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Measurement of highly charged Ca and Xe ions

and their sensitivity to a hypothetical fifth force

beyond the Standard Model

It is evident that the current Standard Model of particle physics fails to decode the
enigma of dark matter. Amongst dark matter candidates, a promising contender
is a hypothetical fifth-force coupling between atom constituents, which is key to
establishing a New Physics (NP) model. To prove its existence, isotope shifts
are investigated with the King plot method to detect its coupling effect between
neutrons and electrons in an atom. Although this effect is weak, it may be resolved
with quantum logic spectroscopy of highly charged ions, which offers high precision
measurements of isotope shifts, but this method requires ground-state transitions.

In this thesis, I measured ground-state transitions in isotope-rich elements, Ca
and Xe, using an electron beam ion trap. Furthermore, I theoretically investigated
these transitions in their sensitivity to a hypothetical fifth-force, using the generalized
King plot method. My results predicted an improvement of sensitivity by at least four
orders of magnitude, compared to previous King plot analyses. This sensitivity would
constrain the NP parameter space more stringently than prior imposed restrictions.

This work lays the theoretical foundation of searching for a fifth force and,
ultimately, validating an NP model better suited to decipher our universe’s mysteries.

Messung von hochgeladenen Ca- und Xe-Ionen und

ihre Empfindlichkeit auf eine hypothetische fünfte

Kraft jenseits des Standardmodells

Es ist offensichtlich, dass das derzeitige Standardmodell der Teilchenphysik nicht
in der Lage ist, das Rätsel der Dunklen Materie zu lösen. Ein vielversprechender
Kandidat unter den Kandidaten für die dunkle Materie ist eine hypothetische Kop-
plung der fünften Kraft zwischen den Bestandteilen des Atoms, die der Schlüssel
zum Aufbau eines Neuen-Physik-Modells (NP) ist. Um ihre Existenz zu beweisen,
werden Isotopenverschiebungen mit der King-Plot-Methode untersucht, um ihren
Kopplungseffekt zwischen Neutronen und Elektronen in einem Atom nachzuweisen.
Obwohl dieser Effekt schwach ist, könnte er durch Quantenlogik-Spektroskopie an
hochgeladenen Ionen aufgelöst werden, was hochpräzise Messungen von Isotopenver-
schiebungen ermöglicht, jedoch erfordert diese Methode Grundzustandsübergänge.

In dieser Arbeit habe ich Grundzustandsübergänge in isotopenreichen Elementen,
Ca und Xe, mit einer Elektronenstrahl-Ionenfalle gemessen. Darüber hinaus habe
ich diese Übergänge theoretisch auf ihre Sensitivität gegenüber einer hypothetis-
chen fünften Kraft mit Hilfe der verallgemeinerten King-Plot-Methode untersucht.
Meine Ergebnisse sagten eine Verbesserung der Sensitivität um mindestens vier
Größenordnungen im Vergleich zu früheren King-Plot-Analysen voraus. Diese Sen-
sitivität würde den NP-Parameterraum strenger einschränken als die bisherigen
Einschränkungen.

Diese Arbeit legt die theoretische Grundlage für die Suche nach einer fünften
Kraft und letztendlich für die Validierung eines NP-Modells, das besser in der Lage
ist, die Geheimnisse unseres Universums zu entschlüsseln.
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Chapter 1

Motivation

1.1 Standard model of particles physics

The universe is incredibly vast and contains everything ever to exist, ranging from

subatomic particles to enormous structures formed by millions of galaxies. Revolu-

tionized by Einstein, general relativity describes how heavy masses bend space-time

and in return its effects onto other objects. Quantum physics, on the other end,

describes smallest interactions of the smallest particles. Currently, the most success-

ful model for the most elementary parts of the universe is the Standard Model of

particle physics (SM) [1]. Its constituents are shown in Fig. 1.1. It has made correct

predictions of particles, e.g. top quark [2] and tau-neutrino [3], before they were

experimentally found, thus validating the theory. Finally, with the discovery of the

Higgs-boson [4, 5, 6] this model has reached its completeness. While the Higgs-boson

explains the mass of particles, the SM still fails to explain gravity on a quantum

level, as gravitons remain purely theoretical. Moreover, there are several observed

phenomena which cannot be explained by the SM alone.

An example of this is the rotational curve of galaxies [8], where the outer parts

rotate faster than expected of them for their size. While some suggest that this is

due to invisible masses in form of dark matter (DM) within galaxies, the reason

remains unclear [9]. Another unsolved mystery is the existence of neutrino oscillations

and their implied masses [10]. However, only upper limits, rather than absolute

values, have been reported. It has also been suggested that neutrinos are their own

antiparticles, which, if true, would lead to a lepton number violation [11, 12], which is

forbidden in the SM. Furthermore, the SM cannot explain the vast disparity between

matter and antimatter, which is known as baryon-asymmetry. Bertone and Hooper

[13] offers a comprehensive review on the shortcomings of the SM.

It is evident that the SM alone is insufficient to explain the aforementioned

phenomena. A New Physics (NP) model beyond the SM is thus needed to address
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CHAPTER 1. MOTIVATION

Figure 1.1: Standard Model of particle physics [7]. Different combinations of quarks
describe leptons (three quarks) and bosons (quark-antiquark pair).

this, by either expanding the current theory, or providing SM constituents in its own

predictions.

2



1.2. SEARCH FOR A NEW PHYSICS MODEL

1.2 Search for a new physics model

DM is elusive and consists of a wide variety of potential candidates, as depicted in

Fig. 1.2. To find DM, a wide selection of these candidates [14] need to be covered.

Currently, there are numerous ongoing efforts to find distinct proof of a NP model.

One of the most prominent experiments, which also helped find the Higgs-boson

[5, 6], is the ATLAS detector at the Large Hadron Collider (LHC) at CERN [15],

where particles produced by proton-proton collisions are investigated. Until now,

no exception to the SM were observed. However, a limitation of the experiment is

the short measurement time, which overlooks long-lived particles (LLPs) predicted

by multiple DM models [16]. Hence, efforts to employ new detectors are currently

undergoing to include these LLPs by extending the duration of measurements.

The XENON1T experiment [17] and its successor XENONnT [18] focus on directly

detecting interactions of weakly-interacting massive particle (WIMP) with liquid Xe.

For this purpose, a time projection chamber (TPC) is filled with multiple tons of

liquid Xe, which then allows the reconstruction of the origin of any freed electron.

The setup also contains photo-multiplier tubes (PMTs) to detect faint light, which

arise from de-excitation processes. This combination allows the identification of the

event particle, e.g. a WIMP or simply a neutrino.

The Karlsruhe Tritium Neutrino (KATRIN) experiment [19] has been deployed

to investigate neutrino masses. By measuring the minuscule shift in the energy

spectrum of electrons in beta-decays, it infers the mass of the electron-antineutrino.

The most recent measurement yielded an upper limit of an electron-neutrino mass of

mν < 0.8 eV [20].

Neutrinoless double-beta decay [21] is investigated with e.g. the EXO-200 (En-

riched Xenon Observatory 200) [22]. Similar to XENON1t, a smaller TPC tank is

filled with liquid Xe, which is enriched with about 80% of the isotope 136Xe, which

has a half-life of about 2 × 1021 yr [23] until it decays via a double-beta decay. Using

the TPC, as well as momentum and energy conservation, it can be inferred if a

neutrino was involved in the decay or not. The current limit on the half-life for a

possible neutrinoless double-beta decay has been found to be T1/2 > 1.8 × 1025 yr [24].

Ultra-light dark matter (ULDM) candidates have potential effects on, e.g., a

variation of the fine-structure constant α [25]. It was suggested that α changes either

with time, locally, or both [26]. In either case, data obtained from distant quasars

[27] seem to confirm it, however the statistical uncertainty is high. To overcome

this limitation, optical atomic clocks are used to achieve best resolution by precisely

measuring the energy ratio of two transitions with different dependencies on α, which

would change accordingly. [28]

3



CHAPTER 1. MOTIVATION

Figure 1.2: Mass range of potential DM candidates, scaling from ultralight to massive.
As described in Ref. [14] (paraphrased): we are looking for a fish in the ocean, we
only know that it is in the ocean, but we do not know its size, so we need to deploy
all kinds of nets to have the best possible chance to catch it. Adapted from Ref. [14].

1.2.1 A fifth force

ULDM and WIMPs are intensively studied in the search for proof of a NP model

to explain the effects of DM. In addition to these candidates, researchers have also

probed the possibility of a small ranging force within atoms - a fifth force [29].

While there is no such proof of such a force yet, it might be able to explain the

anomaly seen in 8Be and 12C. In these experiments, a nuclear excitation is resonantly

produced, which decays by the release of a high energy-photon on rare occasions.

Subsequently, this energy can also lead to the production of an electron-positron pair.

An observation of their opening angle revealed an unexpected deviation, which may

be attributed to a new boson of about 17 MeV, known as X17 [30, 31, 32]. A boson

of this size could also explain the anomalous magnetic moment of the muon [33].

This fifth force is difficult to detect directly. In an atom, for example, its

expected weak coupling could be easily overshadowed by other more prominent

effects. Electron-proton interactions are dominated by the electromagnetic force, and

neutron-proton interactions are dominated by the nuclear forces. This narrows it

down to the possible interaction between electrons and neutrons, which would have

no expected interaction on the atomic scale.

Isotopes are therefore ideal candidates to investigate this interaction, because

they contain the same charged components, but vary in the number of neutrons.

Comparing a transition in two isotopes could show a difference caused by the fifth

force. However, the different number of neutrons also cause a shift due to a change in

the physical properties of the nucleus. While the nuclear mass is fairly well-studied,

other parameters and their influence on the electronic structure remain to be fully

elucidated [34]. These influences can, in principle, be calculated theoretically, but

even with the advances made in quantum electro dynamics (QED) and improved

4



1.3. HIGHLY CHARGED IONS

numerical calculations, theoretical models still only hold accuracy of a few percentages

in systems with more than a few electrons [35]. This uncertainty becomes greater

with the complexity of the atom. The so-called King plot (KP) method [36] has

recently reemerged as an appropriate approach to overcome this. Though its original

purpose was to extract isotope shift (IS) parameters using graphical analysis, recent

reevaluation has discovered its potential to find effects beyond the SM [37, 38, 39].

The rationale of using KP is based on the linearity of different isotope-pairs by shifts

caused by the first-order SM. If a fifth force would be present, a deviation from this

linearity should be detected. However, a limitation of the KP is that it only accounts

for the first-order shifts of the SM. With higher measurement precision, more nuclear

SM effects would become visible, which would also result in a deviation. Extending

the KP into higher dimensions would allow compensation for these higher-order SM

effects. This is known as a generalized King plot (GKP) [37, 39]. Each dimension

requires another isotope-pair to remain a determined system, resulting in the need to

perform these GKPs on elements with many available isotopes. The SM effects will

be discussed in greater detail in chapter 2.3.4 and the GKP presented in chapter 2.3.5.

This method has gained a lot of interest over the last couple of years, with IS

studies done in Ca [40], Yb [41, 42], Sr [43] and Cd [44]. However, no evidence for a

fifth force has been found yet. This calls for more measurement precision, as well as

transitions with higher sensitivity to a fifth force.

1.3 Highly charged ions

Highly charged ions (HCI) and plasmas are most prevalent in the universe yet rare on

Earth. As such, research in this field is confined to specialized laboratory experiments

or astrophysical observations, which heavily limits relevant data acquisition. This

limitation can be especially observed in the NIST database [45] on the number

of transition listed for each element and each charge state. The highest number

of listed transitions are in neutral, singly or doubly charged states. This number

drops rapidly with higher charge states, which results in mostly unknown systems

named collectively as the spectral desert, as visualized in Fig 1.3. This decline can

be attributed to the historical lack of widely available methods for measuring these

systems. The first production of HCIs was done with electron beam ion sources

(EBIS), but their setup was designed for accelerators. To study HCIs more closely,

an electron beam ion trap (EBIT) was developed, which contained a central trap to

perform in-EBIT spectroscopy [46, 47, 48]. The rising interest and availability of

affordable EBITs, such as the Heidelberg Compact EBIT (HC EBIT) [49], will lead

to an increased accumulation of transitions, thus mitigating the issue of the spectral

5
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Figure 1.3: Spectral desert from NIST database [45] showing each element by their
nuclear charge number Z and different charge states, where (a) pertains to for all
entries in the database, and (b) pertains to optical transitions in the database.

desert. In addition to learning more about HCIs in general, other scientific fields can

also benefit from this research.

Firstly, the development of fusion power generators can benefit from research in

multiple disciplines, one of which being HCI research. Despite being highly funded,

progress on fusion generators is slow, with its development currently spanning over

six decades [50]. This is because of various interdisciplinary and unanticipated effects

present in the reactors. The first ever energy gain with fusion was achieved at the

end of 2022 with lasers at National Ignition Facility (NIF) [51], however, this setup

was not designed as a power generator for commercial use, for which bigger designs

will be needed instead. The biggest fusion generators are of the tokamak and the

stellarator design. Here, plasma physics research forms the basis. While tokamaks

are simple in design, plasma confinement and stability are an issue. These issues

are countered in the stellarator design by employing specific, asymmetrical coils

[52, 53]. This design, however, has a reduced plasma temperature needed for the

fusion process. Another detrimental effect on the fusion plasmas are plasma-wall

interactions, which release nano- and micrometer sized particles into the system.

Research on these dusty plasmas is therefore highly relevant [54]. Furthermore,

naturally present HCIs in plasmas can be used as a probe for internal parameters

such as the ion and electron temperature, ion confinement, and plasma transport; as

reviewed in Ref. [55]. Collectively, research in these fields may lead to clean energy

development.

Secondly, the field of astrophysics also benefits from HCI research. A recent

example is the Fe16+ 3C/3D ratio, which is used in X-Ray astronomy to acquire data

6



1.3. HIGHLY CHARGED IONS

on the temperature of the astrophysical system. However, theory and experiment

have been highly inconsistent with each other for decades, until a breakthrough was

made in the method of in-lab measurements. In this breakthrough, the electron

beam used to produce the HCIs was turned off repeatedly for the measurement. This

approach avoided the effects of electron impact excitation, and thus led to consistent

results on the ratio generated by photo excitation alone, which are the dominant

cause in astrophysical systems [56].

Lastly, the field of metrology also benefits from data on HCIs. Atomic clocks

form the frontline of metrology [57] and are increasingly precise. The most famous

clock is the Cs-clock, which is used as the definition of the International System

of Units (SI) second, shown as a level scheme in Fig. 1.4. This clock’s precision is

sufficient for GPS and other standard technologies, as it only loses one second every

300 million years. However, this clock transition is limited to about 10−16 fractional

uncertainty, which reduces the precision of some scientific reports when converted to

the SI second [58]. Higher precision can be achieved using current clocks in different

elements [59, 60], which are able to reach a relative uncertainty on the order of 10−18.

Figure 1.4: Cs-clock
transitions. The nar-
row clock transition is
between hyperfine levels
of 2S1/2, and the cool-
ing is performed via a
faster transition. From
Ref. [61].

A new definition of the SI second is eventually re-

quired, for which the HCIs are of high relevance. The

advantages of HCIs over neutral or singly charged ions

are long known and confirmed [62, 48]. They have a

greatly reduced susceptibility to external perturbations,

which inhibit systematic shifts caused by the electric

and magnetic fields of the trapping method as well as

potential background radiation effects on the energy lev-

els of the ion. Hence, this makes them ideal candidates

to achieve highest precision. It is important to con-

sider that most clocks fall within the optical spectrum

because they take advantage of the higher frequency

and stability of the optical transitions compared to

microwave transitions, e.g. of the Cs-clock. However,

exploration in this spectral range is particularly scarce,

which results in an even larger spectral desert, as shown

in Fig. 1.3 (b). Currently, relative precision up to 10−16

on HCI clocks [63, 64] was achieved with the quantum

logic spectroscopy method, which will be discussed in

more detail in the following chapter.

7



CHAPTER 1. MOTIVATION

Figure 1.5: (a) Scheme of the QLS in an example of Ar13+. Lines in the wells refer
to motional modes, while the upper well refers to an excited, electronic level. Refer
to text for detailed explanation. Taken from Ref. [68]. (b) Measurement of the
excitation probability for different detuning of the probing-laser. From Ref. [63].

1.4 Quantum logic spectroscopy

Typical atomic clocks require two transitions, the narrow transition of interest and a

faster transition that can be used to cool the ion down to a few milli-Kelvin. Both

of them are shown in Fig. 1.4 for the Cs-clock. In HCIs, the choice of transitions

within one ion becomes increasingly rare as the atomic level structure shifts to higher

energies with the charge state. To overcome this lack of a cooling transition, the

quantum logic spectroscopy (QLS) method [65, 66] contains a second trapped ion of

known properties in the trap together with the ion of interest, called the spectroscopy

ion. This second ion is known as the logic ion and is chosen based on the charge-mass

ratio relative to the spectroscopy ion, and a structure which easily controls the

system. Such ions can be e.g., Be+ [63] or Mg+ [60]. Due to their charges, both

ions are electromagnetically coupled to each other, resulting in sympathetic cooling,

where the motion control of the extra ion will be induced onto the spectroscopy ion.

A difference in charge and mass between the logic and spectroscopy ion can make

typical sympathetic cooling difficult for certain directions of motion. To overcome

this, an algorithmic cooling method [67] was developed, with which any pairing of

ions can be controlled, regardless of the charge to mass ratio between the two ions.

The measurement procedure scheme of the QLS method is shown in Fig. 1.5 (a) [68].

From left to right: 1) the system is prepared. Both spectroscopy and logic ions are

motionless in the trap and in the electric ground-state. 2) An adjustable laser probes

the transition. The laser can be detuned in its frequency relative to the transition

frequency, and the probability of electronic excitation varies depending on the offset.

The top row of Fig. 1.5 (a) shows the case where the spectroscopy ion is electronically

excited, while the bottom row shows the case where no excitation happens. 3) In the

case of a successful excitation, a second laser pulse will then electronically de-excite

the spectroscopy ion. This pulse is based on the energy of the adjustable, first laser
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pulse, however, its energy is slightly reduced by the energy of a motional-mode

(red-sideband pulse). This will give the two coupled ions an axial motion within the

trap. If no excitation occurs in the first place, this red-sideband pulse would not

change the system, as its reduced energy would be either too low to excite the ion

electronically, or too high to affect the system in any motional way. 4) In the next

step, another red-sideband pulse is applied to the known transition of the logic ion

in order to stop the motion in the system again and excite the logic-ion. This, again,

has no effect on the ground-state system, where no excitement of the spectroscopy

ion has occurred before. 5) The final step is to use the Doppler cooling laser on the

logic ion, which will only result in fluorescence from ground-state excitation. This

light or no-light signal will then be observed and give the QLS method its logic part.

These steps are then repeated multiple times to extract the excitation probability

and from it the transition energy at the position of the highest probability. This

is shown in Fig. 1.5 (b) [63]. The downside of this method is that it only works on

ground-state transitions as the state has to be clearly defined, which is not the case

if the electron can decay further in the energy level.

The QLS method has been used on Al+ [66], proving the concept of this method,

and more recently on Ar13+ [63, 64], highlighting a successful cooling and measurement

of an HCI. Their uncertainty for the central position of the 441 nm transition was

determined to be of 100 mHz. This is still limited by the 17 Hz natural linewidth

of the transition. The uncertainty for a measuring time of τ is expected to be

10 Hz/√τ [F1], which allows it to reach the 100 mHz uncertainty within a few hours

of measurement. With its cooling and measurement method, the QLS method is of

high interest for the search for DM with clocks, IS studies and KPs.

1.5 Elements and isotopes for King plot analysis

The number of isotopes play an important role in the KP method. Three isotopes are

required for the principle KP in order to investigate a deviation from a conjunctional

linearity. An increased number of isotopes leads to additional data points, which will

not only improve the chance to observe a deviation, but also allowing the expansion

of the KP into higher dimensions to compensate for higher-order SM contributions.

However, hyperfine structure would further complicate the search for a fifth force,

which is why only isotopes with an even number of neutrons and protons are eligible,

as they do not have a nuclear spin and thus do not induce a hyperfine shift.

There are two ways to overcome higher-order SM contributions. The first is

to utilize elements with a large number of stable, even isotopes and to span the

GKP into the highest dimensions. The second option is to take elements with

9



CHAPTER 1. MOTIVATION

weaker higher-order SM effects, which is typically the case in lighter elements. This

effectively reduces the number of effects that need compensation.

1.5.1 Calcium

For light elements, calcium (Z = 20) is the best candidate, as it has five stable

isotopes without nuclear spin. This isotope number with its fairly low mass number

of 40 to 48 is unmatched by any other element.

Calcium was first isolated in 1808 and first observed as HCIs in the sun’s corona.

In modern technology it is mainly used as a seal in batteries and as plaster material.

Its occurrence in bones and other organic materials makes it of high interest in

biology. The 41Ca isotope is also used to determine the dates of objects in the solar

system with its half-life of 100 000 yr.

In nuclear physics, calcium is interesting due to its double-magic numbering of

Z = 20, as well as N = 20 or N = 28 for the isotopes 40Ca and 48Ca, which results in

a spherical nucleus [69]. Furthermore, 48Ca isotope is of interest for the investigation

the neutrinoless double-beta decay [70].

Figure 1.6: Overview
of all the stable iso-
topes in calcium from
Ref. [71].

Table 1.1: List of stable even isotopes in calcium
with their abundances and masses from Ref. [72]
and radii from Ref. [73].

A Abundance Mass (eV/c2) Radius (fm)

40 96.941(156)% 39.9625909(2) 3.4776(19)

42 0.647(23)% 41.958618(1) 3.5081(21)

44 2.086(110)% 43.955482(2) 3.5179(21)

46 0.004(3)% 45.95369(2) 3.4953(20)

48 0.187(21)% 47.9525229(6) 3.4771(20)

An overview of the stable calcium isotopes is shown in Fig. 1.6 and the ones

without nuclear spin are listed in Tab. 1.1. Their abundances, masses and radii are

included from Refs. [72, 73].

On one hand, relative mass uncertainties are at least on the order of O(10−7). On

the other hand, the radii are the least known with relative uncertainties of O(10−4).
While the masses can be precisely obtained by measuring the cyclotron frequency

[74], the radius requires more involved methods. These typically include scattering

experiments and IS measurements [75], which do not have a comparable precision. As

the latter is a major part of this work, it will be discussed in detail in chapter 2.3.1.

10
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1.5.2 Xenon

The elements with the most stable isotopes without nuclear spin are tin (Z = 50)

and xenon (Z = 54), which both have seven. Xenon contains slightly more neutrons

and thus is expected to be slightly more affected by a hypothetical fifth force than

tin for similar transitions.

Figure 1.7: Overview
of all the stable iso-
topes in xenon from
Ref. [76].

Table 1.2: List of stable even isotopes in xenon
with their abundances and masses from Ref. [72]
and radii from Ref. [73].

A Abundance Mass (eV/c2) Radius (fm)

124 0.095(5)% 123.90589(1) 4.7661(55)

126 0.089(3)% 125.90430(3) 4.7722(52)

128 1.910(13)% 127.903531(7) 4.7774(50)

130 4.071(22)% 129.90350935(6) 4.7818(49)

132 26.909(55)% 131.90415509(4) 4.7859(48)

134 10.436(35)% 133.90539303(6) 4.7899(47)

136 8.857(72)% 135.90721448(5) 4.7964(47)

Xenon is one of the six naturally occurring noble gases. Discovered in 1898, it is

the second rarest noble gas on earth and can be extracted from air. It is commonly

used in the flash-bulb for photography, lamps in sunbeds, food processing and cars.

As introduced in chapter 1.2, xenon is also very popular in the search for an NP

model. Research interest is based on either its isotope 136Xe in regards of its potential

neutrinoless double-beta decay [22], or in the search of direct dark-matter particle

interactions with liquid Xe [18], where its heavy mass increases the cross section and

the chance of an interaction by its density.

All stable isotopes are depicted for their natural abundances in a pie-chart in

Fig. 1.7 and the ones relevant for the KP method, i.e. without nuclear spin, are listed

in Tab. 1.2.

1.6 Purpose of research

Observations unexplained by the SM push the agenda of an NP model. The properties

of the constituents of such a model remain unknown, thus inspiring searches across a

wide range of possible parameters. While ULDM and WIMP candidates are already

extensively studied, the recently improved KP method allows us to probe for a

hypothetical intra-atomic fifth force.

This defines the purpose of research of this work. To find proof of a model beyond

the SM is imperative. IS studies and application of the KP method require highly
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CHAPTER 1. MOTIVATION

precise laser spectroscopy. To reduce statistical uncertainties, transitions in HCIs

are sought after. The QLS method is favored to measure these transitions with

high precision in the future. It uses a co-trapped logic ion to cool and measure

the transition without the need of an in-ion cooling transition. As discussed, the

drawback of this method is the need for ground-state transitions, which are typically

unknown, as shown in Fig. 1.3.

An investigation for possible ground-state transitions in HCIs is imperative to

perform the QLS. For this search, HCIs were produced in an EBIT and their fluores-

cence was measured with a spectrometer. Identifications were done by comparing

the results with calculations. In preparation for these highly precise measurements,

the found transitions were then analyzed theoretically in their IS with a hypothetical

fifth force present. This was to determine the ideal combinations of isotopes and

transition for the highest sensitivity to such a force. The findings of this research will

establish a foundation for highly precise measurements and significantly constrain

the current NP model parameter space.

12



Chapter 2

Theory

The analysis within this work relies heavily on the theory based on IS, the hypo-

thetical fifth force, the KP method, as well as its multi-dimensional extension in the

generalized KP method. These will be therefore introduced in greater detail. Other

aspects of relevance, like the atom and its transitions, will be briefly introduced. The

appropriate citations are provided for further reference.

2.1 Atomic structure

An electron in a potential formed by a proton-neutron nucleus takes on discrete

energy levels. These energy levels can be described via the Schrödinger equation

with a potential V

ĤΨ = (− h̵
2

2m
∇2 + V )Ψ = EΨ, (2.1)

where Ĥ is the Hamilton and ∇ the Nabla operator. The first term of the Hamiltonian

is the kinetic energy, with the reduced Planck constant h̵ and the particles mass m.

The electron wavefunction is Ψ and its resulting eigenvalue is the energy E. The

results of that equation are the energy levels for a simple hydrogen-like atom with

a reduced mass m = memA/(me +mA) and a coulomb potential V = −Ze2/(4πε0r)
with the nuclear charge Z. This gives

En = −
mZ2e4

8ε20h
2n2

= −RZ
2

n2
, (2.2)

with the elementary charge e, the vacuum permittivity ε0, the Planck constant h

and the principal quantum number n ranging from 1 to ∞ in whole numbers. The

constant R is known as the Rydberg constant (R =me4/8ε20h2).
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CHAPTER 2. THEORY

However, this description is insufficient as it neglects spin and relativistic effects.

These terms are included in the Dirac equation, from which the fine structure is

derived [77]

EFS = α2 ⋅ ( 1

j + 1/2 −
3

4n
) ⋅En

Z2

n
, (2.3)

here the fine structure constant α is defined as

α = e2

2ε0hc
. (2.4)

Discrepancies between this theory and measurements are mainly due to effects of

virtual absorption and emission of photons by the bound electron itself, which causes

a small change in energy due to this radiation field. This shift is part of the theory

of quantum-electrodynamics (QED) [77]. If the nucleus also has a spin, hyperfine

splitting occurs. This is the case for isotopes with odd mass numbers, i.e. an odd

number of the sum of protons and neutrons in the nucleus.

