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A B S T R A C T   

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incom
pletely understood, structural and functional network alterations are increasingly recognized to be at the core of 
the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in 
ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined 
multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain 
Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural 
connectivity data in each participant using a Riemannian optimization procedure that varies the times that 
simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neuro
typical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating 
better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy dif
ferences (Δprediction accuracy) were marked in transmodal association systems, such as the default mode 
network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic 
regime at higher simulated diffusion times. We compared regional differences in Δprediction accuracy between 
both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis 
revealed that between-group differences in Δprediction accuracy followed a sensory-to-transmodal cortical hi
erarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. 
Multivariate associative techniques revealed that structure-function differences reflected inter-individual dif
ferences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach 
sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mecha
nisms are implicated in the condition and that these can help explain its wide range of associated symptoms.   

1. Introduction 

Autism spectrum disorder (ASD) is a common neurodevelopmental 
diagnosis encompassing atypical social and communication abilities, 

repetitive behaviors and interests, and sometimes altered sensory and 
perceptual processing as well as imbalances in verbal and non-verbal 
abilities (Christensen et al., 2018; Hong et al., 2022, 2020; Mottron 
et al., 2006). While biological underpinnings remain incompletely 

* Corresponding author at: Department of Data Science, Inha University, Incheon, South Korea. 
** Corresponding author at: Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill Uni

versity, Montreal, Quebec, Canada. 
E-mail addresses: boyong.park@inha.ac.kr (B.-y. Park), boris.bernhardt@mcgill.ca (B.C. Bernhardt).  

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/ynimg 

https://doi.org/10.1016/j.neuroimage.2023.120481 
Received 20 May 2023; Received in revised form 29 November 2023; Accepted 1 December 2023   

mailto:boyong.park@inha.ac.kr
mailto:boris.bernhardt@mcgill.ca
www.sciencedirect.com/science/journal/10538119
https://www.elsevier.com/locate/ynimg
https://doi.org/10.1016/j.neuroimage.2023.120481
https://doi.org/10.1016/j.neuroimage.2023.120481
https://doi.org/10.1016/j.neuroimage.2023.120481
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage 285 (2024) 120481

2

understood, convergent evidence supports a key role of atypical brain 
networks. Indeed, there is now an increasing catalog of ASD-related 
genes and pathways involved in synaptic and circuit organization 
(Geschwind, 2011; Quesnel-Vallières et al., 2019; Rylaarsdam and 
Guemez-Gamboa, 2019). Moreover, several histopathological studies 
suggest dendritic reorganization (Hutsler and Zhang, 2010; 
Martínez-Cerdeño, 2017), alterations in cortical lamination (Hutsler 
et al., 2007; Simms et al., 2009), and atypical columnar layout in in
dividuals with ASD (Amaral et al., 2008; McKavanagh et al., 2015). 
Molecular and circuit findings are complemented by in vivo magnetic 
resonance imaging (MRI) studies, suggesting atypical structural and 
functional network organization, often pointing to a mosaic pattern of 
increased and decreased connectivity in ASD (Di Martino et al., 2014; 
Hong et al., 2019b; Kana et al., 2014; Müller et al., 2011; Uddin et al., 
2013). Recent studies have represented structural and functional 
network organization in compact connectivity spaces, identified via 
unsupervised dimensionality reduction techniques, and tracked typical 
and atypical development (Hong et al., 2019a; Huntenburg et al., 2018; 
Margulies et al., 2016; Park et al., 2021b, 2022; Tian et al., 2020). In 
neurotypical adults, these techniques have robustly identified main 
spatial axes corresponding to the functional cortical hierarchy, differ
entiating sensory and motor systems interacting with the outside world 
from transmodal networks, such as default-mode and limbic networks, 
implicated in higher-order and social cognition (Bernhardt et al., 2022; 
Margulies et al., 2016; Paquola et al., 2022; Smallwood et al., 2021; 
Sydnor et al., 2021). Translating this framework to ASD, increasing 
evidence suggests a reduced hierarchical differentiation between sen
sory/motor and transmodal systems both at the level of structural and 
functional connectivity, which have been shown to relate to autism risk 
gene expression patterns (Park et al., 2021b). Overall, findings suggest 
that ASD perturbs neural circuit organization across multiple, likely 
interacting spatial scales. 

