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Abstract

Insects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly inte-
grated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature
instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo
development. Tortoise beetles (Chrysomelidae: Cassidinae) host their digestive bacterial symbiont Stammera extracellularly within foregut
symbiotic organs and in ovary-associated glands to ensure its vertical transmission. We outline the initial stages of symbiont coloniza-
tion and observe that although the foregut symbiotic organs develop 3 days prior to larval emergence, they remain empty until the final
24 h of embryo development. Infection by Stammera occurs during that timeframe and prior to hatching. By experimentally manipulating
symbiont availability to embryos in the egg, we describe a 12-h developmental window governing colonization by Stammera. Symbiotic
organs form normally in aposymbiotic larvae, demonstrating that these Stammera-bearing structures develop autonomously. In adults,
the foregut symbiotic organs are already colonized following metamorphosis and host a stable Stammera population to facilitate folivory.
The ovary-associated glands, however, initially lack Stammera. Symbiont abundance subsequently increases within these transmission
organs, thereby ensuring sufficient titers at the onset of oviposition ~29 days following metamorphosis. Collectively, our findings reveal
that Stammera colonization precedes larval emergence, where its proliferation is eventually decoupled in adult beetles to match the

nutritional and reproductive requirements of its host.
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Introduction

Insects evolved a remarkable diversity of specialized cells and
organs to house and reliably propagate beneficial microbes [1-4].
Correspondingly, symbionts vary in how they colonize and pop-
ulate these structures [5], often reflecting their beneficial role
relative to host development and metabolic requirements.

A number of insect taxa harbor their symbionts intracellularly
within specialized cells known as bacteriocytes [6-9]. Bacterio-
cytes are often colonized by a monoclonal population of microbes
[6, 10], but can also host multiple symbiont strains that are
metabolically distinct [11]. Most intracellular symbionts are ver-
tically transmitted during embryogenesis or oogenesis [9, 12-15],
reflecting a high degree of integration between a symbiont and its
host [16]. For example, aphids transmit their nutritional endosym-
biont, Buchnera, during embryo development through calibrated
cycles of exocytosis and endocytosis [17]. Buchnera cells released
from maternal symbiotic organs colonize cells fated to become
bacteriocytes in the developing embryo [17]. Symbionts can even
leverage the host’s developmental machinery to facilitate colo-
nization, as demonstrated in carpenter ants and the intertwined
regulatory network shared with their endosymbiont Blochmannia
[18].

For extracellular symbionts residing along the gut lumen
[19-21], within specialized crypts [22-25], or on cuticular surfaces
[26, 27], symbiont colonization is only demonstrated to take place
following embryo development [28], i.e. after hatching [29, 30],
and during immature developmental stages such as larvae or
nymphs. For example, bean bugs (Riptortus pedestris) acquire
their beneficial Caballeronia symbionts from the environment
every generation [31]. Caballeronia colonizes its host during a
specific developmental window after hatching [23], triggering
the rapid formation of specialized symbiont-harboring gut crypts
[32]. Maternal secretions can also ensure the strict vertical
transmission of extracellular symbionts in newly hatched insects,
as demonstrated in wasps [33], beetles [34, 35], and numerous
stinkbugs [22, 36, 37]. In this study, however, we report that
infection by an extracellular symbiont can precede eclosion from
the egg, by describing the colonization dynamics of a beneficial
microbe in tortoise beetles (Chrysomelidae: Cassidinae).

Tortoise beetles are hosts to Candidatus Stammera capleta,
a y-proteobacterial symbiont [38-43]. Stammera is housed
extracellularly in specialized organs near the foregut where it
upgrades the digestive physiology of its host by supplementing
pectinases and other plant cell wall-degrading enzymes [38,
39, 41, 44]. In adult females, Stammera is also maintained in
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Figure 1. Tortoise beetles transmit Stammera via egg caplets; (A) the tortoise beetle Chelymorpha alternans; (B) eggs deposited on an Ipomoea batatas leaf,
each topped with a Stammera-bearing caplet at the anterior pole; (C-E) FISH on longitudinal section of the egg caplet, where Stammera is separated
from the developing embryo via a thin membrane; probes: Stammera 16S (magenta), beetle 185 (green), and DAPI-stained DNA (yellow); green
autofluorescence is observed for the chorion and egg caplet; abbreviations: C, caplet; M, caplet membrane; E, embryo; S, Stammera-bearing spheres;

scale bar is included for reference: 50 um.

