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Zusammenfassung

In dieser Arbeit werden verschiedene Ansätze der Messung und Auswertung von Daten zur Charakter-
isierung von kollektiven Kernniveauschemata, die im Niedriganregungssektor von Röntgenkavitäten
auftreten, diskutiert. Der erste dieser Ansätze verwendet Fouriertransformationen, um zeit- und
frequenz-aufgelöste Spektren zu analysieren, die mithilfe von nuklearen Referenzabsorbern aufgenom-
men werden. Dies erlaubt, die resonante Kernantwort der zu untersuchenden Probe phasenaufgelöst
zu extrahieren. Anschließend wird eine Dichte-Matrix Störungstheorie vorgestellt, die es ermöglicht
Vielniveau- und Vielteilchendynamik im Niedriganregungssektor der Wechselwirkung zwischen Ker-
nen und Röntgenstrahlung zu untersuchen. Diese erlaubt es, die induzierte Kerndynamik durch
unterschiedlich geformte Röntgenpulse zu betrachten. Die vorgestellte Methode wird verwendent, um
Ergebnisse numerischer Simulationen für verschiedenen experimentelle Szenarien zu interpretieren:
Zunächst wird diese verwendet, um die Äquivalenz der Intensität von kohärent und inkohärent
gestreuten Röntgenstrahlen in Kernresonanzexperimenten herzuleiten. Diese fungiert als Kriterium
zur Charakterisierung von nichtlinearer Anregung von Kernensembles durch kohärente Röntgen-
quellen. Im Anschluss werden verschiedene experimentelle Signaturen von Kopplungen zwischen
kollektiv angeregten Kernzuständen in Dünnschichtkavitäten angeregt durch verschiedenartig geformte
Röntgenpulse vorgeschlagen und diese dann in Zeitfrequenzspektren identifiziert. Zuletzt wird die
Umsetzbarkeit eines bestimmten Methode der kohärenten Doppelpuls-Spektroskopie im Niedrigan-
regungssektor diskutiert und numerisch berechnete Spektren für verschiedene Pulssequenzen werden
verglichen.

Abstract

In this thesis, different measurement and data evaluation approaches for the detection and charac-
terization of collective nuclear level schemes arising in the low-excitation regime of thin-film x-ray
cavities are discussed. The first approach uses Fourier transforms to analyze time- and frequency-
resolved spectra recorded using nuclear reference absorbers. This allows for the extraction of the
phase-resolved nuclear resonant response of the sample under investigation. Next, to study the dy-
namics of nuclear ensembles upon suitably-shaped x-ray light, a density matrix perturbation theory
is presented that allows for the study of multi-level and many-body dynamics in the low-excitation
regime of the x-ray-nuclei interaction. This method is used to interpret numerical data simulating
several experimental scenarios: First, it is used to derive an equivalence between coherently and
incoherently scattered x-ray intensity detectable in nuclear resonant scattering experiments, which
serves as a criterion for nonlinear excitation of nuclear ensembles at coherent x-ray sources. Second,
signatures of couplings between collective excited nuclear states in thin-film cavities upon differently-
shaped x-ray pulses are proposed and identified in time-frequency-spectra. Finally, the feasibility of a
specific coherent double pulse spectroscopic method under low-excitation conditions is discussed and
numerically simulated spectra upon different double pulse sequences are compared.
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Chapter 1