A key assumption of neuroscience is that brain structure and function 
are intertwined. Expanding from experimental explorations in non- 
human animals, imaging studies in neurotypical populations have 
addressed structure-function coupling in the living human brain (Baum 
et al., 2020; Honey et al., 2009; Mîsic et al., 2016; Park et al., 2021d; 
Snyder and Bauer, 2019; Suárez et al., 2020; Vázquez-Rodríguez et al., 
2019). Generally, such work seeks to identify a mapping from structural 
connectivity (approximated via diffusion MRI tractography) to func
tional connectivity (estimated via functional MRI signal correlations). 
Approaches include statistical associative techniques, biophysical 
modeling, and graph communication models (Avena-Koenigsberger 
et al., 2019, 2018; Bazinet et al., 2021; Becker et al., 2018; Breakspear, 
2017; Deco et al., 2013; Goñi et al., 2014; Honey et al., 2009; Mîsic et al., 
2016; Rosenthal et al., 2018; Seguin et al., 2018; Wang et al., 2019). This 
body of work emphasizes that functional interactions unfold both along 
direct monosynaptic connections as well as indirect polysynaptic path
ways (Damoiseaux and Greicius, 2009; Goñi et al., 2014; Honey et al., 
2009; Seguin et al., 2019; Suárez et al., 2020). In neurotypical adults, 
our team recently proposed a novel approach to simulate functional 
interactions from structural connectivity with high fidelity and at an 
individual-participant level (Benkarim et al., 2022). This work derived 
low-dimensional eigenspaces from a structural connectome, on which 
virtual signal diffusion models were then used to predict inter-regional 
functional interactions. These diffusion processes unfold along existing 
connections and are governed by a free diffusion time parameter, with 
higher diffusion times implicating an increasing contribution of indirect 
pathways to functional interactions. In other words, this Riemannian 
manifold optimization framework can parameterize the impact of 
polysynaptic communication on global structure-function coupling. At a 
regional scale, comparing simulations with empirically measured data 
showed that while functional interactions of sensory and motor systems 
can be adequately modeled with only a limited number of synaptic steps, 
accurate simulations of interactions of transmodal systems require 
longer time scales, and thus a more polysynaptic regime. As such, mono- 

and polysynaptic communication mechanisms underpinning 
structure-function coupling in healthy individuals can be compactly 
described along an unimodal to transmodal brain hierarchy. 

Our study examined structure-function relations in autism and 
explored the differential impact of mono- vs polysynaptic communica
tion. Core to our approach was a Riemannian optimization and 
modeling framework (Benkarim et al., 2022), which has shown 
state-of-the-art performance in predicting functional interactions from 
structural connectivity data in single neurotypical individuals. We 
studied global and region-specific differences in prediction accuracy 
across diffusion times in individuals with ASD and neurotypicals to 
evaluate the impact of mono- and polysynaptic network communica
tion. The topography of ASD-related alterations was spatially associated 
with canonical features of macroscale functional organization, namely 
intrinsic functional systems and sensory-transmodal cortical hierarchi
cal gradients. Using partial least squares regression, we finally associ
ated ASD-related alterations with autistic symptoms and measures of 
verbal/non-verbal intelligence to explore how atypical 
structure-function coupling reflects behavioral phenotypes. 

2. Methods 

2.1. Study participants 

We studied 141 participants (80 ASD, 61 neurotypicals) obtained 
from three independent sites of (1) New York University Langone 
Medical Center (NYU), (2) Trinity College Dublin (TCD), and (3) San 
Diego State University (SDSU) from the Autism Brain Imaging Data 
Exchange initiative (ABIDE-II; https://fcon_1000.projects.nitrc.org/in 
di/abide) (Di Martino et al., 2017). Inclusion criteria were: (i) sites 
included children and adults with autism and controls with ≥10 in
dividuals per group, (ii) multimodal MRI data (i.e., T1-weighted, rest
ing-state functional MRI (rs-fMRI), and diffusion MRI) available, (iii) 
acceptable cortical surface extraction on T1-weighted MRI, (iv) low 
head motion in the rs-fMRI time series (i.e., >0.3 mm framewise 
displacement). Individuals with ASD were diagnosed by an in-person 
interview with clinical experts and gold standard instruments from the 
Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 2000) 
and/or Autism Diagnostic Interview-Revised (ADI-R) (Lord et al., 1994). 
Neurotypical controls did not have any history of mental disorders. For 
all groups, participants who had genetic disorders associated with 
autism (i.e., Fragile X), contraindications to MRI scanning, and who 
were pregnant were excluded. Detailed demographic information of the 
participants is reported in Supplementary Table 1. ABIDE data col
lections were performed in accordance with local Institutional Review 
Board guidelines. In accordance with HIPAA guidelines and 1000 
Functional Connectomes Project/INDI protocols, all ABIDE datasets 
have been fully anonymized, with no protected health information 
included. 

2.2. MRI acquisition 

The data from the three included sites were as follows:  

(i) NYU: Imaging data were acquired using a 3T Siemens Allegra 
scanner. The T1-weighted data were obtained using a 3D 
magnetization prepared rapid acquisition gradient echo 
(MPRAGE) sequence (repetition time (TR) = 2530 ms; echo time 
(TE) = 3.25 ms; inversion time (TI) = 1100 ms; flip angle = 7◦; 
matrix = 256 × 192; and voxel size = 1.3 × 1.0 × 1.3 mm3). The 
rs-fMRI data were acquired using a 2D echo planar imaging (EPI) 
sequence (TR = 2000 ms; TE = 15 ms; flip angle = 90◦; matrix =
80 × 80; number of volumes = 180; and voxel size = 3.0 × 3.0 ×
4.0 mm3). The diffusion MRI data were obtained using a 2D spin- 
echo EPI (SE-EPI) sequence (TR = 5200 ms; TE = 78 ms; matrix =
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64 × 64; voxel size = 3 mm3 isotropic; 64 directions; b-value =
1000 s/mm2; and 1 b0 image).  

