission rate ratio for all Omicron- rel-
ative to all Delta-associated clusters and second individual ratios 
for all clusters. The main results are illustrated in Figs 1 and 2. The 
Delta-associated clusters reach further back in time than those 
comprising Omicron sequences. This is in line with the much 
more recent emergence of the Omicron variant and the long cir-
culation of Delta previously in the area. It is also striking that 
most Delta clusters start to decline before the sampled period, 
i.e. most branching events in the tree are reconstructed to have 
happened before December. In contrast, the Omicron-associated 
clusters show decreasing LTT plots only close to the end of the 
sampled period. As the reproductive number is informed by the 
timing of the branching events in the trees, we see this trend 
reflected therein. The inferred Delta-associated baseline repro-
ductive number changes from above one (median 1.28, 95 per 
cent HPDI [1.21,1.35]) in the first interval, to a median estimate 
of 1.05 (95 per cent HPDI [0.94,1.15]) in the second interval. This 
indicates a growing epidemic in the first and a declining one in 
the second interval. We thus reconstruct an impactful change 
in the transmission dynamics of Delta around the start of the 
sampling period, namely the stop of an increase in infections. 
The relative difference of the reproductive number of Omicron-
associated clusters is given by the inferred transmission rate ratio. 
As illustrated in Fig. 1, this lifts the reproductive number of Omi-
cron in our sample to values above one in both intervals. Other 
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Figure 1. Lineage-through-time plot (LTT, left Y-axis) of inferred summary trees and effective reproductive number (Re, right Y-axis) through time. Each 
line represents a Delta-associated (green) or Omicron-associated (blue) cluster. The vertical dotted line shows the time point at which the sampling 
proportion and baseline reproductive number were allowed to change. Bold Re lines correspond to the median estimate, the shaded area to the 95 per 
cent HPDIs. The lines for the Omicron Re estimate are calculated by multiplying the transmission rate ratio with Rbase, as the variants share the same 
rate to become non-infectious.

than Delta, Omicron cases thus do not stagnate at the begin-
ning of December, but still increase. With a median transmission 
rate ratio of 1.93 (95 per cent HPDI [1.72,2.17]), the transmission 
advantage of Omicron over Delta in Berlin in December 2021 is
almost two-fold.

To evaluate the variation in the transmission rate between 
clusters of the same variant, we conducted a second analysis in 
which we inferred individual transmission rate ratios for all clus-
ters with at least 20 sequences. The posterior densities for the 
transmission rate ratios are shown in Fig. 2. We reconstruct a 
clear trend from Delta to Omicron in the median estimates of 
the transmission rate ratios, however, with overlapping HPDIs 
for all clusters. For Omicron-associated clusters, we see a pro-
nounced heterogeneity in the cluster-specific transmission rate 
ratio relative to Delta, as median estimates reach from 1.18 up 
to 1.69 (95 per cent HPDIs [0.85,1.54] and [1.22,2.18]). For Delta, 
less heterogeneity is observed, likely due to the small number of 
clusters.

In Supplementary text S5, we discuss multiple analyses test-
ing the sensitivity of our results to changes in the data and model 
setup. These analyses support the overall robustness of our results 

(Supplementary Tables S3 and S4, as well as Supplementary 
Figure S5).

Discussion
In this paper, we introduce and test BDSKYλ, an extension to 
the Bayesian birth–death skyline model that allows the inference 
of relative transmission rates from a set of trees. By allowing 
variation in the transmissibility, we are able to distinguish a poten-
tial transmission advantage of one or multiple cluster(s) over the 
other(s). This property is of interest, for instance, when consider-
ing the COVID-19 pandemic which has so far been characterized 
through the continuous displacement of the dominantly circu-
lating variant by another due to e.g. higher transmissibility or 
immune evasion (Martin et al. 2022). For SARS-CoV-2, modelling 
a scaling factor for the transmission rate, also better resembles 
the biological transmission mechanism, which is, in principle, 
unchanged between variants. Instead, few genetic differences 
lead to an enhancement of the transmission process through, 
for example, increased ACE2 receptor binding affinity of N501Y 
lineages (Martin et al. 2021).
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Figure 2. Sampled posterior distributions for cluster-specific transmission rate ratios for Delta- (green) and Omicron-associated clusters (blue). The 
vertical line belongs to the Delta cluster for which the transmission rate ratio was fixed to one.

