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1 Abstract

The field of short time spectroscopy is becoming increasingly relevant as the researched physical phenom-
ena take place on smaller and smaller timescales.
This work deals with the generation of ultrashort laser pulses and their propagation through hollowcore
fibers filled with noble gases, as well as related short-lived phenomena. First, I will introduce various
concepts of optics such as dispersion, nonlinear medium response and some related nonlinear effects, for
instance self-phase modulation or self-steepening.
Using hollowcore fibers is one of the most common approaches these days to compress short pulses. I
will discuss the hollowcore fiber’s pulse broadening and compression effect, and how they allow for the
shortening of pulses from tens of femtoseconds to just a few femtoseconds. Then, I will introduce a
numerical approach, the Split-Step Fourier method, to model and simulate the characteristics of such
pulses. The simulation of the pulse’s propagation will allow for a better visualization of the correlation
of the pulse’s and fiber’s parameters. This includes for instance the pulse duration, spectral width, fiber
pressure or which gas the fiber is filled with. The simulation will also allow me to present the influence
of the previously mentioned nonlinear effects.
Finally, I will compare my numerically simulated data to experimental data measured at the MPIK and
discuss the accuracy of the results.

2 Zusammenfassung

Kurzzeit Spektroskopie ist ein immer wichtiger werdendes Gebiet der Physik, da die erforschbaren
Phänomene auf immer kleineren Zeitskalen stattfinden.
In dieser Arbeit sollen die Generierung und Ausbreitung von ultrakurzen Laserpulsen durch edelgasge-
füllte Hohlfasern sowie damit zusammenhängende kurzlebige Phänomene diskutiert werden. Zuerst werde
ich verschieden Begriffe der Optik, wie zum Beispiel Dispersion, nichtlineare Wechselwirkung mit Ma-
terie und damit verbundene nichtlineare Effekte, wie die Selbstphasenmodulation oder Selbstaufsteilung,
einführen.
Hohlfasern sind eines der gängigsten Mittel um kurze Pulse zu komprimieren. Ich werde in dieser Arbeit
auf ihren Verbreiterungs und Komprimiereffekt eingehen. Diese Effekte ermöglichen es, Pulse mit Dauern
im Bereich von mehreren zehnen von Femtosekunden auf nur wenigen Femtosekunden zu verkürzen. Als
nächstes werde ich die Split-Step Fourier Methode einführen, die es ermöglicht die Charakteristiken der
Laserpulse in Hohlfasern numerisch zu approximieren. Die Simulation der Pulspropagation ist hilfreich,
um die Korrelationen der Parameter des Pulses und der Faser besser zu verstehen. Unter diesen entschei-
denden Parameter befinden sich zum Beispiel Pulsdauer, spektrale Breite, Faserdruck oder welches Füll-
gas benutzt wird. Durch die Simulation lässt sich unter Anderem auch der Einfluss der zuvor genannten
nichtlinearen Effekte gut visualisieren.
Zum Schluss werde ich die numerischen Daten mit den in dem MPIK experimentell gemessenen Daten
vergleichen und die Zuverlässigkeit der Ergebnisse bewerten.
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3 Introduction

Short time spectroscopy encompasses the investigation of dynamic processes in matter using spectroscopic
means, for example light or more specifically, pulsed lasers. Currently, pulse durations of the magnitude
of up to femto- or even attoseconds can be reached , allowing for the observation of processes in this
time scale. In my thesis, I will discuss the workings of short pulse lasers and their propagation through
hollowcore fibers. They grant the possibility to shorten laser pulses to up to a few or even single cycle
regime.
The field of ultrafast optics was first pioneered in mode locking studies with solid-state and organic dye
lasers as soon as the 1960s and early 1970s. [22] Lasers, which are characterized by their high coherence,
monochromaticity and intensity, have been developed very far in their various applications ever since
their development in the 60s. The generation of ultrashort laser pulses is a major field of research with
a diversity of applications.
Since the invention of the pulsed laser, physicists have been trying to reduce the pulse duration further
and further for two main reasons. Many fundamental processes in nature occur on very short time scales
(pico- or femtosecond range). Performing time-resolved measurements of these processes requires ultra-
short pulses. Furthermore, the peak power of the pulses increases with shorter pulse durations assuming
constant energy.
This shortened pulse duration allows the investigation of the nonlinear interaction of high-intensity laser
pulses within a medium. At present short intense lasers pulses are not only being used to study the fun-
damental physical interaction with matter, but are also already being applied for studying larger systems
relevant in chemistry or biology. As many wide fields ermerged from their invention, Gérard Mourou
and Donna Strickland received the Nobel Prize in physics "for their method of generating high-intensity,
ultrashort optical pulses" [5] in 2018.
The method of chirped pulse amplification presently enables pulses that have a duration in the order
of 101 fs and an intensity in the order of 101 mJ [22]. The pulse duration is typically limited by the
broadness of the spectrum, which is itself restricted by the gain medium used in the specific laser.
In 1996, Nisoli et al [15] took advantage of the nonlinear interactions of pulses inside a gas-filled hollow
fiber, which resulted in the pulses’ spectral broadening. Henceforward the analysis of these nonlinear
effects has continued advancing and producing wider spectral bandwidths. By compressing these high-
energy laser pulses, it is now possible to achieve pulse durations of few femtoseconds. In this thesis, the
linear and nonlinear behavior of short pulses inside of a hollowcore fiber filled with multiple noble gases
will be examined.
Chapter 4 serves as an introduction to the subject matter of ultrashort laser pulses. First, the mathe-
matical description of short pulses and their propagation in a hollowcore fiber is discussed. In the course
of the section, the key terms which are necessary for the understanding of the work will be clarified.
These include chromatic dispersion as well as nonlinear effects, most importantly self-phase modulation
and self-steepening.
In chapter 5 the experimental setup is introduced, including a Ti:Sa laser which generates short intense
laser pulses with a central wavelength at around 800 nm. The pulses are used to seed an optic parametric
amplifier, enabling the generation of short pulses at variable wavelength ranges (1.1−2.4 µm). The latter
are then focused into the hollowcore fiber for spectral broadening.
In chapter 6 the theoretical model used to describe the propagation of short intense pulses in a medium
is introduced. The temporal and spectral evolution of short pulses is approximated by solving the gen-
eralized nonlinear Schrödinger equation, a computational task well known in quantum mechanics. As
several efficient codes for numerical implementation freely shared as open source code were available, one
task was to find the best working solution in order to compare the theory to the experiment or even to
predict experimental results. Therefore the program Luna, written in the programming language Julia,
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was chosen to process the main task of describing pulse propagation. Very high performances can be
achieved with Julia. This is partially due to the option of using functions in Julia that are native to C.
Julia’s performance is also improved as it is a compiled language, meaning the code is translated into
machine code, which is then directly executed.
The results from Luna can be saved and later compared using other simpler programming languages like
Python or Matlab.
In chapter 7 I will show my results using Luna, demonstrating that all the important physical effects
describing pulse propagation inside a hollowcore fiber can be implemented. Additionally, experimental
data for pulse broadening in an argon and neon filled hollowcore fiber are presented and compared to
simulations of similar input pulse parameters.
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4 Physical basics

The following chapter introduces the fundamentals of physics which are relevant to later chapters, by first
giving some basic relations of importance followed by the description of coherent short pulses in the time
and frequency domain. Furthermore, the Gaussian beam is introduced as a possible spatial component of
a focused light beam. Then, I will introduce the coupling and propagation properties of a hollowcore fiber,
which are used to broaden the laser pulses in this work. Moreover, I will explain chromatic dispersion
and multiple nonlinear effects applicable in order to modulate the spectral and temporal profile of short
pulses.

4.1 Some light fundamentals

To understand the behavior of electromagnetic waves, the first fundamental relation one should take note
of is:

Eγ = h · f =
h · c
λ

(1)

with Eγ being the energy of a photon, h = 6.62607015 ·10−34 m2·kg
s the Planck constant, f its frequency,

c the speed of light (= 299792458 m
s in vacuum) and λ its wavelength. Eγ can be also written as follows,

with ω being the angular frequency of the photon and ℏ being equivalent to h
2π :

ω = 2 · π · f −→ Eγ = ℏ · ω (2)

When describing light, it is possible to do so using the wavelength or the frequency spectrum. Spectrum
and spectral phase vary depending on whether they are shown in dependency of frequency or of wave-
length. Thus it is important to know how the transformation between these two domains functions. The
spectral phase ϕ can be transferred between wavelength and frequency spectrum as follows:

ϕλ(λ) = ϕω(2πc
1

λ
) (3)

This relation can be derived from the definition of ω in equation 2 and the relation between f and λ from
equation 1.
In order to transform the spectrum S, we must integrate it as follows:∫ −∞

∞
Sω(2πc

1

λ
)dω (4)

=

∫ ∞

−∞
−Sω(2πc

1

λ
)
dω

dλ
dλ

=

∫ ∞

−∞
Sω(2πc

1

λ
)
2πc

λ2
dλ

Note that the energy doesn’t change when integrating the spectrum over frequency as opposed to wave-
length, as it is still the same spectrum.
This leads us to the conclusion:

Sλ(λ) = Sω(2πc
1

λ
)
2πc

λ2
(5)

2πc
λ2 is the Jacobi factor and is added due to the substitution in the integration. For now, I will mainly
work with the frequency spectrum. However, using the wavelength spectrum will come in handy when
comparing experimental results.
In order to conduct experiments with laser beams, it is essential to understand how to control their prop-
agation through media. For instance, photons with different wavelengths propagate at different speeds,
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which vary depending on the medium. One must also keep in mind that the spatial focusing can easily
be compromised by any manipulation of the beam.