Introduction

1.1 Motivation

The study and control of quantum systems is key to numerous applications and technical develop-
ments as well as fundamental research questions in physics. This dates back to the days of the first
quantum revolution [Asp23] in the first half of the 20th century where fundamental questions about
the structure and stability of atoms lead to the development of quantum theory which revolutionized
the understanding of such seemingly different fields of physics as condensed matter physics, electro-
dynamics and optics, to name but a few. It was crucial in the development of economically and
scientifically essential fields such as semiconductor and laser physics. With steady progress in the
development of coherent radiation sources, first in the long-wavelength regime, and the discovery
of nuclear magnetic resonance (NMR) in 1938 by Isidor Rabi [Rab+39] following the Stern-Gerlach
experiment [GS22], studies of few-level quantum systems could be carried out with applications in
spectroscopy which created the field of Quantum Optics as the study of interactions between coher-
ent light and quantum matter. Especially the second half of the last century saw a rising interest in
microscopic quantum systems down to single atoms and photons due to both fundamental questions
of quantum mechanics such as entanglement theory as well as applications in laser cooling, atom
trapping, atomic clocks and laser spectroscopy [SM85; Chu+86; Ber+86; Bru+96; Jon+00; Hol+00].
These advances, also known as second quantum revolution [Asp23], started off the fields of quantum
information theory and quantum computing [Pan+98; ADR82; FC72; Cla+69]. These developments
demonstrate the power and potential that lies in the study and control of quantum systems using
coherent electromagnetic fields.
In a separate development, the study of interactions and correlations in many-body quantum systems
became important in many areas of physics: Collective ultra-low temperature phenomena such as
superconductivity and -fluidity rely on particle correlations. The theory of optical coherence studies
photon correlations and the statistical properties of light [Gla06] with applications, e.g., in stellar
interferometry [BT54]. Finally, the understanding of magnetic [Aue98] and other strongly-correlated
systems [Mor+12; Ani10; Jia15] in solid state physics are key for the design of new materials. Since the
early days of Rabi and the development of NMR spectroscopy using coherent radio-frequency fields,
ever more complex spectroscopic techniques using coherent light of different wave lengths were devel-
oped to study structure and dynamics of complex systems: starting with microwave fields that are
employed as time-keeping standards in atomic clocks [Ram90] to infrared and optical fields [Lud+15]
for the study of molecular [HZ11; McH17] and atomic structure [Par07; Cho19] to core-electron
spectroscopy [Sie82; DGK08] requiring x-ray excitations in the short wavelength regime. Many tech-
niques for the time- and frequency-resolved studies of quantum dynamics such as photon-echo exper-
iments [KAH64; AKH66; BPW98], pump-probe [Fus08] and multi-dimensional spectroscopy require
phase-coherent control fields which can nowadays be provided for a large part of the electromagnetic
spectrum [Ern92; ABE76; Muk95; HZ11; Cho19; Wit+20].
The extension and application of such techniques to the hard x-ray regime would open up a com-
plete new world of time- and frequency-resolved experiments with high spatial resolution. However,
their practical implementation becomes more challenging towards shorter wavelengths due to the
high requirements for coherence-preserving optics and the difficulty of providing coherent control
fields [Lu+18; Pag06; Shv04]. Apart from a one-to-one translation of quantum optical methods from
the longer wavelength regime into the x-ray domain, x-ray quantum optics comes with its own specific
advantages, for instance, the high quantum efficiency and low noise of x-ray detection [Ada+13a],
precise focussing and deeper penetration of x-rays into materials [KK17a]. Further, resonance fre-
quencies of quantum systems in the hard x-ray regime promise long coherence times ideally suited for
many quantum optical applications involving coherence and interference. With the advent of novel
high-brilliance coherent x-ray sources [Emm+10; Ama+12; Ish+12; Ino+19; Dec+20; Nam+21; Liu+;
Ada+19a], quantum optics will become an important tool to study, probe and control the coherence
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properties of these machines [RES20a].
One particular platform for quantum optical studies at hard x-ray energies are Mössbauer nuclei that
feature remarkably narrow linewidths combined with extraordinary coherent scattering properties
under robust experimental conditions, i.e. room temperature and ambient pressure. These features,
originating in the small size of the atomic nucleus in combination with recoilless scattering of radiation
by the nuclei [HT99a], render these nuclei ideal candidates for high-precision hyperfine spectroscopy,
fundamental research such as tests of fundamental theories [PR60; KK12] or other applications that
require high quality factors such as atomic or nuclear clocks [Shv+23]. Complementary to these nar-
row nuclear resonance widths are the long lifetimes of nuclear excited states compared to electronic
resonances and the time scales of typical x-ray excitation pulses provided by accelerator-based x-ray
sources. This allows for a convenient separation of resonantly and nonresonantly scattered radiation
in the time-domain and the observation of coherent scattering phenomena that can be used to study
the chemical and magnetic environment of Mössbauer nuclei. Moreover, the coherence of the nuclear
scattering in combination with the longevity of nuclear excited states enables time-domain control of
the nuclear resonances via transient [Boc+21] or static magnetic fields [Shv+96; LPK12], via optical
control [KKR99] as well as linear or nonlinear mechanical sample motion [Vag+14; Hee+17; Hee+21]
that can be used to directly control the nuclear dynamics [Hee+21] or shape the radiation released
by the nuclei [Hee+17]. In addition, with various theoretical proposals and experimental realizations
of gating of the coherently emitted radiation by nuclear ensembles [Shv94; Lee23; Ger21] and the
commissioning of hard x-ray split-and-delay lines [Lu+18], the realization of suitably-shaped x-ray
pulses for multi-pulse coherent spectroscopy with Mössbauer nuclei comes within reach. Applications
include studies of nuclear nonlinear, many-body and non-equilibrium phenomena [She12; Ada+19a;
RES20b].
In this context, recent years have seen a rising interest in ensembles of Mössbauer nuclei embed-
ded as nano-film layers in planar x-ray waveguides [RES20b; Röh+10; Röh+12; Hee+13; Hee+15a;
Hee+15c; Hee+15a; Hab+17; Che+22; HE13; HE15a; Len+20; DLE22b; DLE22a] to study quantum-
optical and many-body phenomena [Ada+13b; RE21a; RES20b; KK17b; Ada+19b; SS89a; Vag90;
Hel+91; Tit+93; Lip+95; Shv+96; Chu+97; HT99b; Sch+02a; Smi+07; Röh+10; Röh+12; Hee+13;
Vag+14; Hee+15c; Hee+15b; Hab+16; Hee+17; Sak+17; Hab+17; Boc+21; Hee+21; SS22; Hee+22;
Ma+22]. The nuclei in this experimental platform experience radiation-induced couplings leading
to collective frequency shifts and modified cooperative decay rates that can be studied owing to
the high sensitivity of nuclear resonant scattering (NRS) and well-separated nuclear resonances.
These many-body effects can be controlled by tailoring waveguide materials and structure [DLE22b;
DLE22a]. The physical concept underlying these phenomena is the excitation of collectively-excited
nuclear states known as nuclear excitons [HT99a; Kag99; Smi99; Röh04] that determine the dy-
namics and the coherent scattering properties of nuclear ensembles under low-excitation conditions.
It was demonstrated both theoretically [HE13; HE15a; Len+20; DLE22a; RES20b] and experimen-
tally [Röh+12; Hee+13; Hab+17; Hee+15a; Röh+10] that this concept allows for the interpretation
of resonant scattering experiments in x-ray waveguides in terms of effective quantum-optical few-
level schemes. Important milestones in this direction were experimental observations of the collective
Lamb shift [Röh+10] of spontaneously-generated coherences [Hee+13], electromagnetically-induced
transparency (EIT) [Röh+12], slow light [Hee+15c] and Rabi oscillations associated with coherent
couplings between such collectively excited states [Hab+17].
It is a widely unanswered question how these two developments, i.e. the coherent control of nuclear
resonances and subsequent shaping of x-ray light, on the one hand, and the study and engineering of
effective nuclear few-level schemes, on the other hand, can be brought together. It has been shown that
standard measurement and evaluation approaches are insufficient to retrieve the relevant information
from nuclear resonant scattering data for an unambiguous interpretation of the underlying dynami-
cal, quantum optical and many-body physics in a number of important cases [Hee+21; DLE22a] and
that advanced measurement techniques are required to retrieve this information [Goe+19; Ger21;
Hee+21]. Spectroscopic techniques based on the coherent control of the x-ray scattered light off
of nuclear resonances bear a great potential to guide this development in future experiments and
unlock the observation of phenomena that could not be investigated using established methods. Sim-
ilarly, the interpretation of data at new high-brilliance x-ray sources such as x-ray free electron lasers
(XFELs) [Jae+16; MT10] and x-ray free electron laser oscillators (XFELOs) [Ada+19a] requires
guidance from theory to measure and interpret data under nonlinear and many-photon excitation
conditions that will be achieved with these sources and go beyond the low-excitation regime (LER)
that one was restricted to at synchrotron radiation sources.
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1.2 Goals of this thesis