The angular momentum for a single electron is j⃗ = l⃗ + s⃗, with l⃗ the orbital

momentum and s⃗ the spin. For a complete system of multiple electrons, the total

angular momenta describe the energy levels. These are typically written in LS-

notation
2S+1LJ , (2.5)

where the total angular momentum is J , the total spin of the electrons is S, and the

orbital angular momentum is L, the states of which are denoted as S, P, D, F for

L = 0, 1, 2, 3 and so on. However, only light elements follow the LS-coupling and

thus this notation. In heavier atoms, the levels begin to mix and thus are not strictly

separated anymore. This is known as jj-level mixing.

The classical energy levels, as described Eq. 2.2 E = R/n2, paved the way for a

better understanding of the atom. One of these ways was to compute expectation

values for transitions based on known transitions

(E2 −E1) = (E2 −E0) − (E1 −E0) ⇒ 1

λ2→1

= 1

λ2→0

− 1

λ1→0

. (2.6)

This is known as the Rydberg-Ritz combination principle and holds true for level

structures based on more complex theories than the principal quantum number.

It is applied in the spectroscopy of extreme ultraviolet (EUV) transitions, where

unobserved optical transitions are calculated. In optical spectroscopy, if all three of

these transitions have been measured, the principle may help with the identification

of lines.

Electronic transitions between energy levels in an atom not only carry the specific

energy difference between those levels, but also must conserve angular momenta
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2.1. ATOMIC STRUCTURE

Table 2.1: Rigorous selection rules for different types and poles of transitions [78]. E
denotes an electric transition and M a magnetic one. Each higher pole has a reduced
transition rate compared to the one before. ∆J is the change in angular momentum
and ∆P is the parity change.

Dipole (21) Quadrupole (22) Octupole (23)
E1 M1 E2 M2 E3 M3

∆J = 0,±1 ∆J = 0,±1,±2 ∆J = 0,±1,±2,±3
∆P ≠ 0 ∆P = 0 ∆P ≠ 0 ∆P = 0

because the emitted photon has a spin of one. Such transitions can result from

different kinds of dipoles, which are either magnetic or electric. These are then

called M1 or E1 transitions, respectively. M1 transitions only happen between

levels with the same parity and a total angular momentum change of ∆J = 0, ±1,

whereas ∆J = 0 is only allowed when J ≠ 0. E1 transitions are similar, but only

happen between levels of different parity. A listing of the rigorous selection rules is in

Tab. 2.1. Higher-order poles can also occur, which would allow a greater change of the

total angular momentum ∆J . Those higher transition orders are called quadrupole

(E2, M2), octupole (E3, M3), etc. transitions. Although a higher-order transition

can always account for a lower-order transition, the transition rate is slower for

higher-orders, which will be addressed in chapter 2.1.2. Transitions are therefore

named by their strongest allowed transition type.

2.1.1 Highly charged ions

The advantage of HCIs over neutral or singly charged atoms are numerous. A detailed

summary can be found in e.g. Kozlov et al. [48]. Such effects scale differently with

the nuclear charge Z for a hydrogen-like atom. For the scaling of multi-electron

atoms, the dependence changes to Zeff. ≈ Z − Ne, with the number of shielding

electrons Ne. For HCIs, the scaling is therefore proportional to the charge number

Q = Zeff. [79]. As described in Tab. 2.2, the energy levels in HCIs shift to higher

Table 2.2: Scaling of effects with nuclear charge Z = Zeff. for HCIs [48]. Energy
splitting increases while external effects are attenuated.

Effect Scaling

energy levels Z2

fine structure splitting Z4

hyperfine splitting Z3

QED effects Z4

atomic size Z−1

polarizability Z−4
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energies proportionally with the squared charge state. This shifts not only optical

transitions into the EUV range, but also brings infrared (IR) transitions into the

optical range. Consequently, classically forbidden transitions become visible due to

an increased transition rate. HCIs expose the inner electron that are more tightly

bound to the nucleus. This bond is much stronger than that in neutral atoms, and

thus makes the system less susceptible for external perturbations exerted onto the

observed electron. This effect is found in Tab. 2.2 as reduced polarizability effect. It

is important to note that the HCIs also greatly reduce second-order Zeeman- and

Stark-shifts [80]. The strong scaling of QED effects allows HCIs to be utilized to test

the QED theory with increased precision. HCIs are also an ideal candidate for the

search of an ULDM influence on the fine-structure constant α, because the splitting

of the fine and hyperfine structure increases with the charge states, thus making a

variation of α easier to observe.

2.1.2 Transition rate

The radiant power of a transition from level k to level i can be expressed as [81, 78]

⟨P ⟩ = AkiNk ⋅ hν, (2.7)

where Aki is the Einstein coefficient for the spontaneous decay with the frequency ν

between these levels. The value Nk represents the number of atoms that have the

valence electron in the upper state k. This number decreases with each decay to any

potential state below k and increases with direct excitation to k or a decay from

higher states n. A time dependence of the Nk value can be written as

δNk

δt
= −∑

i

NkAki +∑
n

NnAnk +C, (2.8)

where the C accounts for all other effects by electron impacts from the electron beam,

including excitation, de-excitation, ionization, recombination, etc. These terms give

rise to an average population of the k level Nk. From this average and the radiant

power Eq. 2.7, the intensity emitted per solid angle for an isotropical emission is

I = NkAkihν

4π
. (2.9)

For optical transitions, the power of the emitted radiation can be expressed by a

classical electric dipole (Hertzian dipole) [82, 78]

P̄ = 8π3ν4

3ε0c3
p2. (2.10)
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Here, c is the speed of light, h the Planck constant and ε0 the vacuum permittivity

of a transition with frequency ν. The average electric dipole moment p2 can also be

described by the expectation value of the dipole moment operator p⃗

⟨p⃗⟩ = ⟨Ψk ∣ qr⃗ ∣Ψi⟩ =
ÐÐ→
Mki. (2.11)

By comparing the powers of Eq. 2.7 and Eq. 2.10, as well as replacing the electric

dipole with the expectation value p2 = 1
2(∣Mki∣ + ∣Mik∣)2 = 1

2(2∣Mki∣)2 [83], the rate for

the spontaneous emission Aki can be expressed for one emitting atom as [78, 84]

Aki =
16π3ν3

3ε0hc3
∣Mki∣2. (2.12)

Because Aki depends on ν3 between two energy levels, the energy difference of the

transition strongly influences its probability. This makes transitions with the same

dipole moment in the EUV more likely than an IR transition.

Calculating ∣Mki∣2 is typically performed with computational codes such as ambit

[85] or flexible atomic code (fac) [86]. This value is also called the line strength

S [81]. While the line strength S has the advantage of being independent of the

transition wavelength, the rate Aki is a better choice for judging the actual visibility

of the transition due to its proportionality to the intensity (Eq. 2.9). The line strength

S is often expressed in atomic units of ea0 for the electric dipole moment. To convert

the atomic units to SI units, this factor will be included for E1 transitions [81]

Aki,E1 =
16π3

3hε0λ3
⋅ SE1 ⋅ (ea0)2

gd
. (2.13)

To account for the degeneracy of the upper state, the line strength is divided by

gd = 2Jinital + 1. If this degeneracy gd remains, then the transition will be reported as

gAki.

Other types of transitions follow similarly with their own transition moments.

For an electric quadrupole (E2) this results in

Aki,E2 =
8π5

5hε0λ5
⋅ SE2 ⋅ (ea2

0)2

gd
. (2.14)

Here, the wavelength dependence changes from λ−3 for E1 to λ−5. The electric dipole

moment is changed to the electric quadrupole moment ea2
0.

For forbidden transitions, like the magnetic dipole (M1), a similar result is

obtained

Aki,M1 =
16π3µ0

3hλ3
⋅ SM1 ⋅ (h̵e/me)2

gd
. (2.15)
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While it is similar to E1, there are distinct differences, like the vacuum permeability

µ0, and the magnetic dipole moment h̵e/me. The differences between the rates

can be observed from Eq. 2.13 and Eq. 2.15. For a transition of same strength and

wavelength, the M1 transition is a factor µ0(h̵e/me)2/(ε−1
0 (ea0)2) ≈ 5×10−5 less likely

than an E1 counterpart, which is why M1 transitions are called forbidden. Hence,

M1 transitions are only visible in the lowest lying electron configuration, where the

parity is unchanged and no faster E1 transitions are allowed. In neutral atoms, only

IR transitions can occur in such lowest configuration due the closeness of its levels.

This further decreases their transition rate, as the wavelength dependence is λ−3. In

HCIs, however, these are shifted from IR, with rates of less than one transition per

second, to the optical range, with rates of hundreds of transitions per second.

2.1.3 Line broadening

(a)

Energy

p
p

(b)

Energy
(c)

Energy

Figure 2.1: Scheme of line broad-
ening. (a) Natural linewidth as
Lorentzian. (b) Particle emitting
light while moving toward (or-
ange) and away from (green) the
observer. (c) Average over all par-
ticles moving in random directions
giving the line shape a Voigt pro-
file. Adapted from Ref. [87].

Transitions between two levels are broadened

by their own natural linewidth, which has

a Lorentzian line shape [77]. Its width is a

result of decay of the oscillating dipole, i.e.

the lifetime of the upper level of the transi-

tion. A shorter lifetime results in a broader

line and vice versa due to the uncertainty

principle, which is expressed by [78]

∆E∆t ≥ h̵. (2.16)

The lifetime ∆t can be also written as the

rate ∆t = 1/Aki, which leads to a frequency

uncertainty of ∆ν ≥ Aki/2π.

An emitted photon is shifted in its en-

ergy when coming from a moving atom due

to the Doppler shift with E = p2
x/2m, where

px is momentum towards the detector. Mul-

tiple atoms collectively cause a Gaussian

line shape, which additionally broadens the

linewidth. The resulting convolution of a

Lorentzian and a Gaussian distribution is

known as a Voigt distribution. This scheme

is depicted in Fig. 2.1. The central part

of the energy distribution is dominated by the Gaussian function, however, the

Lorentzian line shape will become dominant towards the outside.
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Figure 2.2: Scheme of Zeeman splitting based on 2D5/2−2D3/2 transition in Xe17+. (a)
Splitting of the energy levels by their total angular momenta J . Allowed transitions
are indicated by ∆m = 0,±1. (b) Spectral line based on Zeeman splitting, where the
energy splitting is a direct cause of the g-factors involved. Amplitudes of π and σ
based on Clebsch-Gordan coefficients.

2.1.4 Zeeman effect

Caused by a magnetic field interacting with the electrons of an atom, the Zeeman

effect splits the energy levels into three groups of 2J + 1 components, where J is the

lesser value of the two levels. This is schematically shown in Fig. 2.2 (a). This effect

can be written as

∆E = µBBgJmJ . (2.17)

Here, µB = 1
2eh̵/me is the Bohr magneton, gJ is the gyromagnetic factor and mJ the

z-component of the total angular momentum of the level.

A transition between these split energy levels can be written as

∆(hν) = µBB ⋅ (gi ⋅mi − gf ⋅mf), (2.18)

where the subscript J was omitted and instead contains i for the initial, upper

level and f for the final, lower level. A transition between them is only allowed

if ∆m = mi − mf = 0,±1 and are commonly denoted as π and σ± groups. The

polarization of these groups are linear when observed perpendicular to the applied

magnetic field. For M1 transitions the σ± lines are perpendicular- and the π lines

parallel-polarized, relative to the applied magnetic field. The opposite is the case for

E1 transitions [84].

The polarization also influences the effectiveness of the reflection of mirrors

and gratings. For mirrors, the reflectivity of polarized light is represented for s-
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and p-polarized light, where s is perpendicular to the plane of incidence and p is

parallel to it. This concept is depicted in Fig. 2.3. Here, a mirror reflects a beam of

light shown as a red arrow. This arrow spans the transparent red incidence plane.

Polarization within or extruding from this incidence plane is called p-polarized light

and s-polarized light, respectively.

n

xy

z

s

p

Figure 2.3: Definition of
s- and p-polarization de-
pending on the plane of in-
cident (red). The normal
of the mirror is n⃗.

Typically, mirrors reflect s-polarized light slightly

better than p-polarized light at 45○ reflective angles

in the optical range [88]. This difference in reflection

results in a difference in intensity for the π- and

σ-components.

The g-factors play a role in the splitting of the

Zeeman components. gf is the main factor for the

group separation between the π and σ groups, while

the difference gf−gi causes the peak separation within

the groups. This can be understood by examining

the σ± case of Eq. 2.18, where mf = mi ± 1 and the

splitting is expressed as ∆(hν) = µBB(mi(gi − gf) ±
gf). Because gi − gf is smaller than gf , it directly

causes smaller structures with mi, while gf causes the larger change between π and

σ.

The g-factors of an electronic level can be approximated by the Dirac formula

g = 1 + J(J + 1) + S(S + 1) −L(L + 1)
2J(J + 1) , (2.19)

which is based on the LS-coupling. Due to its simplicity, it does not account for the

QED correction nor for strong level mixing. Better results can be computed with

programs like ambit [85], which will be further introduced in the coming chapter 2.6.

The relative amplitude of the Zeeman components within each group of ∆m

can be calculated using Clebsch-Gordan (CG) coefficients, which stems from the

Wigner-Eckart theorem [89]. These coefficients yield the probability of two total

angular momenta j1 and j2 resulting in a new momentum j3. Each has their z-axis

projection m1,2,3. A common notation of this is the Wigner 3-j symbol

⎛
⎝
j1 j2 j3

m1 m2 m3

⎞
⎠
=
⎛
⎝
Ji 1 Jf

m ∆m m +∆m

⎞
⎠

⇒ CG(Ji, Jf ,m,∆m), (2.20)

from which the CG coefficients can be calculated. A detailed way for calculating

these, as well as different representations, can be found in Ref. [89]. The initial level

is described by j1 = Ji and its projection m1 = m ∈ [−mi,−mi + 1, ...,mi − 1,mi]. It

is then investigated in its relation to a transition with j2 = 1 and m2 = ∆m. The
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final entry is the lower state of j3 = Jf and m3 =m +∆m. The π and σ groups are

represented by ∆m, which is either 0 or ±1. The resulting CG coefficients can be

seen in the amplitude of the different components within the π and σ± groups in

Fig. 2.2 (b).

2.2 The fifth force as dark matter candidate

As introduced in chapter 1.2, there are numerous experiments searching for potential

candidates for DM, but no proof has been found yet. In this work, the main focus

is a hypothetical fifth force in the mass ranges from a few eV/c2 to a few MeV/c2.

This range is within the electronic wavefunctions of an atom and would inflict small

shifts in the energy levels. In general, such a force could couple to any particle in

the atom, but a force coupling between neutrons and electrons would have the best

chance of detection, as there are no other direct interactions expected in this range

due to the charge neutrality of the neutron.

A general description of such a hypothetical fifth force interacting within an atom

is a Yukawa potential

VΦ(r) = yeynN
h̵c

4πr
exp(− c

h̵
⋅mΦ ⋅ r) , (2.21)

where the force strength is scaled by the coupling parameter yeyn between electrons

and neutrons via this force, as well as the number of neutrons N = A − Z in the

nucleus, which increase the number of partners the electron can couple to. The range

of the force is scaled by the mass parameter mΦ in the exponential function which

causes a reduction in the range, if the mass parameter mΦ is large, while a light

mass means a longer range. The radial component is r and the constants are the

reduced Planck constant h̵ and the speed of light c.

DM below 1 eV/c2 with a similar coupling could cause a similar effect on the

electronic energy levels as it would have a reach beyond the atom, however, such

a comparably long range is already excluded by studies of the Casimir effect. In

these experiments, two plates are brought close to each other and the force exerted

on them is measured. This limits the force range λΦ to be shorter than λΦ < 3 nm

(mΦ > 65 eV/c2) at coupling strengths yeyn > 8.6 × 10−13 [90]. These excluded NP

parameters are shown in Fig. 2.4 as a red-shaded area.

Investigations of scattering experiments, e.g. electron-neutron scattering [91], can

also be used as probes for an intra-atomic force. These results already propose limits

onto the NP parameter space. Most of the parameter space has been excluded by

two kinds of experiments. The first experiment is on the magnetic moment (g-2)e

of the electron, from which the fine-structure constant can be extracted [92], which
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Figure 2.4: Overview of the excluded Yukawa-type fifth force parameter space by
Casimir effect studies [90], electron scattering [91] and neutron scattering [94, 95,
96, 97] with electron magnetic moment (g − 2)e [93, 92]. The potential X17 boson is
given a gray marking [30, 31].

in turn yields a constraint on the coupling between electrons and a hypothetical

boson [93]. The second experiment is on neutron scattering [94, 95, 96, 97], which

restrains the coupling of the neutrons to such an NP boson. Multiplying both of

these couplings results in an effective coupling constraint between neutrons and

electrons to a hypothetical Yukawa-type boson. The NP parameters excluded by

these scattering experiments are shown in Fig. 2.4 as green and yellow shaded areas.

The Be anomaly (X17), as introduction in chapter 1.2.1, lies at mΦ = 17 MeV with

interaction strengths between electrons and neutrons of 1.0 × 10−6 ≥ yeyn ≥ 3.7 × 10−8

[30, 31]. In Fig. 2.4, it is marked by a grey line. The white space in Fig. 2.4 is not

constricted by any past experiment and may thus contain a fifth force boson.

2.3 Isotope shift and King plot

2.3.1 Isotope shift

As introduced in chapter 2.1, the electronic energy levels of an atom are mainly set

by the Coulomb potential. These levels are not solely dependent on the nuclear
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Figure 2.5: Scheme of a transition (left) and its IS (right) between two isotopes. C is
the non-nucleus dependent part of the transition, K describes the mass shift, F the
field shift, and X the hypothetical fifth force effects. Insets depict the change of the
potential for a finite nucleus and an additional Yukawa potential. Note: not to scale.

charge, but also the finite size and the mass of the nucleus. A transition between

two levels can be simplified to

ν = C +K 1

m
+ F ⟨r2⟩ +X ⋅N. (2.22)

Here, C contains the nuclear-independent terms of the transition, consisting mainly

of the coulomb-potential. The terms related to the mass m are represented by K, and

the terms related to the finite nuclear size terms by the root mean square radius ⟨r2⟩,
which is represented by F . A fifth force parameter X would scale with the number of

neutrons N in the nucleus. A schematic depiction of two isotopes can be seen on the

left side in Fig. 2.5 with an exaggerated composition of the four energy terms. The

IS, which is the change in energy between two isotopes, is shown on the right side

of the figure, separated for the three changing terms. The non-nucleus dependent

part C cancels out between the two isotopes. The remaining terms are mass shift

(MS) and field shift (FS). MS is caused by the variation in the isotope masses, which

affects the kinetic energy of the electrons. FS is caused by the different sizes of the

nuclei and therefore its charge distribution within the nucleus. This changes the

shape of the potential, which is depicted in Fig. 2.5 in an inset figure. Both of these

effects change the energy of the electronic levels and thus their transitions. Note

that the MS K is sometimes separated into the normal mass-shift (NMS) and special

mass-shift (SMS), which are handled differently mathematically. The NMS is simply

the change in the Bohr radius with the changed reduced mass, which can be handled

analytically. Correlation terms between the momenta of the electrons are considered
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in the SMS and are handled as a perturbation to the system, i.e. perturbation theory.

However, both are part of the same MS K coefficient. [98, 99]

Mathematically, the IS δνai = νAi − νAr
i of an isotope-pair a = (A,Ar) and the

transition i can be written in the first-order SM as

ISSM = δνai =Kiµa + Fiδ⟨r2
a⟩. (2.23)

The mass parameter µa = 1/mA−1/mAr is the difference of the inverse isotope masses

and the radial parameter δ⟨r2
a⟩ = ⟨r2

A⟩ − ⟨r2
Ar

⟩ is the difference of the mean square

nuclear charge radii.

A hypothetical fifth force described by a Yukawa-potential, as introduced in

chapter 2.2, can be generally expressed as

ISNP = yeynXi(mΦ)γa, (2.24)

where the coupling to electrons and neutrons yeyn scales the force strength and thus

the shift strength. The dependence on the neutron number is set as γa = N −Nr

between the two isotopes. Finally, Xi is the electronic constant for the transition,

which is a direct consequence of the Yukawa potential. It depends on the mass of the

mediator boson mΦ, which scales the force range. The effect of the Yukawa potential

on the atomic potential is shown in Fig. 2.5 as inset. Compared to the Coulomb

potential, the fifth force Yukawa potential has a minute and limited effect. The more

the electronic wavefunction overlaps with the Yukawa potential, the greater the effect

of the fifth force on the energy levels, thus improving the chance of detection.

2.3.2 Classical King plot

In the IS Eq. 2.23 the uncertainty of the nuclear radii are considerably greater than

that of the nuclear masses, as seen in Tabs. 1.1 and 1.2. This would pose a stringent

limitation on the sensitivity to a fifth force. To overcome this, the radius can be

replaced with a second IS measurement. To perform this substitution, the IS is

divided by the mass parameter µa, giving a modified IS mδν which is denoted with m.

This results in an expression dependent only on a single isotope parameter δ⟨r2
a⟩/µa,

which changes the IS Eq. 2.23 to

δνai
µa

≡ mδνai =Ki + Fi
δ⟨r2

a⟩
µa

. (2.25)
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2.3. ISOTOPE SHIFT AND KING PLOT

This joined isotope-pair parameter can then be substituted by a second modified

transition, resulting in a term which expresses these two transitions as

mδνa1 = F1

F2

mδνa2 + (K1 −
F1

F2

K2) . (2.26)

This approach was first introduced by King [36], where Eq. 2.26 describes a linear

relationship between the two modified transitions, known as the King-linearity. This

equation can be solved by IS measurements of at least two isotope-pairs, which

yields information about the FS and MS electronic constants Fi and Ki, respectively.

The beauty of this method is that no calculations of these electronic coefficients are

required.

If a fifth force causes an additional shift (Eq. 2.24) in these isotopes, the total IS

changes to

IS = ISSM + ISNP ≡ δνai =Kiµa + Fiδ⟨r2
a⟩ + yeynXiγa. (2.27)

Modifying the IS of two transitions (Eq. 2.25) and replacing the united nucleus

parameter mδ⟨r2
a⟩ results in

mδνa2 = F2

F1

⋅mδνa1 + (K2 −
F2

F1

K1) + yeyn ⋅ (X2 −
F2

F1

X1) ⋅mγa. (2.28)

SM
+N
PSM

mδυ

~kHz

~Hz

~MHz

1

2
m
δυ

Figure 2.6: Scheme of a KP
(not in proportions). Green
represents the SM-only con-
tribution, where the points
are in O(MHz) away from
each other. The NP contribu-
tion in orange shifts this by
O(kHz), but the nonlinearity
is only in O(Hz).

Similar to Eq. 2.26, the King-linearity term shows

up, however, the NP contribution leads to an

additional term. This term will result in a devi-

ation from the expected linear behavior, i.e. a

non-linearity (NL), unless it falls under one of

two exceptions. Firstly, if the electronic coeffi-

cients F and X are equal or at least very similar,

the term X2 − F2

F1
X1 = 0 and no NL occurs. Sec-

ondly, if mγa is aligned with the one of the SM

terms, then the fifth force contribution would be

disguised as part of this SM shift. This alignment

occurs when NA −NAr is proportional to either

1/mA − 1/mAr or ⟨r2
A⟩ − ⟨r2

Ar
⟩ for the investigated

isotopes.

Generally, IS calculations result in a fifth force

contribution on the order of a few kHz. In terms

of NL, however, most is lost due to the common

shift between different pairs in the KP. A depiction of this problem is shown in

Fig. 2.6, where the SM leads to the King-linearity between the isotope pairs of a few

MHz. The fifth force IS causes a kHz shift, but only a small fraction results in an
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NL of a few Hz, which is why high-precision spectroscopy is needed. Analyzing this

NL in terms of resolvability requires accounting for the IS measurement uncertainty.

This can be approached in various ways, one of which is to look at the deviation of a

third isotope-pair to a linearity established by the first two pairs. The resolvability

follows a direct comparison of the deviation to the measurement uncertainty. On a

more general approach, the area spanned by the isotope-pairs can be evaluated. As

presented in Ref. [39], a matrix can be used for this

MKP
a1,a2,a3 =

⎛
⎜⎜⎜
⎝

mδνa11 mδνa12 1

mδνa21 mδνa22 1

mδνa31 mδνa32 1

⎞
⎟⎟⎟
⎠
. (2.29)

This matrix contains the two mass-modified IS for the different isotope pairs a,

which represent the set of linear equations. Since the IS have been divided by the

mass parameter, the last column contains only Ð→mµ = (1,1,1)T , i.e. µ divided by µ.

Since the radius parameter has been replaced by δν2, it is the second column. The

determinate of this matrix is the volume of the parallelogram spanned by the isotope

vectors
ÐÐ→
mδν1,

ÐÐ→
mδν2 and Ð→mµ = (1,1,1)T

V KP
a1,a2,a3 =det (MKP

a1,a2,a3
)

=mδνa11 (mδνa22 −mδνa32 )
−mδνa21 (mδνa12 −mδνa32 )
+mδνa31 (mδνa12 −mδνa22 ).

(2.30)

Using Gaussian error propagation through the determinate, one can obtain the

uncertainty of this volume, which includes the measurement uncertainties of every

isotope-pair and transition

∆V KP
a1,a2,a3 =∆mδνa11 ∣mδνa22 −mδνa32 ∣ +∆mδνa21 ∣mδνa12 −mδνa32 ∣

+∆mδνa31 ∣mδνa12 −mδνa22 ∣ +∆mδνa12 ∣mδνa31 −mδνa21 ∣
+∆mδνa22 ∣mδνa11 −mδνa31 ∣ +∆mδνa32 ∣mδνa21 −mδνa11 ∣.

(2.31)

With this calculated parallelogram by the NL and its uncertainty from the measure-

ments, the resolvability R can be defined as

R =
V KP
a1,a2,a3

∆V KP
a1,a2,a3

. (2.32)

If R > 1, the area of the parallelogram can be resolved; while a R ≤ 1 signifies an

area below the resolution of the measurement. This property is used later in the

analysis of KPs.
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2.3.3 No-mass King plot

A possible limitation of for the KP analysis can stem from uncertainties of the isotope

masses, as

mδνai =
δνai
µa

= νAi − νAr
i

1/mA − 1/mAr

∆mδνai =
∆νAi +∆νAr

i

∣1/mA − 1/mAr ∣
+

∆mAm−2
A +∆mArm

−2
Ar

(1/mA − 1/mAr)2
∣νAi − νAr

i ∣.
(2.33)

High ∆mA or ∆mAr can overshadow the measurement uncertainty. In this case, the

mass parameter from the IS can be exchanged for a third transition. The relation
Ð→mµ = (1,1,1)T in the matrix Eq. 2.29 stems from the isotope-independent term

K2−K1 ⋅F2/F1 in Eq. 2.28. By keeping the IS unmodified and instead exchanging the

mass parameter with a third measurement, the set of linear equations is a so-called

no-mass King plot (NmKP) [39]. The NmKP matrix is

MNmKP
a1,a2,a3 =

⎛
⎜⎜⎜
⎝

δνa11 δνa12 δνa13

δνa21 δνa22 δνa23

δνa31 δνa32 δνa33

⎞
⎟⎟⎟
⎠
. (2.34)

Similar to Eq. 2.30, the volume of the parallelogram formed by the vectors can be

obtained by the determinant of the matrix

V NmKP
a1,a2,a3 =det (MNmKP

a1,a2,a3
) . (2.35)

Now, the uncertainty of the volume ∆V NmKP
a1,a2,a3 only depends on the measured IS

∆δνai = ∆νAi +∆νAr
i ≈ 2∆ν.