ovary-associated glands to ensure the microbe’s vertical trans-
mission [38]. Cassidines propagate the symbiosis by depositing
a symbiont-bearing “caplet” at the anterior pole of each egg
(Fig. 1A and B) [38, 44]. The caplets are populated by ~12 spherical
secretions where Stammera is embedded (Fig. 1C-E) [38, 44].
Developing embryos are separated from Stammera by a thin,
impermeable membrane (Fig. 1E) that remains intact until the
final 24 h of embryogenesis [44]. Experimental removal of the
caplet disrupts Stammera transmission, yielding symbiont-free
(aposymbiotic) larvae that exhibit a diminished digestive capacity
and low survivorship [38, 44]. Reintroducing symbiont-bearing
caplets to aposymbiotic cassidines after hatching does not rescue
infection, suggesting that Stammera colonizes its host during
embryo development [44], in contrast to the posthatch acquisition
routes described for extracellular insect symbionts [28].

Here, we (i) determine the colonization dynamics of Stammera
relative to the early developmental stages of the tortoise beetle
Chelymorpha alternans, (i) define a narrow temporal window for
symbiont acquisition following experimental manipulation, (iii)
test whether the formation of symbiotic organs depends on sym-
biont presence, and (iv) quantify the proliferation of Stammera
after metamorphosis relative to the nutritional and reproductive
requirements of its beetle host.

Results and discussion

Stammera colonizes its host during embryo
development

To investigate the morphogenesis of the foregut symbiotic organs
and their colonization by Stammera, we applied fluorescence in

situ hybridization (FISH) using cross sections of embryos dissected
from eggs (96, 72, 48, and 24 h prior to hatching), along with larvae
spanning the five instar stages of C. alternans (Fig. 2). We observe
that evaginations resulting in the foregut symbiotic organs begin
to form in the final 72 h of embryogenesis and that these struc-
tures become fully developed at the —48-h mark (Fig. 2). However,
the foregut symbiotic organs remain empty until the last day of
embryo development, during which Stammera colonization takes
place (Fig. 2). Our current findings confirm that infection by Stam-
mera occurs prior to larval eclosion, in contrast to the posthatch
dynamics described for other extracellular insect symbionts [28].
Across stinkbugs [22, 24, 31, 36, 37], wasps [33], ants [26], bees [20],
and beetles [27], hatchlings are initially aposymbiotic but even-
tually acquire their extracellular microbes from the environment
through trophallaxis or by consuming maternal secretions [28].
Stammera’s colonization dynamics may reflect its host’s
requirements for pectinases and other plant cell wall-degrading
enzymes upon larval eclosion [38, 44]. We observe that newly
emerged larvae shift away from their chorions and onto the
leaf surface within 43.1 (+4.82) min after hatching. Although
speculative, the immediate onset of folivory in larvae may select
for the foregut symbiotic organs to be fully developed and colo-
nized prior to hatching (Fig. 2). Stage-specific host requirements
could explain the divergent colonization dynamics described
for Stammera relative to other extracellular symbionts, such as
Tachikawaea in urostylidid bugs [22] and Burkholderia in darkling
beetles [27]. Urostylidid nymphs initially consume maternally
provisioned, nutritionally rich jelly ahead of eventually transition-
ing to sap-feeding weeks later [22]. As Tachikawaea supplements
essential nutrients to balance a sap-based diet, its posthatch
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Figure 2. Stammera colonization dynamics during embryo and larval development; FISH on sagittal sections of dissected C. alternans embryos (96, 72,
48, and 24 h prior to hatching) and larvae (first to fifth instars); insets show the foregut symbiotic organs at a greater magnification; the foregut
symbiotic organs begin to form between 72 and 48 h prior to larval eclosion and are colonized by Stammera within 24 h; probes: Stammera 16S TRNA
(magenta), host 185 rRNA (green), and DAPI-stained DNA (yellow); scale bars are included for reference: 60 and 400 pum.

proliferation within specialized gut crypts in nymphs coincides
with the commencement of plant-feeding, thereby matching the
nutritional requirements of the host [22]. Similarly, in the darkling
beetle Lagria villosa, infection by Burkholderia ectosymbionts
takes place after hatching [27], reflecting the microbe’s role in
upgrading the defensive biochemistry of its host during molting
and, eventually, metamorphosis [45, 46]. The dorsal symbiotic
organs of developing embryos are initially symbiont-free.