As light can be described as a wave, the Heisenberg uncertainty principle also applies to light beams.

∆E∆t ≥ ℏ
2

(6)

∆p⃗∆x⃗ ≥ ℏ
2

(7)

E = ℏω −→ ∆ω∆t ≥ 1

2
(8)

∆ referring to the uncertainty of the subsequent variable, p⃗ being the momentum, x⃗ the location. In the
case of a short light pulse, ∆t and ∆ω refer tor the temporal and spectral width. Here inequality is a
direct consequence of the the Fourier relation between the temporal and spectral field.

4.2 Short light pulses

The electric field E of a coherent light pulse in vacuum can be used to describe short pulses mathemat-
ically. In the following formula, the spatial evolution and the vector character of E is neglected to give
us a simplified model:

E(t) =
1

2
A(t)e−iϕ(t) + c.c. (9)

ϕ(t) = ϕCEP + ω0t+ Ct2 +O(t3) (10)

A is the real envelope of the pulse. A good example for such an envelope could be a Gaussian A(t) =

A0e
−2log(2) t

τFWHM

2

, τFWHM being the full width half maximum (FWHM) of the temporal intensity
profile

I(t) =
cϵ0
2

〈
E0(t)

〉2 (11)

with c as the speed of light in vacuum and ϵ0 the vacuum permittivity.
Concerning the phase ϕ(t), the constant term describes the carrier envelope phase (CEP), which is
responsible for shifting the carrier through time within the envelope. CEP effects usually only become
relevant for laser pulses with very few cycles. The linear term contains the carrier frequency ω0. The
quadratic term creates the chirp C in time. As a result, a field with a positive chirp will oscillate more
slowly at the beginning of the pulse and faster at the end. This becomes more apparent when looking
at the derivative in time of equation10, as the instantaneous frequency ∂ϕ(t)

∂t increases or decreases with
time depending on the sign of C:

∂ϕ(t)

∂t
= ω0 + 2C · t+ ∂O(t3)

∂t
(12)

A visualization of a typical unchirped and chirped pulse is presented in figure 1 and later in figure 2.
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(a) Gaussian pulse with arbitrary units
(b) Fourier transform of Gaussian pulse with arbitrary

units

Figure 1

Unfortunately, it is currently impossible to measure the field in time due to the high speed at which
the carrier oscillates and the slower response time of modern detectors. Hence, switching into the spectral
domain by applying a Fourier transformation may be useful. We thus have two different ways to express
electric fields mathematically:

E(t) = F−1[E(ω)] =
1

2π

∫ +∞

−∞
Ẽ(ω)eiωt dt (13)

and the Fourier transform:

Ẽ(ω) = F [E(t)] =

∫ +∞

−∞
E(t)e−iωt dω (14)

Since the electric field is a real quantity, the Fourier transform Ẽ(ω) is hermitian, meaning that Ẽ∗(ω) =

Ẽ(−ω). For computational methods, it is useful to redefine the temporal electric field:

E(t) =
1

2
A(t)eiω0t + c.c. (15)

A(t) =

√
2

cϵ0
I(t) · ei(ϕCEP+Ct2+O(t3)) (16)

With the complex envelope A(t), most important properties are included in the envelope and the
carrier part (eiω0t), which only results in a constant offset for the Fourier transformed frequency field.
If the pulse length stays the same, but the individual frequency components arrive at different times,
the central frequency will remain unchanged, but a much broader spectrum will be required to support
such a short pulse duration. This is an example of a chirped pulse. It’s most prominent characteristic
is the pulse’s instantaneous frequency change over time inside of the envelope. In the following example,
the instantaneous frequency increases over time, which is referred to as an up-chirp. The corresponding
spectrum of the chirped pulse is shown in figure 2b). It is noticeably broader than the spectrum of
the unchirped pulse, as can be seen in figure 1b), despite the pulses having the same duration. In this
example, the unchirped pulse is bandwidth-limited, meaning it has the shortest possible pulse duration
for the corresponding spectral width. If it was to decrease instead, implying C < 0, the pulse would be
called down-chirped. Generally, in case of a Gaussian envelope, the bandwidth-product ∆ω · τFWHM is
0.44, ∆ω being the full width half maximum of the Gaussian shaped spectrum.
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(a) chirped Gaussian pulse with arbitrary units
(b) Fourier transform of chirped Gaussian pulse with ar-

bitrary units

Figure 2

4.3 Spatial component

Gaussian optics are a useful way of describing monocromatic light beams. Up until now, we only consid-
ered the temporal component of light. I will now give an example of its spatial component.
Ordinarily, in experiments, coherent light is generated through lasers. In the simplest case, the emitted
collimated beam can be defined as a plane wave in space with an additional factor of e±ikzz to the complex
component of the field (see equation 9). On a more sophisticated level, the propagation of a laser beam
can be expressed using Gaussian optics.
The intensity profile of a Gaussian beam focused at z = 0 can be described as follows:

I(r, z) = I0 ·
(

w0

w(z)

)2

· exp
{
− 2r2

ω(z)2

}
(17)

with I being the intensity, I0 the peak intensity, w the beam waist, w0 the beam waist radius in the focus,
z the position along the beam axis and r the distance from the aforementioned axis. The divergence angle
θ is the angle at which the beam waist expands along the z-axis with

θ =
λ

w0π
(18)

In the case of a non-tight focus, meaning a long focal length lf , the beam waist w0 can be approximated
as follows:

w0 =
λ

2π · tan
(

w(lf )
lf

) =
λ · lf

2π · w(lf )
(19)

ω(lf ) is the beam waist at the position of the focusing optic.
The result is a distribution of intensity of this aspect:
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Figure 3: Intensity profile of Gaussian beam cross-section, arbitrary units

4.4 Hollowcore fiber

A hollowcore fiber is an optical fiber used for guiding light. In our case, we are using a hollowcore fiber
that can be filled with a noble gas like argon. With a refractive index between about 1.4 − 1.5, the
cladding of the fiber (outer material), being fused silica, is slower for light to travel in than core (inner
material). Due to the angle of incoming light being close to 0◦, the light is reflected through the fiber
mostly and cannot escape the core. However, with light travelling distances through media, a certain loss
of intensity is still inevitable. The amount of light being transmitted through a fiber can be quantified
with the beam’s intensity at the exit of the fiber [20]:

Iout = Iin · e−α·z (20)

α =

(
µnmλ

2π

)2

· ν2 + 1

r3inner(ν
2 − 1)

1
2

ν =
nouter

ninner
(21)

With z being the axis along which the light propagates, ν the ratio between the refraction indexes
nouter;inner of cladding and core, rinner the radius of the core. µnm refers to the m’th root of the Bessel
function of the order n, which acts as dimensionless parameter for the EHnm-mode.
In figure 4, you can see the transmission rate plotted against the fiber length. As you can see, the longer
the fiber, the stronger the higher modes get filtered out. This is why in our experiment, a 3.2 m fiber
was used.

Figure 4: Intensity out/in, mode factors: [1] for a 3.20 m long fiber with
rinner=265µm

We can also compute the coupling coefficient ηm for a beam with a Gaussian spatial profile in these
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modes with[16]:

ηm =
|
∫ rinner

0
e−

r
w0

2

J0(
EHnmr
rinner

)r dr|2

(
∫∞
0

e−2 r
w0

2

r dr) · (
∫ rinner

0
J2
0 (

EHnm

rinner
)r dr)

(22)

r is the radial coordinate of the beam, rinner is the fiber core radius and w is the radius of the Gaussian
beam waist. Equation 22 results from the overlap integral of a spatial Gaussian beam with a zero-order
Bessel function. The coupling coefficient is the physical quantity used to measure how much power goes
into each mode.
As you can see in figure 5, the coupling coefficient for the EH1,1-mode is significantly higher than for
the other modes at roughly 0.6 w0

rinner
. w0 is the radius of the focused Gaussian beam. In our case this

maximum’s ratio is optimal , as we want the beam to couple into the EH1,1-mode as strongly as possible.

Figure 5: Coupling coefficient against the ratio of beam waist to core radius

The pressure p(z) inside of the hollowcore fiber can simply be derived from fluid dynamics and corresponds
to [7]:

p(z) =

√
p21 +

z · (p22 − p21)

L
(23)

with L as the fiber length, p1 as the pressure at the start of the fiber and p2 as the pressure at the end
of the fiber. It is important to take the pressure into account, as the light’s interaction with the gas is
the cause for spectral broadening. Thus, the pressure at each position of the fiber is a crucial quantity.
It can also influence the refractive index.