(ii) TCD: Imaging data were acquired using a 3T Philips Achieva 
scanner. The T1-weighted MRI were acquired using a 3D 
MPRAGE (TR = 8400 ms; TE = 3.90 ms; TI = 1150 ms; flip angle 
= 8◦; matrix = 256 × 256; voxel size = 0.9 mm3 isotropic). The 
rs-fMRI data were acquired using a 2D EPI (TR = 2000 ms; TE =
27 ms; flip angle = 90◦; matrix = 80 × 80; number of volumes =
210; and voxel size = 3.0 × 3.0 × 3.2 mm3). The diffusion MRI 
data were acquired using a 2D SE-EPI (TR = 20,244 ms; TE = 79 
ms; matrix = 124 × 124; voxel size = 1.94 × 1.94 × 2 mm3; 61 
directions; b-value = 1500 s/mm2; and 1 number b0 image).  

(iii) SDSU: Imaging data were acquired using a GE 3T MR750 scanner. 
The T1-weighted MRI were acquired using a 3D fast spoiled 
gradient echo (FSPGR) (TR = 8136 ms; TE = 3.172 ms; TI = 600 
ms; flip angle = 8◦; matrix = 256 × 172; voxel size = 1 mm3 

isotropic). The rs-fMRI data were acquired using a 2D EPI (TR =
2000 ms; TE = 30 ms; flip angle = 90◦; matrix = 64 × 64; number 
of volumes = 180; and voxel size = 3.438 × 3.438 × 3.4 mm3). 
The diffusion MRI data were acquired using a 2D EPI (TR = 8500 
ms; TE = minimum; matrix = 128 × 128; voxel size = 1.875 ×
1.875 × 2 mm3; 61 directions; b-value = 1000 s/mm2; and 1 
number b0 image). 

2.3. Data preprocessing 

We preprocessed the T1-weighted data using FreeSurfer version 6.0 
(Dale et al., 1999; Fischl, 2012; Fischl et al., 2001, 1999a, 1999b; 
Ségonne et al., 2007), which includes gradient nonuniformity correc
tion, skull stripping, intensity normalization, and tissue segmentation. 
White and pial surfaces were generated through triangular surface 
tessellation, topology correction, inflation, and spherical registration to 
the fsaverage template surface. The rs-fMRI data were previously pro
cessed using C-PAC (https://fcp-indi.github.io) (Craddock et al., 2013), 
and provided by the ABIDE database (http://preprocessed-connectomes 
-project.org/abide/). The pipeline included slice timing and head mo
tion correction, skull stripping, and intensity normalization. Nuisance 
variables of head motion, average white matter and cerebrospinal fluid 
signal, and linear/quadratic trends were removed using CompCor 
(Behzadi et al., 2007). Band-pass filtering between 0.01 and 0.1 Hz was 
applied, and rs-fMRI data were co-registered to T1-weighted data in 
MNI152 standard space with boundary-based rigid-body and nonlinear 
transformations. The rs-fMRI data were mapped to subject-specific 
midthickness surfaces and resampled to Conte69. Finally, 
surface-based spatial smoothing with a full-width-at-half-maximum of 5 
mm was applied. The diffusion MRI data were processed using Mrtrix3 
(Tournier et al., 2019), including correction for susceptibility distor
tions, head motion, and eddy currents. Quality control involved visual 
inspection of T1-weighted data, and cases with faulty cortical segmen
tation were excluded. Cases with an rs-fMRI data framewise displace
ment >0.3 mm were also excluded (Power et al., 2014; Power et al., 
2012). 

2.4. Structural and functional connectivity 

Structural connectomes were generated from preprocessed diffusion 
MRI data using Mrtrix3 (Tournier et al., 2019). Anatomical constrained 
tractography was performed using different tissue types derived from 
the T1-weighted image, including cortical and subcortical grey matter, 
white matter, and cerebrospinal fluid (Smith et al., 2012). The 
T1-weighted MRI was registered to the diffusion MRI data with 
boundary-based registration, and the transformation was applied to 
different tissue types to register them onto the native diffusion MRI 
space. Multi-shell and multi-tissue response functions were estimated 
(Christiaens et al., 2015), and constrained spherical deconvolution and 
intensity normalization were performed (Jeurissen et al., 2014). Seeding 

from all white matter voxels, the tractogram was generated based on a 
probabilistic approach (Tournier et al., 2010, 2019; Power et al., 2012) 
with 40 million streamlines, with a maximum tract length of 250 and a 
fractional anisotropy cutoff of 0.06. Subsequently, 
spherical-deconvolution informed filtering of tractograms (SIFT2) was 
applied to reconstruct whole-brain streamlines weighted by the 
cross-section multipliers, which considers the fiber bundle’s total 
intra-axonal space across its full cross-sectional extent (Smith et al., 
2015). The structural connectome was built by mapping the recon
structed cross-section streamlines onto the Schaefer atlas with 200 
parcels (Schaefer et al., 2018), then log-transformed to adjust for the 
scale (Fornito et al., 2016). Functional connectivity matrices were 
generated by calculating Pearson’s correlations of time series between 
two different brain regions defined using the Schaefer atlas with 200 
parcels (Schaefer et al., 2018), and the correlation coefficients were 
Fisher’s r-to-z transformation to render data more normally distributed 
(Thompson and Fransson, 2016). 