However, these structures are later colonized in hatching larvae
[27], contrasting early histological descriptions by Hans-Jirgen
Stammer that suggested a prehatch infection in the congeneric
Lagria hirta [47]. Although stage-specific host requirements may
select for Stammera’s unique prehatch colonization dynamics, it
is also conceivable that structural constraints of a developed
symbiotic organ in the gut may limit symbiont uptake after
hatching.
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A prehatch window for symbiont colonization

The mechanisms guiding symbiont colonization are often tightly
regulated and highly synchronized relative to insect development
[5,48]. Governing that interplay are cellular [9], morphological [27,
49], and behavioral adaptations [37] to ensure symbiont uptake
while mitigating the risk of secondary exposure to pathogens
and parasites [19]. Infection competence can thus vary through-
out the lifespan of an insect, resulting in a defined window
for symbiont colonization [23, 26, 27]. Bean bugs, for example,
acquire their Caballeronia symbionts from the environment every
generation [31], but do so more faithfully during their second
and third nymphal instar stages relative to the first, fourth, and
fifth [23]. For darkling beetles, larvae are efficiently colonized by
their defensive ectosymbionts after hatching, but are less likely
to acquire their microbes when exposed at a later stage [27]. Here,
we explored whether similar developmental constraints govern
Stammera colonization in tortoise beetles.

Guiding our experimental framework were two observations:
(i) foregut symbiotic organs are developed and colonized by Stam-
mera 24 h prior to larval eclosion (Fig. 2), and (i) aposymbiotic
insects do not reacquire the microbe after hatching [44]. This
suggests that access to Stammera at least 24 h prior to hatching
is critical for successful colonization and that infection efficiency
decreases over time. Therefore, we reapplied Stammera-bearing
spheres to the anterior pole of caplet-free eggs at two timepoints:
24 and 12 h prior to hatching. In addition to a control group where
egg caplets were left untreated, we compared Stammera infection
frequencies across all treatments in second instar larvae (Fig. 3).

Reestablishing embryo access to Stammera-bearing spheres
24 h prior to eclosion restores symbiont infection rates to levels
mirroring the untreated control group (Fisher’s exact test using
the Holm-Bonferroni’s correction, P=1) (Fig. 3). This is consistent
with the timing of caplet membrane rupture [44] and the onset
of symbiont colonization in the foregut symbiotic organs (Fig. 2).
In contrast, Stammera was acquired less efficiently when spheres
were resupplied 12 h later (Fisher’s exact test using the Holm-
Bonferroni’s correction, P=.011). Delayed access constrained
symbiont infection competence (Fig.3), pointing to a narrow
developmental window for efficient colonization. Although
colonization frequency drastically decreased, the effects were
not total, indicating that Stammera can still be acquired during
the final 12 h of embryogenesis, albeit less efficiently (Fig. 3).
Several factors may underpin this process [5, 49, 50], including
mechanical adaptations ensuring that the symbiotic organs
are only populated by Stammera as opposed to environmental
microbes, or potential pathogens encountered after hatching. In
bean bugs, for example, midgut crypts colonized by Caballeronia
become irreversibly sealed following morphological modifications
to a connective “sorting” channel [49, 50]. We observe a similar
duct connecting the foregut to the symbiotic organs in tortoise
beetles [38]. Although speculative, this channel may become
less permeable during the latter stages of embryo development,
thereby limiting microbial passage over time.

Foregut symbiotic organs develop independently
of Stammera infection

Symbiotic organs vary considerably in their morphology and
developmental features [51]. Many reflect ancient evolutionary
origins where organ formation and development proceeds
autonomously, whereas others are triggered by microbial factors
that promote cellular differentiation and morphogenesis in the
host [52].

Here, we clarified whether Stammera induces the development
of the foregut symbiotic organs in its beetle host. Two observa-
tions indicated that these derived ceca develop independently,
despite an obligate co-dependence [38, 44] and an intertwined co-
evolutionary history between Stammera and tortoise beetles [39,
41]. First, the foregut symbiotic organs form prior to symbiont
colonization (Fig. 2), highlighting that the differentiation process
precedes contact with Stammera. Second, the evolutionary loss of
Stammera in a subset of Cassidinae species does not correspond to
the absence of symbiotic organs [41]. These beetles retain vestigial
structures devoid of microbes, implying that Stammera does not
trigger their formation [41]. To test this experimentally, we com-
pared the morphology of the foregut symbiotic organs in symbi-
otic and aposymbiotic larvae. These organs developed fully in both
groups (Fig. 4), retaining their sac-like morphology in aposym-
biotic and symbiotic larvae alike (Fig. 4A-D). Additionally, the
epithelial extensions where Stammera is typically embedded were
also present, highlighting the conserved cellular features of the
symbiont-bearing structures in an aposymbiotic state (Fig. 4E-H).
It is unclear, however, whether Stammera presence affects cell
division and cell death in its host—two processes shown to be
stimulated by symbiont infection in insects [32].