4.5 Dispersion

Derived from the Maxwell equations, the behavior of light in media can be expressed with the linear wave
equation:

∆⃗2E⃗ − 1

c2
∂2E⃗

∂t2
= µ0

∂2P⃗

∂t2
(24)

with E⃗ as the electric field of the light, µ0 as the vacuum permability, P⃗ as the polarization and t as the
time. The main type of dispersion I will be looking at is chromatic dispersion. It can be caused by a
change of the refractive index n due to e.g. another medium. Chromatic dispersion can also occur due
to the boundary condition at the fiber surface and, by extension, the geometry of the waveguide. The
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Polarisation derived from equation 24 is calculated as such:

P⃗ (r⃗, t)L = ϵ0χ
(1)E⃗(r⃗, t) (25)

χ(1) is a tensor that shall be explained further in chapter 4.6. For now, it is only relevant to know that
the linear susceptibility χ(1) is a matrix, which for nonmagnetic materials is directly tied to the refractive
index through the following relation:

n =
√
1 + χ(1) (26)

The beam’s dispersion is affected by the medium’s refractive index. This is crucial for the development
of the beam’s structure through time. With the refractive index, it is possible to describe the dispersion.
Thus, the propagation constant β(ω) must be computed. β(ω) is a key parameter to calculate the
beam’s dispersion and depends of the refractive index n(ω). It is often also displayed through its taylor
polynomial around the central frequency ω0 of the laser pulse instead:

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

β2

2
(ω − ω0)

2 +
β3

6
(ω − ω0)

3 + ... (27)

βm =

(
∂mβ

∂ωm

)
ω=ω0

(28)

The parameter β0 affects the phase velocity vp as such:

vp =
ω0

β0
=

c

n(ω0)
(29)

The parameter β1 determines the group velocity vg:

β1 =
1

vg
=

1

c

(
n+ ω

∂n

∂ω

)
(30)

The parameter β2 determines the group velocity dispersion (GVD):

β2 =
1

c

(
2
∂n

∂ω
+ ω

∂2n

∂ω2

)
(31)

This is the first and typically dominant parameter of the Taylor expansion that leads to actual dispersion,
meaning that the different frequency components of a short pulse will change their relative position in
time. Consequently, a bandwidth limited pulse traveling through a medium with dispersion will become
longer in time while remaining the same spectral width.
Most materials have a positive GVD, implying so-called normal dispersion. However, there are some ma-
terials with a negative GVD, leading to anomalous dispersion. The dispersion properties are in general
frequency and consequently wavelength dependent. Anomalous dispersion for example typically appears
when the beam frequency is close to an absorption resonance, but can also be present in transparent
media.
An important parameter in this context is the 0- dispersion wavelength λD, which corresponds to the
wavelength at which β2 becomes 0 (between normal/anomalous dispersion). λ > λD and β2 < 0 cause in
anomalous dispersion effects in the fiber.
The parameter β3 describes the third order dispersion (TOD). It only becomes relevant when the second
order dispersion effects are close to zero, implying λ → λD. This would happen for instance if a band-
width limited pulse’s central wavelength was close to the 0-dispersion wavelength, or if a combination of
different materials summed up to a GVD close to zero.
The group delay dispersion (GDD), which is the wavelength-space equivalent of the GVD, can be ex-
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pressed through the parameter D:

D =
∂β1

∂λ
= −2πc

λ2
β2 ≈ λ

c

∂2n

∂λ2
(32)

In this work, it is specifically light propagation through a fiber that is considered and therefore one
must not only take the dispersion of spatial propagation through a medium into account, but also the
dispersion of the mode propagation constant in the fiber MPCn,m of the EHn,m modes.

MPCn,m =
2π

λ

[
1

2

(
µn,mλ

2πrinner

)]
(33)

This is relevant, as the light propagation speed inside the fiber does not only depend on the wavelength,
but also the mode.
The influence of the mode propagation constant on the group velocity, the GVD and the TOD can be
deduced analogously to the propagation constant in the equation 27 above.
To estimate the importance of the different dispersion effect it is useful to look at some examples. In
figure 6 the inverse group velocity and GVD in several noble gases and for different modes are shown.
The wavelength dependent refractive indices were computed using Sellmeier equation [10] and fitting
parameters for argon [17], neon [2] and helium [11]. Argon shows the highest normal dispersion followed
by neon and helium possesses the lowest GVD. The GVD for the fiber modes is in fact negative and
consequently can be minimized inside of the fiber. For example a pulse with a central wavelength of
1.5 µm coupled into a 3 m long fiber with a 530 µm diameter will be subject to a GVD of −37 fs2 in the
EH1,1 mode. When filling the fiber with argon to a pressure of 1.28 atmosphere, the gas will lead to a
GVD of 37 fs2, showing that the dispersion can be in a similar order of magnitude.
In practice, the beam will usually travel through air and possibly be transmitted through some other
medium, resulting in additional, typically normal, dispersion.
Multiple materials exist which are transparent and have a negative GVD in the near infrared spectral
range. A selection of them is shown in figure 7. The wavelength dependent refractive indices were taken
from different sources [9, 19, 10]. We can see that lower frequencies propagates faster than higher ones
in the GV diagramm. As can be observed for a wavelength roughly above 1 µm, the KDP and ADP
crystals have a negative GVD on the ordinary crystal axis, leading to anomalous dispersion. 1 For
longer wavelengths, even more materials with this property exist. Interestingly enough all the materials,
regardless of whether they cause normal or anomalous dispersion, possess a positive TOD. The TOD is
stronger for higher frequencies.
Consequently, the previously accumulated positive GVD can be compensated for using just transmission
through proper crystals with a negative GVD. The TOD has to be compensated for by other means, as
all materials only possess a positive TOD to the best of my knowledge.

1The extraordinary and ordinary crystal axes are terms used to describe anisotropic crystals.
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Figure 6: Wavelength dependent a) inverse group velocity and b) GVD of varying
noble gases at atmospheric pressure, c) Inverse group velocity for light
propagating in different modes of a fiber with 530 µm diameter,d) GVD
for the different modes

Figure 7: a) Inverse group velocity b) GVD and c) TOD of different materials with
anomalous dispersion in the near infrared

4.6 Nonlinear medium response

Typically, the polarization response induced by an electric field in matter grows proportionally to the
field strength. If the field strength reaches a magnitude that is around 0.1% of the the atomic field or
more, the electron displacement will no longer change proportionally to the electric field. In this case,
understanding nonlinear optics is crucial. First, pertubation theory can be used to describe the induced
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nonlinear polarization P :

P⃗ (r⃗, t) = ϵ0χ
(1)E⃗(r⃗, t)︸ ︷︷ ︸
PL

+ ϵ0

(
χ(2)E⃗E(r⃗, t) + χ(3) ⃗EEE(r⃗, t) + ...

)
︸ ︷︷ ︸

PNL

(34)

Here, the susceptibility χ(n) is a tensor of the rank n + 1. For instance, χ(1) is a matrix that describes
linear optics. The different χ(n) are responsible for different effects. For example, χ(1) determines the
double refraction, where one light beam is split up in two orthogonally polarized beams upon entering
certain media. 2

To put it simply, the susceptibility determines how an electric field reacts to a certain medium. In an
isotropic (meaning independent of spatial orientation), homogenous medium and in case of the absence
of nonlinear effects, this can be expressed with the formula:

P⃗ = χϵ0E⃗ (35)

This becomes more complicated when the aforementioned conditions are not guaranteed and the equation
34 must be used.
Usually, using only the first (linear) term is sufficient to approximate P⃗ . However, when dealing with
very intense light, the electric field becomes so strong that higher (nonlinear) orders need to be taken
into account. Basically, the term linear optics means the limit for the weak field, in which only the first
order of susceptibility χ(1) needs to be considered.
To calculate the exact nonlinear part of the nonzero nonlinear polarization P⃗NL, the nonlinear wave
equation (

∇2 −
(n
c

)2 ∂2

∂t2

)
E⃗(r⃗, t) = µ0

∂2

∂t2
P⃗NL(r⃗, t) (36)

needs to be considered. The left handside contains the linear wave equation, whilst the right handside
contains the nonlinear polarization term. The latter is responsible for driving new fields if it oscillates at
a different frequency than the driving field. If the polarization’s frequency does match the driving field’s
frequency, the newly generated fields can interact with the driving field.
In the following, I will take a closer look at the most dominant effects that may perturb the field by
analyzing the lowest nonlinear polarization orders. Firstly, even orders of the susceptibility χ(n) only
contribute in non-isometric crystals, as they are otherwise parity-forbidden and noble gases for instance
only have odd orders of susceptibility. Now, let’s consider the non-isometric crystal case.
Let’s have a closer look at the second term of equation 34:

χ(2)E⃗E⃗(r⃗, t) = χ(2)
[
E0 · e−i(ω0t−k⃗·r⃗) + c.c.