The major goal of this thesis to bring together the possibilities offered by the coherent control of
nuclear resonances in terms of advanced coherent spectroscopic techniques and the engineering and
investigation of dynamics and collective phenomena in nuclar quantum optics. To this end, theoret-
ical tools are developed that allow for the study and interpretation of nuclear few-level many-body
dynamics measured in NRS experiments to study phenomena that require both time- and frequency
resolution. These tools go beyond existing approaches in that they enable studies of these dynamics
upon suitably-shaped x-ray driving fields and coherent pulse sequences, in principle, even beyond
the LER. Apart from providing a theoretical framework for the investigation of nuclear dynamics
upon time-dependent x-ray-nucleus interactions, specific signatures for the observation of nonlinear,
quantum optical and many-body phenomena are proposed, that allow for a direct comparison with
near-future experiments at coherent x-ray sources given that the proposed data acquisition and mea-
surement techniques are mostly already available. Complementing this, a simple and powerful data
evaluation technique based on Fourier transforms of time- and frequency-resolved NRS spectra is pro-
posed that facilitates the interpretation and extraction of nuclear dynamics and level structure data
obtained in such measurements. Futher, the role that phase control and suitably-shaped x-ray pulses
can play to improve the access to the desired experimental signatures will be discussed. We expect our
results to help devise future experiments using tailored x-ray pulses to probe nuclear dynamics and
characterize quantum optical phenomena and help to interpret the data taken in such experiments.
This can unlock all the intriguing features and possibilities coherent spectroscopic techniques offer at
the longer wavelength regime to advance the field of Mössbauer science as a whole.