Although the developmental origin of the foregut symbiotic
organs remains undescribed in tortoise beetles, it is possible that
it represents an ingrained process that was coopted to house
and maintain beneficial microbes in the gut. Other leaf beetles
engaging in functionally convergent digestive symbioses also host
their microbial partners in sac-like structures derived from gastric
ceca [53-56]. This is analogous to stinkbugs and their diverse
nutritional symbioses with extracellular bacteria [28]. Stinkbugs
belonging to the Plataspidae [24, 57], Urostylididae [22], Acanthoso-
matidae [58], Alydidae [23, 31, 51], and Pentatomidae [59-62] families
all house their symbionts in crypts developing in the posterior
midgut. Recent findings indicate that the underlying molecular
and cellular processes appear to be decoupled from symbiont
presence, at least in a subset of species [60]. In the case of
the pentatomid Plautia stali, the experimental loss of its obligate
Pantoea symbiont does not alter crypt formation and cellular dif-
ferentiation [60], an observation thatis consistent with our finding
that the foregut symbiotic organs also develop independently
of Stammera in tortoise beetles (Fig. 4). This contrasts diverse
symbiotic systems where microbial colonization induces organ
formation [51, 59, 60], as demonstrated in Caballeronia-harboring
bean bugs [32], Vibrio-hosting squids [63-65], and leguminous
plants in partnership with rhizobia [66, 67].

Stammera population dynamics relative to adult
nutritional and reproductive requirements

Symbiont density can drastically fluctuate throughout the life
cycle of its host [4, 68]. Such differences can be especially pro-
nounced in partnerships where the microbial partner is housed
in specialized cells or organs [68-70]. Beyond maximizing the
benefits derived through symbiosis, these organs enable the host
to regulate symbiont abundance relative to its own development
and metabolic requirements [4, 48]. That dynamic is evident in
weevils in their symbiosis with Sodalis, a nutritional symbiont
that contributes to cuticle synthesis in its host by supplementing
tyrosine and phenylalanine [6]. In the first days after metamor-
phosis, symbiont abundance sharply increases within midgut-
associated bacteriomes, matching its host’s requirements for aro-
matic amino acids that are required for exoskeleton develop-
ment [68]. Upon cuticle formation, however, Sodalis is rapidly
eliminated through host-driven apoptosis and autophagy [68].
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Figure 3. A narrow developmental window for symbiont colonization; Stammera infection frequencies in C. alternans larvae following experimental
manipulation of the egg caplet and its symbiont-bearing spheres (Fisher’s exact test, P <.001); number of samples =33 larvae; caplet intact (13),
Stammera-bearing spheres reapplied 24 h prior to hatching (10), Stammera-bearing spheres reapplied 12 h prior to hatching (10); whiskers denote the
95% binomial confidence intervals. Different letters above the bars indicate significant differences.

Most strikingly, the symbiont continues to persist within apical
bacteriomes associated with the ovaries, thereby ensuring its
vertical transmission [68]. Here, we explored the proliferation
of Stammera upon adult eclosion, and in light of its discrete
localization within two functionally divergent symbiotic organs:
foregut symbiotic organs to facilitate folivory (Fig. 5A), and ovary-
associated glands to ensure the symbiont’s vertical propagation
(Fig. 5B) [38].

We observe that the foregut symbiotic organs are already
populated by Stammera following metamorphosis in both males
and females (Fig. 5C-E). This corresponds with the immediate
resumption of folivory (1+0 days), highlighting the host’s
metabolic requirements for symbiosis-derived digestive enzymes