2.3.4 Higher-order SM shifts

1 kHz 1 Hz ...

measurement precision

Spherical
Nuclear 
deformation

Charge
distribution

Figure 2.7: Scheme of the visible
effects by the nucleus for differ-
ent measurement uncertainties.

Nuclear effects have an undeniable influ-

ence on the electronic levels and transitions.

While the finite nuclear size and the nuclear

mass have the strongest effect, there are po-

tentially smaller contributions which may

become relevant in IS. This appearance of

smaller effects with increased precision is

shown schematically in Fig. 2.7. While large

measurement uncertainties would make the

nucleus seem spherical, finer precision may

reveal small deformations, and an even fur-
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Figure 2.8: Quadrupole deformation parameter of even isotopes. Empty circles
represent stable isotopes. Blue: spherical nucleus, red: spheroidal deformed nucleus.
From Ref. [104].

ther improved precision may reveal the precise distribution of the charges in the

nucleus affecting the electrons. These effects could also be seen in perturbation

theory as higher-orders of the SM. [100, 101]

Quadratic mass-shift The quadratic mass-shift (QMS) is a higher-order term to

the MS. It can be explained as a nuclear recoil, where the electrons exert a force on

the nucleus [102]. This effect is more significant in lighter atoms than in heavier ones.

Calculations estimated the QMS for calcium to be on the order of 3 Hz for Ca+ [103].

This would be observable with sub-Hz precision using current laser spectroscopy and

QLS. In IS, the QMS adds a term M ⋅ µ2, where M is an electronic coefficient, and

is thus treated as a perturbation to the existing MS K ⋅ µ.

Quadratic field-shift The quadratic field-shift (QFS) is a higher-order contri-

bution to the FS, which is typically on the order of a few kHz for heavy atoms.

This effect becomes dominant in heavy atoms, due to the increased nuclear charge

and consequently the relativistic corrections. These relativistic terms will cause the

field shift to be stronger further away from the nucleus [103]. This can be treated

either as a nucleus-dependent FS parameter F (a), or as an added perturbation term

G ⋅ (δ⟨r2⟩)2 [100] with an electronic coefficient G.

Nuclear deformation Some combinations of neutron and proton numbers allow

for non-spherical patterns. This nuclear deformation affects the energy levels of the

electrons.
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Until recently, the effects of nuclear deformation have been underestimated on

their role in IS. Its significance became evident only after the analysis of an NL

observed in a KP analysis in ytterbium [41, 105]. Calculations from Ref. [104] of the

deformation for different nuclei are shown in Fig. 2.8. As a dipole deformation is

simply a positional shift of the nucleus, the quadrupole deformation is the lowest

deformation term and describes the shape of a spheroidal nucleus [106]. There are

patches with strong nuclear deformation seen in Fig. 2.8. Magical numbers (20, 28,

50, 82, 128), which are indicated with red and blue dashed lines, are correlated

with spherical nuclei. Best examples are Ca, Ni, Sn and Pb. A large variety of

nuclear deformed isotopes are found in ytterbium with Z = 70 protons. While Ca

has a magical Z = 20, Xe has some slightly deformed isotopes 124Xe through 128Xe,

however, their deformation parameter is still smaller than that of Yb. According to

Ref. [100], the IS terms would written as a∆(β2) + b∆(β3) + cδ⟨r2⟩∆(β2) with a, b

and c as electronic constants and β the quadrupole deformation parameter, where

∆(β2) = β2
1 − β2

2 and ∆(β3) = β3
1 − β3

2 .

Ref. [104] also investigates the effect of the next higher-order, an octupole deforma-

tion, which would describe a pear-shaped nucleus. However, this kind of deformation

is irrelevant for the isotopes of the elements analyzed and discussed in this work,

therefore will not be included here.

Nuclear polarizability The nuclear polarizability αp can also have an influence

on isotopes. This effect arises especially in large nuclei which affects the electronic

wavefunctions via the nuclear giant dipole resonance, and via the rotational states in

deformed nuclei. Its potential can be written as

Vαp = −
1

2

αpe2

r4
. (2.36)

The isotope dependency lies within αp, which depends on a combination of Z and

A. The reduction by r4 makes this effect most substantial in close proximity to the

nucleus, thus s-orbitals are most significantly affected, while effects on p-orbitals

are already magnitudes lower. This effect is rather small for Ca and Xe, especially

compared to heavier elements like Yb. [107]

The nuclear polarizability relies on a number of nuclear parameters, which makes

separation of the nuclear- and non-nuclear-dependent parts difficult. As an IS term,

it will be handled as one single parameter δναp [108].
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2.3.5 Generalized King plot

By including all these contributions in the IS equation Eq. 2.27, the shift terms

become numerous

δνai =Kiµa + Fiδ⟨r2
a⟩

+Miµ
2
a +Gi ⋅ (δ⟨r2⟩)2 + ai∆(β2) + bi∆(β3) + ciδ⟨r2⟩∆(β2) + δναp

+ yeynXiγa.

(2.37)

Each term has a unique dependence on the nucleus of an isotope and shifts the

energy levels accordingly. This property could be used to distinguish these effects,

and a method will be discussed in chapter 2.3.6. However, it becomes necessary

to focus on the main contributions visible with a given measurement uncertainty.

For spherical nuclei, like Ca, the β terms will not play a significant role. For slight

deformations, like in some Xe isotopes, the main shift lies within the ∆β2 term,

however, compared to Yb, this shift is expected to be much smaller. The nuclear

polarizability is expected to become most visible in heavy nuclei, because of the

greater overlap of the electronic wavefunction with the nucleus. Due to its short

range, only the innermost electrons are sufficiently experiencing it to be detected.

This leaves predominantly the QMS and QFS as SM NL.

Each of these higher-order SM terms contribute to the NL. To separate them, the

GKP has been developed by Refs. [37, 39]. Here, the KP is extended with additional

transitions into higher dimensions. Each higher dimension counters one higher-order

SM effect, without the need to know the specific details of that term [39]. Similar to

the KP linearity Eq. 2.28, the GKP spans a mutli-dimensional linearity, a hyperplane,

through the SM terms. However, each higher dimension requires another isotope-pair

to remain a determined system.

To remove one higher-order SM term, the GKP becomes four dimensional. Here,

the calculation of the volume with the determinant becomes advantageous, as the

volume can still obtained with the determinant of the matrix

MGKP
a1,a2,a3,a4 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

mδνa11 mδνa12 mδνa13 1

mδνa21 mδνa22 mδνa23 1

mδνa31 mδνa32 mδνa33 1

mδνa41 mδνa42 mδνa43 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (2.38)

V GKP
a1,a2,a3,a4 =det (MGKP

a1,a2,a3,a4
) . (2.39)

If there is a large uncertainty reigning from the isotopes masses, the GKP can

still overcome these uncertainties using the technique from the NmKP, forming the

no-mass generalized King plot (NmGKP). As before, the last column of the matrix
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is exchanged with a fourth transition. As the mass parameter µ is replaced with an

IS, there is no need to modify these IS by the masses anymore

MNmGKP
a1,a2,a3,a4 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

δνa11 δνa12 δνa13 δνa14

δνa21 δνa22 δνa23 δνa24

δνa31 δνa32 δνa33 δνa34

δνa41 δνa42 δνa43 δνa44

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.40)

The more SM IS terms there are to account for, the further the GKP can be

expanded into higher dimensions.

MNmGKP
a1,a2,a3,a4,... =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

δνa11 δνa12 δνa13 δνa14 . . .

δνa21 δνa22 δνa23 δνa24

δνa31 δνa32 δνa33 δνa34

δνa41 δνa42 δνa43 δνa44

⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.41)

The only limit to this method is the number of transitions and available isotopes.

The resolvability R is calculated for any of these KP methods (KP, NmKP, GKP

or NmGKP) with R = V /∆V . This R is used in the analysis of the KPs to investigate

their sensitivity to a fifth force.

2.3.6 Analyzing the breaking of the King plot linearity

In the theoretical analysis of the KPs, the parameters of the included Yukawa

potential can be scaled accordingly. The resolvability R can be calculated using KP

volumes and their uncertainties, and used to adjust the parameters yeyn and mΦ in

the Yukawa model to achieve R = 1. This limit is reached when the ISNP shift is as

large as the error bars, caused by the assumed measurement uncertainties. When

repeated for all mediator masses mΦ, this will result in a curve for an exclusion-plot

as shown in Fig. 2.4. Details of this method will be given in the analysis chapters 5.1

and 5.2.

Analyzing experimentally acquired KPs is slightly different, as an observed NL

sets the R to a fixed value. However, the resulting NL is still compared to the
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Yukawa-model of the fifth force. For the classical KP, the solution for the coupling

parameter is [109, 39]

yeyn =

RRRRRRRRRRRRRRRRR

⎛
⎜⎜⎜
⎝

mδνa11 mδνa12 1

mδνa21 mδνa22 1

mδνa31 mδνa32 1

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRR

⎛
⎜⎜⎜
⎝

X1(mΦ) ⋅mδνa12 −X2(mΦ) ⋅mδνa11 mγa1 1

X1(mΦ) ⋅mδνa22 −X2(mΦ) ⋅mδνa21 mγa2 1

X1(mΦ) ⋅mδνa32 −X2(mΦ) ⋅mδνa31 mγa3 1

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRR

, (2.42)

which is only dependent on the measurement results mδν and the theoretical model

that is used to describe the fifth force X(mΦ). Even if no breaking of the linearity

occurred, the results can still be used to exclude the NP parameter space that is

covered by that measurement. In essence, the fifth force model is maximized within

the limits of measurement uncertainties without compromising the observed linearity.

Given the number of possible SM IS terms shown in Eq. 2.37, an observed NL

could as well be caused by one or more of these terms. In particular, this can be

problematic if it is an effect that was underestimated in the theoretical framework.

A possible way to interpret the NL from an observation is to analyze the pattern

the isotope-pairs exhibit in the KP. For four isotope-pairs, it can either follow a

zigzag (+ – + –), or a curved (+ – – +) pattern. As no measurement strictly follows

these patterns to perfection, a mixture of zigzag and curved patterns is expected,

which can be visualized in a plot. In such a plot, the different IS terms draw a

line that expresses the pattern ratio of that shift. This ratio of these patterns is

different for each term of Eq. 2.37 on the isotopes. A KP analysis would mark a

single point on this plot, which is spread out by its uncertainties. This plot allows

the distinction of an NP shift from a SM shift. Recently, this method was used

on a Yb KP measurement [41, 105]. The analysis led to identification of a nuclear

deformation, instead of a NP boson, that caused the observed NL. The nuclear

deformation was until then supposedly negligible in its effects on the KP analysis.

The initial analysis was done in Counts et al. [41] with this pattern plot method,

which is shown in Fig. 2.9. Here, ζ± is the pattern obtained with

ζ+ = da − db + dc − dd, ζ− = da − db − dc + dd, (2.43)

where dx = mδνxi −f(mδνxj ) being the vertical offset of the data points mδνxi from the

linear fit function f(mδνxj ). The isotope is denoted with x and the two transitions

are i and j. In this figure, two lines are drawn, each representing a particular ratio of

zigzag to curved. For a fifth force, the ratio dependence is plotted in green, while a

QFS is seen as a blue dashed line. Both ratios could explain the red circle where the
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Figure 2.9: Pattern plot from Ref. [41]. Green line represents NL behavior for a pure
NP boson, while the blue dashed line is the expected pattern for a QFS. The red
area is where the measurement lies including its uncertainty.

measurement lies. If the measurement is improved further, the red circle will become

smaller and may end up on one of these ratio lines. This would be a clear indication

of what effect is present. The more IS components, the more lines would be drawn.

Since this particular figure was a preliminary analysis, the nuclear deformation was

not yet accounted for.

This method works best for four isotope-pairs, as there are only two possible

patterns for the NL. More isotope-pairs would allow for more patterns, which would

complicate this analysis by expanding the plot into higher dimensions for each

pattern.

Gun
Trap

- Collectore  beam

Magnet

Ions

Figure 2.10: General setup of an EBIT. An electron gun generates an electron beam,
which is guided by an magnetic field to a collector. The ions are produced in the
central trap region.
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2.4 Electron Beam Ion Trap

Numerous isotopes and transitions are required for the KP and the subsequent

GKP analysis. Additionally, to make use of future high-precise QLS measurements,

ground-state transitions are required. In chapter 2.1.1 the advantages of HCIs on

precision measurements have been elucidated.

To produce these HCIs, an electron beam ion trap (EBIT) is commonly used.

A general setup is depicted in Fig. 2.10. In these EBITs, an electron gun is heated

to release electrons, which are then accelerated by the potential difference between

a cathode and the central trap. The acceleration voltage ranges from a few tens

of volts to several hundred kilovolts. A magnetic field guides and compresses the

electron beam. The energy of the electron beam is determined by the acceleration

voltage, which in turn allows the beam to strip electrons from atoms crossing its

path. The electrons can be progressively stripped away by the sheer number of

electrons emitted by the gun. The limit is reached when the ionization energy of the

bound electron is greater than the beam energy. This limits the charge state of the

produced ions. There is a collector at the end of the EBIT, which stops the electrons

in their path and dissipates the heat generated from the electron impact. Details of

the setup are discussed in chapter 3.1.

Interactions between the electron beam and an injected atom are highly dependent

on the beam energy. Firstly, it may excite an electron of the atom A to a higher

energy level A∗, which eventually returns to a lower level and the energy difference

is released as a photon hν

A + e− → A∗ + e− → A + hν + e−. (2.44)

This is also known as fluorescence. An empirical formula from Van Regemorter [110]

allows an estimation of the cross-section of the excitation process

σRegemorter ≈ 2.36 × 10−13 cm2eV2 1

E2
beam

G ⋅ fki
hν

. (2.45)

Here, a transition is excited by an electron beam with the energy Ebeam. The

transition has an energy of hν and the absorption oscillator strength fki, where the

latter is scaled by an empirical Gaunt factor G = 0.074
√
Ebeam/hν ⋅ (1 +Ebeam/hν)

[110].

If the electron in the beam has more energy than the ionization threshold, then

the bound electron may be released

A + e− → A+ + 2e−. (2.46)
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The released electron gains momentum from the interaction and will either travel

with the beam to the collector, or spiral due to the electric and magnetic fields until

it is stopped by a wall or another object. The empirical formula by Lotz [111] below

can be employed to estimate the chance of ionization for beam energies Ebeam close

the ionization potential Eion..

σLotz ≈ 4 × 10−14 cm2eV2 ⋅Ne
ln (Ebeam/Eion.)

E2
ion.

⋅ (1 − b), (2.47)

where Ne is the number of the electrons which contribute to the cross-section of

the subshell and a factor b based on experimental results. For Ebeam >> Eion. this

factor is (1 − b) = Eion./Ebeam [111]. From this formula it follows that lighter bound

electrons are easily removed from an atom, while tightly bound electrons require a

more targeted hit for electron ionization. Therefore, a high electron density ne of

the beam becomes important to achieve high charge states. A high-energy photon is

released when an electron recombines with the atom.

Ionization might become easier for when the atom A is already in an excited

state. Typically, this requires a meta-stable state, which has a longer lifetime than

other states due to the lack of fast decaying transitions.

A∗ + e− → A+ + 2e− (2.48)

The radial extent of the beam for an ideal system is described by the Brillouin

radius

rB =
¿
ÁÁÀ meI

πε0
√

2eUc/meB2
, (2.49)

with current of the electron beam I, and the cathode voltage Uc.

As the beam consists of electrons that repel each other but attract positively-

charged ions, it directly affect EBIT operations. To estimate its electromagnetic

influence, the beam can be approximated as a homogeneously charged rod. The

potential of such a rod of indefinite length is

Φ(r) = ρ

2πε0
ln

r

rout

, (2.50)

where rout is the limit posed by an outer surface, which is set by the radius of the trap

electrodes. The electron density of the rod ρ can be further estimated on average

ρ = Q
A

= I√
2eUc/meπr2

B

. (2.51)
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To relate Q to the current, the definition for the current can be used I = Q/t = Q ⋅L/v
to obtain Q = I ⋅ L/v, where L is the length. The area A for a cylindrical rod is

A = πr2
BL where the Brillouin radius defines its thickness. The velocity v is further

substituted with the kinetic energy of the electrons obtained by the acceleration

potential Uc. The spatial extent of the electron beam changes the potential in the

inner region r ≤ rB to [112]

Φinner(r) =
ρ

2πε0
( r

2

r2
B

− 1

2
− ln

rB

rout

) . (2.52)

This potential is known as the space charge potential and reflects the effect the

electrons have on the trap and on the beam, which results in an electron beam energy

of

Ebeam = e(Uc −Φinner(r = 0)). (2.53)

This is evident for the acceleration, which is set by the potential difference between

the cathode and the center of the trap.

The electron beam is guided by a magnetic field. The higher the magnetic field,

the stronger the confinement of the beam, and with a stronger compression of the

beam, an increased electron density ne. A high ne would achieve a more narrow

charge state distribution than a low ne. This would improve targeting of specific

charge states and thus a higher intensity yield (see chapter 2.1.2). The advantage

of an EBIT over an EBIS is that it traps the produced ions directly and keeps the

ions in a fairly steady charge state distribution. The ions are trapped radially by

the magnetic field and the aforementioned space charge of the beam, while electrical

fields trap the ions axially. The well-like electric field is generated by trap electrodes

which cause a lower field in the center of the trap and a higher field either end of the

trap. This keeps the ions centered near a window for observational purposes.

2.5 Spectrometer

To measure the spectrum of trapped ions, a spectrometer is used. It must have

a wavelength dispersing component, which can be either a prism, a transmission

grating, or a reflective grating. A Czerny-Turner spectrometer, as used in this

work, typically contains a reflective grating. In our case, this is either a blazed or

holographic grating. The former has reflective edges that have a collective angle in

relation to the grating normal. The Czerny-Turner setup, as depicted in Fig. 2.11 (a),

contains two curved mirrors which collimate the light into the reflective grating and

refocus the diffracted light onto a detector.
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2.5.1 Blazed grating

As with any grating, the blazed grating can be parameterized with an incident angle

α and diffraction angle β with the grating equation

nλ = 1

k
(sin(α) + sin(β)), (2.54)

where n is the order of interference, λ the wavelength and k the groove density of

the grating. The zeroth-order n = 0 is fulfilled when α = −β, i.e. when a reflective

grating reflects the light like a mirror. This is depicted in Fig. 2.11 (b) as the black

outgoing line has the same angle as the incident line. As the wavefront is scattered

of the grating surface, different outgoing beams coincide, forming an interference

pattern depending on their wavelength. This can be seen in Fig. 2.11 (b) where the

blue line under the angle β1 is the first-order of interference for photons with a

shorter wavelength as compared to the red line under the angle β2, which represents

a longer wavelength. A higher-order interference can be seen at different angle, here

shown for the blue line under angle β′1. In practice, the grating is angled so that the

desired wavelength is in view of the detector. If the blue line is at 300 nm then the

second-order would be visible at 600 nm. If the red line would be at 400 nm, it would

be visible with an angle in between β1 < β2 < β′1.

Blazed gratings are typically blazed to one single wavelength. Its normal nb

is dotted in the Fig. 2.11 (b). The blaze angle is between ng and nb. The optimal

wavelength for such a grating is when the outgoing angle is parallel to the blaze

normal nb. This makes it ideal for wavelengths around this blazed angle wavelength,

and deviation from this wavelength reduces the signal strength.

Another type of grating is the holographic grating. Instead of sharp edges, it has

a sinusoidal structure [113]. An example is depicted in Fig. 2.11 (c). Its efficiency

is reduced compared to the blazed grating, however, its diffraction is less prone

to errors due its grooves made with laser light interference on a surface. Because

holographic gratings do not have a blazed angle, a wider wavelength range can be

measured with a continuous, though reduced, efficiency.

The polarization dependence of the reflectivity varies strongly for different gratings.

However, the reflectivity of p-polarized light is generally reduced for larger wavelengths

of ≳ 500 nm [114]. This behavior can be attributed to the similitude between the

wavelength and groove width. A polarization perpendicular to the groove lines would

lead to a loss of efficiency, while a parallel polarization would be less affected.

To obtain a relation between the output angle β and the wavelength for a fixed

incident angle α, Eq. 2.54 is derived by the angle β yielding

δλ

δβ
= δ

δβ

1

nk
(sin(α) + sin(β)) = 1

nk
cosβ, (2.55)
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Figure 2.11: (a) Scheme of a Czerny-Turner spectrometer configuration, in which a
curved mirror collimates light onto a grating. The dispersed light is refocused onto
the detector by a second curved mirror. (b) Scheme of a blazed grating. Incident
and zeroth-order (mirror-like) lines are shown in black. A short wavelength photon
is shown in blue with its first- and second-order of interference. A longer wavelength
is shown in red. The normal to the whole grating is ng and to the blazes is nb. (c)
Scheme of a holographic grating.
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which is usually expressed as
δβ

δλ
= nk

cosβ
. (2.56)

This relation shows that either a grating with higher groove density, or a higher-

order, improves the resolution, as the angle δβ has to vary more to cover the same

wavelength range δλ.

2.5.2 Dispersion function

The dispersion caused by the grating can be described by the dispersion function D.

It can be described via

D(λ) = δλ
δp

= δλ
δβ

δβ

δp
= d cosβ

n

δβ

δp
. (2.57)

A relation between the position p and the wavelength λ can then be established by

integrating the dispersion function D

λ = λ0 + ∫
p

p0
D(λ)dp′ (2.58)

However, the dispersion function is not known and thus is usually described by an

approximation by comparing known wavelengths with their position on the detector,

i.e. δλ/δp of Eq. 2.57. For this comparison, a polynomial function of statistically

significant order is applied to known lines of a calibration lamp. The statistical

significance arises from the resulting uncertainty of the polynomial and its fit to the

data. The model has to describe the data to a satisfactory degree, if the residuals

still inhibit a systematical shape, the degree of the polynomial has to be increased.

If the degree of the polynomial is appropriate, the uncertainties of the fit parameters

need to be investigated. While a high degree would always predict the data points,

each additional parameter carries added uncertainty.

2.6 Computation codes

Analyzing an atomic system requires knowledge about the energy levels and their

properties, like total angular momentum, g-factors, level mixing and such. The

complexity of the system is governed by the number of electrons to consider in the

calculations, in particular the number of free valence electrons in an open shell.

Typically, the fewer degrees of freedom in an open shell, the better the calculation

results. For example, calculation of the 4d1 shell is more accurate than the 4d2, which

is more accurate than the 4d3 and so on. If there are fewer ’holes’ than electrons, then

the holes can be used in the calculation instead of the electrons. This would mean a
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4d9 system can be calculated as accurately as a 4d1. Thus, half-open shells are the

most difficult systems to consider, due to their equally high number of electrons and

holes.

There is a wide variety of codes to use - some designed for a simpler handling for

the price of accuracy, while others require some initial information about the system

to provide more accurate results. In the following, fac [86] and ambit [85] will be

presented, both of which can be handled with relative ease.

Usually numerical calculations of this kind are needed for complicated systems

with multiple electrons, requiring calculation of these electrons around the nucleus

and their interactions, even when they are not directly involved in the excitation

process. For many electrons the Schrödinger equation Eq. 2.1 can be written as

HΨ = (∑
i

− h
2

2m
∇2
i −

Ze2

ri
+∑
i<j

e2

rij
)Ψ = EΨ. (2.59)

Here, the third term is an correlation term for electron-electron interactions. As

their distance rij is practically impossible to be computed for multiple electrons,

the calculation of the energy levels can be difficult. Sometimes the potential also

includes a term Bij, known as Breit operator, to account for further effects between

the electrons, like spin-spin, magnetic interactions, and retardation [115].

2.6.1 Flexible Atomic Code

fac [86] is based on Dirac-Fock and the configuration interaction (CI) method, which

are optimized for a given configuration. The electrons are separated into valence

electrons, which are free to undergo excitation processes, and frozen or inert core

electrons.

To overcome the electron-electron interaction problem of Eq.2.59, the wavefunction

Ψ is approximated with a spatial factorization Ψ = φ1(1) ⋅ φ2(2) ⋅ ... ⋅ φN(N), and to

account for the Pauli-principle it should then be written as a determinant [116]

Φ = 1√
N !

RRRRRRRRRRRRRRRRRRRRRRR

⎛
⎜⎜⎜⎜⎜⎜
⎝

φ1(1) φ1(2) ... φ1(N)
φ2(1) φ2(2) ... φ2(N)
... ... ... ...

φN(1) φN(2) ... φN(N)

⎞
⎟⎟⎟⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRR

. (2.60)

Here, the φ are single electron wavefunctions for N electrons, which are separated

by the spin and spatial coordinates of the other electrons 1...N , resulting in a N ×N
matrix (Slater matrix). This is known as the Dirac-Fock approach and has proven
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itself to be a good approximation for the wavefunction. The total wavefunction is

then the sum of these matrices

Ψ = ∑
i

ciΦi, (2.61)

where c1 to cN are coefficients minimizing the energy (H − E) ⋅ c⃗ = 0, with c⃗ =
(c1, ..., cN)T .

To perform fac calculations, the considered configurations in the calculations

have to be specified. This reduces the computation time because a large number of

higher states, typically in the continuum, are not considered. This reduces accuracy

compared to other codes. Sufficient accuracy can still be achieved with a selected set

of configurations that can be found by trial and error. A specific example on how

such calculations can be conducted can be found in appendix B for calcium. While

fac does not return g-factors, other ways need to be taken to obtain at least the

initial estimation. Appendix C introduces such a way. It utilizes the grasp [117]

module jj2lsj to obtain the LS-notation from fac by using a compatible output

for the wavefunction, which can then be interpreted in that module. The output of

the jj2lsj module includes the percentage of the level mixing and their respective

LS-notation. From this LS-notation, the g-factors can be calculated via the Dirac

formula Eq. 2.19.

An advantage of fac over other codes is the collision radiative modelling (CRM),

which is designed to calculate the excitation due to electron collisions in a plasma,

which is the interaction with the electron beam. When these interactions are

not accounted for, the intensity of a transition can only be estimated with their

transition rates Aki. However, the intensity or the radiant power is dependent on the

population of atoms in the excited upper state, as seen in Eq. 2.7. While the change

of population of the upper state does not have a simple solution as seen Eq. 2.8, a

numerical approach accounts for the branching ratios of every level and the electron

impact excitation. As seen in Eq. 2.45, the electron collision excitation cross-section

is scaled with the energy of the electron beam [118]. From these excited states, the

decay into all lower levels using the radiant power formula in Eq. 2.7 is calculated

with their respective transition rates Aki. This results in an overview of the expected

transition intensities, which can be crucial in the identification process. It was shown

in Ref. [119] that an electron density of around ne ≈ 1011 cm−3 yields good results,

compared to the experimental data for low energy electron beams with low current.

Using the Yukawa potential, fac is used to calculate the electronic X(mΦ)
parameters of the fifth force. Here, the potential is simply added, with scaling

parameters of yeyn and mΦ, to the coulomb potential. To overcome numerical

limitations of the calculations for such a small contribution to the energy, the fifth

force strength is heavily exaggerated. By subtracting the transition without fifth
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force influence, the X coefficient can be extracted, which in return can be scaled to

appropriate strengths in the consecutive analysis. A more detailed description of

how to acquire the IS coefficients will be included in chapter 5.