1.3 Thesis outline

Chapter 2 introduces the basic concepts of nuclear resonant scattering and x-ray quantum optics.
First, the particular features of nuclear transitions are discussed followed by a presentation of the
role of the Mössbauer effect in these fields. A brief overview over polarization effects is followed by
a description of features important for experiments at coherent accelerator-based light sources, in-
cluding time- and frequency-resolved detection methods. This is followed by a summary of the basic
aspects of phase control of nuclear resonances. The final two Sections of this Chapter deal with the
motivation of a Hamiltonian approach to nuclear resonant scattering before the experimental and
theoretical aspects of thin-film x-ray cavities is reviewed.
Chapter 3 describes how heterodyne detection schemes using single-line nuclear reference absorbers
can be used to detect time- and frequency-resolved NRS spectra. These spectra are transferred into
Frequency-frequency correlation (FFC) spectra via Fourier transformation along the time axis. The
structures appearing in these spectra in the linear response regime are interpreted one-by-one and
related to interference effects in the scattering setup. As one highlight it is shown how the nuclear tar-
get response can be retrieved from these spectra, including phase information. Finally, the controlled
suppression of undesired scattering paths is demonstrated using a phase-cycling-type approach, which
emphasizes the role of phase control can play for the interpretation and evaluation of NRS data.
In Chapter 4 two variants of density matrix perturbation theory are introduced that form the basis
for the interpretation of aspects of many-body and nonlinear nuclear dynamics discussed in the re-
mainder of this thesis: First, self-consistent solutions to the equations of motion of nuclear two-level
systems are derived for the excited state population and coherence that allow one to study the ex-
citation dynamics of effective two-level systems in the low-excitation regime and beyond for a wide
range of x-ray excitation pulse shapes. As an important extension of this concept a more general
perturbative expansion of the nuclear many-body density matrix is presented that allows to study
many-body dynamics and more complex level structures.
This formalism is subsequently applied to N interacting two-level systems in Chapter 5. It is shown
that the coherently and incoherently scattered intensity associated with the x-ray-induced coher-
ences and the nuclear excited state populations, respectively, become equivalent in the low-excitation
regime, largely independent of the details of the nuclear ensemble and the time- and frequency struc-
ture of the exciting x-ray pulse. As a consequence, as an experimentally-accessible signature, the ratio
of both observables becomes essentially time-independent at low excitations. Experimental signatures
for excitations beyond the LER are discussed for non-impulsive and impulsive x-ray excitations.
Chapter 6 studies the dynamics of effective three-level schemes realized in x-ray wave guides con-
taining two layers of resonant nuclei that are coupled by the field inside the cavity as an example of
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collective few-level dynamics in thin-film cavities. Experimental signatures of the coupling dynamics
in such systems upon impulsive and non-impulsive x-ray excitations are studied numerically and an-
alytically using the perturbation theory of Chapter 4.
Finally, in Chapter 7 the dynamics of effective two- and three-level systems upon double pulse excita-
tions are investigated. The feasibility of experiments typically associated with nonlinear light-matter
interactions is discussed under low-excitation conditions. The implications of different shapes of co-
herent double pulses for experiments involving time-dependent perturbations of nuclear resonances
and couplings between excited nuclear states are compared analytically and numerically.
A summary of the results and a conclusion with respect to the findings of this thesis is given in
Chapter 8.
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Chapter 2

Background

2.1 Nuclear resonant scattering

After the discovery of the Mössbauer effect in 1958 [Mös12], the potential of ultranarrow nuclear
resonances for tests of fundamental theories [PR60] an hyperfine and vibrational spectroscopy was
soon realized [KK12; Röh04]. Starting in the 1980s resonant scattering of short coherent pulses of
synchrotron off of Mössbauer resonances [GW99] was a rapidly growing and flourishing field that in
recent years also layed the foundation to nuclear quantum optics discussed in this thesis. The basic
aspects of this nuclear resonant scattering (NRS) are reviewed in this Section.
First, the general properties of nuclear resonances compared to atomic transitions are reviewed,
followed by an introduction into the Mössbauer effect. Subsequently, polarization effects are briefly
discussed. Important concepts and properties of NRS at coherent accelerator-based light sources are
introduced and time- and frequency-resolved detection methods are reviewed. Finally, our approach
to phase control of light scattered off of nuclear resonances is outlined.

2.1.1 Comparison of nuclear and atomic scattering

To introduce the specific properties and advantages of Mössbauer nuclei, we start by comparing
scattering off of atomic and nuclear resonances at hard x-ray energies. The scattering cross section f
of x-rays off of an atom or nucleus consists of three parts

f = f0 + f ′ + if ′′ . (2.1)

The first part f0 describes Thomson scattering that is proportional to the classical electron radius
r0 = e2/mec

2 in atomic scattering. Close to an atomic or nuclear resonance, the scattering behaviour
is strongly modified, which is taken into account via the so-called anomalous scattering f ′+ if ′′. The
resonant contribution to the anomalous scattering can be written as

fres ∼
1

k0

∑
m

γrad/2

(ωm − ωg)− ωp − iγ/2
, (2.2)

where, for simplicity, we neglect polarization effects of resonant scattering for the moment, which
are discussed in Sec. 2.1.3. The sum in Eq. (2.2) runs over all resonances that participate in the
resonant scattering process, k0 denotes the resonant scattering wave number, ωg the ground state
frequency, ωm the excited state frequencies and ωp the frequency of the scattered photon. γrad
takes into account radiative decay processes only while γ is the total linewidth of the transition that
incorporates both radiative and nonradiative decay processes. In case of electronic scattering, this
includes, e.g., Auger emission where excitation energy is transferred to the outer electron shell and
released via the emission of an electron. In nuclear scattering this transfer and release of nuclear
excitation via emission of an electron is known as internal conversion. The branching ratio