2.5. Functional connectivity prediction using structural connectivity 

To predict functional connectivity from structural connectivity, we 
opted for a recently introduced Riemannian optimization approach 
(Benkarim et al., 2022). Core to this approach is the application of 
diffusion map embedding, a nonlinear dimensionality technique (Coif
man and Lafon, 2006), to the structural connectivity matrix to generate 
low-dimensional eigenvectors (i.e., diffusion maps), which are defined 
as follows: 

Ψt(i) = (λ0ψ0(i), λ1ψ1(i),…)
T
, (1)  

where Ψt(i) denotes the diffusion maps of a region i at diffusion time t, 
which controls the scale of eigenvalues, λk and ψk are the eigenvalues 
and eigenvectors, and T stands for transpose. Diffusion map embedding 
projects the original data into a low-dimensional eigenspace where 
distances between regions are related to their similarity in connectivity. 
The Euclidean distance among data points in the eigenspace is referred 
to as the diffusion distance, and it is defined as follows: 

D2
t (i, j) =

∑

k≥0
λ2t

k (ψ(i) − ψ(j))2
= ||Ψt(i) − Ψt(j)||2, (2)  

where D2
t (i, j) is the diffusion distance of the edge connecting the ith and 

jth brain region at diffusion time t, and ||⋅|| denotes the l2-norm. Thus, 
data points (i.e., brain regions) in the eigenspace are more closely 
located when longer diffusion times are applied. Here, we calculated the 
diffusion distances between the points across varying diffusion times. To 
predict functional connectivity, this approach uses kernel fusion to find 
a weighted combination of the kernels derived from the diffusion maps 
at each diffusion time using a radial basis function as follows: 

argmin
α∈Rm

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
F −

∑m

t=1
αtKt

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

2

F

+ μ1||α||
2
2, s.t. αt ≥ 0, ∀t = 1,…,m, (3)  

where F is the functional connectivity matrix, Kt(i, j) is the kernel of a 
radial basis function that is defined as exp( − γD2

t (i, j)), where γ is the 
kernel bandwidth, m is the total number of diffusion times, αt ≥ 0 is the 
coefficient corresponding to the kernel, μ1 is a trade-off parameter, and 
‖ ⋅||F is the Frobenius norm. The approach further uses a transformation 
matrix to rotate the diffusion maps before computing the kernels for 
each diffusion time so that the structural and functional embeddings 
share the same diffusion coordinates. Specifically, we aimed to find the 
rotation matrix Ω applied to the structural connectivity Y at diffusion 
time t as follows: 

arg min
Ω∈Rn×m

α∈Rm

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
F −

∑m

t=1
αtk(ΩYt)

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

2

F

+ μ1||α||
2
2,
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s.t. ΩΩT = ΩT Ω = In,

det(Ω) = 1,
αt ≥ 0,

∀t = 1,⋯,m,

(4)  

where In is the identity matrix with the size of n× n, det(⋅) is the matrix 
determinant, and [k(Γt)]i,j = exp( − γ ||Γt(i) − Γt(j)||2), where Γt(i) =

ΩYt(i) is the rotated structural diffusion map of the ith brain region. The 
rotation matrix may help identify the optimal paths through which to 
propagate information between different brain regions. Here, to solve 
the optimization problem, the Riemannian conjugate gradient algorithm 
(Absil et al., 2008) implemented in the Pymanopt toolbox (Townsend 
et al., 2016) was used. Details can be found elsewhere (Benkarim et al., 
2022). We performed the prediction procedure for ASD and control 
groups separately with a five-fold cross-validation. The prediction per
formance was assessed by calculating Pearson’s correlation of the upper 
triangular elements between empirical and predicted functional con
nectivity matrices. We assessed the prediction accuracy with varying 
diffusion times between t = 1 and t = 10. Differences in prediction ac
curacy between ASD and control groups were assessed based on 1000 
permutation tests. We randomly assigned subject indices and calculated 
differences in prediction accuracy between the new groups (Δr) to 
construct a null distribution. If the real difference did not belong to 95% 
of the null distribution, it was deemed significant. 

2.6. Between-group differences in regional prediction accuracy across 
diffusion times 

We also assessed regional prediction performances across varying 
diffusion times. We specifically investigated whether changes in 
structure-function coupling differed between ASD and neurotypicals. 
Our framework leveraged a Riemannian manifold prediction across 
diffusion times in a global and region-specific manner to assess the 
impact of polysynaptic communication. For each diffusion time, we 
calculated Pearson’s correlations between the empirical and predicted 
functional connectivity matrix of each brain region. In addition, at 
diffusion times that showed significant between-group differences in 
global prediction accuracy, we compared the regional prediction per
formance between ASD and control groups while controlling for age, 
sex, and site using a general linear model implemented in SurfStat 
(Larivière et al., 2023; Worsley et al., 2009). We corrected for multiple 
comparisons across regions using false discovery rate (FDR) adjustment 
(Benjamini and Hochberg, 1995). To assess the improvement of the 
prediction accuracy across diffusion times, we calculated the difference 
in prediction accuracy between the highest (t = 10) and lowest (t = 1) 
diffusion times (i.e., Δprediction accuracy). We then compared the 
Δprediction accuracy between ASD and control groups with controlling 
for age, sex, and site using a general linear model implemented in 
SurfStat (Larivière et al., 2023; Worsley et al., 2009), and multiple 
comparisons across brain regions were corrected using FDR (Benjamini 
and Hochberg, 1995). 