The advantage of fac is that it is much easier to use than other software like grasp

[117] or cowan [120], as it only requires the specified electronic configurations. The

accuracy of the levels is stated to be about 1 eV [86] for EUV transitions. However,

comparisons with measurements revealed a general relative uncertainty of about 20%

for optical transitions, which lowers the absolute uncertainty to around 0.5 eV in the

optical range. Unfortunately, this is about 100 nm in the wavelength scale, which

can complicate analysis if there are many levels and transitions to consider.

2.6.2 AMBiT

Another easy-to-use code is ambit [85]. It is newer than fac and is based on a

slightly different approach of combining configuration interaction and many-body

perturbation-theory (CI+MBPT). The CI calculation was described before and

accounts for electron-electron interactions with a good precision. However, the

interaction with the core electrons has significant influences on the wavefunction

and its treatment becomes complicated in the CI method as the matrix becomes

quite large. An alternative approach is to handle the core electrons with MBPT and

modify the wavefunction of the CI valence electrons as a perturbation [35]. This

allows for a more accurate calculation of heavy atoms or atoms with a complicated

level structure.

In ambit, core and valence electrons are separated with a set Fermi-level marked

by a colon 1s2 2s2 2p6 3s2: 3p6. Everything beyond the Fermi-level can be

excited into higher levels. If the Fermi-level is set too low, i.e. too many shells

included, the calculation can lose a lot of otherwise achieved accuracy. The highest

configurations for excitation in the CI calculation can be specified, known as the

ValenceBasis, e.g. 8spdf allows the valence electrons to be excited up to n = 8 in

l = 0(s) to l = 4(f). This should be chosen within reason. When this basis is set too

small, the calculation becomes too inaccurate, but when the basis is too large, the

calculations become too extensive, which also leads to a loss of accuracy.

The configuration may require a relativistic notation. An example would be

4d5 ⇒ 4d2 4d+3. In this notation, a part of the valence electrons are pushed back

into the inert core electrons. The way the electrons are split is explained by the

degeneracy of the shells. A listing of these degeneracies can be found in Tab. 2.3 for

the lowest shells. From this list the degeneracy gd of a d-shell is 4 to 6. This fraction

is applied to the total number of electrons in the shell to spell out the relativistic

notation.
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Table 2.3: Relativistic shells according to the notation of Swirles [121]. Orbital
quantum number l, principal orbital quantum number j and degeneracy gd = (2j + 1)
are given. Adapted from Ref. [122].

Shell s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2

l 0 1 1 2 2 3 3 4 4
j 1/2 1/2 3/2 3/2 5/2 5/2 7/2 7/2 9/2
g 2 2 4 4 6 6 8 8 10

Furthermore, a specification of the LeadingConfigurations can focus the cal-

culation onto a specific configuration. This can be especially important at level

crossings.

Lastly, the MBPT basis for the calculation can be set larger than the one for the

CI calculation, because MBPT is faster to compute than CI. It is set with a given

principal n and orbital l quantum number, like 30spdfgh.

Achieving good results with ambit requires experimenting with the parameters.

A sample code for performing an ambit calculation on a system in Xe can be found

in appendix D. To calculate transition rates in ambit, only the type of transition,

such as M1, is required. While this results in a line strength S in atomic units, a

conversion to Aki rates is given by Eq. 2.13, 2.14 and Eq. 2.15, which already include

the conversion to SI.

The ab-initio results of ambit lie within ≈ 30 nm of the measured values for optical

transitions and are therefore more precise than those achieved in fac. Furthermore,

the results also contain an expectation value for the g-factors of each level. This offers

a great basis to identify transitions. However, fac still has the distinct advantage of

being faster and easier to perform. Its CRM calculations can be invaluable for finding

and identifying the strongest lines in a spectrum. Using both programs together

gives the fastest and best option to identify experimental transitions.
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Chapter 3

Experimental setup

Formerly known as FreEBIT [123], Heidelberg-EBIT (HD-EBIT) was used for the

production and trapping of HCIs. Over its more than 20 operational years, it

has endured production and measurement of HCIs of various elements. Currently,

the HD-EBIT is mainly used to measure optical transitions. The HD-EBIT uses

superconducting coils to generate an 8 T strong magnetic field to guide the electron

beam. This field strength also provides a strong Zeeman splitting of the transitions,

which allows for high precision spectroscopy and improved line identification.

3.1 Heidelberg-EBIT

The HD-EBIT is separated into three main sections: The gun section to emit the

electrons, the central trap section to trap the produced ions, and the collector section

where the electron beam is stopped and the electric circuit is closed.

3.1.1 Electron gun

A cross-section of the electron gun is depicted in Fig. 3.1. In the center a cathode is

heated with about 10 W (7 V, 1.4 A) to approximately 1200○C to release electrons

from the metal. To maintain such high temperatures and have a good electron

emission, the gun has a cathode made from tungsten permeated with barium. An

applied voltage on the cathode accelerates the freed electrons out of the electron

gun. A focus electrode and anode are then used to adjust the flow and focus of the

electrons. The HD-EBIT was designed for acceleration voltages of up to 350 kV [123],

however, for optical spectroscopy voltages rarely exceed 2.5 kV, as the levels for most

higher charge states would be too spread apart for optical transitions to occur. To

magnetically guide the electron beam through the setup, a pair of superconducting

Helmholtz coils are used, located around the trap. However, the magnetic field from

these coils interferes negatively with the emission of the electrons from the gun. To
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Figure 3.1: The electron gun of the HD-EBIT. A small electrode emits and accelerates
electrons in respect to the potential at the trap center. The anode and focus electrodes
adjust the beam. A bucking coil counters the magnetic field of the superconducting
coils to improve electron emission.

reduce this field near the cathode, a soft-iron shielding (yoke) is placed at the front.

To counter the residual field, a bucking coil is used, which is usually set to around

42 W (3 V, 14 A).

3.1.2 Trap and magnet

Placed between the electron gun and the collector, the trap section is depicted in

Fig. 3.2. Around the trap, the aforementioned superconducting Helmholtz coils are

placed inside a 4.2 K liquid He tank. This tank is insulated by two heat shields of

20 K and 50 K, which are cooled by a cryogenic compressor. The temperature of the

lq. He allows the coils to become superconductive and carry a self-sustaining current

of 76.24 A, which corresponds to an 8 T magnetic field in the center.

The 4.2 K tank can hold up to 50 L of lq. He, however, losses in the lq. He transfer

and evaporative cooling of the warmer parts of the tank require approx. 80 − 100 L

lq. He per filling. A full tank allows for approximately one week of operation of

the EBIT, before the coils are exposed as the lq. He is gradually depleted. The

quintupling of lq. He prices over the last few years, made the operation of the

HD-EBIT excessively expensive. To reduce the high costs of ordering externally, a

helium recovery system was installed early 2023 [124]. Here, the vaporized He is

collected from the exhaust of the tank and compressed for storage in pressurized He

gas bottles. These bottles are transferred to the Max-Planck Institute for Solid State

Research in Stuttgart, where this gaseous He is liquefied and returned. This cycle
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Figure 3.2: Trap region of the HD-EBIT. Superconducting coils inside a 4 K liquid
He tank generate a magnetic field to guide the electron beam. The drift tubes are
electrodes to trap the ions. To the right is the gun and to the left the collector.

E
e- Bions

Figure 3.3: Scheme of the trap with magnetic field B guiding the electron beam.
Drift tube electrodes generate an electric field between them and generating the
depicted trapping potential in blue to keep the ions trapped inside the center.

allows a tenfold reduction of the prices. Besides the HD-EBIT, other lq. He requiring

experiments, e.g. penning traps, are also connected to this recovery system.

A positive side-effect of the lq. He tank is a reduced temperature of the surrounded

trap to 4.2 K, which in return helps to maintain a ultra-high-vacuum (UHV) [118].

A good vacuum reduces interactions with residual gases, notably by charge exchange,

which is critical in the production and storage of HCIs. Producing HCIs in an EBIT

works by collision ionization between the electron beam and an injected atomic beam.

These ions are radially confined by the same magnetic field that guides the electron

beam, as well as the negative potential arising from the beam electrons. To stop the

ions of escaping axially, the trap contains nine electrodes along the beam path, known

as drift tubes. A scheme of this drift tube setup is shown in Fig. 3.3. The voltages of

each electrode is adjusted in ascending order towards the trap center, which is set to

a lower voltage, and by doing so, a trapping potential is formed by the electric fields.

Ions outside the central trapping region are accelerated outwards and thus removed
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Figure 3.4: The electron collector of the HD-EBIT. The incoming electron beam is
stopped by an extractor electrode and is further dispersed by the collector coil.

from the trap. Adjusting the form of this electric trapping potential can be used to

reduce the Doppler broadening. For this, the central trap potential can be adjusted

in its electrical depth. While a deeper trap would capture more ions and thus increase

the collective light, it would trap faster and slower ions alike, leading to a wider

Doppler broadening. A shallower trap would let the faster ions escape, reducing

the total amount of light going into the spectrometer but increasing the resolution.

Furthermore, ions of tungsten and barium are byproducts of the operation of the

electron gun and slowly accumulate inside the trap. Lighter injected elements would

be pushed out over time. By inverting the trapping potential temporarily, all ions in

the trap are removed. Afterwards, the injected atoms fill the trap more quickly and

thus form the majority of the trapped ions momentarily. For elements such as Ca

and Xe, this dumping process was done every 60 s to 120 s for 2 s. Heavier elements

like Bi, or similar, benefit from a slower dumping process of about every 600 s for 5 s.

3.1.3 Collector

The electron beam, guided by the magnetic field through the trap, ends in the

collector. A cross-section of the collector can be seen in Fig 3.4. To stop the primary

electrons from escaping the collector, an electric field is applied by a highly negative

extractor cathode, which is typically set to 2 kV, exceeding the cathode voltage.

To stop secondary electrons from being reflected back into the trap, a suppressor

cathode is used to generate an electric field with a voltage of −200 V. The power

of the incoming electrons will generate a significant amount of heat when stopped,
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and could cause damage to the system if they hit a single spot. A coil is used to

scatter and distribute the electron beam across the collector. This coil is typically

operated with 2.29 V and 76.6 A. The resulting heat is removed from the system by

water cooling. To achieve an electrically closed system, the collector and the gun

share a common electrical ground separated only by a large resistor. This allows

a collector current to be measured and the number of electrons in the beam to be

inferred. Currents measured in the suppressor electrode serves as a gauge for how

well the beam is passing through the system.

While these currents help to determine if the beam reaches the collector, small

position adjustments of the gun are still needed to optimize for any spiraling motion

of the beam, which would lead to a reduction of produced ions and thus light in the

spectrometer. A typical optimization procedure includes adjusting the horizontal or

vertical positioning of the gun by a few micrometers and a consecutive spectrometer

measurement. The measured intensity from the ions is put into perspective with the

positional change of the gun and the procedure is repeated until the signal has been

optimized.

To improve spectral line resolution, the measured collector current is used as a

gauge. A reduction of the current, i.e. fewer electrons in the beam, leads to reduced

collisions between the electrons and the ions. This reduction leads to a decreased

acceleration of the trapped ions, which in turn reduces the Doppler broadening at

the cost of fewer ions.

3.1.4 Injection system

To inject atoms into the trap of the EBIT, a gas injection system is used in which

gas traverses a two-stage pump system to provide an inflow into the UHV trap of a

few million atoms per second. Fig. 3.5 depicts a scheme of the injection system. Via

a needle valve, injected gas enters the two-stage system, where each stage has its own

turbopump. A small aperture (AP1) separates the two stages, causing a pressure

difference of about one order of magnitude. Between the second stage and the trap

region, two additional apertures on the heat shields (AP2 and AP3) ensure that only

a small fraction of the gas enters the EBITs trap region to maintain the UHV.

If an element does not exist in a gaseous form, it often can be found bound

in an organo-metallic compound. Such a compound needs to be vaporized for

injection. This can be achieved by the vacuum itself, thus reducing the evaporation

or sublimation temperature, or by additionally heating the compound. Occasionally,

the vaporization process is slow and it may be necessary to remove the needle valve

as it may hinder the injection, for example, when a compound is denatured and

yields insufficient gas.
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Figure 3.5: Setup of the injection system. A small aperture (AP1) separates the
two injection stages to reduce the pressure. Two additional apertures (AP2, AP3)
further reduce the pressure to the vacuum level of the EBIT trap.

To inject radioactive elements which practically cannot be bound in a organo-

metallic compound, a laser ablation system will be an addition to the experimental

setup. For such a system, the ablation laser light enters from above through a

window, where it is collimated and refocused onto the target which will be placed

in close proximity to the electron beam. The target itself is precisely positioned by

a 600 mm x-y-z stage from the other end of the setup. A wire allows the target to

be set to the central drift tube voltage to not disturb the electric field and thus the

electron beam. Once the EBIT-Dewar is filled with lq. He, the trap temperature

is at 4.2 K, and any heat transfer will negatively impact the trap and increase lq.

He evaporation. Therefore, thermal conductivity is kept to a minimum by only a

single connecting wire and an insulated target holder. Perfect alignment of the laser

beam onto the target holder is ascertained by an external camera. This system is

currently being installed for upcoming measurements. These include californium, a

clock candidate, and thorium, a nuclear transition candidate.

3.1.5 Electron beam

To understand the ionization process, the properties of the electron beam have to be

understood.

As seen in Eq. 2.49, the radial extent of the beam can be expressed as the Brillouin

radius. However, this equation does not consider the magnetic field at the cathode

Bc, nor the radius rc or temperature Tc of the cathode. To account for these effects,

the Herrmann approximation [125] can be used

rH = rB
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50



3.1. HEIDELBERG-EBIT

which results in beam radii in the range of about 20µm to 200µm [119], strongly

depending the magnetic field Bc at the cathode. As derived in Eq. 2.52, the potential

caused by the electrons in the center of the trap Φinner(r = 0), which is also known

as the space charge Φsc, changes with the Herrmann radius to

Φsc = Φinner(r) =
I

2πε0
√

2eUc/meπr2
H

( r
2

r2
H

− 1

2
− ln

rH

rtrap

) , (3.2)

in which the larger radius by Herrmann over Brillouin spreads the space charge

across a larger volume, and the outer radius is set by the trap size rtrap. Acceleration

of the beam and subsequently its energy is expressed as the sum of all potentials,

Ebeam = e(Uc +Utrap −Φsc), (3.3)

including the positive potential of the central drift tube Utrap.

It is reasonable to assume that the beam goes straight through the center of the

EBIT if it was optimized correctly. However, a slightly off-axis beam may experience

instabilities considering the electric and magnetic fields present at all stages of the

EBIT. The main force affecting the electrons in the beam and the trapped ions is

the Lorentz force

FLorentz = q(E + v ×B). (3.4)

The EBIT is designed so that the electrons with velocity v are moving along B, thus

only experiencing the force from the potential difference between gun cathode and

trap center. The electrical field by the drift tubes also do not exert a force onto

a central beam due to the cylindrical symmetry. To center the beam, the gun is

adjustable in its position in all directions with micrometer precision. A deviation from

the central axis would give v a perpendicular velocity v⊥ relative to the magnetic field.

The velocity v⊥ results in a force according to Eq. 3.4, which leads to a constriction

of the beam for small v⊥, but a larger deviation causes the beam to perform a spiral

motion around the central axis. This motion lowers the effective ionization and leads

to a reduced number of trapped ions and with it a lower signal in the detector of

the spectrometer. A beam closer to one side of the drift tubes further increases this

motion through the electric field E. Furthermore, the dumping process, every 60 s,

temporarily increases the potential of the central electrode by a few hundred Volts.

This change of the electric field causes another force onto an off-axis electron beam,

according to Maxwell’s equations. This may result in a sudden change in the beam’s

path, and therefore a change in the measured currents, which is direct evidence that

the beam requires further optimization.
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Figure 3.6: Optical spectroscopy setup at the HD-EBIT. Horizontal light from
the EBIT is directed and refocused on the entrance slit of a 2 m Czerny-Turner
spectrometer. A movable reflector (MR) allows temporary insertion of calibration
light. See text for details. Originally from [126], adapted from [119].

3.2 Czerny-Turner spectrometer

The optical setup at the HD-EBIT is depicted in Fig. 3.6. Here, light emitted by

trapped ions in the EBIT leaves the vacuum chamber via two lenses (L1 and L2)

built into the heat shields inside the vacuum chamber. Their diameter is 25.4 mm

and their focal length is 150 mm. Unfortunately, for their placement in the vacuum

chamber, only single lenses could be used, making the setup chromatic, which means

a different focal point for every wavelength. To maximize the light entering the

spectrometer’s vertical entrance slit, the light from the horizontally trapped ions is

turned vertically by three mirrors (R1, R2, and R3) in the periscope box. Mirror

R1 is positioned on a linear stage to align the light-stripe with the entrance slit,

while the light is refocused on it by lenses L3 and L4. Additionally, L4 is placed on

an automated linear stage to correct for the wavelength-dependent focal point. A

movable reflector (MR) can be automatically raised to allow light from a calibration

lamp to traverse along the same optical path as the light from the EBIT. This is used

to compensate for any setup imperfections and to obtain the dispersion function. All

these lenses are made from fused silica and all the mirrors have an UV-enhanced Al

coating, which provides a good efficiency for wavelengths between 200 and 800 nm.

The effective attenuation of the both angles of polarization of an M1 emission can

be estimated by the descriptor of reflection with s- and p-polarization as introduced in

chapter 2.1.4. In all mirrors, except R2, the π component is seen as p-polarized, while

σ is s-polarized. A reflection of 45○ allows the s-polarization a greater reflectivity than
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Table 3.1: Gratings for the spectrometer McPherson Model 2062. Values taken from
Ref. [127].

Grating (gr./mm) Main wavelength (nm) Dispersion (nm/mm) Bandwidth

150 500 3.32 91.6 nm
1800 400-800 (holographic) 0.26 7.2 nm
3600 200-400 (holographic) 0.14 3.9 nm

p-polarization [88], resulting in a reduced amplitude of the π component, compared

to the σ components. Furthermore, the used gratings further lower the intensity

of the π component for wavelengths ≳ 500 nm [114] (see chapter 2.5). Below this

wavelength, the effect becomes too unpredictable and a generalization is not possible.

3.2.1 Spectrometer and gratings

The spectrometer is a 2 m McPherson Model 2062 [127] Czerny-Turner spectrometer

with three available gratings. These are listed in Tab. 3.1. A finer grating means

higher resolution, as seen from Eq. 2.56. The specified blazing angle promotes

reflection efficiency. The 150 grooves/mm grating is blazed at 500 nm, which yields

highest efficiency for observed light of such wavelength. Interference angles of other

wavelengths will lead to a loss of efficiency (see chapter 2.5.1). The lower limit of

the 150 grating has been experimentally identified at ≈ 310 nm. This wavelength

corresponds to an angle where the efficiency of the grating is minuscule. This also

results in a more intense second order of a transition than its first order below this

threshold. The other two gratings are holographic gratings, which instead have

smooth edges that allow an efficient interference of a wider range of wavelengths (see

Fig. 2.11 c).

These gratings allow observation of strong lines down to 240 nm without purging

the optical setup from air with nitrogen to counter the absorbance of the air. Note

that the dispersion listed in Tab. 3.1 is merely an approximation from the datasheet,

however, it serves as a starting point for finding the local dispersion function based

on the calibration lamp.

As discussed before, the reflectivity of the mirrors are polarization-dependent

and lead to a different intensity for the π and σ components of the Zeeman splitting.

However, gratings also have a strong dependence on the polarization of the light for

the reflectivity. This increases the difference in amplitude between the π and σ lines

depending on the wavelength and grating used. While a fit of the Zeeman structure

can account for this difference, if the actual π/σ ratio is required, it is necessary to

consider these effects carefully.
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The entrance slit can be varied between 5 mm and 10µm. While a smaller entrance

slit generally enhances the resolution, a slit causing a light-cone smaller than the

spectroscopy mirror R4 will only limit the intensity without gaining resolution. This

is because there is less coverage of the grating, which reduces its effectiveness. By

using a flashlight in front of the entrance slit, it was found that a minimum slit width

of 40µm was sufficient to illuminate the entirety of the collimating mirror in the

spectrometer (see Fig. 3.6, mirror R4).

A motor rotates the grating and sets the spectrometer to the specified wavelength.

An analog dial on the spectrometer can be used to manually confirm the positioning.

As introduced in chapter 2.5.1, the constructive interference wavelength depends on

the angle and the groove density. A different grating has a different relation between

the angle and the wavelength, as seen in Eq. 2.56. This can be toggled in the control

software, which adjusts the motor accordingly. While the grating can cover a wide

range, its rotation is physically limited by the motorized thread, which is only as long

as the width of the spectrometer. The grating can be manually rotated a bit further

to utilize the gratings efficiency at higher wavelengths. This overcomes the limitation

posed by the thread and extends the wavelength range. This so-called extended

mode increases the range of the 3600 grating from maximal 400 nm to 450 nm, and

for the 1800 grating from 840 nm to 1030 nm. This extension can be important for

highest precision measurements, as changing from the 3600 to the 1800 grating would

reduce the resolution by a factor of two. Similarly, going up to 1000 nm with the

1800 grating can be advantageous. While the wavelength efficiency drops for the

used CCD camera for such high λ, it can be used for measuring a higher-order of a

transition of a lower wavelength.

3.2.2 CCD camera

At the other end of the spectrometer is an Oxford Instruments Newton DU940P-BU2

CCD camera [128] cooled to -80○C. The cooling is essential to reduce thermal noise to

measure weak lines from the EBIT trap. The camera counts Px×Py = (2048×512)px,

with 13.5µm pixel size, resulting in a 27.6 × 6.9 mm2 detection area. Thermal noise

is specified at 0.0003 e−/px/s at a temperature of −80○C, which is the lowest possible

temperature given the connected cooling water temperature. The typical readout

noise is specified as 11 e−. [128]

By combining these, the total noise per exposure time τ can be calculated

∆I = readout ⋅ Px
bx

Py
by

+ thermal ⋅ Px ⋅ Py ⋅ τ. (3.5)
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Figure 3.7: Signal-to-noise-ratio (SNR) for different binning of the vertical pixels
(color coded). Left: SNR for different acquisition times, dots mark the τmin value,
the inset shows its relation with the binning. The dotted line marks 1 h. Right: SNR
for a given total time of 10 h with different averages.

Here, Px and Py are the horizontal and vertical pixels of the CCD chip, and bx and

by are the binning in each of these axes. With the known parameters inserted, the

equation is

∆I = 11 e− ⋅ (2048 × 512)px

bx ⋅ by
+ 0.0003

e−

px s
⋅ (2048 × 512)px ⋅ τ.

Because the wavelengths are dispersed along the x-axis, binning x-pixels would not

be beneficial, as it would lead to a loss of resolution. The quotient of the two noise

contributions, i.e. of when both noise contributions become equal, is

τmin ⋅ by =
readout

thermal
= 11 e−

0.0003 e−

px s

= 36666.667 px ⋅ s, (3.6)

which results in the time τmin needed for the thermal noise to become the dominant

noise term. No binning in y would make the noises equal at τmin = 10 h, whereas

if all the vertical pixels are binned together (by = 512 px), the time is reduced to

τmin = 1 min. The signal-to-noise ratio (SNR) can be expressed as

SNR = I

∆I
= signal ⋅ (100 × 512)px ⋅ τ

11 e− ⋅ (2048 × 512)px

by
+ 0.0003

e−

px s
⋅ (2048 × 512)px ⋅ τ

. (3.7)

Here, the signal spans all vertical pixels and 100 px along the horizontal detector

axis. It scales linearly with time τ .

A visualization of Eq. 3.7 is shown in Fig. 3.7. Here, SNR for a varying acquisition

time for different binning by is shown. The time τmin is marked with a dot for each
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Figure 3.8: (a) Percentage of camera chip covered by cosmics for intensity thresholds
of 20, 100, 300 and 700. An exponential fit was fitted through the points. (b)
Occurrence rate parameter ax for the different intensity thresholds.

binning. Acquisition times under this mark are dominated by the readout noise, while

the thermal noise is more present when above the mark. At high τ , the SNR becomes

constant, as the readout noise part becomes negligible and the τ dependencies cancel

out. A lower binning requires a longer acquisition time to achieve a comparable SNR.

On the right of Fig. 3.7, the effect of averaging is shown for a fixed total acquisition

time of 10 h. An increasing number of averages lowers the SNR due to the added

readout noise for every average and the reduced acquisition time. The acquisition

time of 1 h is marked in both plots as a reference, for which the binning should be

by = 512 px at all times. While a high binning leads to better SNR, external influences

can be a limiting factor, e.g. atmospheric changes and high energy particles. The

latter hit the earth’s atmosphere, which lead to a shower of different particles. These

are mostly electrons, protons, pions, neutrons and muons, which usually occur in

this exact order [129, 130]. These will be referred to as cosmics from now on. The

total amount of cosmics is determined by the height above sea level, but this may

increase given the experiments around the HD-EBIT. Their interaction with the

camera chip will result in a strong, but very local, signal limited to a few pixels.

To evaluate the number of cosmics and their intensities on the camera chip, a few

dark-images were taken with different exposure times τ ranging from 60 s to 3600 s.

These images were taken without binning to evaluate the whole chip. The number

of pixels that exceed a given intensity are shown in Fig. 3.8 (a). A lower intensity

threshold naturally leads to a higher number. A simple exponential function [130]

was fitted through each of the thresholds

C(τ) = 100% − exp (−ax ⋅ τ) . (3.8)

This function represents the percentage of the camera chip which experienced a

cosmic event of a given amplitude threshold. Its resulting fit parameter ax can be
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Table 3.2: Exponential parameters ax for the rate of an cosmic event occurring with
a given intensity threshold.

Intensity ax (s−1)

20 4.28 × 10−7

100 1.51 × 10−7

300 0.767 × 10−7

700 0.317 × 10−7

expressed for each threshold value as shown in Fig. 3.8 (b). Some key parameters are

listed in Tab. 3.2. Therefore, given this parameter, the statistical time it takes to fill

the camera chip to a certain extent can be calculated. The inverse function is

τ = − ln (100% −C)
ax

. (3.9)

For example, to estimate when C = 50% of the detector has experienced a cosmic

event of intensities over 300, the associated parameter of a300 = 0.767×10−7 s−1 is used,

which results in a time of τ = 104.6 d. Evidently, this is an absurd exposure time

to use for spectroscopy. However, when binning the pixels, the rate ax parameter

will scale with the binning a′x = ax ⋅ by. An explanation is that a hit on an individual

pixel counts as a hit on the binned pixel, which doubles the rate for every event. A

binning of by = 2 would lead to a 75% coverage of the detector in equal acquisition

time. In this case, where all vertical y-axis pixels were binned together, a time of

τ = 4.9 h fills half of the detector with cosmics. This would hide potential signals,

thus rendering analysis impossible. Cosmics with intensities of 100 or more are even

more present, filling half the detector with its a100 = 1.51 × 10−7 s−1 in τ = 2.5 h at

full binning. A optimal value to settle for is a binning of 16 px, which reduces the

512 px to 32 px. This allows picking out strong cosmics with ease and weaker cosmics

can still be removed without substantially interfering with the signal. In this case,

cosmics with more than 20 intensity only occupy 20% of the detector within 9 hours

of continuous measurement.