α =
γ

γrad
− 1 (2.3)

describes the number of excitations released via nonradiative processes divided by the number of
excitations released via photon emission. In the context of nuclear resonant scattering this ratio is
also called internal conversion coefficient.
Several aspects of nuclear resonant scattering distinguish it from electronic scattering:
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i) The total linewidth γ of a resonance is proportional to the absolute square of the dipole moment of
that transition, i.e. γ ∼ |〈g|x |em〉|2 and, thus, nuclear transitions feature extraordinary narrow
linewidths compared to atomic transitions due to their orders-of-magnitude smaller spatial extent
x. Typical atomic energy-widths at hard x-ray photon energies are of the order of 1−10eV while
nuclear transitions of the order of neV [HT99a]. Thus, nuclear resonances are about eight to nine
orders of magnitude narrower than typical atomic transitions in the same frequency range.

ii) The branching ratio α is typically much smaller for atomic transitions such that the nuclear
scattering amplitude on resonance

fnres(ωp = ωm − ω0) =
i

k0(1 + α)
(2.4)

can be very large compared to electronic scattering. For example, for the archetypical Mössbauer
isotope 57Fe with a resonance energy of 14.4 keV and an internal conversion coefficient of α = 8.56,
this amounts to |fnres| ≈ 440r0 [HT99a].

iii) Compared to resonant scattering, Thomson scattering is suppressed by the ratio of electron and
proton mass f0

n ∼ me/mp in case of nuclear scattering such that it can be usually neglected, in
particular close to resonance where resonant scattering dominates.

iv) While atomic resonances at hard x-ray energies involve continuum states and therefore experience
strong resonance broadening [Jam58], typical nuclear resonances at these energies are separated
by several 10s or 100’s of keV and thus feature isolated Lorentzian line-shapes [HT99a].

Especially the narrow-line widths and the clear separation of nuclear resonances offer specific ad-
vantages over the scattering off of atomic resonances, which strongly suggests such transitions for a
number of applications: They are very sensitive to tiny changes in the configuration of the electronic
environment and via hyperfine interactions to small magnetic and electric fields [KK12; Röh04] and
other perturbations of the nuclear resonance which makes them a versatile tool in hyperfine spec-
troscopy and for fundamental tests that require very high sensitivity [PR60]. Further, they are
suitable for quantum-optical applications as they constitute almost ideal two-level or, in case of hy-
perfine interactions, few-level systems. This aspect of nuclear resonant scattering is discussed in more
detail in Sec. 2.2. Finally, the narrow linewidth and the corresponding long coherence times of nuclear
transitions allow for control of these resonances in the time- and frequency-domain with applications
in spectroscopy, x-ray pulse-shaping and coherent control of nuclear dynamics as further discussed in
Secs. 2.3 and 7.1.1.
One disadvantage of the extremely narrow linewidth of nuclear transitions for coherent scattering and
spectroscopic applications is the nuclear recoil associated with nuclear x-ray absorption and emission.
This particular problem, which was solved by the discovery of the Mössbauer effect in 1957 [Mös58],
is briefly discussed in the following Subsection.

2.1.2 Nuclear recoil and the Mössbauer effect
When searching for the γ-ray analogue of resonance fluorescence by studying γ-ray emission and
absorption from radioactive sources starting in the late 1920s [Mös12], these attempts first proved to
be unsuccessful due to the effect of nuclear recoil: If a hard x-ray photon is emitted or absorbed by
a single nucleus this process is accompanied by a momentum transfer of

∆E = E2
0/2Mc2 (2.5)

from the photon to the nucleus [Mös12]. Here, M is the mass of the nucleus, E0 the energy of the
photon and c the velocity of light. Consequently, the observed resonance line is shifted away from the
actual nuclear resonance by the amount ∆E towards higher[lower] energy in the absorption[emission]
process. While this effect is often not of relevance for optical resonance fluorescence, it becomes
significant at hard x-ray energies and mass scales of atomic nuclei and can typically lie in the order of
10−2 to 102 eV [Mös12]. The typical linewidth of nuclear resonances, in comparison, is typically of the
order neV such that the observation of resonance fluorescence of a nuclear isotope excited by the same
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isotope becomes very challenging. Moreover, this recoil also breaks spatial coherence of the scattering
off of nuclear ensembles, which is crucial for nuclear resonant scattering using accelerator-based x-ray
sources corresponding applications, as is discussed in Sec. 2.1.4.
Rudolf Mössbauer discovered that, if the nuclei are embedded in a solid, the recoil is absorbed by
the entire crystal and becomes negligible. While the resonance shift due to the nuclear recoil can be
neglected, the absorption or emission line can be shifted by a change in internal energy in the crystal,
i.e. by the creation or annihilation of phonons. Now, in 1957 [Mös58] Rudolf Mössbauer discovered
that their is a high probability that the hard x-ray photon is absorbed by a nucleus without creation
of a phonon, i.e. without the change of the internal energy of the crystal, if the average recoil energy is
small compared to the Debye frequency of the crystal. For the discovery and explanation effect of this
effect, which increases when the temparature is lowered due to a reduction in the occupation number of
higher-lying phonon modes, Mössbauer shared half of the Nobel prize in 1961. Clearly, the probability
of these zero-phonon excitations reduces with higher photon frequencies such that only isotopes with
resonance energies below 150 keV experience a significant contribution owing to this effect [Mös12].
Its influence on nuclear resonant scattering can be calculated by transforming the resonant scattering
amplitude Eq. (2.2) for a single transition into the time domain which yields [Tra62; HT99a]