2.7. Topological and network organization of prediction accuracy 
difference across diffusion times 

We assessed underlying connectome profiles of the across-diffusion 
time prediction accuracy difference. First, we z-scored values in all 
participants relative to the distribution in neurotypicals. In other words, 
we removed the mean from neurotypicals from all values and divided 
the result by the standard deviation in neurotypicals. This procedure, 
thus, scaled individual values relative to the distribution of controls. We 
then stratified the parcel-wise Δprediction accuracy according to seven 
functional communities (visual, somatomotor, dorsal attention, ventral 
attention, limbic, frontoparietal, default mode) (Yeo et al., 2011) and 
four cortical hierarchical levels (idiotypic, unimodal association, 

heteromodal association, paralimbic) (Mesulam, 1998). For each 
macroscale functional network or level of cortical hierarchy, we quan
titatively assessed between-group differences in prediction accuracy 
improvements using two-sample t-tests. The significance of the differ
ences was assessed using 1000 permutation tests by randomly assigning 
subject indices, and multiple comparisons across brain networks or hi
erarchies were corrected using the FDR procedure (Benjamini and 
Hochberg, 1995). Next, we associated Δprediction accuracy with a 
functional principal gradient, representing a cortical hierarchy running 
from low-level sensory to higher-order transmodal system (Margulies 
et al., 2016). We obtained the functional gradient from the BrainSpace 
toolbox (Vos de Wael et al., 2020), which was generated using the 
Human Connectome Project database (Van Essen et al., 2013). Specif
ically, an affinity matrix was constructed with a normalized angle kernel 
with the top 10% entries for each parcel, and diffusion map embedding 
was applied (Coifman and Lafon, 2006), which is robust to noise and 
computationally efficient compared to other nonlinear manifold 
learning techniques (Tenenbaum et al., 2000; von Luxburg, 2007). It is 
controlled by two parameters α and t, where α controls the influence of 
the density of sampling points on the manifold (α = 0, maximal influ
ence; α = 1, no influence) and t scales the eigenvalues of the diffusion 
operator. The parameters were set as α = 0.5 and t = 0 to retain the 
global relations between data points in the embedded space following 
prior applications (Hong et al., 2019b; Margulies et al., 2016; Paquola 
et al., 2019; Park et al., 2021d; Vos de Wael et al., 2020). In datasets in 
both healthy adults as well as typically developing individuals (Leech 
et al., 2023; Smallwood et al., 2021; Valk et al., 2022), the gradient has 
previously been shown to follow established models of the primate 
cortical functional hierarchy and specifically differentiates sensory and 
motor networks from transmodal systems such as the default-mode 
network. We then associated the functional gradient with Δprediction 
accuracy of each individual within each group. The significance of the 
correlation was determined using 1000 non-parametric spin-tests for 
accounting for spatial autocorrelation (Alexander-Bloch et al., 2018; 
Larivière et al., 2021; Markello and Misic, 2021). Between-group dif
ferences in the associations between ASD and control groups were 
assessed using two-sample t-tests with 1000 permutation tests. 

2.8. Associations with behavioral phenotypes 

As a final analysis, we investigated behavioral associations of diffu
sion time-related structure-function coupling. We performed multivar
iate analysis using partial least squares (PLS) (Krishnan et al., 2011; 
McIntosh and Mǐsić, 2013) to associate Δprediction accuracy across 
diffusion times with ADOS social cognition, communication, and re
petitive behavior scores (Lord et al., 2000) as well as verbal and per
formance intelligence quotient (IQ) and their ratio (verbal/performance 
IQ) (Hong et al., 2022). PLS is an unsupervised multivariate statistical 
technique that decomposes two datasets into orthogonal sets of latent 
variables with maximum covariance (Krishnan et al., 2011; McIntosh 
and Mǐsić, 2013). We performed PLS analysis with 1000 bootstraps by 
randomly selecting subjects and estimated PLS scores as well as loadings 
of the latent variables. We calculated Pearson’s correlation between the 
PLS scores of Δprediction accuracy and behavioral phenotypes to assess 
the strength of their associations. The contribution of the features of 
brain regions and/or behavioral phenotypes was quantified using PLS 
loadings. Specifically, we calculated a bootstrap ratio by dividing the 
mean loadings by standard errors (Zeighami et al., 2019). We thresh
olded the bootstrap ratio with a 95% confidence interval (Zeighami 
et al., 2019). 

2.9. Sensitivity analysis 

a) Parcellation schemes. Our main analysis interrogated structure- 
function coupling using the Schaefer atlas with 200 parcels (Schaefer 
et al., 2018). To assess robustness across different spatial scales, we also 
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predicted functional connectivity from structural connectivity based on 
Schaefer atlases with either 100 or 300 parcels. 

b) Only male participants. As our dataset contained a large imbalance 
of male compared to female participants, we performed an analogous 
analysis using only male participants. 

c) Site effects. We obtained the data from three different sites. To 
assess the consistency of the results across different sites, we performed 
the structure-function coupling analysis for each site. 