[38, 44]. How Stammera subsists within the foregut symbiotic
organs, despite the likely immune challenges and epithelial
transformation that accompanies its host’s metamorphosis [71],
is still unknown. It is possible that these organs undergo a
similar morphological and spatial reorganization as observed in
Sodalis-harboring weevils [6], thereby ensuring the persistence of
symbiosis during pupation. In quantifying symbiont abundance
within the foregut symbiotic organs (Fig. 5D and E), we observe a
highly stable Stammera population during adulthood (males: LM,
Fo40=0.8, P=.62; females: LM, Fogo =1.01, P=.38), matching the
steady feeding behavior recorded for cassidines [72], including
C. alternans [73, 74]. For each sampling day, males and females
did not differ in their Stammera titers (linear mixed model
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Figure 4. The foregut symbiotic organs develop independently of Stammera; FISH micrographs of whole-mount (A-D) and cross sections (E-H) of the
foregut-midgut tract dissected from symbiotic and aposymbiotic second instar larvae; insets show the foregut symbiotic organs at a greater
magnification; probes: Stammera 16S TRNA (magenta), host 18S rRNA (green), and DAPI-stained DNA (yellow); abbreviations: FG, foregut; MG, midgut;
FSO, foregut symbiotic organ; scale bars are included for reference.
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organs, and (B) ovary-associated glands; (C) FISH cross sections of foregut symbiotic organs 1, 9, 21, 29, and 36 days following metamorphosis;
Stammera abundance in the foregut symbiotic organs in (D) males (LM, Fg 409 =0.8, P=.62), (E) females (LM, Fg9 60 =1.01, P=.38), and in (F) the
ovary-associated glands of (LM, Fgs4- 19.91, P <.001) based on the quantification of the symbiont’s 16S rRNA gene copy numbers; lines represent
medians, boxes indicate 25-75 percentiles, and whiskers denote range; different letters above boxes indicate significant differences; the green- and
red-faded frames denote the onset of folivory and oviposition, respectively. (G) FISH micrographs of ovary-associated glands 1, 9, 21, 29, and 36 days
following metamorphosis; probes: Stammera 16S rRNA (magenta), host 18S rRNA (green), and DAPI-stained DNA (yellow); scalebars are included for

reference; abbreviations: n.s., not significant; d, day.

[LMM], Fo90=0.7, P=.71), which is consistent with the conserved
morphology of the foregut symbiotic organs across sexes [38, 41].

For the ovary-associated glands (Fig.5B), Stammera does
not colonize these organs immediately after metamorphosis
(Fig. 5F and G). Of the seven females examined on the first day
of adulthood, four lacked the symbiont in their transmission
glands (Fig. 5G). We observe that symbiont proliferation differed

significantly within the ovary-associated glands (LM, Fgs4- 19.91,
P<.001) (Fig.5FandG), in contrast to the stable Stammera
population within the foregut symbiotic organs (Fig. 5C-E; males:
LM, Fg40=0.8,P=.62; females: LM, Fg 5o =1.01, P=.38). A significant
peak is observed on the second day, followed by a more gradual
increase before oviposition (Fig. 5F and G). The diverging symbiont
proliferation dynamics in both organs appears to reflect their
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distinct functions relative to the maintenance and propagation
of Stammera. Folivory resumes following metamorphosis and
continues throughout adulthood [73, 74], requiring the foregut
symbiotic organs to be already colonized by Stammera (Fig. 5C)
and for the symbiont population to persist at a relatively stable
level (Fig. 5D and E). In contrast, we observed that egg-laying
commences 29 +2.21 days following adult eclosion. The temporal
lag between folivory and the onset of oviposition matches our
observation that the ovary-associated glands become densely
occupied later in adulthood (Fig. 5F and G). This revealed that
Stammera’s population in adult females is decoupled across two
types of symbiotic organs and appears to be regulated to meet
the nutritional requirements and reproductive cycle of its host
(Fig. 5).

Our quantification of Stammera titers in adults focused on
young, reproductively active beetles (Fig. 5). How senescence and
diapause impact symbiont density is also of interest and worthy
of exploring in future studies [68-70, 75]. Tortoise beetles exper-
imentally induced to enter diapause cease feeding and pause
egg-laying [73]. As similar observations are noted for senescing
cassidines [72], it is possible that these insects modulate their
symbiont titers, as shown in aphids [69], weevils [68], and ants
[70]. For example, older aphids recycle Buchnera through Rab7
recruitment and lysosomal activity following bacteriocyte cell
death [69]. Clarifying the population dynamics of Stammera during
the latter developmental stages of its host can shed light on the
mechanisms by which extracellular symbionts are regulated, and,
potentially, recycled upon fulfilling their host-beneficial roles.

Conclusions and outlook

By describing the colonization dynamics of Stammera capleta
within its beetle host, we uncovered a prehatch route that is
uncommon for extracellular insect symbionts. Several open
questions remain, including (i) how Stammera contends with the
likely transformation of its habitat during metamorphosis by its
host, (i) which molecular and cellular mechanisms underlie the
morphogenesis of symbiotic organs during embryo development
in cassidines, and (iii) whether these factors reflect a shared
evolutionary origin with other symbiotic leaf beetles, including
members of the Eumolpinae [54] and Donaciinae subfamilies
[53]. Given recent advances in microdissections, transcriptome
sequencing, and RNA interference, our future efforts will
complement a growing set of studies on the developmental
basis and regulation of symbiotic organs and bacteriomes [18,
32, 60] and extend our knowledge on the adaptations ensuring
the maintenance of specialized microbes in the gut [76].