fres =
γrad
2ik0

∫ ∞
0

dtei(ωe−ωg)te−
γ
2 tfLM(t) (2.6)

where we introduced the resonant scattering wave number k0 = 2π
λ0
. The factor fLM(t) takes into

account vibrations of the scatterer around its mean position and, for resonant scattering, is given by
a statistical average over a Gibbs ensemble of the relative position-dependent phase of the scatterer
upon excitation e−ik0r(t) and deexcitation e−ikfr(0). Here, r denotes the position of the scatterer,
k0 the wave vector of the incident photon and kf the wave vector of the released photon. The full
expression thus reads

fLM(t) = 〈e−ikfr(t)eik0r(0)〉 (2.7)

For fast scattering processes such as atomic scattering which proceed on femtosecond time scales
compared to picosecond vibration time scales [HT99a], this becomes essentially time-independent and
reduces to the Debye-Waller factor (see, e.g., [AM22]). In contrast, for nuclear resonant scattering the
scattering time scales are much longer, typically on the nanosecond scale, such that the nuclear motion
at time t = 0 of excitation and time t ≈ ∞ of deexcitation become essentially uncorrelated [HT99a],
i.e.

fLM ≈ 〈e−ikfr〉〈eik0r〉 (2.8)

which is the so-called Lamb-Mössbauer factor describing the fraction of nuclei participating in recoil-
less scattering in nuclear resonant scattering which is crucial for applications with Mössbauer nuclei
that require coherence of the scattering process.

2.1.3 Polarization effects

Another important feature of nuclear resonant scattering is the well-defined multipolarity of Möss-
bauer transitions and, thus, a strong dependence of the scattering cross sections on the polarization
of the incident radiation [Röh04; SBH99; HT99a]. Typically, being electric dipole (E1), magnetic
dipole (M1) or electric quadrupole transitions (E2)1, Mössbauer transitions are very sensitive to local
magnetic or crystal fields, which renders them ideal candidates for hyperfine spectroscopy due to
Zeeman and electric quadrupole splitting of the nuclear resonances.
As an example, the Zeeman splitting of the M1 nuclear transition of 57Fe with internal hyperfine

field of B = 33.3 T is shown in Fig. 2.1. The energy splitting ∆E(me,mg) between the unsplit
resonance E0 = 14.4 keV and a transition E(me,mg) with magnetic quantum numbers me, mg is
given by

1In this notation EL refers to electric 2L-pole transitions, while ML refers to magnetic 2L-pole transitions
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Figure 2.1: Zeeman splitting of the nuclear resonance of 57Fe upon a hyperfine field of B = 33.3T: The
left panel shows the six allowed transtions with for ground and excited spins Ig and Ie and corresponding
magnetic quantum numbers mg and me. The green, red and orange lines refer to transitions that can be
driven by right-circularly, linearly and left-circularly polarized light, respectively. The right panel shows the
quantum beats arising from interference between the coherently scattered intensity off of all six transitions
in an 57Fe sample of 2µm thickness as described in Sec. 2.1.5. The time-dependent intensity was calculated
using pynuss [Hee19].

∆E = E(me,mg)− E0 = −
(
µe
me

Ie
− µg

mg

Ig

)
B . (2.9)

Here, Ie/g denotes the spin of the excited and ground state |e〉 and |g〉, respectively. For 57Fe their
values are Ie = 3/2 and Ig = 1/2. The ground and excited state magnetic moments µg and µe are
tabulated in Ref. [Röh04]. Apart from the different transition energy of each of these six hyperfine
transitions, only x-rays of distinct polarization scatter off of each of these transitions: Transitions (1)
and (4), marked in green in Fig. 2.1, only scatter right-circularly polarized light, (2) and (5), marked
in red in Fig. 2.1, only scatter linearly polarized light and transitions (3) and (6), marked in orange,
only left-circularly polarized light. This polarization-dependence of the nuclear resonant scattering
determines which hyperfine transitions participate in a given scattering experiment depending on
the relative orientation of the x-ray polarization and magnetic field which can be used to selectively
drive specific transitions [Röh04; SBH99] or even control the polarization of the scattered x-ray
light [Ger19].
The relative weights of the nuclear scattering amplitudes of each hyperfine transition are related
to the Clebsch-Gordan coefficients and, in principle, can be calculated analytically in a number of
important cases [Röh04; SBH99; HT99a] due to the well separated sharp nuclear resonance lines,
compared to atomic transitions at hard x-rays that involve continuum modes and corresponding
broadening [Röh04]. However, the discussion of polarization effects and hyperfine interactions is
mainly out of the scope of this thesis, the only exception being the discussion of the hyperfine splitting
of 57Fe discussed in this Section as an example for the evaluation of time- and frequency-resolved
spectra in Sec. 3.3.2. The reason for this is two-fold: Nuclear reference absorbers, which is used in
heterodyne measurement techniques to scan nuclear resonances in frequency space throughout the
thesis (see, Sec. 2.1.5 for a more detailed introduction into this concept), require unsplit resonance
lines to serve as frequency references. The second reason is that, in most parts of the thesis, we
consider thin-film x-ray cavities containing thin layers of Mössbauer nuclei as targets due to their
relevance in nuclear quantum optics (cf. Sec.2.2.2). These thin layers can be manufactured with
nanometer thickness. Long-range magnetic order and magnetic hyperfine fields can not build up in
such effective two-dimensional nuclear ensembles such that no splitting occurs if the resonant layers
consist of only one or two-atomic layers (see, e.g., [Röh+10]). For this reason, scattering amplitudes
important for the calculation of the nuclear response functions and coherent and incoherent emission
characteristics throughout the thesis simplify considerably and are essentially given by Eq. (2.2) for
a single nuclear resonance, only corrected for the spin degeneracy by a prefactor 2Ie+1