We evaluated the validity of the BDSKYλ approach with sim-
ulation studies under several scenarios. We particularly tested 
the model performance under different transmission rates, sam-
pling proportions, and sample sizes as well as regarding the joint 
analysis of multiple trees with linked epidemiological param-
eters. Such joint inference has previously been used for the 

analysis of different genomic datasets within the BDSKY frame-
work (Müller et al. 2020; Nadeau et al. 2023) (Müller et al. 
2020; Nadeau et al. 2023), but so far lacks a published valid-

ity study. We showed that for the majority of cases the model 
recovered reliably both epidemiological parameters investigated. 

Assuming a fixed rate to become non-infectious, high accuracy 

was obtained consistently and transmission rates are estimated 

with good precision, in most instances. Moreover, our simulation 
results demonstrated that the model can precisely infer shared 
epidemiological parameters for transmission trees with similar 
transmission properties. It also highlights how linking the trans-
mission rate ratios between clusters can increase the statistical 
power by narrowing the HPDIs for the estimated transmission
advantage.

Although BDSKYλ re-estimates epidemiological parameters 
reliably for most scenarios, the model tends to struggle in two 
cases: (i) when individual transmission trees contain only few 
samples and (ii) when the true reproductive number is below one. 
For simulated transmission trees with at least 10 samples, trans-
mission rates are inferred with high precision. The performance 
of the model decreases drastically when two-sequence transmis-
sion trees are included. We hypothesize that sensitivity to small 
transmission trees is a more general complication for birth–death 
models; as for the small clusters, the impact of the stochasticity 
of the process increases. We therefore opted to exclude clusters 
of less than four sequences from analyses with empirical data. 

Furthermore, when applying BDSKYλ to simulation scenarios with 
Re values below one (scenario 8), the model heavily overestimates 
the reproductive number, yielding exclusively posterior estimates 
above 1.0. By introducing low transmission rates, one tends to 
select a biased set of simulated transmission trees as we exclude 
phylogenies that die out before the requested number of tips have 
been sampled, as described previously (Boskova, Bonhoeffer, and 
Stadler 2014).

With the analysis of SARS-CoV-2 genomes sampled in Berlin 
in December 2021, we present a quantification of the transmis-
sion advantage of Omicron over Delta in Germany purely based 
on molecular surveillance data. These results broaden the under-
standing of the transmission dynamics of SARS-CoV-2 in a crucial 
period in Germany characterized by evolutionary changes in viral 
transmissibility and public intervention measures of pharmaceu-
tical and non-pharmaceutical nature. With an overall transmis-
sion rate ratio of around two, the inferred transmission advantage 
of Omicron is smaller than previously determined from genomic 
data in other regions (Maier et al. 2023), e.g. early after its 
emergence in South Africa or in Denmark (Ito, Piantham, and 
Nishiura 2022; Viana et al. 2022), but in line with estimates from 
variant screening tests in France (Sofonea et al. 2022). Varia-
tions between areas are likely caused by demographic differences 
between the population in which the disease spread, similar to 
the observed variation between clusters. In Berlin and in Ger-
many, COVID-19 case counts increased drastically in autumn 
2021 in a wave of new Delta infections, which lead to the rein-
troduction of multiple non-pharmaceutical interventions during 
November 2021. These NPIs stopped the increase of Delta infec-
tions in the area (https://www.rki.de/DE/Content/InfAZ/N/Neuart
iges_Coronavirus/Situationsberichte/Wochenbericht/Wochenbe
richte_Tab.html, last visited 11 July 2023), which is reflected in 
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our estimates of the baseline reproductive number of around one 
in the sampled interval (see Fig. 1). They were, however, not suc-
cessful in halting the fast spread of the Omicron variant, as the 
rise of case numbers starting mid-December 2021 shows. Through 
our estimates of the baseline reproductive number in the sec-
ond interval and transmission rate ratio for Omicron we quantify 
this effect. As we only infer one scaling factor for the baseline 
transmission rate, we do not quantify if the transmission advan-
tage is caused through intrinsic or extrinsic changes of the viral 
transmissibility. However, through the inference of cluster-specific 
transmission rate ratios, we point out how variable this advan-
tage is between clusters. Similar observations have been made 
for SARS-CoV-2, for example for several VOCs in the UK (Volz 
2023). This highlights the impact of demographic factors on the 
population-level transmissibility and the need to combine mul-
tiple clusters, representative of the whole population, for the 
estimation of overall transmission differences.