Materials and methods
Insect rearing

A laboratory culture of C. alternans is continuously maintained at
the Max Planck Institute for Biology in Tibingen, Germany. The
insects are reared in mesh cages (60 x 60 x 90 cm) along with their
host plant, Ipomoea batatas [77]. Eggs were reared in an incubator
(Memmert, Germany) at a constant temperature of 26°C to control
for embryo development as previously reported by Pons et al. [44],
thereby ensuring low variance in developmental time.

Fluorescence in situ hybridization

To localize Stammera in the symbiotic organs of C. alternans across
different developmental stages, we applied FISH on tissue sec-
tions and whole-mounts. We designed an oligonucleotide probe

specifically targeting the 16S rRNA sequence of Stammera from C.
alternans, SAL227 (5 GGTCTTGAAAAAAAAAGATCCCC'3) using the
software ARB [78]. We included the eukaryotic 18S rRNA probe
EUK-1195 (5GGGCATCACAGACCTG'3) [79] to localize C. alternans
cells. All probes were dually labeled with fluorescent dyes at
their 5 and 3’ ends. Unless specified, fixation was done in 4%
formaldehyde in PBS for 4 h at room temperature under gentle
shaking (400 rpm). We visualized the samples using a LSM 780
confocal microscope (Zeiss, Germany) and an Axio Imager Z1
microscope (Zeiss, Germany).

Preparation of Technovit sections

Embryos and larvae were embedded and sectioned in Technovit.
Due to the fragility of early embryos, whole eggs were placed
into Carnoy’s solution (ethanol:chloroform:acetic acid =6:3:1) and
incubated overnight at room temperature for fixation [80] before
washing and dissection from the chorion in 70% ethanol. Subse-
quently they were dehydrated in a series of increasing concentra-
tions of ethanol: 3x 80%, 3x 90%, 3x 96%, and 3x 100% (10 min
each), followed by three incubations in 100% acetone for 15 min
each. From the embryo stage 24 h before hatching onward, these
steps were adjusted due to a different sample size and compo-
sition. These were fixed in 4% formaldehyde (formaldehyde: PBS
1X) (v/v) at room temperature, shaking at 500 rpm for 4-10 h,
depending on their size. For more efficient penetration by the
fixative, larvae appendages, peripheral chaeta, and furcal chaeta
were removed 1 h after the start of fixation. Fixation of fourth
and fifth instar larvae was interrupted after the first half of the
incubation time. These larvae were cut in half and subjected to
two incubations in chloroform at room temperature for 24 h under
shaking (800 rpm) before returning them to the fixation solution.
After fixation, larvae were dehydrated in a series of increasing
concentrations of tertiary butanol in water (v/v) as follows: 3x
80% (30 min each), 1x 90% (1 h), 1x 96% (1 h), and 3x 100% (2 h
each), followed by two incubations in 100% acetone for 1 h each.
Dehydration steps were performed under shaking (800 rpm) at
26°C (100% tertiary butanol). Following dehydration, all samples
were embedded in Technovit 8100 following the manufacturer’s
protocol and clustered in Teflon molds (Kulzer, Germany). The
Technovit-embedded samples were sagittal-sectioned at 7 pum
using either home-made glass knives (embryos and first to third
instar larvae) or metal HistoBlades (fourth and fifth instar larvae)
(Kulzer, Germany) on a conventional microtome (Leica, Germany).
Sections were transferred to water droplets on HistoBond glass
slides (Marienfeld, Germany) kept at 50°C over a warm plate for
20 min to promote section unfolding. FISH was performed as
described [81].