3. Results 

3.1. Global imbalances in structure-function coupling in ASD 

Based on connectome manifold models (Benkarim et al., 2022), we 
simulated resting-state functional connectivity among 200 cortical re
gions (Schaefer et al., 2018) from tractography-derived structural con
nectivity data (Benkarim et al., 2022). In brief, the technique (i) applies 
nonlinear dimensionality reduction (i.e., diffusion map embedding) 
(Coifman and Lafon, 2006; Vos de Wael et al., 2020) to a structural 
connectome, (ii) varies the diffusion time parameter t of the embedding 
technique to simulate connectivity-guided random walks (Fig. 1A), and 
(iii) the kernels derived from the corresponding diffusion times using a 
radial basis function are fused to minimize the difference between the 
actual functional connectivity and diffusion maps applied. Before 
generating the kernels, the algorithm uses a transformation matrix to 
rotate diffusion maps to find optimal paths through which to propagate 
information between different brain regions at each diffusion time. 
Structure-function coupling at the global level was quantified as the 
linear correlation of the upper triangular elements between empirical 
and simulated functional connectivity matrices across diffusion times t 
(from t = 1 to t = 10, with higher t indicating an increased contribution 
of polysynaptic communication across indirect paths; Fig. 1B). In both 
neurotypicals and ASD, coupling monotonically increased with higher 
diffusion times. Notably, controls showed globally higher prediction 
performance between t = 2–4. We quantitatively assessed 
between-group differences in coupling using 1000 permutation tests by 
shuffling subject indices and confirmed higher performance in controls 
relative to ASD between t = 2 and t = 4 (pperm = 0.020, 0.044, 0.038; 
Fig. 1C). The results indicate that both controls and ASD displayed an 
influence of polysynaptic communication on structure-function 
coupling, and stronger global coupling in controls than in ASD. 

3.2. Regional structure-function imbalances 

We assessed regional prediction performance gains across variable 
diffusion times t to explore the contribution of polysynaptic communi
cation on the prediction of brain function. For both controls and ASD, 
sensory/motor areas showed higher prediction accuracy at low diffusion 
times compared to transmodal systems (i.e., default-mode network and 
paralimbic cortices). With increasing diffusion times, regional predic
tion performance increased in both groups, with higher performance in 
controls (Fig. 2A). When comparing the regional prediction accuracy 
between the ASD and control groups, we found consistent decreases in 
prediction accuracy in orbitofrontal and precentral regions in the ASD 
group, while consistent increases were observed in centro-opercular 
regions (Supplementary Fig. 1). To assess differences in prediction 
accuracy across diffusion times, we calculated prediction accuracy dif
ferences between t = 10 and t = 1 (Δprediction accuracy) in both cohorts 
separately (Fig. 2B). We observed marked differences in transmodal 
compared to sensory/motor systems, and these differences were overall 
larger in controls than ASD (FDR < 0.05). Prediction accuracy differ
ences were consistent when we assessed differences between the high 
diffusion times (t = 4~9) and the lowest diffusion time (t = 1) (Sup
plementary Fig. 2). 

3.3. Topographic associations to structure-function imbalances 

We stratified findings with respect to established taxonomies of 
intrinsic functional organization. First, we assessed across-diffusion time 
differences in structure-function prediction performance (Δprediction 
accuracy) across seven intrinsic functional networks (Yeo et al., 2011) or 
levels of the primate cortical hierarchy (Mesulam, 1998) (Fig. 3A). We 
noted overall smaller improvement in the default-mode network in ASD 
relative to controls, while visual and limbic networks showed increased 
improvement. Second, we explored associations with the principal 
functional gradient, which discriminates sensory/visual from trans
modal systems in a continuous manner based on data-driven con
nectome analysis. The first principal functional gradient was estimated 
from resting-state functional connectivity obtained from the Human 
Connectome Project database (Van Essen et al., 2013), using the 
BrainSpace toolbox version 0.1.10 (https://github.com/MICA-MNI/B 
rainSpace) (Coifman and Lafon, 2006; Vos de Wael et al., 2020) 
(Fig. 3B). We observed significant correlations with the functional 
gradient, even after accounting for spatial autocorrelation, in both 
groups (control: r = 0.472 ± 0.218, pspin = 0.015; ASD: r = 0.323 ±
0.201, pspin = 0.023; Fig. 3B). Similar findings were observed when we 
fitted Δprediction accuracy to the functional gradient using a quadratic 
function, which showed slight improvements in fit (Supplementary 
Fig. 3). In both the linear and quadratic cases, associations were 
significantly different between groups and stronger in controls (two-
sample t-tests with 1000 permutations p < 0.001; Fig. 3B and Supple
mentary Fig. 3). 

3.4. Associations with behavioral phenotypes 

We studied associations between Δprediction accuracy and behav
ioral phenotypes of ADOS scores (social cognition, communication, and 
repetitive behavior) as well as verbal and non-verbal IQ and their ratio 
(verbal/non-verbal IQ) (Hong et al., 2022) using PLS analyses (Krishnan 
et al., 2011; McIntosh and Mǐsić, 2013). We performed the PLS analysis 
with 1000 bootstraps, and the first latent variable explained 33.4% of 
covariance between Δprediction accuracy and behavioral phenotypes 
(Fig. 4A). The estimated PLS scores showed significant correlations 
across bootstraps (r = 0.426 ± 0.093, pperm = 0.010; Fig. 4B). We 
assessed the contribution of these features using bootstrap ratio calcu
lated based on the loadings (Zeighami et al., 2019). We found that 
Δprediction accuracy in sensory and frontoparietal regions was associ
ated with lower social cognition and communication-related autistic 
symptoms and IQ ratio, indicating less autistic characteristics (Fig. 4C). 
On the other hand, Δprediction accuracy in temporal and limbic regions 
was associated with higher autistic symptom, particularly, repetitive 
behaviors (Supplementary Fig. 4). 