2(2Ig+1) . For a more
detailed discussion of polarization effects, the reader is referred to Refs. [Röh04] and [SBH99] and
references therein.
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2.1.4 Nuclear resonant scattering at accelerator-based light sources
A particularly interesting application of nuclear resonant scattering in combination with Mössbauer-
active isotopes is that of the excitation of nuclear ensembles with short broadband coherent x-
ray pulses as provided by state-of-the-art synchrotron [BEW05] and x-ray free electron (XFEL)
sources [Jae+16]. This has found numerous applications in the field of hyperfine spectroscopy and
is also crucial for the coherent control of nuclear dynamics and x-ray pulse-shaping as discussed in
Secs. 2.3 and 7.1.1 and to get experimental access to nuclear quantum-optical and many-body phe-
nomena described in Sec. 2.2. The excitation of a nuclear ensemble by an x-ray pulse of which both
the pulse duration and the time for propagation through a solid state sample is short compared to
the nuclear lifetime allows one to treat the excitation and deexcitation of the nuclear ensemble as
separate processes, the formation of collective nuclear excited states known as nuclear excitons and
the strong enhancement of spatially coherent scattering with important applications in spectroscopy,
interferometry and x-ray pulse-shaping.
As discussed in Sec. 2.1.1, nuclear resonant scattering typically proceeds on time scales of nanoseconds
or longer2 while typical pulse durations at accelerator-based coherent x-ray sources are of the order of
picoseconds (synchrotron) or even femtoseconds (XFELs). Propagation times of (unscattered) pho-
tons through 10’s of micrometer thick films or below, typical for nuclear resonant scattering experi-
ments, are of the order of picoseconds or below. This justifies the assumption of near-instantaneous or
impulsive excitation typically made in theoretical descriptions of nuclear resonant scattering [Röh04;
Smi99; Shv99; Hee+17; Hee+21], as also done throughout this thesis. Such short pulses excite all
nuclei in the sample with the same temporal phase, which leads to the creation of collective nuclear
excited states of the form [HT99a; Smi99; Röh04; RE21a; Len+20; Len21; HE13; Hee14b]

|ψ(kin)〉 =
1√
N

N∑
n=1

eikinrn |g1 . . . en . . . gN 〉 , (2.10)

where, for simplicity, we assumed an ensemble of N two-level nuclei indexed by n with ground state
|gn〉 and excited state |en〉 without additional hyperfine splitting. This type of collective delocalized
excitation was coined nuclear exciton [HT99a; Röh04] and corresponds to a so-called timed Dicke
state [Scu09a; HE13] due to the inclusion of the phase factor eikinrn of each nucleus n at position
rn excited by a plane-wave x-ray field with incident resonant wave vector kin. These states feature
strong enhancement of the spatially coherently scattered intensity in Bragg directions of the crystal
or grazing incidence for thin-film cavities and in propagation direction of the exciting x-ray pulse.
The latter type of strong coherent emission is known as nuclear forward scattering [Smi99; Röh04]
and is of special importance for spectroscopic applications discussed in Sec. 2.1.5 and for coherent
control methods discussed in Sec. 2.3.