]2
= χ(2)

(
2|E0|2 + E2

0e
−2i(ω0t−k⃗·r⃗) + E∗2

0 e2i(ω0t−k⃗·r⃗)
)

(37)

The first term 2|E0|2 is responsible for light inducing a direct current field in its medium. This effect is
called optical rectification (OR). The other two terms are responsible for generating the second harmonic
light with the frequency 2ω (second harmonic generation SHG). In order to maximize the SHG output,
the light inside the medium must be coherent.
Now let’s have a look at how this would work with a combination of two different electric fields E1 and
E2:

˜⃗
E(t) = E⃗1e

−iω1t + E⃗2e
−iω2t + c.c. (38)

˜⃗
P (2)(t) = ϵ0χ

(2) ˜⃗E(t)2 (39)
2This effect will not be important in this work though. Other more relevant effects, like the Kerr effect, which is

determined by χ(3) will be further discussed in the next section.
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This adds many additional terms to ˜⃗
P [3]:

P⃗ (2ω1) = ϵ0χ
(2)E⃗1

2
(SHG) (40)

P⃗ (2ω2) = ϵ0χ
(2)E⃗2

2
(SHG)

P⃗ (ω1 + ω2) = 2ϵ0χ
(2)E⃗1E⃗2 (SFG)

P⃗ (ω1 − ω2) = 2ϵ0χ
(2)E⃗1E⃗2

∗
(DFG)

P⃗ (0) = 2ϵ0χ
(2)

(
E⃗1E⃗1

∗
+ E⃗2E⃗2

∗)
(OR)

Consequently, a field at new frequencies are generated. Additonally, the individual second harmonic gen-
eration (SHG) of the drivers, the combined sum frequency generation (SFG) and the different frequency
generation (DFG) appear. The latter is the only process that enables the generation of lower frequencies
and will be used in this work to generate a wavelength that is closer to the near-IR than the driving
laser. Thus, using two different electric fields is necessary in order to tune whatever wavelength is desired,
which is obtained by substracting ω2 from ω1.

Let’s consider the third-order of the polarization equation 34. Assuming only one frequency of the
driving field (as the third order would otherwise become very complicated). The third order polarization
results in term of the same frequency as the fundamental and third harmonic generation[3]:

P⃗ (3ω) = χ(3)E⃗0
3

(41)

P⃗ (ω) = 3χ(3)E⃗0 · E⃗0
∗
E⃗0 (42)

The nonlinear component will be rewritten as follows in this section:

n̄2 = n2 ∗ 2ϵ0cn ≈ n2 ∗ 2ϵ0cn0 (43)

Assuming a field that can be described with Ẽ(t) = E(ω)e−iωt + c.c., the refractive index can be put in
relation to the linear refractive index n0 and the nonlinear component n2:

n = n0 + 2n̄2

∣∣E(ω)
∣∣2 (44)

This change of refractive index is, as I shall later discuss, called the Kerr effect.
The effective susceptiptibility χeff is a variable that is useful to summarize the effect of χ(1) and χ(3) on
the refractive index. It is expressed as such:

χeff = χ(1) + 3χ(3)
∣∣E(ω)

∣∣2 (45)

and can be inserted into the following relation:

n2 = 1 + χeff (46)

Combining the equations 44 and 46 yields:[
n0 + 2n̄2

∣∣E(ω)
∣∣2]2 = n2 = 1 + χ(1) + 3χ(3)

∣∣E(ω)
∣∣2 (47)

This shows the relation between the linear and nonlinear refractive indices to the linear and nonlinear

15



Bachelor Amanda Florig

susceptibilities [3], which can be described as:

n0 =
(
1 + χ(1)

) 1
2

(48)

n̄2 =
3χ(3)

4n0
(49)

This underlines again how χ(1) is specifically responsible for the linear refractive index and χ(3) for its
shift. This brings me to the next section, where I shall look more closely at this shift and the other effects
it causes.

4.6.1 Self-phase modulation, self-steepening and self-focusing,

Self-phase modulation (SPM) is a nonlinear optical effect that can be observed on ultrashort pulses. It
is caused by the Kerr-effect, where light induces an electric field which affects the refractive index as
follows:

n(I) = n0 + n2 · I (50)

Consequently, the refractive index is higher where the beam is more intense. Coincidentally, this also
causes the beam to focus itself (self-focusing). In figure 8, a visualisation of how self-focusing occurs is
shown. The less intense edges of the Gaussian beam are subject to a lower refractive index and are thus
redirected more strongly towards the center. This is similar to the way convex lenses work.

Figure 8: Self-focusing with arbitrary units for the spatial component y

Another change caused by the Kerr-effect is the self-steepening of the pulse. Due to the increased
refractive index n(I), the light propagates more slowly depending on the intensity through the medium.
This causes a shift of the intensity distribution of the pulse I(t), and the start of the pulse becomes more
intense, while its end becomes longer.
An example of a self-steepened pulse is provided in figure 9. You can observe you the self-steepened pulse
falls off much quicker than it rises and thus becomes asymmetric. The spectrum is also modified. The
higher frequency spectrum is broadened and becomes less intense, while the lower frequency spectrum
becomes more intense. 3

3The nonsense part is due to the fact that this physical model becomes inaccurate in case of a too strong self-steepening
effect. The spectrum appears to be infinitely broadened as the right slope of the pulse becomes perpendicular to the
time-axis.
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Figure 9: Self-steepening of an arbitrary pulse in a fiber, power against time and
distance, power against frequency and distance [14]

The alteration of n also causes a phase shift in the spectrum:

∆ΦNL(t) =
ω0n2

c
· L I(t) (51)

which alters the frequency spectrum:

ω(t) = ω0 −
∆ΦNL(t)

dt
(52)

This produces different symmetric frequency shifts for different areas (in time) of the pulse. This frequency
shift is named self-phase modulation. Figure 10 shows a self-phase modulated pulse at different locations
in a fiber. As we can see, the spectrum becomes increasingly broader. The intensity peaks at the
spectrum’s borders.
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Figure 10: SPM of an arbitrary pulse having travelled different distances Ln in a
fiber [13]

4.6.2 Ionization

The laser pulses inside of the hollowcore fiber can ionize atoms of the gaseous medium inside the hollowcore
fiber creating a plasma. This can occur through various processes. Electrons can, for instance, be detached
from their atoms if they interact with a photon of the beam that has a sufficiently high frequency.
However, ionization through light is still possible even if the beam’s frequency is inferior to the atom’s
binding energy for the latter phenomenon. As our short laser pulses are very intense, it is possible for the
atom to absorb several photons at once which’s combined energies can overcome the atom’s ionization
energy. This is called Multiphoton Ionization (MPI). If the laser beam is even more intense, its electrical
field can distort the atoms’ potential, possibly causing electrons to tunnel out of it.
The Keldish parameter γK serves as a means to determine which process dominates. If γK ≫ 1, MPI
will be the more relevant effect, while γK ≪ 1 indicates that potential distortion will dominate. This
parameter can be calculated as follows:

γK =
ω0

eElaser

√
2meUI (53)

with UI as the ionization potential, Elaser as the peak electric field, ω0 as the central frequency me as
the electron mass 9.1093837015 · 10−31 kg and e as the elementary charge 1.602176634 · 10−19 C.
Having free electrons inside the waveguide is problematic, as it influences the refractive index. The
refractive index of the plasma succumbs the change np:

∆np ≈
−ω2

p

2ω2
0

(54)

ωp =

√
e2ρe
meϵ0

Here, ωp is the plasma frequency. As the electrons in the plasma are being attracted by the ions, they can
oscillate around the latter. The frequency at which they oscillate results in the plasma frequency. This
plasma frequency causes a blue-shift in the spectrum of the light beam. ρe designates the free electron
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density. If a medium is subject to ionization through MPI and tunnel-ionization, the free electron density
will first increase exponentially with time and then deaccelarate slowly until it reaches a plateau. The
scale of this effect greatly depends on the beam’s peak intensity. Ideally, ∆np should be minimal. In our
case, the setup ensures that is the case. The effect is irrelevant compared to the Kerr effect. For example,
the gas inside the fiber is a noble gas, greatly reducing the risk of possible reactions and ionizations. Still,
the refractive index shift is taken into account in the simulation.
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5 Experimental setup

Figure 11: Schematic overview of the experimental setup with the Ti:Sa, the OPA
and the hollowcore fiber (HCF) [21]

In this chapter, I will describe the setup of the experiment which provided me with data to compare
to my simulation. I will also explain how chirped pulse amplification and parametric down conversion
works. The setup uses a Ti:Sa laser to generate short pulses centered at 800 nm, which are used to seed
an optical parametric amplifier (OPA). The signal produced by the OPA is then focused using a lens
telescope into the hollowcore fiber, which can be filled with a noble gas allowing for spectral broadening.