While high binning initially seems beneficial, a single cosmic event, or a broken

pixel, can be highly disruptive for the acquired image. This is shown in Fig. 3.9,

where the Eq. 3.7 is changed to include the effects of the cosmics on the signal-noise

ratio. The strong cosmics effectively reduce the number of pixel used. To achieve

this, C from Eq. 3.8 is calculated for each time τ and ax = a25 and their percentage

is subtracted from the total pixel count. Intensities between 10 and 25 are counted

towards the noise with their respective probability: ∑25
i=10 i⋅(C(ai⋅by, τ)−C(ai+1⋅by, τ)),

and intensities lower than 10 are seen as accounted for by thermal and readout noises.

In comparison to Fig. 3.7, each binning now has a peak time before the cosmics
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Figure 3.9: Signal-noise ratio including the effects of cosmics. Left: for different
acquisition times, right: for different number of averages.

overwhelm the signal. This result disputes the previous assessment that the highest

possible binning is the best option. Depending on the acquisition time, a different

binning is ideal. It is still advantageous to measure for as long as possible, however,

there is an additional limiting factor of atmospheric influences, such as temperature,

on the setup. These influences would cause a slight change in the spectrometer

size, as well as in the position of lenses and mirrors, effectively inducing a shift

in the spectrum. To avoid this, it is recommended to not exceed two hours of

continuous recording, as otherwise the lines would be heavily skewed, and thus

reducing resolution. In this regard, the ideal binning for that time frame is 16 pixels.

58



Chapter 4

Measurement

Calcium and xenon are elements with a large number of stable isotopes without

nuclear spin. Calcium has five such isotopes: 40, 42, 44, 46, and 48; and xenon has

seven: 124, 126, 128, 130, 132, 134, and 136. These are highly favourable for IS

studies and the KP method, and will be theoretically analyzed in chapter 5. Before

studying these IS, groundwork needs to be laid out, which requires fluorescence

spectroscopy. Optical transitions above Aki ≈ 10 s−1 can be precisely measured with

the optical spectroscopy setup with down to 10−7 fractional uncertainty.

In the following chapter, the EBIT and image optimization processes are explained,

followed by the spectroscopy results for calcium and xenon.

4.1 Resolution improvement

There are fewer optical lines as the transitions shift with increasing charge states

to higher energies. For this reason, only spectra up to a cathode voltage of 2500 V

are investigated. As mentioned before, the signal resolution can be improved with

settings of the EBIT. There are three main means to do so: beam current adjustment,

trap depth adjustment, and buffer gas injection.

Beam current The beam current can be reduced by lowering the voltage of the

focus electrode. This causes fewer electrons to leave the cathode and reduces the

electron density in the beam, which will excite a smaller amount of the inserted

ions. However, the subsequent reduced amount of collisions of electrons with the

atoms will narrow the Doppler broadening of the linewidth. This is shown in Fig. 4.1,

where the same transition was measured at different collector currents, causing a

subsequent reduction of the standard deviation σ of the Zeeman components. The

lowest currents achieved in this work are 5 mA.
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Figure 4.1: Effect of the beam cur-
rents on the linewidth. Example
measured on the 3P1 −3P0 ground-
state transition of Ca14+.

Trap depth A reduction of the trapping

potentials by the drift tubes can improve

resolution as well. A shallow trap allows fast

ions to escape while retaining the slow ions.

This also reduces the overall intensity but

effectively reduces the Doppler effect in the

spectral line. This advantage is more evident

in heavy ions, where a slight inversion of the

trap can be used to retain only the slowest

ions, which cannot escape quickly due to

their high inertia and low momenta.

Buffer elements A third option to im-

prove resolution is to additionally inject a

lighter gas (e.g. neon), which would buffer

the energy of the heavier injected ions and

thus reduce the temperature of the ions of

interest. In principle, a collision event will transfer momentum from the heavy ion

to the light ion, which is then forced out of the trap. Moreover, the buffer gas can

be an advantageous byproduct of the injection of e.g. organo-metallic compounds.

Here, the compound C and H atoms will leave the trap, taking the energy of the

heavier ions with them. [131]

4.2 Image preparation and optimization

4.2.1 Image correction

Cosmic particles The interference of cosmic particles with the detector was

previously discussed in chapter 3.2.2. These events are energetic, but highly localized.

Thus, removing a few strong cosmics is relatively simple and could be performed

manually. However, a more reliable method is to use an automated script, as used in

Ref. [119], which evaluates the histogram of a small area of e.g. 32 × 8 px from the

camera image for a cosmic event. To avoid accidentally removing any signals from

ions, only outliers from the histogram are filtered out.

This procedure is shown in Fig. 4.2 (a) for a dark image of 1 h acquisition time

without binning. A red box marks the small area that is subject to the evaluation.

The intensities of its pixels are sorted into a histogram, which is shown as an inset

plot. To separate the real image and the cosmics, the histogram is evaluated in terms

of the number of consecutive empty bins. If the number of empty bins is grater than
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Figure 4.2: (a) Removal of cosmics based on histograms taken from small sub-figures,
where the magenta arrow is placed on three consecutive bins, marking the cut-off
point. (b) Histogram of the entire image before and after removal of the cosmics in
red.

a chosen factor of the histogram’s standard deviation, then this marks the separation

point. In this case, a gap of three bins separates the images from the outliers for that

small area. This separation point is marked in the inset histogram by a magenta

arrow. The removed pixels are then replaced by not-a-number (NaN) values which

will then be ignored in the consecutive image optimization process. This is repeated

until the entire image is divided into small areas, which are then investigated and

cleared of cosmics.

In Fig. 4.2 (b) the histogram of the total image is shown. The black bars represent

the cosmic-corrected image, while the red bars show the removed cosmics. In this

example, a total of 1612 px were removed using this method. This number is in

agreement with the expected occurrence of cosmics from chapter 3.2.2, Eq 3.8 and

Tab. 3.2, where 1614 px are expected to contain cosmics with intensities above 20.

Signal curvature At the end of chapter 3.2.2 the changing of materials due to

temperature and its shifting effect on the measurement has been contemplated.

Additionally, the signal may contain a slight curvature caused by lenses and parabolic

mirrors.

To counter both effects, a 2D Gaussian shape is fitted to the brightest calibration

lines

I(x, y) = A ⋅ exp
⎛
⎝
−(x − (m ⋅ (y − y0)2 + b ⋅ (y − y0) + c)

σx
)

2

− (y − y0

σy
)

2⎞
⎠
+ d. (4.1)

The fit is done for all the bright calibration lines Itotal = ∑i Ii(x, y). The curvature

of the lines is described by a quadratic polynomial m ⋅ (y − y0)2 + b ⋅ (y − y0) + c. Its
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Figure 4.3: Curvature effect seen in calibration and ion image. Left: Zoom into one
example calibration line where the 2D-Gaussian function (Eq. 4.1) was fitted to. The
white line is the resulting quadratic polynomial from that function. Middle and right:
Each side of the ion spectral line with the same polynomial function plotted.

component c is the center position of the calibration line, which yields the temperature

shift for each of the fitted calibration lines when compared to the position of the

same lines in the other images.

Fig. 4.3 shows this fit in the example of a single calibration line. The contour

lines are from the 2D-Gaussian fit, and the white line is the quadratic polynomial

describing the shift of the center position over the vertical axis of the camera. The

same polynomial was drawn into the left and right edges of the ion line. It can be

seen to match the curvature, proving the correctness of the fit and that it is not an

effect solely from the calibration lines. The curvature effect can be explained by the

parabolic mirrors inside the spectrometer. A possible curvature caused by the lenses

before the spectrometer can be ruled out due to the narrow entrance slit.

On another note, it can be seen that the calibration line does not completely fill

the camera due to the point source which is scattered off a diffusor (see chapter 3.2)

which follows a Gaussian distribution. The ion line, on the other hand, has a uniform

distribution along the vertical axis due to the trapped ions in an elongated trap.

Temperature shift As previously mentioned, there is an observable shift caused

by the temperature. This shift can be extracted directly from the performed curvature

correction Eq. 4.1 as the parameter c. The air conditioning installed at the HD-EBIT

compensates for the largest temperature shifts in the room, however, small day/night

differences still cause a slight change in temperature. This has an influence on the

optical setup between the HD-EBIT and the spectrometer. A small shift in the

line position over the day has occurred before [119]. The same effect was observed

again and visualized in Fig. 4.4 where the calibration line positions were measured

over a 24 h interval. The initial external temperature was 31○C in the afternoon,
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Figure 4.4: Temperature influences on line position on detector. (a) Temperature
log over 24 h. Fluctuations were caused by air conditioning. (b) Line position on
CCD over 24 h. (c) Lissajous figure from both sinusoidal behaviors. The gray lines
represent the offset position of the fitted sinusoidal functions.

which peaked in the evening at 34○C and dropped to a low of 19○C in the following

morning. This was reflected in the logged internal temperatures (a) at the HD-EBIT.

The smaller fluctuations in the data were due to the air conditioning turning on

and off. Multiple 5-minute measurements on calibration lines with the 1800 gr./mm

grating were performed in direct succession. Their position (b) shifted with the

temperature, but with a slight delay. The small but more attenuated effects of the

air conditioning unit were also observed. Both data were fitted with a sinusoidal

function x(t) = a ⋅sin (f ⋅ t + φ)+x0, and the parameters of the amplitude a, frequency

f for the time t [h], phase φ and the offset x0 are included in the figure. The delay

between the temperature and the shift was also observed in the constructed Lissajous

figure (c), whose oval shape was a direct consequence of this delay. The color-coded

line represents the direction in which the data was obtained, representing the total

phase difference of φ = −221(2)○. The phase shift, without the 180○ due to the

different signs in temperature and line shift, was φ = 41(2)○, and represents a time

delay of ∆t = φ/f = 2.7(2)h. The materials in the optical setup, including stages,

lens and mirror holders, as well as the whole spectrometer, were slowly affected by

the temperature change. This delay was due to 1) its thermal conductivity, and

2) its encasing, which lowers the speed of the heat exchange. Considering the 2 m

length of the spectrometer, a temperature shift of 1○C, as seen in the temperature

measurement, would lead to a shift of 45µm in its length [132]. Further consideration

of the angles between the mirrors and the grating [127] would lead to a spectral line

shift on the detector of 11.25µm. Given the CCD pixel size of 13.5µm, this would

mean a shift of 0.83 px, which is consistent with the observation.
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The positional shift can be converted into a wavelength shift for a given grating.

In the example of the 1800 gr./mm grating and its dispersion of 0.26 nm/mm (see

Tab. 3.1), the shift between two time points t0 and t1 is calculated by

δλ =D lx
Px

⋅ (c(t1) − c(t0)) = 0.26
nm

mm
⋅ 26.7 mm

2048 px
⋅ (c(t1) − c(t0)), (4.2)

with dispersion D, horizontal detector length lx and pixels Px, and shift function

c(t). An acquisition time of 1 hour would lead to a wavelength shift of 0.00005 nm

at the sinusoidal peak, and of up to 0.00077 nm at the starkest change. A shortened

acquisition time of 30 minutes reduces this range to 0.00001 nm and 0.00039 nm

respectively, while a longer acquisition time of 2 hours would lead to bigger shifts

between 0.00016 nm and 0.00129 nm. Continuous acquisition of e.g. 5 hours would

result in up to 0.00358 nm uncertainty due to this temperate shift. These positional

shifts are more pronounced because of stronger temperature shifts on this day. Days

with less pronounced temperature changes would result in a smaller line shift. It is

unlikely that shifts would normally exceed this measured shift. To contrast this with

the SNR analysis in chapter 3.2.2, where the 1 h acquisition time is marked with a

dotted line in Fig. 3.9, the highest SNR is achieved at a binning of by = 16 px for such

an acquisition time.

4.2.2 Dispersion function

The above image corrections were applied to achieve an accurate projected image.

To ultimately obtain absolute values for the wavelength of the measured ions, the

pixel-wavelength relation was evaluated on the CCD. Hollow cathode lamps of various

elements were used as calibration source. The calibration line positions were acquired

by a Gaussian fit on the projection image. As these lamps have known lines listed in

the NIST database [45], this generated a correspondence between their wavelengths

and their pixel positions. The wavelength of each line was plotted over its pixel

position on the detector and a polynomial function was fitted through these to obtain

a dispersion function, resulting in a pixel-wavelength correlation. This process is

visualized in Fig. 4.5, where a Fe-Ar lamp was used. The choice of lamp depends on

the number of visible lines for the grating used and the wavelength studied. The

polynomial used was of third-order with the following equation

λ(p) =1.4(2) × 10−12 nm

px3
⋅ (p − 1198 px)3 − 5.2(1) × 10−9 nm

px2
⋅ (p − 1198 px)2

+ 3.36053(8) × 10−3 nm

px
⋅ (p − 1198 px) + 436.14097(3)nm.
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Figure 4.5: Determination of the dispersion function using Xe17+ as an example . Top:
Spectral lines of a Fe-Ar calibration lamp were identified with their corresponding
wavelengths from the NIST database [45]. Their positions on the camera provide
a pixel-wavelength relationship. Bottom: Residuals of the calibration lines to the
dispersion function. The green band shows the 1-σ confidence band. The dotted line
represents the position of the measured Xe17+ line.

The function of the wavelength λ at the pixel position p on the detector was evaluated

at the position of the investigated line of 1198 px to minimize the uncertainty.

However, a third-order polynomial is rather the exception than the norm, as most

cases were optimally fitted by a quadratic polynomial function. This shows that it

has proven useful to always fit both and to use the better one. Since both pixel and

wavelength values have uncertainties, orthogonal distance regression (ODR) [133]

was used to fit the polynomial to the data. Essentially, this method attempts to

minimize ovals around each point in accordance with the x- and y-uncertainty.

The dispersion function was obtained at various wavelengths for the three gratings

over many performed measurements. From the dispersion function above and Fig. 4.5,
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Figure 4.6: Local linear dispersion parameter at different wavelengths for different
gratings. Points are based on measurements from the past four years with uncertain-
ties resulting from the applied fit. A polynomial fit was fitted through it, its result is
listed in Tab. 4.1.
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Table 4.1: Fit parameters through dispersion functions from measurements done in
the past four years, according to the formula: D(λ) = a⋅(λ−k)3+m⋅(λ−k)2+b⋅(λ−k)+c.
The rightmost column is the dispersion as noted in Ref. [127]. The wavelength
evaluation point k was chosen in the middle of the given range of that grating. And
was k = 600 nm for the 150 and 1800 gratings, and k = 300 nm for the 3600 grating.

Grat. a ( 10−10

nm2 ⋅mm
) m ( 10−7

nm ⋅mm
) b (10−5

mm
) c ( nm

mm
) Disp. [127]

150 / −0.24(3) − 2.59(6) 3.32053(2) 3.32 nm
mm

1800 − 1.30(4) −1.975(4) − 0.01746(1) 0.255637(2) 0.26 nm
mm

3600 −12(1) −3.1(1) −17.53(2) 0.112719(9) 0.14 nm
mm

it is clear that the last two terms, i.e. the offset and the linear dispersion term,

are the main contributors, and thus can be precisely determined. These two terms

plotted against each other can visualize the dispersion function over the whole range

of wavelengths. This result can be seen in Fig. 4.6, where each point is from a

measurement from the past four years. The dispersion functions were converted

from pixels to the physical detector size. Through these points, a polynomial fit

was then fitted and the resulting parameters are written in Tab 4.1, where the given

parameters were set for a wavelength k within their range. The resulting parameters

can be compared to the dispersion from the datasheet [127], as shown in Tab. 3.1. It

becomes clear that the given dispersion values are merely taken from one singular

wavelength and that the real dispersion ever so slightly depends on the wavelength

currently observed.

While these values cannot be used directly to analyze an unknown spectral

line, they provide an improved first estimate of the dispersion at the investigated

wavelength than the datasheet [127], which will help identify calibration lines with

greater ease and quicken the analysis process.

Furthermore, the reduced dispersion at higher wavelengths also corresponds to a

reduction of resolution as the components of a transition are slightly closer together.

Taking the extremes of the 1800 gr./mm grating, the resolution will decrease from

400 nm to 800 nm by almost 30%.

4.2.3 Fitting of Zeeman structure

The Zeeman structure can be fitted to the measured line once the images are cleared

of cosmic particles and corrected for their curvature and temporal shift, as well as

the dispersion relation between the pixels and wavelengths was found, and the line

identified.
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The Zeeman structures were fitted by combining Gaussian functions to each

component in the Zeeman structure (see theory chapter 2.1.4)

I = ∑
i,f

A∆m ⋅CG(Ji, Jf ,mi,mf) ⋅ exp
⎛
⎝
−1

2
(µ + µBB(migi −mfgf)

σ
)

2⎞
⎠
+ c. (4.3)

The subscripts i and f note the initial (i, upper) and final (f , lower) state of

the involved levels. The parameters to be adjusted by the fitting routine are the

amplitudes A∆m of π (∆m = 0) and σ± (∆m = ±1) peaks, standard deviation σ,

g-factors gi and gf , as well as center position µ and total offset c. The Clebsch-Gordan

coefficients CG(Ji, Jf ,mi,mf) were multiplied by the amplitude to account for the

intensities of the individual peaks (see Eq. 2.20). Because the Zeeman splitting is an

energy splitting, the wavelengths from the dispersion function were first converted

into energy. The fitting was then done in the energy space and later converted back

to wavelengths. This required the refractive index of air nAir [134]

λ = λvac

nAir

⇒ λvac = λ ⋅ (1 + (8060.51 + 2480990

132.274 − S + 17455.7

39.32957 − S ) ⋅ 1 × 10−8) ,

with ∶ S = (λ ⋅ 10−6 m−1)−2
,

(4.4)

where λ the measured wavelength in air and λvac in vacuum. The energy can be

calculated from the latter. Since this refractive index is wavelength-dependent, every

pixel was converted according to the dispersion function. As with the dispersion

function before, the ODR method [133] was used for fitting to account for the

uncertainties in the independent and dependent variable.

The result of fitting such Zeeman structures can be seen in Fig. 4.7. The π

components are in magenta, and the σ+ (σ−) is in red (cyan). The parameters from
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the ODR fit are included in the figure. The percentage value behind each variable

is the relative uncertainty. The center position is the most precise parameter with

a relative uncertainty on the order of 10−7, while values like the g-factor cannot be

resolved that well. The intensities Aπ and Aσ± are different due to their polarization,

which depends on the grating and its angle. The standard deviation σ depends on the

temperature of the trapped ions, as discussed above in chapter 4.1. The differences

between the measured and theoretical g-factors are due to limitations in the QED

calculation [135], in this case ambit. The nonzero background can be explained by

nonuniformities which vary the dark signal or the signal response [136]. They could

be mitigated by flat-field corrections, but since their effect was insignificant on the

spectrum for the wavelength determination, they were not treated further.

4.3 Calcium measurement results

Highly charged calcium has first been observed in the absorption lines of the sun’s

corona [137]. However, these astronomical measurements usually have a precision

of O(0.1 nm) which can be improved substantially with laboratory measurements.

Furthermore, highly precise IS studies have only used singly charged calcium so-far

due to lack of known transitions.

To give experimentalists and theoreticians precise values to work with, highly

charged calcium was investigated [F1]. To inject Ca into the EBIT, a bis-calcium

(CAS No. 118448-18-3) compound [138] was heated up to 70○C in a reservoir, while

being in a vacuum of a few 10−3 mbar. This reduced the sublimation point drastically,

allowing the evaporation of the organic compound, which then flowed into the trap

where it was broken down and ionized. The pressure in the two injection stages was

about PInj,1 = 4 × 10−8 mbar and PInj,2 = 2 × 10−9 mbar.

The image acquisition time was set to 30 min for each image, averaging over seven

to ten images with 16-times binning in y-axis and about four dark images to correct

the signal background. For the EBIT settings, electron beam currents of no larger

than 15 mA were used for the brightest lines, and only Ca16+ was measured at 25 mA.

The low current allowed for narrow Zeeman-peaks and subsequent precise results.

As seen in Fig. 4.8 and summarized in Tab. 4.2, the measured calcium transitions

were found by comparing the measurements with the energies and transition rates

calculated with fac. All of the transitions are P-P transitions, and four of which are

ground-state transitions, which would allow for QLS. The transitions of the Ca11+,

Ca12+ and Ca14+ charge states were observed before in the solar corona with roughly

hundredfold larger uncertainties [137].

Three different codes were compared to calculate the energy levels in atoms. The

programs were fac [86], ambit [85] and ratip/grasp [117]. The latter one was
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Figure 4.8: Fitted Zeeman structures in measured transitions in calcium. The ma-
genta arrows show the placement and relative intensity of the individual components
of the Zeeman splitting. The inset plots depict energy levels calculated by fac. The
line between the levels shows which transition was observed.

Table 4.2: Forbidden optical fine-structure transitions in highly charged Ca ions.
Measured energies, the vacuum wavelengths λvac, and upper and lower g-factors have
been observed. For comparison, two Ca+ transitions have been included with values
from the NIST database [45].

Ion Transition Energy (eV) λvac (nm) gupper glower

Ca11+ 2p5 2P ○

1/2
- 2P ○

3/2
3.7262192(28) 332.73458(25) 0.672(12) 1.328(7)

Ca12+ 2p4 3P1 - 3P2 3.0332843(19) 408.74572(26) 1.468(14) 1.468(14)

Ca14+
a 2p2 3P1 - 3P0 2.1766536(10) 569.60923(26) 1.489(3) /

Ca14+
b 2p2 3P2 - 3P1 2.2757757(7) 544.79971(16) 1.561(44) 1.485(16)

Ca15+ 2p 2P ○

3/2
- 2P ○

1/2
4.5397089(27) 273.11046(16) 1.326(9) 0.703(31)

Ca16+ 2s2p 3P ○

2 - 3P ○

1 3.3995766(74) 364.70482(79) 1.428(36) 1.428(36)

Ca+ 3d-4s 2D5/2 - 2S1/2 1.699932 [45] 729.348 [45] / /
Ca+b 3d-4s 2D3/2 - 2S1/2 1.692408 [45] 732.389 [45] / /
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Table 4.3: Comparison of measured Ca transition energies with the energies of three
different codes for calculating atomic structure. Also included are the calculated
transition rates Aki. The different codes are fac [86], ratip/grasp [117] and
ambit [85].

Observed fac ratip/grasp ambit

Ion Energy (eV) En. (eV) Aki (s−1) En. (eV) Aki (s−1) En. (eV) Aki (s−1)

Ca11+ 3.7262192(28) 3.716(3) 483(1) 3.718(1) 483.9(1) 3.719(2) 483.5(3)

Ca12+ 3.0332843(19) 3.022(4) 316(1) 3.012(2) 312(1) 3.020(3) 315(1)

Ca14+
a 2.1766536(10) 2.15(5) 91(6) 2.06(3) 81(3) 2.172(8) 94(1)

Ca14+
b 2.2757757(7) 2.31(2) 83(2) 2.32(2) 83(2) 2.40(2) 92.4(8)

Ca15+ 4.5397089(27) 4.60(6) 459(17) 4.5352(2) 439.0(1) 4.67(13) 480(20)

Ca16+ 3.3995766(74) 3.3839(8) 272.2(2) 3.392(3) 274(1) 3.39(2) 273(1)

Ca+ 1.699932 [45] 1.88(6) 1.7(2) 2.0228(4) / 1.49(5) /

performed by Steven King at the PTB in Braunschweig. The results are listed in

Tab. 4.3. All the given uncertainties for the codes were obtained by convergence

tests, which required running the same calculations with slightly different parameters.

The resulting variation between the results was then regarded as uncertainty. By

comparing the ab-initio results of fac, grasp and ambit, it can be observed that

the transition rates Aki are quite similar and are likely to have mostly deviated from

the calculated energy which enters with λ−3 (see Eq. 2.15 in chapter 2.1.2). The

energies, however, vary within 0.15 eV between the calculations, except for Ca+ which

had the greatest variance. Overall, grasp is closest to the measured values with

a smaller convergence uncertainty than fac. Calculations with ambit resulted in

similar values, but with more scattering, which may be due to certain inaccurate

input settings.

In general, comparisons between fac and measurements resulted in a relative

uncertainty of about 20% of the transition energies, which is reflected in deviations

of wavelengths of up to 100 nm. Ground-state transitions typically have considerably

lower uncertainties, as seen in Tab. 4.3, because only the upper level carries the

uncertainty, as the ground-state is fixed at zero.

4.4 Xenon measurement results

The main advantage of xenon over calcium is that it has seven stable isotopes with a

non-zero nuclear spin. This allows for up to six isotope-pairs in the KP, which is
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more than the isotope-pairs in calcium or ytterbium. This large number would allow

compensation for more higher-order SM effects in the GKP than Ca or Yb.

As a noble gas, Xe is inert and can be stored as a gas, which makes injection a

simple matter of pressure reduction. A small reservoir was filled with about 2 bar of

pressure and its flow was regulated by a needle valve into the injection cross (see

chapter 3.1.4 for details on the injection system). Typical pressures in the two stages

were about PInj,1 = 1× 10−7 mbar and PInj,2 = 1× 10−8 mbar. Like with many elements,

it has been previously investigated predominantly in neutral and singly charged

states. In fact, the NIST database [45] lists, as of today, 1955 optical transitions

ranging from Xe+ to Xe7+, but none of them are ground-state transitions.

This lack of known transitions and the fact that theoretical atomic structure

calculations are more complex in xenon than in calcium, calls for an investigation

of the visible transitions in multiple adjacent charge states. To obtain an overview

of the spectral region, an energy scan was performed. Here, the electron beam

energy was adjusted by cathode voltages from 80 V to 2500 V. The spectrometer was

equipped with the 150 gr./mm grating to utilize its large bandwidth of about 90 nm

(see Tab. 3.1). The wavelength was scanned by positioning the spectrometer between

340 nm and 760 nm in 85 nm steps, where the difference between bandwidth and step

size generated a small overlap to avoid missing any lines and to minimize redundancy.

Each separate image was projected down to the x-axis and then stacked on top of

each other to obtain the intensity change for the same wavelength. This was then

repeated for each step of the wavelength. While transitions were observed over the

whole energy range, most of them were below 500 V. The energy scan in the lower

cathode voltage range of 150 V to 500 V is shown in Fig. 4.9, which combines the

images of the different wavelengths. In the energy scan, transition lines faded in and

out repeatedly with rising beam energy, corresponding to its charge state present in

the EBIT. The overlapping of lines was a result of a given charge state distribution

present in the trap. The different lines were grouped together by examining where

they begin, end, and peak in their intensity. Comparing the ionization energy and

calculations with fac helped to identify each of the charge states. These charge

states are marked with a colored-coded dotted lines with a label on the right-hand

side. The dots on this line indicate the transitions of that state.

Once the lines were grouped by charge state, more detailed comparisons were

made with fac or ambit computations to determine between which levels these

transitions occurred. For example, CRM of fac was used (see chapter 2.6.1) to

calculate the relative intensity of one line to another, which was used to assess the

measured lines. Calculations with ambit provided more precise results which were

helpful for the identification. Once all of these methods were exhausted, further

insight into these transitions required detailed measurements with a finer grating.
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Figure 4.9: Energy-wavelength plot for the charge states of Xe9+ to Xe17+. The
different colors indicate the maxima of different charge states, which are stated on
the right side. The most prominent lines are marked with a dot.