We would, however, like to highlight some limiting factors of 
our analyses: First, we used purely genetic distance to approx-
imate transmission chains within the considered area. Counts 
of genetic differences, acquired over a short period of time, do 
not necessarily hold all the information required to distinguish 
a common local transmission history. Second, like all general 
birth–death-sampling models, we assumed an infinite susceptible 
population and therefore did not account for potential differences 
in the susceptible population size between variants or partial 
depletion of the pool of susceptible. In Berlin in December 2021, 
the background immunity against Delta was already relatively 
high (COVID-19-Impfungen in Deutschland, https://zenodo.org/
records/6942355, last visited 21 October 2023), while the Omicron 
variant has been shown to have strong invasive properties from 
immunity against previous SARS-CoV-2 variants (Markov et al. 
2023). This difference in the size of the susceptible population 
could potentially impact our results. We, third, inferred a relatively 
high sampling proportion of Delta sequences in the considered 
time period and area. This could be due to the genetic sample 
not being fully representative of the entire viral diversity circu-
lating at the time in the area, for example due to the sequence 
data set focusing more on the city Berlin than the state. Alter-
natively, it could reflect a higher frequency of non-VOC lineages 
than identified by variant-specific PCR tests. Another explana-
tion could be a drastically changing sampling rate throughout the 
month (Volz and Frost 2014). Lastly, due to convergence issues 
we opted to exclude data, namely sequences that were assigned 
to clusters with less than four sequences. As trees of only very 
few sequences can, in general, be statistically problematic due to 
their small sample size, we recommend being careful when jointly 
analysing many trees like this. In particular, exclusion thresholds 
and their impact on the inferred transmission dynamics should 
be evaluated independently for each dataset, since the informa-
tion content carried by small clusters will, among other things, 
depend on the genetic diversity in the data and the setup of the 
analysis. To address these limitations, we provide several sensi-
tivity analyses, demonstrating the robustness of our transmission 
rate ratio estimates. These also show a pronounced decrease in the 
estimated sampling proportion for different cluster size exclusion 
thresholds, supporting the robust parameter estimation.

As the original birth–death skyline model has been an advan-
tageous tool when describing past changes in a pathogen popula-
tion, the BDSKYλ model, presented here, introduces further flexi-
bility for studying epidemiological dynamics. The model provides 
a framework to infer a baseline reproductive number and scal-
ing factors informed by multiple transmission trees at once. This 

allows the joint analysis of multiple independent clusters with-
out running a computationally more complex multi-type birth–
death model. Since the method scales comparably to independent 
BDSKY analyses on the considered data, it can still be well applied 
to datasets of few thousand sequences in total. It thus facili-
tates the analysis of a viral population encompassing multiple 
transmission clusters with heterogeneous transmission patterns, 
which is not only relevant for SARS-CoV-2 but also for several 
other measurably evolving pathogens such as HIV and influenza. 
Extensions that allow relative differences in other model param-
eters, i.e. the death or sampling rate, would be straightforward to 
implement.
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BDSKYlambda_manuscript.

Supplementary data
Supplementary data is available at Virus Evolution online.

Acknowledgements
We gratefully acknowledge all data contributors, i.e. the authors 
and their originating laboratories responsible for obtaining the 
specimens, and their submitting laboratories for generating the 
genetic sequence and metadata and sharing via the GISAID Ini-
tiative, on which this research is based. We also thank two 
anonymous reviewers for their comments and suggestions, which 
helped us to improve the manuscript.

Funding
Funding for this work was obtained from the Max-Planck Soci-
ety (A.W., S.Ö., D.K.) and through a Landesgraduiertenstipendium 
from Friedrich Schiller University Jena and the State of Thuringia 
(A.W.).

Conflict of interest:  All authors declare that no conflicts of interest 
exist.

Author’s contributions
Conceptualization: A.W., S.Ö., D.K.
Data curation: A.W., S.Ö.
Formal analysis: A.W., S.Ö.
Funding acquisition: A.W., D.K.
Software: A.W., S.Ö., D.K.
Validation: A.W., S.Ö.
Supervision: D.K.
Visualization: A.W., S.Ö.
Writing – original draft: A.W., S.Ö.
Writing – review and editing: A.W., S.Ö., D.K.

References
Attwood, S. W. et al. (2022) ‘Phylogenetic and Phylodynamic 

Approaches to Understanding and Combating the Early SARS-
CoV-2 Pandemic’, Nature Reviews Genetics, 23: 547–62.

Boskova, V., Bonhoeffer, S., and Stadler, T. (2014) ‘Inference of Epi-
demiological Dynamics Based on Simulated Phylogenies Using 

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article/9/2/vead070/7455321 by M

ax-Planck Society user on 08 January 2024

https://zenodo.org/records/6942355
https://zenodo.org/records/6942355
https://github.com/tidelab/BDSKYlambda_manuscript
https://github.com/tidelab/BDSKYlambda_manuscript
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vead070#supplementary-data


10 Virus Evolution

Birth-Death and Coalescent Models’, PLOS Computational Biology, 
10: e1003913.