5.1 Overview

In our case, we want a device capable of emitting ultrashort pulsed laser beams. In order to achieve such
a short pulse duration of the magnitude of femtoseconds, the beam must be extremely powerful as we
need to make use of the nonlinear effects in order to sufficiently broaden the spectrum.
A schematic overview of the experimental setup is provided in figure 11. The master laser of the experi-
mental setup is a Ti:Sa (titanium-doped-saphire) laser, which makes use of the principle of chirped pulse
amplification to generate intense (up to 22 mJ), short (≈ 30 fs) pulses with a 1 kHz repitition rate. A
short description of the laser will be given later on in this chapter. The Ti:Sa laser generates light with
a broad spectrum around the central wavelength at 800 nm. In order to permit better tuning and allow
for being more flexible with the output wavelength in the near infrared, an optical parametric amplifier
(OPA) is seeded with the Ti:Sa laser pulses. Using the principle of parametric down conversion, light
pulses with a central wavelength within the boundary of 1.1µm < λ < 2.4µm can be generated. These
pulses are then sent into the hollowcore fiber for pulse broadening, which is the main subject of this thesis.
The hollowcore fiber serves as post-compression device, making use of the nonlinear self-phase modula-
tion process. It was chosen to be hollow and filled with gas, as it is easier to avoid permanent damage
with this media and as certain parameters, like e.g. pressure, can be changed and managed more easily.
Having a gas-filled fiber, however, means the core (with most gases) has a smaller refractive index than
the cladding. This might present some difficulties to keep the light inside the fiber. The transmission
rate could be increased by widening the core radius as can be deduced from equation 21 , but this would
also decrease the peak intensity.
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When focusing a beam, the focus width is proportional to the focus length. This means focusing over
long distances leads to a relatively wide beam at the focal point. So in order to couple the beam well
into the fiber, which is relatively long, a larger fiber diameter (2rinner) is preferable. The a wider fiber
diameter also means there will be less intensity losses caused by absorption, as these losses scale with
∼ r−3

inner.
The beam needs to to propagate over a long distance through the gas inside the fiber to increase the
spectral broadening enough. Hollowcore fibers bear the advantage compared to other methods that its
length has practically no upper limit, and that it can be applied to different wavelengths without changing
the whole setup.

In order for the beam to couple into the hollowcore fiber efficiently, it must be well characterised.
Losses in the fiber are mainly due to the mode coupling, as well as a dampening along the beam’s
trajectory. The magnitude of the pulse’s power is in the milijoules.

5.2 Laser

Lasers are a type of light source and are distinguished by their strong coherence. Other light sources
usually emit photons in randomly timed relatively incoherent bunches. By contrast, lasers emit their
pulses of photons in a timed and coherent manner. There are also "cw lasers", which continiously emit
photons, but they are irrelevant for this work. Laser beams can propagate over long distances while
maintaining their high intensity due to their low divergence and great coherence length, the latter mean-
ing the photons have an approximately constant phase to each other. They also typically differentiate
themselves from other light sources by the high peaks they can achieve, as well as the narrowness of their
cross-section (meaning the area of the beam waist).
Essentially, a laser system can be constructed with two mirrors forming a cavity, a gain medium in be-
tween the mirrors and a pump source. The pump source sends light or electrons to the gain medium in
order to provoke a population inversion, meaning that it will cause more atoms to move to a higher energy
state. This, in turn, can lead to stimulated and spontaneous emission. The gain medium is enclosed by
2 parallel mirrors, one of which is highly reflective and the other one being partially reflective. Thus,
the emitted photons which propagate vertically to the mirrors can be reflected back into the medium to
stimulate more emission. The new emitted photons have the same wavelength and move in the same
direction as those which stimulated them. This process of stimulated emission and of the photons staying
between the two mirrors causes a chain reaction, which increases the number of photons exponentially.
As one of the two mirrors is merely partially reflective, some of the photons can exit this resonating
chamber. These photons constitute the laser beam.

5.3 Chirped pulse amplification

Chirped pulse amplification is used specifically here to amplify the light beam that enters the TOPAS.
In general, this method is used for lasers desired to have a high pulse energy and a short pulse duration.
Since every crystal has a damage threshhold, corresponding to a certain peak power or peak power per
area, this is particularly challenging for short pulses which reach high peak powers. Thus, we use chirped
pulse amplification to avoid material damage and still achieve high pulse energies.
First, the output of an oscillator with ∼ 101 fs pulse durations is strongly chirped, stretching the pulse to
tens or hundreds of picoseconds, meaning that that the pulse’s individual frequencies are being delayed
from each other. With the peak intensity reduced by orders of magnitude, the pulses are amplified in
a gain medium, usually crystal. This process can be done multiple times using an amplification chain
reaching pulse energies that are magnitudes higher at the output compared to the input pulses. Finally,
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the amplified pulse is compressed again, thus reverted to it’s original duration.
First adding and then removing a chirp bears the advantage that the amplified beam will not damage
the optics as much, as the frequencies do not arrive at the same time, but are delayed.
Chirping and compressing the pulses is usually done with stretchers and compressors using dispersive
grating, leading to a different beam path length in these devices.

5.4 Optical parametric amplifier

The TOPAS (Light Conversion TOPAS HE Prime+) is an optical parametric amplifier. It’s purpose is to
use the incoming light beam to obtain a pulse of a specific wavelength. An optical parametric amplifier
is a type of amplifier making use of parametric down conversion instead of stimulated light emission.
Consequently, it needs a seeding beam. The HE-TOPAS used for this work is seeded with 18 mJ pulses
from the aforementioned Ti:Sa laser. A sketch of the working principle of the TOPAS is provided in 12.
A major part of the pump beam (98%) is first reflected and then used as a pump in the last stage. The
remaining 2% are transmitted and used to generate the seed signal for the last stage. A part of the beam
is focused onto a glas plate for signal generation. This leads to white light generation (WLG).
This light finally meets up with a weak pump beam inside a nonlinear BBO crystal. This is where
parametric down conversion occurs and a certain spectral range of the seeding white light is amplified.
Before entering the crystal, the white light is despersed (stretched). Therefore, the time delay can be
tuned, allowing to generate a signal beam featuring a central wavelength between ∼ 1.1µm − 1.5µm .
This signal beam is then used to seed a second crystal pumped by another fraction of the 800 nm beam.
Finally, the now amplified signal beam (≈ 100 µJ) is used to seed the last BBO crystal, converting up
to 40% of the pump’s energy into the idler and signal beam. In this work, the idler beam and the pulse
energy are estimated at about 1440 nm and 4 mJ and an estimated pulse duration of 40 fs has been used.

Figure 12: Optical parametric amplification
from [21]

5.4.1 Signal and idler

The pump photon (here Epump = 1.55eV ) is converted into two less energetic wavelengths by means of
absorption and emission. One of these emitted photons is the signal and the other one is called idler
(see figure 12(a)). The signal and idler are called parametric output photons. Their energy must be
conserved:

ωpump = ωsignal + ωidler (55)
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5.4.2 Tuning the wavelength

Alongside with the pump photon, a seed photon is also sent in. It has the same frequency as the signal
and serves to stimulate the emission at the intended wavelength. This seed photon is picked out of a
white light beam where each frequency arrives at a different time by creating a delay between the pump
beam at the first pump branch and it (see figure 12b)). Thus, the wavelength of the resulting signal can
be tuned.

5.5 The hollowcore fiber

A hollowcore fiber was used in this work in order to broaden the signal pulses from the TOPAS. The
fiber is 3.2 m long and has an inner core diameter of 530 µm. The fiber is glued into two holders, which
are then fixed on a manipulator including micrometer tables in order to stretch it out. This contraption
allows the precise adjustment of the fiber ends’ horizontal and vertical position for in- and out coupling.
Both holders include a CF-40 flange and are each connected to a ˜2 m long vacuum chamber. The signal
beam of the TOPAS is coupled to the fiber using a lens telescope consisting of a defocusing and a focusing
lens placed on an optical slide.
The telescope’s purpose is to focus the beam exactly at the entrance of the fiber. This is crucial, as the
beam should propagate as evenly as possible through the fiber. Assuming a Gaussian beam, the focus is
where the light would propagate as a plane wave.
Using two lenses on a an optical rail allows to focus at the same position with slightly different different
focal waists. This is important as it can be seen from equation 22 that coupling into the EH1,1 -mode
efficiently is only possible with the correct focal size.
In order to further broaden the pulses, the vacuum chamber on the backside of the hollowcore fiber is filled
with a noble gas, for instance argon or neon. This results in the pressure inside the fiber being differential.
The highest pressure is at the end and the entrance pressure comes close to zero (see figure23).

5.6 Parameters

Most of the parameters used were taken from Dr. Rupprecht’s Phd thesis [21], as they in part still match
those of the current laser system.

symbol parameter value

λ0 central wavelength 1.43 µm

L fiber length 3.2 m

rinner radius of fiber core 265 µm

τFWHM pulse duration 40 fs
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6 Numerical methods

6.1 Nonlinear Schrödinger equation

The propagation of optical pulses through dispersive, nonlinear media can be described as:

∂A(τ, z)

∂z
= iγ|A(τ, z)|2A(τ, z)− 1

2
β2

∂2A(τ, z)

∂τ2
(56)

The first term on the right-hand side causes the pulses to spread due to SPM and the second one shows
how they spread because of the GVD. τ is the retarded time and corresponds to

τ = t− z

vg
(57)

This equation is referred to as the nonlinear Schrödinger equation (NSE). It is derived from E(z, t)

equation 9, put into a wave equation. The wave equation is written in terms of A(z, τ) using the complex
amplitude , which then results into equation 56 through many transformations.