3.5. Sensitivity analyses 

a) Parcellation schemes. Results were largely consistent with the 
original findings when using an alternative subdivision of the cortex into 
either 100 or 300 parcels (Supplementary Figs. 5–6). 

b) Only male participants. We additionally performed the same ana
lyses using only male participants and found comparable results (Sup
plementary Fig. 7). 

c) Site effects. We performed the analyses for each site separately. We 
found overall similar patterns but decreased effects, which may be due 
to the small sample size (Supplementary Figs. 8–10). 

4. Discussion 

The correspondence of brain structure and function is a core tenet of 
neuroscience (Baum et al., 2020; Honey et al., 2009; Mîsic et al., 2016; 
Paquola et al., 2019, 2020; Park et al., 2021d; Snyder and Bauer, 2019; 
Suárez et al., 2020; Vázquez-Rodríguez et al., 2019), and the advent of 
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multimodal imaging and connectomics methods have culminated in 
efforts to predict large-scale brain function and inter-regional functional 
interactions from representations of brain wiring in healthy humans 
(Benkarim et al., 2022; Damoiseaux and Greicius, 2009; Goñi et al., 
2014; Honey et al., 2009; Seguin et al., 2019; Suárez et al., 2020). Here, 
we utilized unsupervised connectivity manifold learning and alignment 
techniques to index structure-function coupling in ASD, a common 
neurodevelopmental indication increasingly conceptualized as a con
nectopathy, and explore the role of polysynaptic communication 
mechanisms on structure-function coupling. Studying individuals with 
ASD and neurotypical controls, we observed structure-function coupling 
in both groups to be overall high and generally increasing when addi
tionally incorporating polysynaptic communication in the modelling, 
particularly in transmodal systems that have been more challenging to 
model in prior studies (Benkarim et al., 2022; Suárez et al., 2020; 
Vázquez-Rodríguez et al., 2019). On the other hand, compared to con
trols, ASD showed imbalanced and overall lower structure-function 
coupling. These reductions were particularly observed in polysynaptic 
regimes and transmodal regions. Structure-function coupling imbal
ances in ASD were also aligned with prototypical and data-driven de
scriptions of the primate cortical hierarchy, indicating a 
sensory-to-transmodal gradient of alterations in structure-function 
coupling in ASD. Findings reflected autism symptoms and imbalances 
in verbal/non-verbal intelligence dimensions. Collectively, our findings 
show hierarchy-dependent imbalances in structurally-governed network 
communication in ASD and may offer a novel and behaviorally relevant 
perspective of autism connectopathy. 

Our work investigated connectome-level structure-function coupling 
using a Riemannian manifold optimization procedure (Benkarim et al., 
2022). In a recent study in neurotypical adults, this approach provided a 
faithful individual participant-level prediction of intrinsic functional 
interactions based on structural connectomes (Benkarim et al., 2022). It 
can be tuned across diffusion time parameters, interpretable as an 
increasing influence of polysynaptic structure-function coupling mech
anisms. Comparing prediction accuracy between neurotypicals and 
ASD, our findings revealed globally reduced coupling in the latter. 
Coupling was particularly reduced towards higher diffusion times, and 
ASD-related reductions were most marked in transmodal systems such 
as the default mode and frontoparietal networks. Such findings indicate 
a hierarchy-dependent alteration in structure-function coupling in ASD, 
particularly in polysynaptic subnetworks. These findings suggest that 
links between brain structure and function are not as straightforward in 
ASD compared to controls, which may relate to several previously 
identified factors. Neuroimaging studies have shown atypical cortical 
morphology and microstructure, aberrant white matter fiber architec
ture, and reorganized structural network topology in ASD (Cai et al., 
2022; Hong et al., 2018; Hong et al., 2019b). Despite only a little work 
assessing links between structural alterations and atypical function in 
ASD, studies have indicated atypical functional connectivity between 
different brain areas (Di Martino et al., 2014; Hull et al., 2017; Müller 
et al., 2011). Moreover, several reports emphasized increased spatial 
shifting of functional network layout in ASD, a finding also referred to as 
idiosyncrasy (Benkarim et al., 2021; Dickie et al., 2018; Hahamy et al., 
2015; Uddin et al., 2015), alongside findings suggesting increased signal 
variation in this cohort (Takahashi et al., 2016). These factors may 
collectively result in lower predictability of functional signaling and 

interactions from structural connectivity information and hence 
contribute to the observed findings in this study. 

Brain hierarchy along the sensory/motor-association axis underpins 
primate cortical organization, initially inferred from invasive post-mor
tem findings in non-human animals (Mesulam, 1998). Recently, our 
understanding of the cortical hierarchical organization has been solidi
fied with human neuroimaging, notably functional connectivity 
research (Bethlehem et al., 2020; Margulies et al., 2016; Mckeown et al., 
2020; Murphy et al., 2019; Park et al., 2021c), microstructural profiling 
(Burt et al., 2018; Paquola et al., 2019), and tractography-derived 
structural connectomics (Kharabian Masouleh et al., 2020; Park et al., 
2021a, 2021b). In our study, inter-regional variations in 
structure-function prediction performance followed dimensional and 
clustering-based approximations of the cortical functional hierarchy. In 
particular, we observed lower structure-function coupling towards 
transmodal systems when incorporating monosynaptic mechanisms, 
which, however, increased with larger diffusion times and hence, 
polysynaptic communication. Overall reduced structure-function 
coupling in transmodal systems compared to sensory/motor and unim
odal networks echoes prior findings (Valk et al., 2022; 
Vázquez-Rodríguez et al., 2019), in particular when bare diffusion MRI 
tractography measures without explicit incorporation of polysynaptic 
communication inform the modeling strategy. Transmodal regions are 
known to increasingly engage in long-range and more centralized 
communication, underpinning integrative cognitive functions (Park 
et al., 2021d). In our work, performance reductions in ASD relative to 
neurotypicals are related mainly to reduced hierarchy-specific gains in 
predicting functions that would have otherwise resulted from the 
incorporation of polysynaptic communication in ASD. Previous work 
from our group and others based on functional and structural neuro
imaging has suggested atypical connectome hierarchy, and suggested 
that densely integrated rich core nodes may assume a major role in this 
process (Hong et al., 2019b; Park et al., 2021b), possibly in lieu of their 
implication in multiple, polysynaptic communication pathways. 