Bouckaert, R. et al. (2019) ‘BEAST 2.5: An Advanced Software Platform 
for Bayesian Evolutionary Analysis’, PLoS Computational Biology, 15: 
e1006650.

De Maio, N. et al. (2020) Masking Strategies for SARS-CoV-2 
Alignments - SARS-CoV-2 coronavirus/Software and Tools. Viro-
logical <https://virological.org/t/masking-strategies-for-sars-cov-
2-alignments/480> accessed 14 Feb 2022.

Dennis, A. M. et al. (2014) ‘Phylogenetic Studies of Transmission 
Dynamics in Generalized HIV Epidemics: An Essential Tool Where 
the Burden Is Greatest?’ Journal of Acquired Immune Deficiency 
Syndromes, 67: 181–95.

Drummond, A. J. et al. (2005) ‘Bayesian Coalescent Inference of past 
Population Dynamics from Molecular Sequences’, Molecular Biol-
ogy and Evolution, 22: 1185–92.

du Plessis, L. et al. (2021) ‘Establishment and Lineage Dynamics of the 
SARS-CoV-2 Epidemic in the UK’, Science, 371: 708–12.

Elbe, S., and Buckland-Merrett, G. (2017) ‘Data, Disease and Diplo-
macy: GISAID’s Innovative Contribution to Global Health’, Global 
Challenges, 1: 33–46.

Ghafari, M. et al. (2020) Time Dependence of SARS-CoV-2 Substitu-
tion Rates. Virological <https://virological.org/t/time-dependence-
of-sars-cov-2-substitution-rates/542> accessed 30 Jan 2022.

Grenfell, B. T. et al. (2004) ‘Unifying the Epidemiological and Evolu-
tionary Dynamics of Pathogens’, Science, 303: 327–32.

Hasegawa, M., Kishino, H., and Yano, T. A. (1985) ‘Dating of the 
Human-ape Splitting by a Molecular Clock of Mitochondrial DNA’, 
Journal of Molecular Evolution, 22: 160–74.

Holmes, E. C. et al. (2016) ‘The Evolution of Ebola Virus: Insights from 
the 2013–2016 Epidemic’, Nature, 538: 193–200.

Ito, K., Piantham, C., and Nishiura, H. (2022) ‘Relative Instanta-
neous Reproduction Number of Omicron SARS-CoV-2 Variant 
with respect to the Delta Variant in Denmark’, Journal of Medical 
Virology, 94: 2265–8.

Katoh, K., and Standley, D. M. (2013) ‘MAFFT Multiple Sequence 
Alignment Software Version 7: Improvements in Performance 
and Usability’, Molecular Biology and Evolution, 30: 772–80.

Khare, S. et al. (2021) ‘GISAID’s Role in Pandemic Response’, China 
CDC Wkly, 3: 1049–51.

Kühnert, D., Wu, C.-H., and Drummond, A. J. (2011) ‘Phylogenetic 
and Epidemic Modeling of Rapidly Evolving Infectious Diseases’, 
Infection Genetics & Evolution, 11: 1825–41.

Liu, Y. et al. (2020) ‘The Reproductive Number of COVID-19 Is Higher 
Compared to SARS Coronavirus’, Journal of Travel Medicine, 27: 1–4.

Liu, Y., and Rocklöv, J. (2021) ‘The Reproductive Number of the Delta 
Variant of SARS-CoV-2 Is Far Higher Compared to the Ancestral 
SARS-CoV-2 Virus’, Journal of Travel Medicine 28: 1–3.

Maier, B. F. et al. (2023) ‘Modeling the Impact of the Omicron Infection 
Wave in Germany’, Biology Methods & Protocols, 8: bpad005.

Markov, P. V. et al. (2023) ‘The Evolution of SARS-CoV-2’, Nature 
Reviews, Microbiology, 21: 361–79.

Martin, D. P. et al. (2022) ‘Selection Analysis Identifies Clusters 
of Unusual Mutational Changes in Omicron Lineage BA.1 That 

Likely Impact Spike Function’, Molecular Biology and Evolution, 39: 
msac061.

——— et al. (2021) ‘The Emergence and Ongoing Convergent Evolu-
tion of the SARS-CoV-2 N501Y Lineages’, Cell, 184: 5189–5200.e7.