6.2 Generalized nonlinear Schrödinger equation

Assuming Gaussian input signals, one can combine effects such as attenuation α, dispersion β and non-
linearity γ into a slowly varying envelope amplitude A(z, t), Fourier transform this and simplify it into a
differential equation:

∂A(τ, z)

∂z
= −α

2
A(τ, z)︸ ︷︷ ︸

absorption

− i

2
β2(z)

∂2A(τ, z)

∂τ2︸ ︷︷ ︸
GVD

+
1

6
β3(z)

∂3A(τ, z)

∂τ3︸ ︷︷ ︸
TOD

− iγ|A(τ, z)|2A(τ, z)︸ ︷︷ ︸
SPM

− γ

ω0

∂

∂τ

(
|A(z, τ)|2A(z, τ)

)
︸ ︷︷ ︸

self-steepening
(58)

The first term takes the absorption into account. For this, the Beer-Lambert law is assumed. The
second and third one are for the GVD and TOD (third order dispersion) respectively, using the already
discussed parameter β in chapter 4.5. The fourth one is responsible for the SPM and the last one for
self-steepening effect. These last two terms result from nonlinear effects. They contain the nonlinearity
parameter γ:

γ =
ω0n2

cAeff
(59)

with Aeff as the effective mode area which approximately corresponds to 0.48 · πrinner. The slowly
varying envelope approximation is only accurate if the pulses are longer than around 10 fs, as otherwise
the spectral width would overlap with the carrier frequency.
This formula still has restrictions. By deducing the generalized nonlinear Schrödinger equation (GNLSE),
several approximations are used, giving limits for parameters at which the equation still describes real
light pulses well. For example, using an effective mode area implies that all spatial components of the
electric field are modulated with the same strength of nonlinear effects. This approximation becomes
particularly problematic when modeling non focused fields, where for example Kerr focusing can be a
dominant effect. Secondly, the slowly varying envelope approximation is used for deducing the GNLSE,
assuming that the change in time of the envelope is negligible compared to the change of the fast os-
cillating carrier. Consequently the model becomes worse when the envelope becomes too short and is
only a few optical cycles long. It also only considers the direction in which the beam is propagating.
The interactions between the EH11 mode and higher modes is not taken into account, as they should
be strongly repressed anyway. The plasma blueshift is also ignored due to the low density of free electrons.
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6.3 Split-step Fourier method

In order to approximate the beam’s propagation, the program I used operates via the Split-step Fourier
Method (SSFM). The differential equation used to compute the slowly varying envelope A(z, t) is:

∂A(τ, z)

∂z
= (D̂ + N̂)A(τ, z) (60)

D̂ = i
β2

2
ω2 − i

β3

6
ω3 − α

2

N̂ = iγ
∣∣A(τ, z)

∣∣2 − γ

ω0A(τ, z)
IFFT

[
iωFFT

(∣∣A(τ, z)
∣∣2A(τ, z)

)]
D̂ and N̂ are operators. D̂ is the operator for dispersion and N̂ is the operator for nonlinear effects. They
can almost be directly obtained from the GNLSE 58. The evaluation of the time derivative is executed in
the Fourier space, and thus the operators ∂

∂τ were replaced with iω. [8] The dispersion along the z-axis
is progressively simulated with the step size h from start to end of the fiber. The formula to compute
the amplitude at the next z is:

A(z + h, τ) = ehD̂ehN̂A(z, τ) (61)

We start at z0 = 0. This process is separated into two sub-steps. First, D̂ is assumed to be dominan
N̂ → 0 , then the other way around. In order to increase the approximation’s accuracy, one can use the
symmetrised SSFM. For this, the dispersion term is split up into two e

h
2 D̂ ’s and the nonlinear term is

put in between them. This yields:

A(z + h, τ) = e
h
2 D̂ehN̂e

h
2 D̂A(z, τ) (62)

Using the Baker-Campbell formula, the error in each step of equation 62 is found out to scale with O(h3),
while the result itself scales with O(h), meaning that the relative error scales with O(h2):

ADN (z + h, τ) = ehD̂+hN̂+h2

2 [D̂,N̂ ]+h3

12 [D̂−N̂,[D̂,N̂ ]]+...A(z, τ) (63)

ADN (z + h, τ) = ehD̂+hN̂−h2

2 [D̂,N̂ ]+h3

12 [D̂−N̂,[D̂,N̂ ]]+...A(z, τ)

The resulting computation process of the computer to solve equation 62 for each step is:

A = A(z, τ) (64)

A′ = IFFT
(
ei

h̄
2 D̂FFT (A)

)
A′′ = eih̄N̂A′

A′′′ = IFFT
(
ei

h̄
2 D̂FFT (A′′)

)
= A(τ, z + h)

The Fourier transform of A is used, because discrete Fourier transforms can be calculated very quickly by
computers. This is often used to make algorithms for simulations more efficient. The Fourier transform
allows to simplify the time derivative ∂

∂τ to −iω, which was used to derive the operators in equation 60.

6.4 Numerical implementation

My initial task was to solve:

i
∂2V

∂(z/z0)
=

π

4

[
∂2V

∂(t/t0)2
+ 2|V |2V

]
(65)

This nonlinear Schrödinger equation is supposed to describe the propagation of a pulse through a fiber
with the electric field’s potential V . It’s equivalent to equation 56. I first decided to try to adapt this
code[12], which uses the split-step Fourier method. Unfortunately, it turned out it was not as close to my
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needs as I first anticipated and I did not succeed in getting it running properly with all of the parameters
that need to be kept in mind for our hollowcore fiber.
Next, I had a look at a code belonging to the group of Jan-Hendrik Oelmann meant for computing the
propagation of a pulse through a multi-pass cell. I realized this was even further from what I needed to
simulate light in a hollowcore fiber than the previous code due to the different geometrical setup, so this
idea was quickly discarded.
I also discarded this Schrödinger equation 65, as it only takes self-phase modulation into account. The
self steepening effect is not taken into consideration and thus the equation is not suited for pulses shorter
than ps-pulses. As we are using fs-pulses, a more complete equation 58 was going to be required.
Finally, my attention was brought on to the program Luna[4], which is useful for the simulation optical
nonlinear processes and is also highly adaptable to very specific setups and geometries if needed so. This
is the program I ended up building upon to obtain the data showcased in this thesis.
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7 Results

7.1 Computing with Julia

The program I mainly used to compute my numerical results was Luna[4], which is written in Julia. Julia
is a programming language rooted in C, C++ and Scheme, which is well suited for running numerical
simulations due to its high efficiency. Thanks to this, running my beam propagation simulation only
takes a couple of seconds.
Luna is a program used for the simulation of nonlinear optical dynamics in waveguides and in free-space
geometry. In my case, I aim to simulate a laser-beam inside a waveguide, namely a hollowcore fiber. For
this, Luna should operate with the generalized nonlinear Schrödinger equation 58.
In order to extract the desired data, I used my custom code which employed Luna functions. The set
parameters correspond to those of the real fiber.
The used solving mechanism was the split-step-method, which was directly applied by Luna.
Solving the GNLSE can be achieved by setting up Luna using only the Kerr effect as nonlinear response
and setting the full field calculation to false. Thus Luna is restricted to calculate only with the envelope.
Additionally the fiber parameters needs to be inserted, with a diameter of 530 µm and propagation in
the EH1,1 mode in this first example. The gradient pressure is based on equation 23 can be directly
implemented, too. For a given target gas, in this case neon, the increasing nonlinearity parameter γ

along the fiber is computed by Luna.
Last but not least a proper input pulse needs to be set. In the first example we used a pulse energy of 3
mJ, a 1430 nm central wavelength and a pulse duration of 50 fs for a Gaussian temporal profile.

Figure 13: Simulated data of the pulse propagation inside a Neon filled hollowcore
fiber

a) Pulse energy against distance inside fiber
b) Pressure inside fiber

c) step size of simulation against distance

The energy of the pulse propagation in the EH1,1-mode only drops by about 14 % (see figure 13a) ) along
the distance. This is precisely the fiber loss expected for the corresponding mode using the equation 20
and plotted in figure 4, as losses in the transparent gas medium are negligible. As the maximum coupling
efficiency is 98.1%, the energy of the pulse propagation does not actually start with exactly 3 mJ in the
plot. Figure 13b) shows that the pressure Luna uses along the fiber increases with the distance. This
describes the case of a differentially pumped fiber correctly. The stepsize for the splitstep method shown in
figure 13 c) shoots up at beginning, then slowly decreases. The necessary step-size is re-estimated by Luna
after each step and adapted accordingly in order to optimize the program’s performance. Apparently, the
step size can reach up to ∼ 1.5 cm without noticeably compromising the simulation’s accuracy. Thus, the
numerical error emerging from the simplification of the split-step Fourier method is kept below 0.2 %.
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Figure 14: Simulated data of the pulse proagation inside a Neon filled hollowcore
fiber
a) FWHM of the pulse duration against distance inside fiber

b) Peak intensity against distance
c) Central wavelength against distance

In figure 14 a), the FWHM if the temporal pulse profile is shown at each position of the fiber, revealing
that the nonlinear interaction within the medium reduces the pulse duration. In figure 14 b), the peak
intensity at each position is presented. While in this example, the peak intensity is first dropping due
to the overall energy losses within the fiber propagation, the reduction in pulse duration increases the
peak intensity. After slightly more than 2m of propagation, the peak intensity reaches a minimum and
the shortening of the pulse then leads to an effective increasing peak intensity. The central wavelength
shown in figure 14c) is nearly stable, but is faintly reduced with increasing distance. This might be due
to the asymmetric self-steepening. If the spectrum broadens more in one direction than the other, the
central wavelength should shift since it corresponds to the average wavelength of the spectrum.