Fluorescence in situ hybridization on paraffin
sections

Foregut symbiotic organs of symbiotic and aposymbiotic second
instar larvae and foregut symbiotic organs and ovary-associated
glands of adult females at different timepoints following meta-
morphosis were dissected and fixed. Dehydration was achieved by
an increasing ethanol series of 60%, 70%, 80%, 96%, and 100% (v/v)
for one step of 1 h for 60%, 70%, and 80% ethanol and three steps
of 1 h each for 96% and 100% ethanol. After dehydration, samples
were gradually transferred into paraffin by passing through three
incubations of Roti-Hostol (CarlRoth, Germany) at room temper-
ature (2 x 40 min, 1 x overnight), followed by incubations at 60°C
in Roti-Histol:paraffin (1:1 v/v) for 60 min and paraffin (Paraplast
High Melt, Leica, Germany) (3 x 60 min, 1 x overnight).
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The paraffin-embedded samples were cross sectioned at 10 um
using a conventional microtome and mounted on poly-L-lysine-
coated glass slides (Epredia, Germany) using a 40°C water bath.
Paraffin sections were dried at room temperature overnight and
incubated at 60°C for 1 h to improve tissue adherence. The sec-
tions were dewaxed with Roti®-Histol in three consecutive steps
for 10 min each followed by ethanol 100% for 10 min. Next,
slides were dried at 37°C for 30 min. Probes were dissolved at
900 nM in the hybridization buffer containing 35% formamide
(v/v), 900 mM NacCl, 20 mM Tris-HCl pH 7.8, 1% blocking reagent
for nucleic acids (v/v) (Roche, Switzerland), 0.02 SDS (v/v), and
10% dextran sulfate (w/v). Hybridization was done at 46°C for
4 h. Sections were rinsed in 48°C washing buffer [70 mM Nacl,
20 mM Tris-HCl pH 7.8, 5 mM EDTA pH 8.0, and 0.01% SDS (v/v)]
and transferred to fresh 48°C washing buffer for 15 min followed
by room-temperature washes in PBS (20 min) and milliQ water
(1 min). Sections were counterstained with DAPI (5 ug/ml) for
10 min at room temperature, dipped in milliQ water, dipped in
ethanol 100%, and dried at 37°C for 30 min. Slides were mounted
using the ProLong® Gold antifade mounting media (Thermo Fisher
Scientific, MA), cured overnight at room temperature, and stored
at —20°C until visualization.

Whole-mount fluorescence in situ hybridization

Whole-mount FISH was performed on symbiotic and aposymbi-
otic second instar larvae as well as adult females. Fixed samples
were washed in PBS at room temperature under gentle shaking
for 30 min and permeabilized in acetic acid 70% (v/v) at 60°C for
1 min. Samples were washed three times in PBS at room for 5 min.
Samples were carefully laid on KIMTECHScience precision wipes
to remove PBS from the samples. For hybridization, samples were
transferred in hybridization buffer (0.9 M NacCl, 0.02 M Tris/HCl
pH 8.0, 0.01% SDS) containing 900 nM each probe and 5 ug/ml
DAPI for DNA counterstaining. Samples were hybridized at 46°C
for4h and transferred to 48°C washing buffer (0.07 M NacCl, 0.02 M
Tris/HCl pH 8.0, 0.01% SDS, 5 mM EDTA) for 15'. Samples were
mounted on microscopy slides with VectaShield mounting media
(Vector, Burlingame, CA).

Experimental elimination of Stammera capleta

Three egg masses (~30 eggs each) were collected from three
different C. alternans females. Each was then separated into
two experimental treatments, an untreated control and an
aposymbiotic treatment. To generate aposymbiotic larvae, caplets
were removed from eggs using sterile dissection scissors, followed
by surface sterilization with 99% ethanol as previously outlined
[44]. Experimental treatments were maintained as described
above. Second instar larvae were collected 10 days after hatching.
Foregut-symbiotic organs of larvae were dissected and fixed in
4% formaldehyde/PBS (v/v) (Electron Microscopy Sciences, PA)
at room temperature for 4 h under shaking (500 rpm). Samples
were stored in PBS:ethanol (0.5x:50%) at —20°C until microscopy
processing.

Experimental manipulation to elucidate the
timing of symbiont acquisition

Three egg masses originating from different C. alternans females
were collected. Each mass was then separated into three exper-
imental treatments: (i) untreated control and (ii) eggs whose
caplets were removed, and Stammera-containing spheres were
resupplied 24 h prior to hatching, and (iii) eggs whose caplets
were removed and Stammera-containing spheres were manually
resupplied 12 h prior to hatching. Across both time points, fresh

spheres were carefully extracted and resupplied to caplet-free
eggs as previously described by Pons et al [44]. Three days after
hatching, DNA was extracted from larvae using the EZNA® Insect
DNA Kit, and Stammera infection frequencies of each treatment
were evaluated by Stammera-specific diagnostic PCR, as previously
described in Pons et al [44]. Diagnostic PCR was conducted on an
Analytik Jena Biometra TAdvanced Thermal Cycler (Analytik Jena
AG, Germany) using a final volume of 20 ul containing 1 ul of
DNA template, 0.5 uM of each primer and 2x DreamTaq Green
PCR Master Mix (ThermoFisher Scientific, MA). The following cycle
parameters were used: 5 min at 95°C, followed by 34 cycles of 95°C
for 30 s, 57.7 or 62°C (depending on the primer) for 30 s, 72°C for
1 min, and a final extension time of 2 min at 72°C [44]. Primers
used for diagnostic PCR are listed in Table S1.