With the 8 T magnetic field at HD-EBIT, this resulted in a Zeeman structure from

which more precise wavelengths and g-factors were obtained. These results were

compared with those from ambit calculations, which allowed further validation of

the correctness of the identification.

For xenon, the exposure time per image was set to either 30 minutes, for intense

transitions, or 1 hour, for weaker transitions, averaging a total of 10 hours per

line. The directly measured lines are summarized in Fig. 4.10 and Tab. 4.4. Indirect

lines, i.e. found via the Rydberg-Ritz combination method, are denoted as ’Ritz’.

These transitions are much more diverse than the P-P transitions in calcium. Also

listed are the measured g-factors in comparison to the ambit results. Although the

spectroscopy method is not optimal for obtaining the g-factors, it can still reveal

some discrepancies between theory and experiment.

In Fig. 4.11 the Grotrian diagrams of the investigated charge-states are shown. The

different line-styles clarify if the line was identified (solid), only indirectly measured

via Rydberg-Ritz combination (dash-dotted), or not measured but potentially of

interest (dashed). Preliminary identifications are represented by dotted lines and

further measurements are needed to dispel any ambiguity. [F2]
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Figure 4.10: Zeeman structure in the directly measured transitions in xenon. The
magenta arrows depict the positioning of the individual Zeeman components. For
Xe10+ a level scheme by fac shows the calculated electric quadrupole (E2) transition
by Rydberg-Ritz combination.
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Figure 4.11: Grotrian diagrams of the investigated xenon charge states Xe9+ through
Xe16+. Solid lines represent identified transitions. Dash-dotted lines represent transi-
tions calculated via Rydberg-Ritz combination. Dotted lines represent preliminary
identifications and dashed lines are not found, but potentially interesting E2 transi-
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Details of these lines can be found in Tab. 4.5 for Xe10+, Xe11+ and Xe12+, while

the charge states Xe15+ and Xe16+ are listed in Tab. 4.6.

In Xe10+, all optical transitions were identified, which allowed the calculation of

an E2 line at 764.8 nm, as listed in Tab. 4.4. This transition has a narrow natural

linewidth of 0.3 mHz, which makes it a potential clock candidate.

All optical transitions were also successfully identified in Xe16+. Unobserved

M1 and E2 transitions were added to Tab. 4.6 with their ambit results, which are

denoted with an A. Its E2 transition has a transition rate of Aki = 1.05 s−1 and thus

a natural linewidth of δν = 0.15 Hz, which indicates that this transition would be

a potential clock candidate as well. To find its true transition energy, a 955 nm,

19 s−1 M1 transition needs to be measured first. To find this missing transition, the

experimental setup will have to be adjusted for the infrared range. Doing so will

enable the identification of the line between all the known higher-orders, despite a

weak rate of Aki = 19 s−1.

Xe11+, Xe12+ and Xe15+ include preliminary identifications, denoted with a p,

where identification was ambiguous as either the Zeeman structure was not sufficiently

resolved or there were too many lines too close to each other to be identified with the

given fac and ambit uncertainties. In Xe11+ and Xe15+, most identifications resulted

from the Ritz-Rydberg combination principle. Xe12+ had less intense transitions,

which could be attributed to the large number of electronic levels. This low intensity

had the drawback that the Ritz-Rydberg combination principle could not be applied.

However, Xe12+ may contain two ultra-narrow E2 transitions with an expected natural

linewidth of as low as 0.016 mHz, if calculations are correct. To ultimately find them,

however, more work is required, as a large variety of transitions have to be identified

first.

Transitions measured in other charge states are not listed here, because they had

no observable ground-state transitions. This made them irrelevant in this work and

thus they were left mainly unidentified but listed in the appendix A.
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Table 4.5: Other identified transitions in Xe10+, Xe11+ and Xe12+. Transition details,
ab-initio wavelength λA and Aki values are based on ambit calculations. Xe10+

transitions were used to calculate Ritz-Rydberg combination listed in Tab. 4.4. Xe12+

contains two with ambit calculated E2 transitions to point them out.

Ion Transition Energy (eV) λvac (nm) λA (nm) Aki (s−1)

Xe10+ 4d8 1D2 - 3F3 3.4276528(10) 361.71748(10) 353.6 159.5
Xe10+ 4d8 1G4 - 3F3 3.1758602(72) 390.39563(88) 382.6 10.7
Xe10+ 4d8 3P1 - 3F2 2.6655150(26) 465.14163(45) 453.7 47.8
Xe10+ 4d8 1D2 - 3P2 2.0067271(28) 617.84283(85) 615.9 55.8
Xe10+ 4d8 3P2 - 3F2 1.68081600(90) 737.64289(39) 741.4 35.3

Xe11+ 4d7 2D5/2 - 4F7/2 4.397932(52) 281.9147(33) 272.9 246.1
Xe11+ 4d7 2H9/2 - 2G9/2 3.1523(48) 393.3(6) 395.9 99.6
Xe11+ 4d7 2D5/2 - 4P3/2 2.8739(33) 431.42(49) 422.0 42.4
Xe11+ 4d7 2D3/2 - 4P3/2 2.5866(22) 477.713(90) 468.0 104.4
Xe11+ 4d7 4P3/2 - 4P3/2 2.5707010(33) 482.29723(62) 474.9 113.5
Xe11+ 4d7 2D5/2 - 4P5/2 2.4899(15) 497.93(29) 494.9 27.4
Xe11+ 4d7 2D3/2 - 2D5/2 2.29265(30) 540.790(70) 533.8 53.9
Xe11+ 4d7 2G9/2 - 4F7/2 2.21997(16) 558.50(4) 550.3 8.8
Xe11+ 4d7 4P3/2 - 4P5/2 2.18799(39) 566.66(10) 569.2 61.8
Xe11+ 4d7 2P5/2 - 4F7/2 1.907216(88) 650.079(30) 608.4 16.7
Xe11+p 4d7 2F7/2 - 2G7/2 3.0825(38) 402.21(50) 361.5 37.7
Xe11+p 4d7 2F5/2 - 2G7/2 2.5732(21) 481.83(39) 525.0 6.7
Xe11+p 4d7 2P1/2 - 4P1/2 2.42089(80) 512.14(16) 510.7 129.1
Xe11+p 4d7 4P1/2 - 4F3/2 2.03614(13) 608.918(40) 597.5 21.5
Xe11+p 4d7 2H9/2 - 2H11/2 1.842646(25) 672.860(9) 674.3 29.3
Xe11+p 4d7 2D3/2 - 2P1/2 1.76973(23) 700.583(90) 732.5 10.1
Xe11+p 4d7 4P5/2 - 4F5/2 1.54551(39) 802.22(20) 837.6 5.8

Xe12+ 4d6 3D1 - 3P2 3.7282435(96) 332.55391(86) 340.1 105.5
Xe12+ 4d6 3P2 - 5D3 3.278867(10) 378.1313(12) 365.2 203.9
Xe12+p 4d6 1I6 - 3H6 3.327889(18) 372.5611(20) 373.2 72.4
Xe12+p 4d6 1G4 - 3H4 3.0372(30) 408.21(39) 394.5 121.3
Xe12+p 4d6 3P2 - 5D1 2.81415(10) 440.57(15) 459.0 66.0
Xe12+p 4d6 3F2 - 1F3 2.4539(11) 505.25(22) 480.6 63.6
Xe12+p 4d6 3G4 - 3H5 2.42449(90) 511.38(18) 505.6 33.8
Xe12+p 4d6 3H4 - 3H4 2.36708(45) 523.79(10) 527.9 120.3
Xe12+p 4d6 3G5 - 3H6 2.2546375(23) 549.90744(55) 540.0 54.3
Xe12+p 4d6 3D1 - 3P2 2.23393(12) 555.01(3) 549.9 75.9
Xe12+p 4d6 3P2 - 3P1 2.19676(47) 564.39(11) 584.9 60.8
Xe12+p 4d6 3P1 - 3P0 2.17953(38) 568.86(10) 592.8 54.6
Xe12+p 4d6 3D3 - 3F2 1.928492(90) 642.907(30) 636.9 31.6
Xe12+A (E2) 4d6 5D2 - 5D4 / / 931.8 0.0007
Xe12+A (E2) 4d6 3H6 - 5D4 / / 274.6 0.0001

p: preliminary, A: ambit results only
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Table 4.6: Continuation of identified non-grounds-state transitions in Xe15+ and
Xe16+. Transitions from Xe16+ used for Rydberg-Ritz combination to calculate one
transition in Tab. 4.4. Xe16+ also contains two with ambit calculated transitions to
point them out.

Ion Transition Energy (eV) λvac (nm) λA(nm) Aki(s−1)

Xe15+ 4d3 2G9/2 - 2G7/2 3.2906036(29) 376.78253(33) 376.7 162.6
Xe15+ 4d3 4P3/2 - 4P3/2 3.1088401(49) 398.81175(62) 397.9 198.8
Xe15+ 4d3 2H9/2 - 4F7/2 3.096290(15) 400.428(2) 394.2 76.5
Xe15+ 4d3 2G9/2 - 2H9/2 3.056024(16) 405.7042(21) 400.6 160.5
Xe15+ 4d3 2G7/2 - 4F7/2 2.861683(14) 433.2561(21) 420.4 65.7
Xe15+ 4d3 2D5/2 - 4P5/2 2.41424(85) 513.55(17) 501.1 11.8
Xe15+ 4d3 2H9/2 - 4F9/2 2.286319(11) 542.2875(25) 536.6 82.9
Xe15+ 4d3 4P5/2 - 4P3/2 2.2483297(50) 551.4502(12) 554.1 59.6
Xe15+ 4d3 2D5/2 - 3P3/2 1.55279(97) 798.45(49) 777.0 18.1
Xe15+p 4d3 2F7/2 - 2G7/2 4.269411(14) 290.40114(96) 278.6 50.6
Xe15+p 4d3 2P1/2 - 4P1/2 3.123792(52) 396.9028(66) 392.8 233.2
Xe15+p 4d3 4P3/2 - 4F5/2 2.06849(17) 599.395(50) 548.0 10.3
Xe15+p 4d3 2H11/2 - 2H9/2 1.988448(64) 623.522(20) 615.4 30.3

Xe16+ 4d2 1G4 - 3F4 3.14220(18) 394.577(22) 383.2 69.5
Xe16+ 4d2 3P2 - 1D2 3.0230061(48) 410.13545(65) 407.7 165.2
Xe16+ 4d2 3P2 - 3P1 2.5194098(20) 492.11604(39) 489.0 61.2
Xe16+ 4d2 1D2 - 3F3 2.17991(38) 568.8(1) 530.3 20.2
Xe16+ 4d2 3F4 - 3F3 1.7426542(51) 711.4675(21) 701.8 50.6
Xe16+A 4d2 3P1 - 3P0 / / 955.0 19.1
Xe16+A (E2) 4d2 3P0 - 3F2 / / 328.2 1.05

p: preliminary, A: ambit results only
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Chapter 5

Analysis

fac calculations were used to evaluate how discovered ground-state transitions shift

in the presence of a hypothetical fifth force between electrons and neutrons. Though

the ab-initio results of fac were the least accurate compared to that from other

codes, calculation of shifts within the level structure is of comparable accuracy to

grasp. This was confirmed by an inclusion of a Yukawa potential in both codes and

cross-checking the results. As the minute fifth force shifts are below the numerical

precision of fac, the SM coefficients K and F , as well as the NP coefficient X

(see chapter 2.3.1), were extracted and handled with higher numerical precision

separately.

From Eq. 2.22, the relation between the energy levels and the atom mass can be

seen as ν = C +K 1
m + Fr2. To extract K, the terms C and Fr2 must be removed.

The MS can be toggled in fac. The energy levels were then calculated twice, once

with MS EMS and once without MS Eno−MS. By taking the difference in transition

of interest ν within these level structures, the MS coefficient K was obtained with
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Figure 5.1: FS coefficient extraction from
the slope of a linear fit on the energy over
the squared radius. Example based on
the measured Xe17+ transition.

K = (νMS − νno−MS) ⋅m. (5.1)

Here, m is mass of the atom used in

the calculation. The resulting MS

parameter K is in units of eV ⋅ u.

Extracting the FS coefficient

F required slightly more work.

Firstly, the energy levels for five

different atomic radii were calcu-

lated. These radii were scaled

by r =
√
r2

RMS(1 + 2 ⋅ n) with n ∈
[0, 1, 2, 3, 4] and rRMS the root-mean-
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CHAPTER 5. ANALYSIS

square radius of the atom. Secondly, a linear regression was performed between r2

and the transition energy ν(r):

ν(r) = F ⋅ r2 + c0. (5.2)

Here, c0 = C +K 1
m are the radius-independent parts. The slope is the F coefficient

in units of eV/fm2. This regression is depicted in Fig. 5.1 on the example of Xe17+.

Lastly, the fifth force-shift coefficients X(mΦ) were extracted. For this extraction,

a Yukawa-potential VYuk.(mΦ) (see chapter 2.3 and in particular Eq. 2.21.) was added

to the existing atomic potential. The force range changes with mΦ and thus required

a recalculation of the energy levels for each mΦ. A realistic coupling parameter

would cause very minute shifts, which are too small to be directly obtained. Instead,

a coupling parameter of yeyn = 0.01 was used, which was big enough to overcome

numerical limitations, but still small enough to not impose any significant level

mixing. The extraction was performed using the difference between the transition

energies ν with and without fifth force-shift, resulting in

X(mΦ) =
100 ⋅ (ν(mΦ) − νno−5th−force)

N
. (5.3)

The factor 100 is a result from the chosen coupling constant yeyn = 0.01→ 1/yeyn = 100

for the calculations. To account for the number of neutrons present in the nucleus,

the value was then divided by the neutron number N . Once the coefficient X was

extracted, the coupling parameter was set to realistic values in separate calculations.

5.1 Isotope shifts and King plots

With the extracted electronic coefficients, the IS can be constructed with Eq. 2.27, as

introduced in chapter 2.3. Modifying the IS with the mass parameter and plotting

two transitions against each other for the different isotope-pairs resulted in the KP,

see Eq. 2.28.

5.1.1 Calcium isotope shift

The calculated electronic coefficients for MS, FS, and for key mediator masses of the

fifth force are listed in Tab. 5.1 for the calcium transitions listed in Tab. 4.2. To test

the accuracy of the fifth force contributions from the fac results, values obtained

with the grasp program are listed as well. They were calculated by Steven King

at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig (National

Metrology Institute). The X coefficients were similar, confirming the principle of

an added Yukawa potential in both programs. Towards heavier mΦ, the relative
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Table 5.1: NP electronic coefficients X(mΦ) in eV calculated with fac and ratip/-
grasp for different mediator masses mΦ. Their respective SM electronic sensitivity
coefficients K and F were calculated only with fac.

X(mΦ) (eV) SM coefficients

mΦ = 103
eV

c2
104

eV

c2
105

eV

c2
106

eV

c2
K (eV⋅u) F( eV

fm2)

Trans. fac grasp fac grasp fac grasp fac grasp ×10−3 ×10−9

Ca11+ 9.85 9.81 8.82 8.80 1.54 1.67 0.0163 0.0252 -2.85 -104

Ca12+ 8.36 8.33 7.51 7.51 1.33 1.45 0.0139 0.0221 -2.43 -123

Ca14+
a 6.71 6.06 6.07 5.51 1.07 1.07 0.0065 0.0126 -1.83 -21

Ca14+
b 4.89 4.88 4.45 4.40 0.96 0.80 0.0203 0.0087 -1.90 -196

Ca15+ 11.4 11.2 10.4 10.2 2.47 2.44 0.0605 0.0573 -4.96 -577

Ca16+ 8.69 8.56 7.90 7.78 1.52 1.51 0.0177 0.0177 -2.76 -134

Ca+ -32.0 -35.3 9.37 14.8 2.52 4.52 0.119 0.223 -3.13 -1310
Ca+b -31.9 / 9.36 / 2.51 / 0.119 / -3.15 -1310

differences between the programs increased as the fifth force effect weakened, and

thus extraction of X coefficient became increasingly limited by numerical precision.

The largest deviation was between the results in Ca+, possibly due to its transition

between different configurations.

This is visualized in Fig 5.2 (a) which shows the NP IS for different mediator

masses for a single isotope-pair. A comparison of the fac and grasp results make

it apparent that the Ca+ transition is most sensitive to a fifth force but exhibits

the strongest deviations between both programs. In contrast, the HCIs are easier

to compute theoretically due to the reduced number of electrons and subsequent

fewer electron-electron interactions. Moreover, the electronic levels of the transitions

are within the same configuration (2px), and therefore have better precision than

transitions between configurations.

From the calculated IS, a KP was constructed. Fig. 5.2 (b) shows such a KP for

two of the found transitions. The points are the four isotope-pairs based on the five

stable even isotopes in calcium. This KP is specific for one selected mediator mass

mΦ = 105 eV/c2, and needs to be reconstructed in the analysis for every mΦ. The

inset plots present a closeup of the different points, showing their deviation from the

orange King-linearity. This effect scales with the coupling parameter yeyn, which, in

this example, was set to a realistic value yeyn = 10−13, as shown in Fig. 2.4.
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Figure 5.2: IS and KP for the measured calcium transitions and a fixed coupling
strength of yeyn = 10−13. (a) Theoretical IS caused by a NP mediator in the (40,44)
isotope pair. Ca+ has been added as comparison. IS of first-order SM included in the
third column of the legend. Calculated with fac and grasp/ratip. (b) Example
KP based on IS of two Ca transitions at a fixed mΦ = 105 eV/c2

.

82



5.1. ISOTOPE SHIFTS AND KING PLOTS

5.1.2 Xenon isotope shift

Repeating the same process in xenon, fac calculations resulted in X values for

different mΦ, as well as the SM coefficients K and F . These are tabulated in Tab. 5.2.

Compared to that of calcium (Tab. 5.1) the X coefficients are smaller by about a

factor of two, which can be explained by the electronic wavefunction and its overlap

with the nucleus, which is greater for the 2p shell in Ca than for the 4d shell in

Xe. This reinforces the concept that, wavefunctions closer to the nucleus exhibit a

stronger shift by a fifth force, thus making the search potentially be easier. This topic

will be discussed further in chapter 7.1. Calculated NP IS for the Xe isotope-pair

(132, 124) for a coupling strength of yeyn = 10−13 is shown in Fig. 5.3 (a). Similar to

the HCI transitions in Ca, the found transitions showed an overall common shift

as they are in the same shell. The KP can be generated from this IS using mass

parameters of mΦ = 105 eV/c2
, as shown in Fig. 5.3 (b). The insets show a close-up of

the positions of the six isotope-pairs relative to the linear line.

It should be noted here that these X coefficients or the ISNP only partially

represent the estimation of the sensitivity to a fifth force. The actual sensitivity

stems from the NL in the KP, which includes the FS coefficient F , and the NP

X coefficient of both transitions in the NL term (see chapter 2.3 and in particular

Eq. 2.28 and Fig. 2.6). This combination of effects makes a quick assessment difficult.
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Figure 5.3: Results of NP IS from fac for a coupling strength of yeyn = 10−13. (a)
Isotope shift by a NP mediator for the xenon transitions. (b) Example KP based on
mΦ = 105 eV/c2

and an assumed measurement uncertainty of ∆ν = 100 mHz.
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Table 5.2: NP electronic coefficients X(mΦ) in eV for different mediator masses mΦ.
Their respective SM electronic sensitivity coefficients K and F were used for the IS
calculations. All of these values have been calculated with fac.

X(mΦ) (eV) SM coefficients

Trans.
mΦ 103

eV

c2
104

eV

c2
105

eV

c2
106

eV

c2
K (eV⋅u) F ( eV

fm2)

Xe9+ 3.34 1.92 0.122 -0.0123 -3.32 × 10−3 785 × 10−9

Xe10+
a 3.06 1.79 0.124 -0.0113 -3.16 × 10−3 624 × 10−9

Xe10+
b 1.09 0.612 0.0198 -0.0043 1.15 × 10−3 264 × 10−9

Xe10+
c 4.61 2.51 0.0483 -0.0168 -4.70 × 10−3 973 × 10−9

Xe11+
a 3.48 1.93 0.0616 -0.0118 -2.22 × 10−3 723 × 10−9

Xe11+
b 2.91 1.74 0.143 -0.0093 -3.06 × 10−3 552 × 10−9

Xe12+ 1.91 0.927 -0.0586 -0.0067 -1.52 × 10−3 426 × 10−9

Xe15+
a 3.61 2.20 0.0958 -0.0132 -0.931 × 10−3 842 × 10−9

Xe15+
b 2.73 1.64 0.0437 -0.0099 0.119 × 10−3 632 × 10−9

Xe16+
a 4.34 2.66 0.133 -0.0156 -7.65 × 10−3 964 × 10−9

Xe16+
b 3.414 2.185 0.200 -0.0121 -3.72 × 10−3 757 × 10−9

Xe16+
c 4.81 2.95 0.150 -0.0172 -9.01 × 10−3 1066 × 10−9

Xe17+ 4.01 2.58 0.230 -0.0144 -4.76 × 10−3 905 × 10−9

5.2 Exclusion plots

The evaluation of KPs has been prepared in chapter 2.3, where the NL by the

fifth force is quantified by the area it spans over the isotope-pairs. This area is

contrasted against its uncertainty, which is set by the measurement and isotope mass

uncertainties. As discussed in the previous chapter, the IS of the fifth force changes

with different mediator masses mΦ, which set the range of the force. A new KP was

made for each mΦ, as shown in Fig. 5.2 (b) and Fig. 5.3 (b). The ratio of spanned

area to its uncertainty is the resolvability R (see chapter 2.3.2), which must be R = 1

to find the limit of uncertainty, i.e. when the error bars of the isotope-pairs reach the

King-linearity line. This R = 1 was achieved by adjusting the coupling strength yeyn

of the fifth force until this criteria was met. This procedure was repeated for every

mediator mass mΦ in the range of 1 eV/c2 to 107 eV/c2. The resulting yeyn(mΦ) can

be plotted as an exclusion plot, similar to the one previously seen in Fig. 2.4.

Different parings of transitions for the KP analysis result in their own sensitivity

line. As these lines are the lower limit (R = 1), they exclude the parameter space

above them.
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5.2.1 Calcium exclusion plot

The exclusion plot for calcium is shown in Fig. 5.4. The dashed lines represent the

sensitivities from classical KPs, where isotopes mass uncertainties and higher SM

orders were omitted. The most recent IS study in calcium was performed by Ref. [40].

They measured two Ca+ 3d-4s transitions of 732 nm and 729 nm with an uncertainty

of 20 Hz. This exclusion line is shown in Fig. 5.4 as an annotated yellow dashed line. If

the same pair would be measured again with the predicted uncertainty of 100 mHz by

the QLS method, the sensitivity would increase by a factor of 20 Hz/100 mHz = 200,

shown as the orange dashed line.

The KP analysis of the transitions listed in Tab. 5.1 resulted in a large variety

of sensitivity lines, the highest of which was achieved with Ca15+ paired with Ca14+
a ,

shown as red dashed line, and the pairing of Ca15+ with Ca+, shown as green dashed

line. Both of these are two orders of magnitude more sensitive than the Ca+-only

pair with the same measurement uncertainty. This low sensitivity of the Ca+-only

pair is related to the high similarity of the electronic coefficients of the two Ca+

transitions, as seen in Tab. 5.1. If included in Fig. 5.2 (a), these two Ca+ transitions

would be indistinguishable in the presented format. Although the shifts are strong,

no NL would be caused if the shift is equal in both axes of the KP.

All these lines exhibit peaks at certain mΦ. These peaks are caused by the

coefficients X at these mΦ, where the exception X2− F2

F1
X1 = 0 is fulfilled, which results

in no NLs, as mentioned in chapter 2.3.2. However, this single point-happenstance

can be overcome by a KP of different transitions, which exhibit this singularity at a

different mΦ.

As mentioned in chapter 2.3.4, a QMS of 3 Hz is expected in calcium [103]. This

will cause also an NL in the KP and effectively make it more difficult to extract the

fifth force contribution. Thus, the sensitivity will reduced, because the fifth force

must exhibit a stronger coupling to overcome it, which is shown in Fig. 5.4 as a brown

dash-dotted line. For the Ca14+
a , Ca15+ transition pair, this would require the fifth

force to be an order of magnitude stronger, thus lowering the sensitivity accordingly.

Using the GKP and combining three transitions of Ca15+, Ca14+ and Ca+ resulted

in a GKP that spans a plane including the QMS. A fifth force would cause a deviation

from that plane, thus restoring the sensitivity. This is shown as a solid blue line,

which almost reaches force strengths down to yeyn = 10−14.

Overall, in calcium measurements, the sensitivity can be improved from the

previous Ca IS study from Ref. [40] by five orders of magnitude using more sensitive

transitions and taking full advantage of the low predicted uncertainty of the QLS

method. A QMS can be compensated for, and, due to the low mass of Ca, the next

higher-order would be at much lower energies.
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Figure 5.4: Exclusion plot in a few transitions-pairs with the best possible sensitivity.
Added the Ca+ transition pair used in Solaro et al. [40]. The Ca+b is the 732 nm
transition, while without subscript it is the 729 nm transition.

5.2.2 Xenon exclusion plot

The expected IS was slightly lower in Xe than in Ca, as discussed in chapter 5.1.2,

however, Xe not only has more neutrons in the nucleus for the electron to couple to,

but also has seven stable and even isotopes. The latter can be used to compensate

for effects of up to three different higher-orders of the SM.

An exclusion plot for Xe transitions is depicted in Fig 5.5. As in the previous

section, the latest calcium IS study from Ref. [40] was added as reference as a dark-

yellow dashed line, and scaled down for a 100 mHz measurement uncertainty. A

number of transition-pairs achieved similar sensitivities within classical KP without

any higher-order SM contributions and neglected isotope mass uncertainties. One

of those lines is shown as a dashed line at around yeyn = 10−14. Considering the

current Xe isotope masses, as shown in Tab. 1.2 [72], the sensitivity was reduced by

three orders of magnitude (not shown). Higher-order SM shifts were introduced in

chapter 2.3.4, in which it was discussed how QFS effects scale with nuclear charge.

Hence a visible QFS NL is expected for elements with masses similar to that of Xe.

However, currently no calculations of such an QFS can be found for Xe. To estimate

the strength of this effect based on other elements, a QFS of ≈ 1 kHz [103] may occur.

Such an effect would lead to the loss of another order of magnitude of sensitivity,

shown in Fig 5.5 as the yellow dash-dotted line.

To overcome both the mass uncertainty and the QFS shift, a NmGKP was applied

(see chapter 2.3.5). Here, four transitions are used together to substitute each of the

nuclear parameters. This formed a 3D volume from which deviations were caused
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Figure 5.5: Exclusion plot in a few example transitions. Added the Ca+ transition
pair used in Solaro et al. [40] and ytterbium from Berengut et al. [39].

by the fifth force. Two of the most sensitive pairs are shown as a solid green and a

solid blue line. While the green line is less sensitive at low mediator masses, its main

sensitivity can be found between mΦ = 105 eV and 106 eV.

Other higher-order SM effects are not as prominent. For example, from Ref. [103],

an approximation for the QMS scales the effect with (Kµ)2, which would lead to a

QMS of about two orders smaller for Xe compared to Ca. The main contributor of

this reduction is the µ =m−1
A −m−1

Ar
mass parameter.