Figure 15: Power against time at the start and at the end of the fiber

The power peak seems to tilt a little to the right with increasing distance. This can be explained by
self-steepening, which becomes more pronounced over larger distances.

Figure 16: Spectral energy density against wavelength for different distances
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As we can see in figure 164, the spectrum becomes distinctly broader over longer distances in media.
In figure 17, the same information for a continuous range of distances is also presented, as well as the
Power’s dependency of time and distance. We can see that the spectrum width indeed continuously
increases and that the Power continuously shifts to the right with more distance.

Figure 17: Spectral energy density and power
a) Spectral energy density against frequency and fiber position

b) Power against time and fiber position

7.1.1 Varying the input pulse duration

(a) τ = 30 ·10−15 s , note that the
range of the wavelength axis is
increased here

(b) τ = 50 · 10−15 s (c) τ = 70 · 10−15 s

Figure 18: Spectral energy density with varying pulse durations τ at the start and
at the end of the fiber

(a) τ = 30 · 10−15 s (b) τ = 50 · 10−15 s (c) τ = 70 · 10−15 s

Figure 19: Temporal profile of pulses with different pulse durations τ at the start
and at the end of the fiber

4The Jacobi factor is taken into account for.
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In figure 18 and 19 the spectral and temporal profiles of Gaussian pulses with different pulse durations
are shown, as well as the profiles after propagating through the neon filled fiber. The example of the
three different pulse duration with same pulse energy clarifies how the dominant nonlinear effect changes.
While the 70 fs pulse mainly shows an almost symmetric broadening of the spectra as expected with the
influence of self phase modulation, the broadening of the 30 fs pulse is highly asymmetric.5This difference
is due to the self-steepening effects becoming more relevant for shorter pulsed duration. Looking at the
temporal profile in figure 19 and comparing the plotted pulse before and after the fiber, it becomes evident
that the self-steepening effect already plays a role for the 70 fs long pulses, but increases strongly with
shorter pulses as the peak is progressively shifted to the right.
To sum it up, figures 18 and 19 display how shorter pulse are affected by the self-steepening effect more
strongly, while longer pulses are more influenced by self-phase modulation

7.2 Comparison of theory to experiment

The experiment was conducted using the aforementioned Ti:Sa laser, Topas and hollowcore fiber. The
pulses used to seed the Topas have an energy of 18.3 mJ, a wavelength of 800 nm and an estimated
duration of 30 fs. The idler of 1430 nm (=̂0.87 eV) is used as central wavelength. The overall conversion
efficiency of the Topas amounts to approximately 38%, resulting in 3.8 mJ idler pulses.
In order to properly couple the idler beam into the hollowcore fiber, multiple parameters need to be taken
into account.
First and foremost, the focal beam waist should correspond to 64% of the core diameter in order to
optimize the coupling into the EH1,1-mode. This is ensured through adjustments to the focusing of the
telescope and analyzing the focus with a beam profiler. The strong attenuation of the beam reduces the
risk of damage to the camera. A camera with silicon pixels was used as a beam profiler in this experiment.
The band gap at 1.12 eV , which corresponds to 1100 nm, was too high to detect the idler beam directly.
Since the idler pulses were short and therefore had a high peak intensity, the second harmonic was gen-
erated inside the individual pixels. The SHG resulted in a photon energy of 1.8 eV, meaning the photons
could be detected by the camera.
While optimizing the focus with the lens telescope , the beamprofiler measured a 1

e

2 diameter of 240 µm.
In view of the fact that this value corresponds to I(r)2, the actual diameter must be roughly

√
2 larger

and hence about 340 µm. This is optimal for coupling a Gaussian beam into the EH1,1-mode with a
530 µm diameter.
Secondly, the coupling into the fiber was to be optimized. Thus the signal beam was attenuated to about
0.1 mJ pulse energy as for the power before and after the fiber to be measured with a power meter. The
in-coupling position of the fiber was optimized in regard of the beam power at that spot. Furthermore
the beam propagation direction had to match the direction of the fiber. This was provided by first align-
ing the beam without the fiber and then placing the latter along the beam propagation line. Following
the coupling into the fiber, the angle could be still slightly adjusted by carefully moving the end of the
fiber. Finally the focus position was shifted with the lens telescope so as to guarantee its position at the
entrance of the fiber.
The adjustment of all of the parameters mentioned above allowed for a throughput of up to 40%.
Despite this, removing the attenuators and sending the full power into the evacuated hollowcore fiber only
left a throughput of about 20%: Minor adjustments to the in-coupling parameters did not significantly
improve the transmission. Considering the peak intensity of the focused beam being in the magnitude
of 1014 W/cm2, each major adjustement could be critical and had to be thoroughly examined as the en-
trance of the fiber was easy to damage. Hence the tests were continued despite the rather low throughput

5The broadening would be symmetric as a function of ω. We can already recognize it here, as the Jacobi factor does not
make a big visual difference.
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of 0.7 mJ−0.9 mJ after the fiber.
The experimental data comes along with quite some uncertainties. The light did not couple into the
E1,1 -mode properly, a lot less light from this mode got transmitted through the fiber than expected.
The transmission rate through the fiber with the attenuated beam is only 40% . This indicates that the
Topas’ beam is not perfectly Gaussian, as in this case a throughput of about 80% would be expected.
The reduced throughput could also be due to the fiber itself. The throughput was also measured using
an alignment laser, which resulted in values to up around 80% . Despite the power loss due to the beam’s
imperfection before the fiber, the output beam has a good Gaussian profile. This shows the fiber acts as
a spatial mode filter, since light traveling in higher fiber modes is strongly attenuated.
The more problematic uncertainty of the experimental data comes from the drop of 40% to 20% through-
put when changing from the attenuated to the full power beam. In the simplest case, this might be
a consequence of insufficient optimization of the coupling after increasing the power, but it might also
happen due to some damage at the entrance of the fiber.
These uncertainties imply that we do not know what the true exact starting parameters of our beam
inside the fiber are. It is especially unclear how much of the pulse energy actually goes to the EH1,1.
In total two measurements were performed: one with argon and one with neon as target gas. In both
cases, the fiber was pumped differentially. The backside of the fiber was connected to a gas reservoir with
a constant pressure and the front side was evacuated.
In figure 20 the spectra after the fiber for the lowest and highest pressure of each scan is shown for both
neon and argon.

Figure 20: The spectra were measured after the beam’s propagation through the 3.2
m long hollowcore fiber. The spectra are displayed for both the lowest
and highest pressure in the fiber for a) argon and b) neon.

As can be recognized in figure 20, higher pressures lead to lower intensity peaks in general. In both
cases, significant spectral broadening appears. The neon peak for the higher pressure is slightly shifted
to longer wavelengths due to the self-steepening effect, as expected (see 9). With argon specifically, the
intensity peak gets split up in two peaks surrounding the central wavelength of the initial 5 mbar peak.
As the energy that coupled in the EH11-mode is uncertain and the argon spectrum seems to become
significantly broader in the fiber, I chose argon to conduct several simulations with varying pulse energies.
These simulations are meant give a better idea of the coupled in pulse energy in order to estimate it.
They are presented in figure 21 next to an experimental measurement.
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Figure 21: Argon pressure at the end of the fiber in mbar
Experimental spectra of 200mbar argon pressure at the fiber exit com-
pared to simulation results for different energies coupled into the EH1,1-
mode of the fiber

Figure 21 shows wavelength spectra plotted against pressure for different input pulse energies, as well as
the corresponding experimental data. Moreover, given a sufficiently high pulse energy and pressure, the
intensity of the spectrum of argon around the main wavelength apparently decreases, creating somewhat
of a split. This split becomes clearly visible at a pulse energy of around ∼ 1.2 mJ.
Since we do not know the input energy of the real pulse we can compare it to simulated data to get a
rough idea. Just by looking at the 2D plots, we can already guess it must be above 1 mJ, as the split of
the experimental spectrum is well pronounced at 200 mbar.
This becomes more apparent by looking at figure 22, which shows a clearer comparison of the overlayed
experimental spectrum and the spectra between 1.0 and 1.4 mJ at 200 mbar. The spectra for this range
of pulse energy bear the strongest resemblance to the experimental spectrum. Since the simulation and
the experiment match each other roughly, we can estimate that the effective coupled in pulse energy must
have been close to 1.2 mJ. This corresponds to only 30% of the pulse’s energy before entering the fiber,
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implying that the coupling was badly optimized for the full power.

Figure 22: Experimental spectra of 200 mbar argon pressure at the fiber exit com-
pared to simulation results for different energies coupled into the EH1,1

mode.