Multivariate associative techniques revealed that altered structure- 
function relations in ASD reflected behavioral symptoms and cognitive 
phenotypes, here indexed by the ADOS scale and verbal and non-verbal 
intelligence dimensions. It should be noted that our results were derived 
from small samples and assessed using four-fold cross-validation only, 
requiring validations in larger samples with multimodal imaging data to 
assess generalizability. Findings, nevertheless, suggested a broad 
implication of different brain systems, notably transmodal systems, such 
as the default-mode network. These systems have been shown to 
contribute to both typical and atypical social interaction and commu
nication, and higher cognitive processes more generally (Assaf et al., 
2010; Mars et al., 2012; Padmanabhan et al., 2017; Paquola et al., 2022; 
Raichle, 2015; Smallwood et al., 2021). Moreover, systems at the apex of 
the putative cortical hierarchy undergo ongoing maturational processes 
in typical childhood and adolescence, which shift networks towards a 
more clustered layout and progressively differentiate these from other 
macroscale networks, possibly due to the strengthening of long-range 
connections (Baum et al., 2020; Fan et al., 2021; Park et al., 2022). 
Our findings suggest that atypical polysynaptic communication in 
higher-order transmodal areas, in part, reflects those symptoms and 
could serve as a potential diagnostic marker of affected individuals. 

Fig. 1. Global imbalances in structure-function coupling in ASD. (A) Schema of the Riemannian manifold optimization approach that was used to simulate functional 
connectivity (FC) along a structural connectome (SC) as a function of diffusion time t. This approach projects SC (left) onto the low-dimensional latent space (right) 
with different diffusion times that indicate multihop processes (middle) using a diffusion map embedding algorithm. (B) Group-level SC matrices in controls and ASD 
(left). Correlation coefficients between empirical and simulated FC in controls (black) and ASD (red) as a function of t (right). Error bars represent the SD across 
individuals. Shown are empirical (left) and simulated FC (right) matrices across four representative diffusion times (t = 1, 4, 7, and 10). (C) Between-group dif
ferences in prediction performance between controls and ASD (upper panel). A black line indicates real differences in prediction performance between groups, a solid 
gray line indicates mean prediction accuracy differences across 1000 permutation tests, and dotted gray lines indicate the 95% confidence interval. Significant 
between-group differences are reported with asterisks. Shown are correlation coefficients between an individual’s empirical and simulated FC for those diffusion 
times that showed significant between-group differences (lower panels). Abbreviations: ASD, autism spectrum disorder; SD, standard deviation. 
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5. Code availability 

The codes for simulating functional connectivity from structural 
connectivity are available at https://github.com/MICA-MNI/micaop 
en/tree/master/sf_prediction; codes for gradient generation are avail
able at https://github.com/MICA-MNI/BrainSpace; codes for graph 
measures calculation are available at https://sites.google.com/site/bct 
net/. 
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Fig. 2. Regional structure-function imbalances. (A) Correlation coefficients between empirical and simulated functional connectivity (FC) across different diffusion 
times t are shown on brain surfaces for control and ASD groups. The plot indicates correlation coefficients between the empirical and simulated FC in controls (black) 
and ASD (red) as a function of diffusion time. Error bars represent the SD across brain regions. (B) Shown are differences in prediction accuracy between the highest 
(t = 10) and lowest (t = 1) diffusion times (Δprediction accuracy) for both groups (upper panels). We assessed between-group differences in Δprediction accuracy 
between controls and ASDs (lower panel). Abbreviations: ASD, autism spectrum disorder; SD, standard deviation; FDR, false discovery rate. 

Fig. 3. Topographic associations. (A) We stratified the prediction accuracy difference between diffusion time t = 10 and t = 1 (Δprediction accuracy) according to 
functional communities (left) (Yeo et al., 2011) and cortical hierarchies (right) (Mesulam, 1998). Spider plots show normalized Δprediction accuracy, where the 
values of ASD are normalized relative to controls. Asterisks indicate the brain network or cortical hierarchy that showed significant between-group differences. (B) 
The principal functional gradient is visualized on brain surfaces (left). We calculated linear correlations between the gradient and Δprediction accuracy for both 
controls and ASD individuals, where gray lines indicate SD across individuals (center). In the right panel, one can see the correlation coefficients of each individual in 
both groups, where the asterisk indicates a significant difference. Abbreviations: ASD, autism spectrum disorder; SD, standard deviation. 
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