Ytterbium has been used as the model element to find fifth forces, thus it is

important that Xe’s sensitivity is comparable to Yb’s sensitivity. To compare the

same results, the proposed NmGKP in Ref. [39] with four transitions is plotted as a

annotated solid red line. The magnitude of the overall sensitivity is similar between

these NmGKPs, proving the validity of Xe as a candidate for the search of a fifth

force. Moreover, Xe has the advantage of having seven stable even isotopes, while

Yb only has five. Recent KP analysis of Yb revealed a shift by nuclear deformation

[41, 101], which limits the search with Yb if an additional higher SM order becomes

visible.

Overall, Xe shows more promise than Yb to detect a fifth force because of its

less deformed nuclei and higher number of isotopes.

5.3 Comparison of exclusion plots

Comparing the sensitivities between calcium and xenon shows that calcium is slightly

more sensitive to a fifth force than xenon. Calcium is preferred over Xe also because

its lighter nucleus will exhibit smaller higher-order SM shifts. However, current
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Figure 5.6: Exclusion plot with the pairs from Ca and Xe that have the highest
sensitivity to a fifth force. The KPs are dashed lines, while the GKP are solid
lines. Show here are also the excluded areas from other experiments, as discussed in
chapter 2.2. Furthermore, the excluded area from the Ca+ KP analysis from Ref. [40]
is shown.

prediction includes a 3 Hz QMS [103], which must be compensated for by the only

free isotope-pair calcium has. If unexpected higher-order effects are also visible in

the given measurement uncertainty, or the uncertainty is reduced even further with

new methods, then the limit of calcium is reached.

As stated, Xe with its number of available isotopes can compensate for up to

three higher SM order shifts. This makes Xe a favored candidate as well. As shown,

a QFS of 1 kHz and the isotope mass uncertainties can be overcome with pairings of

the measured transitions.

Fig. 5.6 shows both the Ca and Xe results from their KP and GKP. The latest

KP analysis in Ca from Ref [40] is shown as an excluded area, showing that it lies

completely within the areas excluded by electron and neutron scattering experiments.

With the current projected uncertainty of 100 mHz and the newly found transitions,

the KP can probe the unrestricted NP parameter space. If the X17 anomaly is truly

a NP boson, it would become visible in any of the predicted KP or GKP analyses.
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Chapter 6

Summary

Dark matter is the collective ambiguous term for the numerous inexplicable phenom-

ena in our universe, such as the rotational curve of galaxies, the neutrino masses,

etc. It is evident that the current Standard Model (SM) of particle physics fails to

provide an adequate explanation for dark matter, and therefore new efforts are put

forth to establish a new physics model beyond the SM. A hypothetical fifth force

has been proposed as key to substantiating this model and therefore understanding

dark matter.

Such a fifth force is generally expressed by a Yukawa potential. Its main pa-

rameters are its coupling to existing particles and its interaction range. The latter

is typically expressed as a mediator mass, where a larger mass poses a stronger

limitation on coupling distance than a lighter mass. In the search for a fifth force,

research efforts focus on the highly precise measurements of the atomic range of

forces, as light masses are excluded by Casimir effect experiments and heavier masses

are often indistinguishable from nuclear forces. It is particularly insightful to examine

the fifth force interactions between electrons and neutrons as the electronic energy

levels then vary between isotopes, and thus the fifth force can be observed as an

isotope shift. However, SM isotope shifts, i.e. change of nuclear radius and mass,

have to be compensated for. To do so, one can use the generalized King plot [37, 39],

which can detect the fifth force as a deviation from a hyperplane spanned by multiple

transitions and isotopes. This method also accounts for SM shifts that would disguise

the fifth force contribution. Recent applications of this method were unfruitful as

analysis was restricted by a range of factors, including poorly chosen transitions [40],

deformed nuclei, and limited isotopes [41, 101]. Therefore, it is necessary to consider

alternative elements as well as a broader selection of transitions in order to achieve

higher sensitivity.

To this end, two candidates, calcium and xenon, were investigated, with the

aim of laying the groundwork for the search for a fifth force with the generalized

King plot method. Highly charged Ca and Xe were measured with fluorescence
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spectroscopy and their ground-state transitions identified. These are necessary in the

use of highly precise quantum logic spectroscopy (QLS) [66], which already achieves

100 mHz measurement precision [63] in highly charged ions (HCIs). It is planned to

use this method to analyze future measured isotope shifts in collaboration with e.g.

the PTB in Braunschweig.

The first element measured was calcium (Z = 20), which has five stable isotopes

without nuclear spin. Calcium is a light element and thus has weaker nuclear effects

that could hinder the discovery of a fifth force in the King plot. The highest expected

contribution of a second-order SM shift is the quadratic mass-shift for Ca+ of about

3 Hz, which would be within the predicted measurement uncertainty of 100 mHz.

Other effects, like quadratic field-shift and nuclear polarizability, are lower than

10 mHz [103]. The latest King plot analysis of measured isotope shifts was performed

with a 20 Hz measurement uncertainty [40], where no deviations in the King plot

occurred. It was later revealed that the chosen transitions did not convey a good

sensitivity to a fifth force [F1] due to their high similarity. Measurements included

four M1 ground-state transitions in Ca. A theoretical analysis was conducted to

reveal the best transitions for high sensitivity with a King plot. The result concluded

that the best sensitivity can be achieved by combining ground-state transitions in

Ca+, Ca14+, and Ca15+. Compared to the previous Ca King-plot analysis, this predicts

an improvement by four orders of magnitude, which also compensates for the effect

of the quadratic mass-shift. Currently, QLS measurements of these transitions for

the four available Ca isotopes are underway at the PTB in Braunschweig.

The second element measured was xenon (Z = 54), which has seven stable, even

isotopes. As no optical ground-state transitions were listed in the NIST database [45],

a more in-depth investigation was required. Similar to the Ca measurement, in-EBIT

optical fluorescence spectroscopy was performed, however, this also included a scan

of charge states Xe9+ through Xe33+, where ground-state transitions were only found

in seven of these charge states. The measurement resulted in thirteen ground-state

transitions, where one is an ultra-narrow electric quadrupole (E2) transition. This

transition has a natural linewidth of 0.3 mHz and is thus a potential atomic clock

candidate [F2]. Higher-order SM isotope shift contributions are expected to be

stronger in xenon than in calcium. As no calculations were previously performed for

Xe, these shifts were approximated based on other elements [103]. Thus, a quadratic

field-shift of 1 kHz was included in the analysis. Compared to Yb, Xe displays less

nuclear deformation and consequently fewer prominent effects on isotope shifts. If

nuclear deformation effects remain substantial in the isotope shift, the large number

of Xe isotopes would allow for their compensation. The theoretical King plot analysis

on Xe yielded a similar sensitivity to a fifth force compared to predictions in Yb. The
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results showed that high sensitivity, small nuclear deformation, and an abundance of

isotopes make Xe a promising candidate to consider for the search of a fifth force.

Altogether, the discovered ground-state transitions in Ca and Xe would improve

the current limit of the parameter space of a fifth force by multiple orders of

magnitude. The expected measurement uncertainty of at least 100 mHz by QLS

predicts a substantial improvement compared to previous isotope shift measurements

of at least four orders of magnitude. This level of sensitivity also covers an observed

anomaly, called the X17. While the King plot analysis can be impeded by less known

isotope masses and higher-order SM effects, these challenges can be overcome in the

generalized King plot with the number of found transitions and available isotopes in

these elements. This shows that measuring these isotope shifts and performing KP

analysis can bring us a step closer to finding proof of a hypothetical fifth force and

subsequently an New Physics model beyond the SM.
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Chapter 7

Outlook

While this thesis focuses on the ground-state transitions of highly charged Ca and Xe,

the implications of these findings extend across other related areas. This chapter will

detail how endeavors of searching for a fifth force can also advance our understanding

in metrology and nuclear physics.

7.1 Calcium and Xenon EUV

The theme of this work was on optical ground-state transitions, however, these are

typically only found in lower charge states in HCIs. Probing higher charge states

would expose the innermost electrons, which, due to their proximity to the nucleus,

would experience a stronger effect by a fifth force. Furthermore, none of the observed

transitions in this work were in s-orbitals. Because such orbitals have a wavefunction

with a greater overlap with the nucleus, they experience a stronger effect, compared

to their p-orbital counterparts.

In calcium, two of such EUV transitions are shown in Fig. 7.1 with their fifth

force ISNP for the 40Ca, 44Ca pair. It includes the optical transitions from this work

as reference. In the EUV range, M1 and E1 dipole transitions exhibit very high

transition rates due to the λ−3 scaling, thus resulting in very broad natural line

widths. To achieve a comparable 100 mHz uncertainty in the QLS, only E2 transitions

are considered. The transition rate for the shown Ca12+ and Ca16+ EUV ground-level

transitions are between 30ms to nearly 1s. Both of them are transitioning between a

S0 and a P2 state. The stronger effect shown by the Ca16+ EUV transition is a direct

result of the electron’s proximity to the nucleus.

For xenon, the NP electronic coefficient X for some EUV transition in Xe34+,

Xe42+ and Xe46+ is shown in Fig. 7.2. Some of the optical transitions from this work

are shown for reference. As in calcium, the fifth force has a stronger influence on the

EUV transitions, e.g. about a magnitude stronger in Xe34+ compared to the Xe16+.

Surprisingly, Xe46+, which was expected to be much stronger in its sensitivity, was
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Figure 7.1: Comparison of predicted IS in the isotope pair of 40Ca and 44Ca between
the optical and EUV transitions in calcium. Ca16+ transition shows a potentially
strong sensitivity at 105eV/c2.
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Figure 7.2: Comparison of the IS parameter X(mΦ) of the fifth force between optical
transitions investigated in this paper and prospective EUV transitions in Xe34+,
Xe42+ and Xe46+. The shift is about an order of magnitude stronger in these EUV
transitions than it is in the optical ones due to the higher charge state and therefore
their closer proximity to the nucleus.
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Figure 7.3: Exclusion plot for the most sensitive combinations of transitions in
classical KPs with an assumed measurement uncertainty of 100 mHz. By going to
higher charge states the electron is closer to the nucleus and therefore experiences a
stronger shift by the fifth force. The sensitivity can thus be increased by multiple
magnitudes. Solid lines are optical-only pairs, the dash-dotted line is optical-EUV
pair and the dashed lines are EUV-only pairs.

not as strong as the other EUV transitions investigated, thus fortifying the need to

perform these calculations and analyses prior measurements. An exclusion plot by

classical KP analysis is shown in Fig. 7.3, which includes the most sensitive pairs from

optical-optical, EUV-optical and EUV-EUV transition pairings. In the EUV-only

pair, the resulting sensitivity was improved by two orders of magnitude, compared to

the optical-only pair. While this seemed to be a direct result of the NP X coefficient,

it should be stressed that the NL results from X2 −X1 ⋅ F2/F1 from Eq. 2.28 and not

from X alone. Several other EUV-pairs did not show such sensitivity.

While this prediction is worth pursuing, the major issue is the EUV range, which

poses its own set of difficulties. EUV frequency combs offer a laser source [139, 140]

for QLS, however, in the current state of acusto-optic modulator (AOM), the EUV

light cannot be sufficiently adjusted to generate the red sideband pulses required for

QLS. An expensive alternative to an AOM is to use multiple EUV frequency combs,

which could be tuned to the energy of the red sideband pulse.

In the end it also comes down to how well the system can be controlled, states

prepared and read out. For this a lot of work is required until it can be fully

utilized. However, once this is overcome, the KP analysis would result in much

higher sensitivity, compared to optical transitions.
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7.2 Tin as King plot candidate

As introduced, Sn has as many stable even isotopes as Xe, and it has the advantage

of the magical number of Z = 50. As shown in Fig. 2.8, no deformation was expected

across its even isotopes. Sn has already been investigated in its level structure

in Refs. [141, 142], however, no further analysis was conducted. The ground-level

transitions of interest are summarized in Tab. 7.1 for reference. In this table, the

same 4d-shell configurations have been measured as in the xenon measurement. A

comparison of the 2D5/2 −2D3/2 transition in Sn13+ and Xe17+, shows a wavelength

shift from 758.8 nm in tin to 436.2 nm in xenon. This is a good example to see how

the transitions shift with Q (see chapter 2.1.1). A shift by Q2 is expected for energy

levels, and thus for 172/132 = 1.7 the Xe17+ 436.2 nm wavelength leads to an expected

tin wavelength of 745.9 nm. This deviates from the measurement by 2% due to

unaccounted QED shifts in this estimation, yet the tendency still holds true.

The IS by a fifth force ISNP was calculated for Sn, and the resulting shift for

different mediator masses is shown in Fig. 7.4. Compared to that of Xe in Fig. 5.3,

the Sn shift strengths were slightly smaller due to the reduced number of neutrons. A

direct comparison of the 4d1 transitions between Xe and Sn shows a difference in the

shift by about 400 Hz for light mediator masses mΦ. The comparable transitions in

4d2 through 4d7 show a similar deviation. The strongest shifts in Sn are by transitions

that were not observed in Xe. This is because these Xe transitions lie in the far-UV

spectrum, and thus beyond the scope of the conducted measurement. The SM K

and F coefficients for MS and FS, as well as some key fifth force X coefficients, are

summarized in Tab. 7.2. The comparison of the 4d1 transition between Sn13+ and

Xe17+ shows that the NP X coefficient was reduced by nearly a factor of two, as was

shown in the IS plot. This follows the same Q2 scaling as in the wavelength, which

is a factor 132/172 = 0.58 from Xe to Sn.
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Table 7.1: Summary of ground-state transitions in highly charged Sn ions [141, 142]:
Measured energies and vacuum wavelengths λvac. Transition probabilities gAki were
calculated with the cowan code [120] and the calculated wavelengths λcalc. were
calculated with CI+MBPT.

Observation calculations

Ion Transition λvac (nm) λcalc.(nm) gAki(s−1) Ref.

Sn7+ 4d7 2G9/2 - 4F9/2 441.9 444.0 262 [142]

Sn8+
a 4d6 3F4 - 5D4 293.3 295.2 226 [142]

Sn8+
b 4d6 3F3 - 5D4 315.0 315.4 60 [142]

Sn8+
c 4d6 3H4 - 5D4 404.6 405.7 239 [142]

Sn9+
a 4d5 4G5/2 - 6S5/2 261.0 262.9 304 [142]

Sn9+
b 4d5 4G5/2 - 6S5/2 296.0 299.6 149 [142]

Sn11+
a 4d3 2D3/2 - 4F3/2 275.6 276 102 [141]

Sn11+
b 4d3 4P3/2 - 4F3/2 467.5 468 55 [141]

Sn12+ 4d2 1D2 - 3F2 402.6 402 117 [141]

Sn13+ 4d1 2D5/2 - 2D3/2 758.8 757 150 [141]
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Figure 7.4: IS between 114Sn and 120Sn for the various previously measured Sn
ground-state transitions from Refs. [141, 142]. The shifts are generally comparable in
strength to those calculated in Xe, but the same transitions have a reduced shift.
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Table 7.2: NP electronic coefficients X(mΦ) in eV for different mediator masses mΦ.
The SM electronic coefficients K and F have been included as well. All of these
values have been calculated with fac.

X(mΦ) (eV) SM coefficients

Trans.
mΦ 103

eV

c2
104

eV

c2
105

eV

c2
106

eV

c2
K (eV⋅u) F ( eV

fm2)

Sn7+ 2.61 1.14 -0.0354 -0.0087 -0.886 × 10−3 465 × 10−9

Sn8+
a 4.42 1.92 -0.0526 -0.0140 -4.88 × 10−3 772 × 10−9

Sn8+
b 3.35 1.47 -0.0428 -0.0113 -1.03 × 10−3 628 × 10−9

Sn8+
c 1.68 0.590 -0.0856 -0.0056 -0.669 × 10−3 299 × 10−9

Sn9+
a 2.67 0.953 -0.160 -0.0097 0.779 × 10−3 531 × 10−9

Sn9+
b 1.70 0.484 -0.169 -0.0066 1.46 × 10−3 382 × 10−9

Sn11+
a 4.76 2.48 0.0172 -0.0163 -1.06 × 10−3 810 × 10−9

Sn11+
b 1.95 0.987 -0.0378 -0.0071 1.52 × 10−3 365 × 10−9

Sn12+ 3.23 1.64 -0.0019 -0.0108 -5.72 × 10−3 601 × 10−9

Sn13+ 2.74 1.54 0.0840 -0.0091 -2.66 × 10−3 456 × 10−9

7.3 Unstable isotopes

In the scope of this work, as well as all other considerations for KP analyses to

date, only stable isotopes are being investigated. However, in principle, it would

be possible to measure IS and construct KPs with isotopes with a half-life of a few

minutes. For example, Xe has three more isotopes, 120Xe, 122Xe and 138Xe, with

half-lives longer than 15 min. Tin, with its seven stable even isotopes, has potentially

four additional isotopes, 108Sn, 110Sn, 126Sn, and 128Sn, with half-lives of over 10 min.

The half-lives of these isotopes are listed in Tab. 7.3. Calcium, unfortunately, does

not have such minute-long half-life isotopes.

Xe Sn

Isotope Half-life Isotope Half-life

120Xe 40(1) min 108Sn 10.30(8) min
122Xe 20.1(1) h 110Sn 4.11(10) h
138Xe 14.08(8) min 126Sn 2.30(14)×105 y

128Sn 59.07(14) min

Table 7.3: Unstable even isotopes for Xe and Sn with half-lifes above 10 min.

The practicality of measuring unstable isotopes will ultimately depend on how

fast the isotopes and their ground-states can be prepared before it decays. While
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this would require more effort and careful planning, it offers the benefit of being able

to compensate for more SM effects in the GKP.

7.4 Further E2 clock transitions

Clock transitions have their own field in metrology. The SI second has been defined by

a hyperfine Cs transition [58], however, current atomic clocks can achieve magnitudes

of higher precision [60, 59]. This definition of the second is thus a limiting factor

when data is presented in SI seconds. Therefore it is expected that a different

clock will redefine the SI unit. Notably, HCI clock candidates are sought after

for this redefinition as they offer several advantages, e.g. stability, as discussed in

chapter 2.1.1.

In this work, an ultra-narrow E2 transition was found in Xe10+. Furthermore,

Xe12+ and Xe16+ would also potentially offer such a transition, as ambit calculations

showed (see Fig. 4.11, Tab. 4.5, and Tab. 4.6). The two Xe12+ E2 transitions may

have similar lifetimes of Aki = 7 × 10−4 s−1 and Aki = 1 × 10−4 s−1 compared to the

Xe10+ E2 transition with Aki = 2 × 10−3 s−1. However, Xe12+ contains a vast number

of energy levels that require in-depth investigation and measurements to identify the

transition wavelength.

In comparison, the E2 transition in Xe16+ with Aki = 1.05 s−1 is easier to find. It

requires the measurement of a 955 nm M1 transition, which was out of the scope of

our measurement setup. With an IR-camera instead of the current CCD detector,

this may be measured without any significant foreseeable problems. It should also be

noted that this investment can also benefit finding a similar E2 transition in Ge16+

[143], which has the same energy level structure. Here, a 1200 nm M1 transition has

to be measured to obtain the E2 transition wavelength.

Ultimately, the investigation of Xe charge states led to a good set of ionic systems

which can be utilized for future clocks. The found transitions would achieve even

higher sensitivity to a fifth force than past measurements, and their prospective

sensitivity in the EUV range can further propel this investigation of dark matter.

As seen above, it is evident that the properties of isotopes and their shifts can be

applied across multi-disciplinary fields and show much promise in advancing our

understanding of our universe.
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[123] J. R. Crespo López-Urrutia et al. “The Freiburg Electron Beam Ion Trap/-
Source Project FreEBIT”. In: Physica Scripta T80.B (1999), p. 502. doi:
10.1238/physica.topical.080a00502.

[124] MPI für Kernphysik, Press release. Helium recycling process successfully
established. (accessed: 2023-08-13). 2023. url: https://www.mpi-hd.mpg.de
/mpi/en/public-relations/news/news-item/default-980d19a127.

[125] Gabriel Herrmann. “Optical Theory of Thermal Velocity Effects in Cylindrical
Electron Beams”. In: Journal of Applied Physics 29.2 (June 2004), pp. 127–
136. issn: 0021-8979. doi: 10.1063/1.1723053.

[126] Alexander Windberger. “Identification of optical transitions in complex highly
charged ions for applications in metrology and tests of fundamental constants.”
PhD Thesis. Ruprecht-Karls-Universität, Heidelberg, 2015. url: https://hd
l.handle.net/11858/00-001M-0000-0027-7978-8.

[127] McPherson Inc. Datasheet for Model 2062 Czerny-Turner Monochromator.
(accessed: 2023-06-16). 2023. url: https://www.mcphersoninc.com/pdf/20
62.pdf.

[128] McPherson Inc. Datasheet for Andor Newton CCD. (accessed: 2023-06-17).
2023. url: https://andor.oxinst.com/assets/uploads/products/andor
/documents/andor-newton-ccd-specifications.pdf.

[129] J. F. Ziegler. “Terrestrial cosmic rays”. In: IBM Journal of Research and
Development 40.1 (1996), pp. 19–39. doi: 10.1147/rd.401.0019.

[130] Albert J. P. Theuwissen. “Influence of Terrestrial Cosmic Rays on the Relia-
bility of CCD Image Sensors—Part 1: Experiments at Room Temperature”.
In: IEEE Transactions on Electron Devices 54.12 (2007), pp. 3260–3266. doi:
10.1109/TED.2007.908906.

[131] R. E. Marrs, S. R. Elliott, and D. A. Knapp. “Production and Trapping of
Hydrogenlike and Bare Uranium Ions in an Electron Beam Ion Trap”. In:
Phys. Rev. Lett. 72 (26 June 1994), pp. 4082–4085. doi: 10.1103/PhysRevLe
tt.72.4082.

[132] E. D. Marquardt, J. P. Le, and Ray Radebaugh. “Cryogenic Material Proper-
ties Database”. In: Cryocoolers 11. Ed. by R. G. Ross. Boston, MA: Springer
US, 2002, pp. 681–687. isbn: 978-0-306-47112-4. doi: 10.1007/0-306-47112
-4_84.

[133] Paul T Boggs and Janet E Rogers. “Orthogonal distance regression”. In:
Contemporary mathematics 112 (1990), pp. 183–194.

[134] Edson R. Peck and Kaye Reeder. “Dispersion of Air∗”. In: J. Opt. Soc. Am.
62.8 (Aug. 1972), pp. 958–962. doi: 10.1364/JOSA.62.000958.

112

https://doi.org/10.1070/RCR4561
https://doi.org/10.1238/physica.topical.080a00502
https://www.mpi-hd.mpg.de/mpi/en/public-relations/news/news-item/default-980d19a127
https://www.mpi-hd.mpg.de/mpi/en/public-relations/news/news-item/default-980d19a127
https://doi.org/10.1063/1.1723053
https://hdl.handle.net/11858/00-001M-0000-0027-7978-8
https://hdl.handle.net/11858/00-001M-0000-0027-7978-8
https://www.mcphersoninc.com/pdf/2062.pdf
https://www.mcphersoninc.com/pdf/2062.pdf
https://andor.oxinst.com/assets/uploads/products/andor/documents/andor-newton-ccd-specifications.pdf
https://andor.oxinst.com/assets/uploads/products/andor/documents/andor-newton-ccd-specifications.pdf
https://doi.org/10.1147/rd.401.0019
https://doi.org/10.1109/TED.2007.908906
https://doi.org/10.1103/PhysRevLett.72.4082
https://doi.org/10.1103/PhysRevLett.72.4082
https://doi.org/10.1007/0-306-47112-4_84
https://doi.org/10.1007/0-306-47112-4_84
https://doi.org/10.1364/JOSA.62.000958


7.4. FURTHER E2 CLOCK TRANSITIONS

[135] S. Sturm et al. “g-factor measurement of hydrogenlike 28Si13+ as a challenge
to QED calculations”. In: Phys. Rev. A 87 (3 Mar. 2013), p. 030501. doi:
10.1103/PhysRevA.87.030501.

[136] European Machine Vision Association et al. “Standard for characterization of
image sensors and cameras”. In: EMVA Standard 1288 (2010). url: https:
//www.emva.org/wp-content/uploads/EMVA1288-3.0.pdf.

[137] John T. Jefferies, Frank Q. Orrall, and J. B. Zirker. “The spectrum of the
inner corona observed during the total solar eclipse of 30 May 1965”. In: Solar
Physics 16.1 (Jan. 1971), pp. 103–110. issn: 1573-093X. doi: 10.1007/BF001
54505.

[138] Strem Chemicals Ins. Bis-Calcium, CAS 118448-18-3. (accessed: 2023-07-07).
2023. url: https://www.strem.com/catalog/v/20-1000/.

[139] Janko Nauta et al. “Towards precision measurements on highly charged ions
using a high harmonic generation frequency comb”. In: Nucl. Instrum. Methods
Phys. Res. B 408 (2017). Proceedings of the 18th International Conference
on the Physics of Highly Charged Ions (HCI-2016), Kielce, Poland, 11-16
September 2016, pp. 285–288. issn: 0168-583X. doi: 10.1016/j.nimb.2017
.04.077.

[140] J. Nauta et al. “XUV frequency comb production with an astigmatism-
compensated enhancement cavity”. In: Opt. Express 29.2 (Jan. 2021), pp. 2624–
2636. doi: 10.1364/OE.414987.

[141] A. Windberger et al. “Analysis of the fine structure of Sn11+ − −Sn14+ ions by
optical spectroscopy in an electron-beam ion trap”. In: Phys. Rev. A 94 (1
July 2016), p. 012506. doi: 10.1103/PhysRevA.94.012506.

[142] F. Torretti et al. “Optical spectroscopy of complex open-4d-shell ions Sn7+ −
−Sn10+”. In: Phys. Rev. A 95 (4 Apr. 2017), p. 042503. doi: 10.1103/PhysRe
vA.95.042503.

[143] Saleh O. Allehabi et al. “High-accuracy optical clocks based on group-16-like
highly charged ions”. In: Phys. Rev. A 106 (4 Oct. 2022), p. 043101. doi:
10.1103/PhysRevA.106.043101.
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Appendix A

Xenon non-ground-state

transitions

During this work, a number of Xe transitions were observed, which were irrelevant

for the perspective QLS measurement and its search for a fifth force. The following

tables contain over 120 xenon transitions, ranging from Xe7+ to Xe33+. The energy

scan, shown in Fig. A.1, ranged from cathode voltages of 350 V to 2500 V. For the

lower range, please refer to Fig. 4.9.