I also plotted the same values for a hollowcore fiber differentially pumped with neon. Once more, the
experimental spectrum plotted against pressure is compared to different simulated spectra for varying
input pulse energies in figure 23. Here it is harder to discern the fitting input pulse energy, as neon
doesn’t produce any split in the spectrum, but merely a slight broadening of the spectrum at its tails.
This is not very helpful, since the experimental data is already broader than it should be under perfect
conditions. Hence, it wouldn’t make any sense to plot an equivalent of figure 22, we can’t deduce much
from this. Still, the rough shape remains recognizable. As we can see, higher pressure combined with
higher input pulses energies broadens the frequency spectrum, reducing the peak intensity.
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Figure 23: Neon pressure at the end of the fiber in mbar

This simulation shows neon is an excellent candidate for spectral broadening, especially for higher coupled
in pulse energies (e.g. 3 mJ). For low energies, as used in our experiment, a pressure above 1 bar would
likely have been better, but we did not want to subject the fiber to overpressure for the moment, as the
whole system was only designed for underpressure.
To sum it up, the comparison shows it is possible to use Luna to simulate the spectral broadening inside
a fiber well. In my case, I used the simulation to estimate the coupled in pulse energy. Unfortunately, an
exact comparison proved to be difficult due to additional unknown experimental parameters. Aside from
the unknown coupled in pulse energy, the pulse duration of 40 fs was only an estimate, as there was no
space left in the lab to conduct measurements for that.

7.3 Compressing the pulses after the fiber

So far Luna was used to show the spectrum and time dependent intensity for pulse broadening in a fiber.
The spectral width at the end of a fiber will help later to create a much shorter pulse than the actual
pulse duration at the end of the fiber. The nonlinear effects caused by the propagation through the gas
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inside the fiber widen the spectrum, meaning the Fourier limit 6 of the pulse is lowered, enabling shorter
pulses. The fiber also adds a chirp to the pulse, bringing the frequencies out of phase. When the pulse
exits the fiber, the frequencies can be brought back into phase, thus removing the chirp reducing the
pulse duration to its now lower minimum.
In this section an example is shown on how short the pulses can get and how well one can compress the
pulses just by using materials with negative GVD.
The example data set computed with Luna represents a differentially pumped fiber with a 530 µm core
diameter, like before. Argon is set as a target gas with a maximum pressure of 100 mBar at the outlet.
I chose the input pulses to be Gaussian with a 40 fs pulse duration, 3 mJ pulse energy and central
wavelength of 1.3 µm. The modulations of the spectral and temporal fields amplitude within the 3.2

m long fiber propagation are shown in figure 24. Additionally, the spectral and temporal electric field’s
amplitudes and phases are shown at the end of the fiber. For this example the spectral phase at the end
of the fiber is clearly no longer described well enough only by assuming a chirp, as it also possesses higher
order phases.

Figure 24: In a) the spectral and in b) the temporal electric field’s amplitudes and
phases are shown after propagating through the fiber. In the two dimen-
sional plots below the evolution of the amplitudes over the fiber propa-
gation are visualized.

In order to compute the shortest possible pulse that the spectrum allows, one can simply set the spectral
phase to zero and Fourier transform into the temporal domain. The resulting pulse is shown in figure
25a). The corresponding intensity profile has a temporal full width half maximum of 7.4 fs. The temporal
profile of the pulse is no longer Gaussian as a consequence of the spectral profile being no longer Gaussian.
In fact the splitting around the central wavelength in the spectrum leads to pre- and post pulses, but
they are far below half of the intensity maximum (≈ 4%).

6minimal pulse duration
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Figure 25: In a) the perfectly compressed pulse of the spectral field in figure 24a)
is shown and in b) the shortest possible pulse by only removing a chirp
is shown. The two dimensional plots below show the same methods of
compression for fields at each position of the fiber.

It is quite difficult to build an experimental setup that can remove an arbitrary phase, as specially de-
signed optics are required here. Nevertheless, as was shown in figure 7, in the near infrared range above 1
µm wavelength, crystals with a negative GVD do exist. It is therefore rather easy to remove a chirp from
the spectrum. The shortest temporal field can be achieved by removing a quadrature phase, as is shown
in figure 25b). The corresponding intensity profile full width half maximum is 9.8 fs, and is therefore
only 30% longer than in the case of perfect compression. In total, more energy is present in the pre- and
post pulses but it is still rather low compared to the main pulse. The most pronounced post pulse has
about 20% of the intensity of the main peak. This example demonstrates one advantage of working with
longer wavelengths than the commonly used Ti:Sa wavelength (800 nm), as compression can be achieved
by for example simply placing an ADP crystal of the right thickness.

7.4 Testing models beyond the GNLSE

Luna grants the possibility to compute the interaction of strong laser pulses with media in several ways.
So far we have used the envelope mode with the Kerr response, which solves the GNLSE with SPM and
self-steepening as nonlinear effects resulting in spectral broadening.
On a different note, it is interesting to consider other physical effects which can appear in real fibers,
but that were not considered so far in our GNLSE. The most important yet undiscussed effect is the
generation of odd harmonics in the medium and the ionization of the medium.
To the best of my knowledge, those effects cannot be included into the GNLSE as the full field, including
the carrier, would need to be taken into account for. In this section, other functions of Luna are used to
apply different models allowing for a qualitative example on how third harmonic generation and ioniza-
tion effects would affect the output with spectral broadening in a fiber.
Let us briefly introduce the model used by Luna. Since the full electric field must now be considered, the
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forward Maxwell equation, which can be deduced from nonlinear wave equation 36, is used.7 Concerning
the nonlinear polarization, Luna can again take the Kerr-effect into account in its calculations. Addition-
ally, the third harmonic generation can be implemented as the dominant frequency for the up-converting
process inside the noble gas target. It can also be considered for rather high field intensities ionization
using the PPT model. [18].
In order to test the full field model, it can be compared to the envelope model used previously. Short
pulse propagation inside of an argon filled fiber is computed in both cases with solely the Kerr effect
taken into account amongst the nonlinear effects. The two resulting spectra are displayed in figure 26
and show the outcome is identical. Only in the low frequency region, where nearly no intensity remains
in the spectrum, does a small mismatch emerge due to the differing numerical implementations.

Figure 26: Comparison of the simulations in the fiber using the envelope model
(GNLSE) and a full field model.

Two examples are provided in figure 27 to test the effects of including third harmonic generation and
ionization in the propagation. In each case, 40 fs input pulses with a Gaussian envelope and a 1.3 µm
central wavelength are used and are propagated through a 3.2 m long hollowcore fiber which is pumped
differentially with 100 mbar pressure at the outlet with argon. In figure 27 a) and b) the input pulse
energy is set to 1 mJ. The models including and excluding ionization show no major differences for this
case and I therefore did not plot them.
The spectra of the linearly scaled plots (figure 27 a)) are clearly broadened at the tails compared to a
Gaussian profile. This broadening is mainly symmetric. Otherwise the spectra including the THG look
nearly identical.
Only if plotted logarythmically (figure 27 b) ) does the difference become obvious. Where for including
THG a peak at three times the fundamental frequency, the third order harmonic is clearly visible for
THG, as the peak corresponds to thrice the fundamental frequency. Additionally a small peak at the
fifth harmonic frequency appears, despite the fact that nonlinear effects caused by susceptibilites above
the third order were not included. The emergence of the fifth harmonic is caused by a combination of a
third harmonic photon and two fundamental photons (5ℏω= 3ℏω+1ℏω+1ℏω). This only happens after
a certain propagation time, as the third harmonic frequency becomes unnegligible in the spectrum. The
aforementioned three photon process is also described by third order susceptibility.
For this first example the effect of including the THG is rather irrelevant as only a small fraction of
3× 10−4 of the intensity is converted into the third harmonic.
In the second example the pulse input energy is increased to 3 mJ. This roughly corresponds to the highest
intensity that one can expect to couple into the hollowcore fiber with our laser and TOPAS setup. In
this case THG as well as ionization has an effect on the linearly plotted spectrum (figure 27 c)).

7For more details see [6].
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When THG is included, the spectrum is to be slightly less broadened and is a little more intense within
the central part of the spectrum. This is most likely due to the nearly 1% intensity loss caused by the
THG process and the consequently reduced fundamental field intensity, resulting in slightly less SPM
and self-steepening. With the three times higher input field and the exponentially increasing strong
field ionization, ionization is also no longer negligible. For both spectra that include ionization with and
without THG, the peak in the higher frequency range is clearly more pronounced compared to the spectra
with neglected ionization. The lower frequency peak is also less intense and up-shifted. The ionized gas
causes the plasma blue shift to appear.
Testing the additional models clearly shows that due to the non-linearity of all considered effects, a
change of the input energy by a factor of three already clearly compromise the precision of the GNLSE
to correctly describe all important effects appearing in the fiber. Here ionization in particular leads to
the strongest changes.
To obtain better experimental results when dealing with higher input pulse energy, one can easily increase
the fiber diameter, resulting in a lower peak intensity and therefore ionization. One could also simply
change the gas used within the fiber to neon. With an ionization energy of 21.6 eV in neon compared to
argon with 15.6 eV, the amount of ionization taking place is magnitudes lower in neon and is therefore
negligible for the simulations.

Figure 27: Different physical models for simulating propagation within an argon
filled hollowcore fiber of 40 fs pulse with Gaussian envelope and 1.3 µm
central wavelength. All models include the Kerr-Effect. In a) and b) the
pulse energy is 1 mJ and the model only including and excluding third
harmonic generation are compared. In c) and d) the pulse energy is 3 mJ
and models with and without third harmonic generation and ionization
(Plasma effects) are shown. b) and d) are normalized to the highest
accrued intensity.
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