Minh, B. Q. et al. (2020) ‘IQ-TREE 2: New Models and Efficient Methods 
for Phylogenetic Inference in the Genomic Era’, Molecular Biology 
and Evolution, 37: 1530–4.

Müller, N. F. et al. (2020) ‘Characterising the Epidemic Spread 
of Influenza A/H3N2 within a City through Phylogenetics’, PLOS 
Pathogens, 16: e1008984.

Nadeau, S. A. et al. (2023) ‘Swiss Public Health Measures Associated 
with Reduced SARS-CoV-2 Transmission Using Genome Data’, 
Science Translational Medicine, 15: eabn7979.

Paradis, E., Schliep, K. (2019) ‘Ape 5.0: An Environment for Modern 
Phylogenetics and Evolutionary Analyses in R’, Bioinformatics, 35: 
526–8.

Pybus, O. G., and Rambaut, A. (2009) ‘Evolutionary Analysis of the 
Dynamics of Viral Infectious Disease’, Nature Reviews Genetics, 10: 
540–50.

Pybus, O. G., Rambaut, A., and Harvey, P. H. (2000) ‘An Integrated 
Framework for the Inference of Viral Population History from 
Reconstructed Genealogies’, Genetics, 155: 1429–37.

Ragonnet-Cronin, M. et al. (2013) ‘Automated Analysis of Phylogenetic 
Clusters’, BMC Bioinformatics, 14: 1–10.

Rambaut, A. et al. (2018) ‘Posterior Summarization in Bayesian Phy-
logenetics Using Tracer 1.7’, Systematic Biology, 67: 901–4.

——— et al. (2020) ‘A Dynamic Nomenclature Proposal for SARS-CoV-
2 Lineages to Assist Genomic Epidemiology’, Nature Microbiology, 
5: 1403–7.

Shu, Y., and McCauley, J. (2017) ‘GISAID: Global Initiative on Sharing 
All Influenza Data – from Vision to Reality’, Eurosurveillance, 22: 
30494.

Sofonea, M. T. et al. (2022) ‘Analyzing and Modeling the Spread 
of SARS-CoV-2 Omicron Lineages BA.1 And BA.2, France, Septem-
ber 2021–February 2022’, Emerging Infectious Diseases, 28: 1355.

Stadler, T. et al. (2013) ‘Birth-death Skyline Plot Reveals Temporal 
Changes of Epidemic Spread in HIV and Hepatitis C Virus (HCV)’, 
Proceedings of the National Academy of Sciences of the United States of 
America, 110: 228–33.

Tay, J. H. et al. (2022) ‘The Emergence of SARS-CoV-2 Variants of Con-
cern Is Driven by Acceleration of the Substitution Rate’, Molecular 
Biology and Evolution, 39: 1–9.

Vaughan, T. G., and Drummond, A. J. (2013) ‘A Stochastic Simulator 
of Birth-death Master Equations with Application to Phylodynam-
ics’, Molecular Biology and Evolution, 30: 1480–93.

Viana, R. et al. (2022) ‘Rapid Epidemic Expansion of the SARS-CoV-2 
Omicron Variant in Southern Africa’, Nature, 603: 679–86.

Volz, E. (2023) ‘Fitness, Growth and Transmissibility of SARS-CoV-2 
Genetic Variants’, Nature Reviews Genetics, 24: 724–34.

Volz, E. M., and Frost, S. D. W. (2014) ‘Sampling through Time and Phy-
lodynamic Inference with Coalescent and Birth-death Models’, 
Journal of the Royal Society Interface, 11: 20140945.

Wu, F. et al. (2020) ‘A New Coronavirus Associated with Human 
Respiratory Disease in China’, Nature, 579: 265–9.

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article/9/2/vead070/7455321 by M

ax-Planck Society user on 08 January 2024

https://virological.org/t/masking-strategies-for-sars-cov-2-alignments/480
https://virological.org/t/masking-strategies-for-sars-cov-2-alignments/480
https://virological.org/t/time-dependence-of-sars-cov-2-substitution-rates/542
https://virological.org/t/time-dependence-of-sars-cov-2-substitution-rates/542

	Reconstructing relative transmission rates in Bayesian phylodynamics: Two-fold transmission advantage of Omicron in Berlin, Germany during December 2021
	 Introduction
	 Methods
	 Birth–death skyline model with transmission rate ratios
	 Simulation study
	 SARS-CoV-2 data analysis

	 Results
	 Simulation study
	 SARS-CoV-2 data analysis

	 Discussion
	 Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest:
	 Author's contributions
	References