Charge states below Xe9+ have to be taken cautiously, as these transitions were

only visible by their ’tail’, i.e. where their production in the EBIT ended. This

complicated their charge state identification, as transitions in Xe7+ could as well be

weaker Xe8+ transitions. While most transitions listed the the tables below were only

measured within the energy scan, a few transitions were investigated with greater

accuracy to obtain their Zeeman structure and acquire a better identification. Only

successful identifications are shown. Occasionally, transitions were inferred from

the NIST database [45], in particular their energy level database, which revealed

transitions not listed in the transition database. While all transitions should be seen

as preliminary identifications, some are noted with a ’?’ to indicate that they did not

convincingly fall into the designated charge state groups. This may be due to their

weak intensity, or due to the intermixing of two transitions of two neighboring charge

states. In the tables below, relative intensities were taken from the pixel intensity of

that line from the energy scan. It should be noted that the listed intensity does not

account for any influences of the optical setup for the set wavelength.
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Figure A.1: Energy scan up to 2500 V. A focus on the lower energies can be found
in Fig. 4.9
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APPENDIX A. XENON NON-GROUND-STATE TRANSITIONS

Table A.1: Summary of observed non-ground-state transitions in Xe. Wavelength
λair is reported as measured in air. Relative intensities stem from the energy scan.
Identified transitions have wavelengths λfac by fac and LS-notation. Some transitions
were inferred from the energy levels in NIST [45].

observation fac

Ion λair (nm) rel. Int. λfac (nm) Transition

7+? 335.17(6) 1.3
7+? 364.70(4) 1.3
7+? 641.16(2) 0.54
7+? 640.95(2) 4.1
7+? 756.17(11) 3.6

8+ 296.9232(31) 3.3
8+ 373.03(4) 2.2
8+ 430.8(3) 0.9
8+ 432.9(5) 1.6
8+ 493.6853(23) 1 490.01 4d9 5s1 1D2-3D3 (NIST: 499.6 nm)
8+? 534.34(1) 2.6 547.12 4d9 4f 1 1H5-3H6

8+ 581.9103(46) 1.9
8+ 605.3105(47) 2.6 605.01 4d9 5s1 1D2-3D2 (NIST: 604.6 nm)
8+ 606.2233(26) 4
8+ 606.55894(58) 17.9
8+ 728.6(10) 1.7
8+ 764.06(9) 3 806.82 4d9 5s1 3D1-3D2 (NIST: 763.8 nm)

9+ 491.3(3) 1.3 480.02 4d8 4f 1 2I13/2-4I15/2

9+? 363.78(4) 1.19
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Table A.2: Continuation of summary of Xe transitions.

observation fac

Ion λair (nm) rel. Int. λfac (nm) Transition

13+? 361.7(3) 0.64
13+? 656.32(4) 1.9
13+? 788.24(6) 0.95
13+ 269.9364(20) 1.8 247.49 4d5 2H9/2-4G9/2

13+ 276.631(78) 0.5
13+ 277.0174(36) 1.14
13+ 278.4954(32) 1.14
13+ 306.2171(27) 1.5 }326.46 4d5 2G9/2-4G11/213+ 348.2309(14) 0.8
13+ 374.1864(23) 1.7 363.53 4d5 4F7/2-4G9/2

13+ 375.78(4) 0.9 368.23 4d5 2I13/2-4G11/2

13+ 396.7(5) 4.3
13+ 427.9(3) 1.2
13+ 444.75(12) 6.3
13+ 471.55(5) 4.9
13+ 477.9(4) 4.7
13+ 483.649(57) 23.1 465.29 4d5 2I11/2-4G11/2

13+ 500.6(3) 2.8
13+? 524.9314(90) 2.6
13+ 541.47(6) 2.7
13+ 543.69(8) 1.2
13+ 577.22(9) 1.6
13+ 578.95(8) 2.5
13+ 580.8(1) 0.94
13+ 589.41(7) 2.4
13+ 627.78(3) 1.8
13+ 643.6515(32) 3.9
13+? 651.6(5) 0.63
13+ 680.74(7) 0.45
13+ 688.43(4) 0.78
13+ 699.17(6) 0.6
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APPENDIX A. XENON NON-GROUND-STATE TRANSITIONS

Table A.3: Continuation of summary of Xe transitions.

observation fac

Ion λair (nm) rel. Int. λfac (nm) Transition

14+? 270.929(67) 1.1
14+ 294.9764(30) 1.1 299.29 4d4 3P0-5D1

14+ 355.8924(28) 1.8
14+ 380.1956(49) 2.1
14+ 388.6(7) 1.7
14+ 411.94(9) 8
14+ 416.8(4) 0.9
14+ 418.8(3) 1.6
14+ 427.0(2) 18.9
14+ 434.6464(31) 15.8
14+ 438.79(15) 11.3
14+ 466.29(7) 3
14+ 475.1512(39) 1.3
14+ 488.0513(64) 5.9
14+ 532.45(7) 8.4 532.65 4d4 3H4-5D4

14+ 543.23(6) 2.2
14+ 545.48(4) 6.4
14+ 615.44(2) 15.8 620.29 4d4 3D1-3P2

14+ 714.075(9) 3.9 702.58 4d4 3P1-3P0

14+ 716.85(4) 0.9

17+? 516.56(16) 1.4 484.09 4p5 4d2 2G9/2-4G7/2

17+ 618.51(4) 1.6 673.88 4p5 4d2 2G9/2-2F7/2

18+ 716.04(4) 0.75
18+ 502.16(24) 1.5
18+ 309.300(3) 1.2
18+? 257.25(25) 1.5
18+ 603.82(4) 5.7
18+ 442.348(26) 74.2
18+ 563.6(1) 7.2
18+ 386.0(7) 1.5
18+ 470.95(9) 1.8
18+ 510.57(19) 2.2
18+ 628.11(2) 7.1

19+? 313.253(6) 1.5
19+ 446.7839(16) 42.3 425.35 4p4 4d1 4F9/2-4D7/2

19+ 452.94(1) 4.3 387.12 4p4 4d1 2F7/2-4D7/2

20+ 485.2405(55) 10.8 504.64 4s1 4p5 4d1 5D4-5D3
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Table A.4: Continuation of summary of Xe transitions.

observation fac

Ion λair (nm) rel. Int. λfac (nm) Transition

21+ 320.59079(91) 1.12 309.68 4s1 4p4 4F9/2-4F7/2

21+ 400.82(8) 3.1 357.97 4p3 2D5/2-2D3/2

22+ 506.80653(15) 26.7 446.72 4p2 1D2-3P1

24+ 389.9(5) 0.7
24+ 460.81(6) 0.76
24+ 539.6(5) 1.3
24+ 627.047(22) 0.58

25+ 360.5(5) 0.7
25+ 426.00(7) 1.2
25+ 498.9(5) 0.7
25+ 579.91(8) 0.52
25+ 668.94(9) 0.43

26+ 375.5(5) 0.7
26+ 426.9(5) 0.9
26+ 454.6(5) 0.8
26+ 464.891(30) 6.4
26+ 504.4(5) 0.4
26+ 650.05(5) 0.64

28+ 442.5(5) 0.2 352.94 3d8 3P1-3P2

29+ 555.9(5) 0.4
29+ 556.00(4) 0.8
29+ 284.6(6) 2.8

30+ 262.0(5) 0.8 264.71 3d6 5D3-5D2

30+ 301.7639(23) 2.6 288.89 3d6 3G5-3H4

31+ 396.2096(16) 10.4 418.99 3d5 4G9/2-4G7/2 (396.2(2) nm [144, 145])
31+? 598.61(4) 1.3 558.77 3d5 4G9/2-4G11/2 (598.4(10) nm [144])

32+ 413.8997(35) 21.9 397.38 3d4 5D3-5D2 (413.9(2) nm [144, 145])
32+? 689.96(9) 0.37
32+ }730.23(3) 1.4{ 690.01 3d4 3H6-3H5

33+ 720.60 3d3 2G9/2-4F7/2

33+ 445.7001(23) 0.76 421.31 3d3 4P1/2-4P3/2 (445.6(5) nm [144])
33+ 459.9(5) 0.75
33+ 633.71(5) 0.65 649.86 3d3 2F7/2-2F5/2 (632.7(15) nm [144])
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Appendix B

FAC: Calcium calculation

B1 Sample calculation and CRM

To calculate the energy levels and transitions, an easy and fast way is to use fac

[86]. Using fac, the CRM can be made use of, which will result in an output of the

brightest lines in comparison with each other, and may help in the identification

process. Below is an example code of how to run fac in the case of Ca14+, where

comments in green describe the code where applicable:

1 from pfac.fac import *

2

3 z=20 # Calcium

4 k=6 # 6 electrons in atom: Ca 14+

5 En =1000 # eV Energy for CRM

6

7 a = ATOMICSYMBOL[z]

8 SetAtom(a, z)

9 SetBreit (8,1)

10 SetSE (8 ,140)

11

12 pref=’%s%02d’%(a,k) # name for output

13

14 if k <= 2: #set config with 2 or less electrons in the system

15 Config(’g0’, ’1s2’,’1s1 2*%d’%(k-1))

16 elif k <= 10: #Config for 3 to 10 electrons

17 # fill the n=2 shells 2s, 2p and any combination of electrons

between them. Also consider the excitation of 1s electrons.

18 Config(’g0’, ’1s2 2*%d’%(k-2),’1s1 2*%d’%(k-1))

19 elif k <= 18: # 11 to 18 electrons

20 Config(’g0’, ’1s2 2*8 3[s,p]%d’%(k-10))

21 else:

22 Config(’g0’, ’1s2 2*8 3[s,p]8 4*%d’%(k-18), ’1s2 2*8 3[s,p]8 3d%d

’%(k-18),’1s2 2*8 3[s,p]8 5*%d’%(k-18),’1s2 2*8 3[s,p]8 6*%d’%(k

-18))
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B1. SAMPLE CALCULATION AND CRM

23

24 OptimizeRadial(’g0’) # optimize for the ground levels

25 Structure(pref+’b.en’, [’g0’]) # calculate the electronic levels

26

27 MemENTable(pref+’b.en’) # write to binary file

28 PrintTable(pref+’b.en’,pref+’a.en’) # write binary to ASCII file

29

30 # calulate transition and save as ASCII

31 TransitionTable(pref+’.tr.b’,[’g0’],[’g0’],0)

32 PrintTable(pref+’.tr.b’, pref+’.tr’, 1)

33

34

35 ### CRM calculations

36 CETable(pref+’b.ce’, [’g0’],[’g0’])

37 PrintTable(pref+’b.ce’, pref+’.ce’)

38

39 AddIon(k, 1.0, pref+’b’)

40

41 SetBlocks(-1, pref+’b’) # 1: if <0 only transition within 17+ are

connected , 2: data file (default extension automatically added)

42

43 SetEleDist (1, En, 3, En -10, En+10) #entries: 1) gaussian electron

energy distribution , 2) electron beam energy in eV , 3) energy

spread in eV , 4) and 5) Emin and Emax

44 SetTRRates (0)# photon excitation rate coefficients. 0 means: take

spontaneous decay into acount only.

45 SetCERates (1) # collisional transition rates .1: Calculates , both ,

collisional excitation and de- excitation. 0: only excitation

46

47 SetEleDensity (5e-4) #electron density in units of 1e10 cm^-3

48

49 InitBlocks ()

50 SetIteration (1e-6, 0.5, 2048)

51

52 LevelPopulation ()

53 SpecTable(pref+’b.sp’, 0)

54

55 PrintTable(pref+’b.sp’, pref+’.sp’)

56

57 t = 0 # transition , e.g., 302 for 3->2 line , 303 for 3->3 line. 0

includes all lines

58 emin = 1 # eV; emin , emax is the range of allowed transitions

59 emax = 13 # eV

60 eps = 1e-10 # intensity threshold rate

61 PlotSpec(pref+’b.sp’, pref+’.pl’, k, t, emin , emax , 0.001 ,eps) #

synthetic spectrum with gaussian lines [eps] width eV
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APPENDIX B. FAC: CALCIUM CALCULATION

62 SelectLines(pref+’b.sp’, pref+’.ln’, k, 0, emin , emax) # save the

CRM results

B2 Extraction of electronic coefficients for isotope

shifts

As described in chapter 5, a way to obtain the electronic constants is to run multiple

calculations with different parameters for the MS or the FS and lastly the NP fifth

force contribution. The relevant code follows below:

1 import os

2 from multiprocessing import Pool

3 import sys

4 from pfac import fac

5 from math import sqrt

6

7 np = 4 #number of processors to run in parallel

8 z = int(sys.argv [1]) # Nuclear charge Z

9 k0 = int(sys.argv [2]) # number of electrons for charge state

10 k1 = k0

11

12 # mediator -mass ’b’, logarithmic spacing from 1 to 10^10 eV/c^2

13 nb = 501 #total number of points

14 db = 10.0/(nb -1)

15 bs = [10**( db*i) for i in range(nb)] #mass parameters

16

17 # Parameter of field -shift coefficient calculation

18 rn = fac.NucleusRadius (1.0*z)

19 rn2 = rn*rn

20 fr = 2.0 # radius scaling factor

21 nr = 4 # number of points for field -shift parameter calculation

22 ib0 = 2+nr

23

24 def ploop(i0):

25 for i in range(i0 ,nb+2+nr ,np): # split process over processors

26 for k in range(k0 ,k1+1):

27 if i == 0: #run without NP force

28 c = ’python d.py --z=%d --k=%d --a=0.0 --p=r0

29 --nms=3 --sms=3 --r=%g’%(z,k,rn)

30 elif i == 1: # run without mass -shift

31 c = ’python d.py --z=%d --k=%d --a=0.0 --p=m0

32 --nms=0 --sms=0 --r=%g’%(z,k,rn)

33 elif i < ib0: # run with different nuclear radii

34 ir = i-1

35 c = ’python d.py --z=%d --k=%d --a=0.0 --p=r%d
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36 --nms=3 --sms=3 --r=%g’%(z,k,ir ,sqrt(rn2 *(1+ir*fr)))

37 else: # run with NP fifth force , force strength set with ’a’

38 c = ’python d.py --z=%d --k=%d --a=0.01 --b=%g --p=b%02d

39 --nms=3 --sms=3 --r=%g’%(z,k,bs[i-ib0],i-ib0 ,rn)

40 print(c)

41 os.system(c) # run the code string

42 p = Pool(processes=np)

43 p.map(ploop , range(np))

This calls ’d.py’, which runs the fac calculation:

1 from pfac.fac import *

2 from optparse import OptionParser

3

4 ap = OptionParser ()

5 ap.add_option(’--z’, dest=’z’, type=’int’,

6 default =20, help=’atomic number ’)

7 ap.add_option(’--k’, dest=’k’, type=’int’,

8 default=4, help=’number of electrons ’)

9 ap.add_option(’--m’, dest=’m’, type=’float’,

10 default =-1.0, help=’mass’)

11 ap.add_option(’--r’, dest=’r’, type=’float’,

12 default =-1.0, help=’radius ’)

13 ap.add_option(’--a’, dest=’a’, type=’float’,

14 default =0.0, help=’yukawa strength ’)

15 ap.add_option(’--b’, dest=’b’, type=’float’,

16 default =1e5 , help=’yukawa range in mass unit’)

17 ap.add_option(’--p’, dest=’p’, type=’string ’,

18 default=’’, help=’output file prefix ’)

19 ap.add_option(’--nms’, dest=’nms’, type=’int’,

20 default=3, help=’NMS option ’)

21 ap.add_option(’--sms’, dest=’sms’, type=’int’,

22 default=3, help=’SMS option ’)

23

24 opts ,args = ap.parse_args ()

25

26 a = ATOMICSYMBOL[opts.z]

27 SetAtom(a, opts.z, opts.m, opts.r)

28

29 pref=’%s%02d%s’%(a,opts.k,opts.p)

30

31 if abs(opts.a) > 0:

32 SetExtraPotential (100, [opts.a, opts.b])

33

34 #include normal - and/or special -mass -shift

35 SetMS(opts.nms , opts.sms) # set points: 3 enable; 0 disable

36

37 k = opts.k
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38 if k == 1:

39 Config(’g0’, ’1s1’, ’2*1’)

40 elif k == 2:

41 Config(’g0’, ’1s2’, ’1s1 2*1’)

42 elif k < 10:

43 Config(’g0’, ’1s2 2*%d’%(k-2))

44 elif k == 10:

45 Config(’g0’, ’1s2 2*8’, ’1s2 2*7 3*1’)

46 elif k <= 14:

47 Config(’g0’, ’1s2 2*8 3*%d’%(k-10))

48 elif k < 18:

49 Config(’g0’, ’1s2 2*8 3[s,p]%d’%(k-10),

50 ’1s2 2*8 3[s,p]%d 3d1’%(k-11))

51 elif k == 18: # example on 18 electron system

52 Config(’g0’, ’1s2 2*8 3[s,p]8’,

53 ’1s2 2*8 3[s,p]7 3d1’,

54 ’1s2 2*8 3[s,p]7 4*1’)

55 else:

56 print(’config not set’)

57

58 OptimizeRadial(’g0’)

59 Structure(pref+’b.en’, [’g0’])

60

61 MemENTable(pref+’b.en’) # save energy file

62 PrintTable(pref+’b.en’, pref+’a.en’)

These will then save several files to the hard drive. Their prefixes allow the identifi-

cation of each, which will be used to obtain the coefficients:

1 from pfac.rfac import *

2 from pfac import fac

3 import numpy as np

4 from scipy import optimize

5

6 # calcium (z=20) transitions of interest for 16+ to 11+ and 1+

7 zs = [20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20] # nuclear charge

8 ks = [4 ,5 ,6 ,6 ,8 ,9 ,19,19,19,19] # electrons left in atom

9 i0s = [2 ,0 ,0 ,1 ,0 ,0 ,1 ,2 ,0 ,0 ] # index lower energy level

10 i1s = [3 ,1 ,1 ,2 ,1 ,1 ,3 ,4 ,1 ,2 ] # index upper energy level

11 fr = 2.0

12

13 res=open(’coefficient_results.txt’,’w’) # save results in a single

file

14 res.write(’#z\tk\ti0\ti1\tbs[i]\tde\n’)

15 for ik in range(len(ks)):

16 z = zs[ik] # nuclear charge

17 a = fac.ATOMICSYMBOL[z]

18 k = ks[ik] # electrons left in atom
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19 i0 = i0s[ik] # index of upper level index

20 i1 = i1s[ik] # index of lower level index

21 p = ’%s%02d’%(a,k) # prefix

22 r0 = FLEV(p+’r0a.en’) # load levels with SM but no NP shifts

23 m0 = FLEV(p+’m0a.en’) # load levels without MS

24 rs = np.zeros (5)

25 re = np.zeros (5)

26 rs[0] = fac.NucleusRadius(z*1.0)

27 re[0] = (r0.e[i1]-r0.e[i0])

28 rn = rs[0]

29 rn2 = rn*rn

30 for i in range (4):

31 ir = i+1

32 r1 = FLEV(p+’r%da.en’%ir) # load levels with different radii

33 rs[ir] = rn2 *(1+ir*fr)

34 rs[ir] = rs[ir].sqrt()

35 re[ir] = r1.e[i1]-r1.e[i0] # transition of different radii

36 #calculate the MS K coefficient ’de0’ by subtracting FS-only (m0)

from all SM parts (r0):

37 de0 = ((r0.e[i1]-r0.e[i0]) -(m0.e[i1]-m0.e[i0]))*fac.ATOMICMASS[z]

38 ar = np.zeros ((5 ,2))

39 ar[:,0] = 1.0

40 for i in range(len(ar[:,1])):

41 ar[i,1] = rs[i]*rs[i] # radius squared

42 x = optimize.lsq_linear(ar, re) # run a fit through the data

43 de1 = x.x[1] # slope of fit is the FS F coefficient ’de1’

44 print( ’%2d %2d %d %d’%(z,k,i0,i1) )

45 # save the total energy , and MS and FS coefficient:

46 res.write(’%2d\t%2d\t%d\t%d\t%15.8E\t%15.18E\n’

47 %(z,k,i0 ,i1 ,0.0 ,(m0.e[i1]-m0.e[i0])-de1*(rn*rn)) )

48 res.write(’%2d\t%2d\t%d\t%d\t%15.8E\t%15.18E\n’

49 %(z,k,i0 ,i1 ,0.0,de0) )

50 res.write(’%2d\t%2d\t%d\t%d\t%15.8E\t%15.18E\n’

51 %(z,k,i0 ,i1 ,0.0,de1) )

52

53 nb = 501 # number of mediator masses

54 db = 10.0/(nb -1)

55 bs = [10**( db*i) for i in range(nb)]

56 for i in range(nb):

57 f = p+’b%02da.en’%i

58 r = FLEV(f) # load levels with different NP mediator masses

59 # subtract SM shifts (r0) from the NP calculation (r), counter

the force strength a=0.01 by multiplying by 100 and devide by

the number of neutrons:

60 de = 100.0*( (r.e[i1]-r.e[i0]) -(r0.e[i1]-r0.e[i0]) )

61 /(fac.ATOMICMASS[z]-z)

62 res.write(’%2d\t%2d\t%d\t%d\t%15.8E\t%15.18E\n’
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63 %(z,k,i0 ,i1 ,bs[i],de) ) # save the extracted NP X

64 res.close()

Using this saved file coefficient_results.txt, the shift coefficients can be used

to accurately calculate IS and the KPs without being limited by the fac numerical

precision. Precision of the extracted NP coefficient X may be improved by increasing

the strength parameter a in the calculation. However, an NP shift of too big

proportions would lead to a mixing of levels, which would cause other problems.

Furthermore, even a smaller NP shift may cause a change in the energy level indexing

in fac, thus requiring additional code to track the levels of interest. This could be

done, for example, by tracking the configuration name in the energy level file of fac.
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FAC: Acquisition of LS-notation

One issue with fac is that the results do not include g-factor, nor a LS-notation for

the levels. The latter can be resolved with the help of grasp2k’s module jj2lsj,

which generates the LS-notation for each level and its percentage of level mixing. To

achieve this, the following command needs to be added after Structure command:

1 BasisTable(pref ,10)

with pref being the filename and 10 the setting to write grasp2k-compatible

files pref\_*.c and pref\_*.cm, which are the basis wavefunctions and mixing

coefficients from fac.

C1 Bug fixes

However, to make this work, several bug fixes need to be added to a few of graps2k’s

subroutines.

1, jj2lsj code.f90, asf2ls subroutine, from

https://github.com/flexible-atomic-code/fac/blob/master/doc/misc/jj2ls.md:

1 wb = zero

2 do LS_number = 1, asf_set_LS%csf_set_LS%nocsf

3 if (( asf_set_LS%csf_set_LS%csf(LS_number)%parity == "+" &

4 .and. ISPAR(iw1+NCFMIN -1) == 1) .or.

&

5 (asf_set_LS%csf_set_LS%csf(LS_number)%parity == "-" &

6 .and. ISPAR(iw1+NCFMIN -1) == -1)) then

2, jj2lsj code.f90, etLS job count() subroutine, from

https://github.com/flexible-atomic-code/fac/blob/master/doc/misc/jj2ls.md:

1 if(all_occupation(isubc).eq.0) then

2 if(isubc.gt.1) then

3 Li(isubc) = 0; L_i(isubc) = L_i(isubc -1)

4 Si(isubc) = 0; S_i(isubc) = S_i(isubc -1)
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5 else

6 Li(isubc) = 0; L_i(isubc) = 0

7 Si(isubc) = 0; S_i(isubc) = 0

8 endif

9 if(isubc .lt. asf_set_LS%csf_set_LS%nwshells) then

10 call setLS_job_count(isubc + 1, rez)

11 else

12 if(ittk(S_i(isubc),L_i(isubc),J).eq.1) &

13 call setLS_action(action_type , rez) !rez=rez+1

14 end if

15 else

3, jj2lsj code.f90, packlsCSF subroutine:

1 integer dimension (40) :: Q

2 character(len=3), dimension (79) :: COUPLE

3 character(len=3), dimension (40) :: ELC

4 character(len =164) , INTEND(OUT) :: string_CSF

5 IF(counter >40) THEN

6 write (57,’(1X,I3 ,1X,A4 ,5X,A1 ,8X,F16.9,5X,F7.3,A164)’)

7 write (57,’(7X,F12.8,3X,F11.8,3X,A164)’)

8 write (58,’(I6,F16.9,2X,A164)’)

4. jj2lsj code.f90, jj2lsj subroutine:

1 character(len =164) , dimension (1: Vector_number) :: string_CSF

2 character(len =164) :: string_CSF_ONE

5. packLS.f90, PACKLS subroutine:

1 character(len =164) , INTEND(OUT) :: STR

C2 Running GRASP

After this is implemented, grasp2k should be compiled as usual. To finally run it,

type in the prompt

1 jj2lsj

2 pref_000

followed by two ’y’ to start the conversion. This creates new files with the name

pref_000.lsj.lbl, which look like the below (shortened to fit the page):

1 Pos J Parity Energy Total Comp. of ASF

2 5 1/2 + -13317.508997086 100.000%

3 0.80447931 0.64718696 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)4P3_4P

4 -0.59398067 0.35281304 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2P3_2P

5 10 1/2 + -13316.894530031 100.000%
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6 0.80447931 0.64718696 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2P3_2P

7 0.59398067 0.35281304 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)4P3_4P

8

9 0 3/2 + -13318.048952326 100.000%

10 -0.82234187 0.67624616 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)4F3_4F

11 -0.38421856 0.14762390 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2D3_2D

12 0.32405466 0.10501142 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2D1_2D

13 0.22439609 0.05035361 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2P3_2P

14 -0.14410035 0.02076491 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)4P3_4P

15 3 3/2 + -13317.431248056 100.000%

16 0.65040196 0.42302271 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)4P3_4P

17 -0.57097370 0.32601096 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2P3_2P

18 -0.42844991 0.18356932 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)4F3_4F

19 0.19940692 0.03976312 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2D3_2D

20 -0.16623443 0.02763388 1s(2).2s(2).2p(6).3s(2).3p

(6).3d(3)2D1_2D

Here, the Pos is the index of the level from fac .en-file, which is followed by the

total angular momentum J , Parity, Energy and Composition. The next line will

contain the parity mixing and the energy level mixing, where a 1 is 100%. After

that, the LS-notation of that energy-level is displayed in order of filling and the total

angular momentum until this point is displayed in parentheses. The key information

lies behind the ’ ’ where the S and L of the level is displayed. From this information

not only the strength of the level mixing can be seen, but the LS-notation yields an

estimation for the g-factor from the Dirac formula of the g-factor.
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AMBiT: Xenon calculations

Another way to calculate the energy levels and their transition rates is via AMBiT

[85]. Its input file is relatively short and does not require the definition of any

particular configurations. If done correctly, AMBiT can result in much more precise

ab-intio results. An input file can now look like this:

1 ID = XeXVII

2

3 Z = 54

4

5 -s123

6

7 [Lattice]

8 NumPoints = 1000

9 StartPoint = 1.0e-6

10 EndPoint = 20.0

11

12 [HF]

13 --breit

14 N = 38

15 Configuration = ’1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6: 4d0.8 4d+1.2’

16

17 [Basis]

18 --bspline -basis

19 BSpline/N=40

20 BSpline/K=9

21 ValenceBasis = 8spdf

22

23 [CI]

24 LeadingConfigurations = ’4d2’

25 ElectronExcitations = 2

26 EvenParityTwoJ = ’0,2,4, 6,8,10,12’

27 // OddParityTwoJ = ’0, 2, 4, 6, 8, 10, 12’

28 NumSolutions = 4
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29

30 [MBPT]

31 Basis = 30 spdfgh

32

33 [Transitions]

34 M1/AllBelow = -0.5

35 E2/AllBelow = -0.5

In this configuration, note the relativistic nomenclature 4d0.8 4d+1.2, where the

degeneracy of the d-shell is 4:6, thus splitting the 2 electrons into 0.8:1.2, i.e. moving

the 4d+ electrons back into the core. The NumSolutions refer to how many levels

should be included per configuration, which should be equal to the highest number

of levels per total angular momentum in the ground configuration.

Finally, the transitions can be calculated, where -0.5 refers to atomic units. The

results in the output file will indicate the indices as 2e or 1o for J = 1 of even-, or

J = 0.5 of odd-parity levels. Then the M1 and E2 transitions are separated and

given as line strength. Such can be recalculated to Aki values with Eq. 2.13 through

Eq. 2.15.
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