Folivory and oviposition monitoring in adult
beetles

To determine when larvae transition away from their chorions
and onto their host plants after hatching, we monitored the
commencement of folivory in C. alternans across five egg masses
and recorded the first instance of leaf damage by eclosing lar-
vae. To time the resumption of folivory and record the onset of
oviposition in C. alternans adults, we monitored beetles in small
mesh cages (30 x 30 x 30 cm) supplemented with a single host
plant. A total of six mating pairs were placed in six separate cages
immediately following metamorphosis. Feeding and oviposition
were monitored daily by direct observation of foliar damage and
presence of egg clutches, respectively.

Stammera population dynamics in adult beetles

Stammera population dynamics within the foregut symbiotic
organs and the ovary-associated glands were determined using
gPCR. Seven and five egg clutches were collected from females
and males, respectively, and sibling groups were maintained
on individual small mesh containers (30 x 30 x 30 cm) with a
host plant until they reached adulthood. A single female and
male were sampled per replicate and their foregut symbiotic
organs (females and males) and ovary-associated glands (females)
were dissected at Days 1, 2, 3, 6, 9, 12, 15, 21, 29, and 36
following metamorphosis, accounting for 140 female and 50 male
samples, respectively. Following dissection, symbiotic organs were
preserved in 500 ul of 100% ethanol and kept at —70°C until
DNA extraction. DNA was extracted from C. alternans symbiotic
organs using the EZNA® Insect DNA Kit, and Stammera relative
abundance was estimated using an Analytik Jena qTOWER?
cycler (Analytik Jena AG, Germany). The final reaction volume of
25 ul included the following components: 1 ul of DNA template,
2.5 pul of each primer (10 uM) (Table S1), 6.5 ul of autoclaved
distilled H,0, and 12.5 ul of Qiagen SYBR Green Mix (Qiagen,
Germany). Primer specificity was verified in silico by comparison
with reference bacterial sequences in the Ribosomal Database
and NCBI. Additionally, PCR products were sequenced to confirm
primer specificity in vitro. Standard curves (10-fold dilution
series from 1072 to 10~ ng/ul~1) were generated using purified
PCR products and measuring their DNA concentration using
a NanoDrop TM1000 spectrophotometer. The following cycle
parameters were used: 95°C for 10 min, followed by 45 cycles
of 95°C for 30 s, 62.7°C for 20 s, and a melting curve analysis was
conducted by increasing temperature from 60°C to 95°C during
30 s. Based on the standard curve, absolute copy numbers were
calculated, which were then used to extrapolate symbiont relative
abundance by accounting for the single copy of the 16S gene in
Stammera’s genome, as previously described [44].
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Statistical analyses

Stammera population dynamics within the foregut symbiotic
organ and ovary-associated glands throughout female devel-
opment was analyzed using general linear models (LMs) after
data transformation and validation of a normal distribution
(Table S2A). The time and replicate variables were used as fixed
factors. The Stammera population dynamics within the foregut
symbiotic organ along male development was also evaluated
using a general LM after data transformation and validation of a
normal distribution and using time and replicate as fixed factors
(Table S2A). After statistical modeling, Tukey’'s HSD pairwise
comparisons were performed using the “glht” function with
Bonferroni corrections. To determine whether there was an effect
of sex on the Stammera population dynamics within the foregut
symbiotic organ of C. alternans, a general LMM was performed
after data transformation and validation of a normal distribution,
using time, sex, and their interactions as fixed factors (Table S2B).
In addition, the replicate variable was considered as a random
factor because females and males were not harvested from the
same egg clutches. The nlme package with the Ime function was
used for LMM [82]. Fisher’s exact test was used to assess the effect
of experimental manipulation on Stammera infection frequency
in C. alternans larvae, and P-values were adjusted for multiple
comparisons using the Holm-Bonferroni method (Table S2C).
Statistical analyses were performed using the software R version
3.5.3 (R Core Team, 2019) [83], using the multcomp package for
Tukey’s HSD pairwise comparisons [84] and ggplot2 package for
boxplot visualization [85].
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