Coherent emission in forward direction

Two aspects of nuclear forward scattering that can only be explained by the delocalized nature of the
nuclear exciton and the corresponding spatial coherence of the scattered radiation are the speed-up
of the coherent decay channel [HT99a; Smi99; Röh04] and the appearance of quantum beats [HT99a;
Smi99; Röh04]. The former effect is accompanied by intra-resonance interference that leads to char-
acteristic propagational or dynamical beats in the time spectrum measured in forward scattering
geometry. The latter effect occurs in case of hyperfine splitting of the nuclear resonance line and can
be used to extract spectroscopic information from the nuclear sample as discussed in more detail in
Sec. 2.1.5.
For later use, we briefly discuss the shape and origin of the coherently scattered radiation in forward
direction of a single-line nuclear absorber, i.e. without resonance splitting due to hyperfine interac-
tions. These concepts are crucial for the development of coherent control of nuclear excitons and the
emitted radiation as well as for the interpretation of time and frequency domain features of nuclear
resonant scattering discussed in Sec. 2.1.5 and later Chapters of this thesis. For a more detailed
presentation of this topic see, e.g., Ref. [Smi99]. For different calculation approaches of the scattered
field see, e.g. [Shv99; Röh04]. A particularly simple and clear derivation of the scattering response off
of a single resonance line in forward direction consistent with experimental observations in the linear
excitation regime can be given in the frequency-domain: The propagation of light through a thick
2For a list of Mössbauer isotopes and their defining parameters, including lifetime, see Appendix A.7 of Ref. [Röh04]
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resonant medium is described by Maxwell’s equations. An incident electromagnetic field induces a
nuclear dipole moment or current which, in turn, acts as a source term for the radiation field. This
propagating coupled entity of nuclear excitation and x-ray photon propagation is sometimes called a
nuclear polariton [Smi+07]. In the frequency domain, this source term is related to the frequency-
dependent refractive index n(ω) of the material and thus to the nuclear resonant scattering amplitude
Eq. (2.2)[Röh04; Lax51]. Upon a broadband initial excitation in the linear excitation regime the prop-
agation equation for the total response function T (z, ω) in direction z of the incident field neglecting
absorption can be written as [Röh04]

dT

dz
= ik0n(ω)T (z, ω) = ik0 (a0fcoh(ω) + 1)T (z, ω) a0 =

2πρ

k2
0

(2.11)

where ρ denotes the number density of resonant nuclei in the sample. The prefactor a0 relates the
forward scattering amplitude to the total coherent scattering amplitude

fcoh(ω) =
1

2k0

fLM
(1 + α)

2Ie + 1

2Ig + 1

γ/2

ωe − ωg − ω − iγ/2
(2.12)

by virtue of the optical theorem [New82]. Note, that the prefactor fLM
(1+α) takes into account that only

the recoilless fraction of the radiatively scattered photons contributes to the x-ray emission in the
coherent channel. The spin degeneracy of the transition in absence of hyperfine splitting is accounted
for by the factor 2Ie+1

2Ig+1 . With this, the linear frequency response of a single-line nuclear sample of
thickness d in forward scattering can be obtained as

T (ω) = T0e
ik0z exp

( −ib
ω − ω0 + iγ/2

)
= T0e

ik0z
∑
n

1

n!

( −ib
ω − ω0 + iγ/2

)n
(2.13)

where we defined the nuclear transition frequency ω0 = ωe−ωg and the thickness thickness parameter

b =
πρ

2k2
0

fLM
(1 + α)

2Ie + 1

2Ig + 1
γd . (2.14)

The series expansion of the exponential in Eq. (2.13) describes multiple scattering events in a thick
sample with the nth addend describing n scattering events of a single photon in the target off of
a single nuclear resonance. This leads to a characteristic broadening and splitting of the nuclear
resonant frequency response in forward direction, which is known as Double-hump profile [Smi99].
The splitting is caused by the interference of waves propagating with different group velocities in the
crystal [Röh04].
The time-domain analogue of this double-hump profile can be obtained via a Fourier transform of

Eq. (2.13) and reads

T (t) = δ(t) + S(t) = δ(t)−
√
b

t
e−

γ
2 t e−iω0tJ1(2

√
bt)Θ(t) . (2.15)

Here, J1 denotes the Bessel function of the first kind, Θ the Heaviside Θ-function and δ the Dirac δ
distribution. This expression demonstrates some important features of the time domain response of a
thick nuclear sample: First, the lowest scattering order is given by a δ function which corresponds to
the n = 0 scattering order in the frequency-domain response Eq. (2.13). It corresponds to a radiation
contribution that passes the nuclear sample without resonant interaction with the nuclei. The second
contribution S(t) including the Bessel function describes the higher scattering orders n > 0 in the
frequency domain response Eq. (2.13). This response features characteristic beats that are known as
propagational beats or dynamical beats [B9̈9; Smi99; Röh04] corresponding to the double-hump profile
in the frequency-domain3. In addition to these characteristic oscillations shown in the left panel of
Fig. 2.2, the nuclear response features an accelerated decay compared to the response of a single
nucleus, which is given by a an exponentially-decaying dipole of transition frequency ω0 and decay
3For the observation of propagational beats in the optical domain, also see Ref. [Fr91]
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Figure 2.2: Time and nuclear resonant spectrum of a 2µm thick α-iron sample enriched in the resonant
isotope 57Fe probed in forward scattering. The left panel shows the dynamical beats described by the Bessel
function in Eq. (2.15) as a red solid line. The black dotted line shows the exponential decay of a single
nucleus. The faster decay of the dynamical beats compared to the single-nucleus decay is related to the
speed up described in the main text. The right panel shows the splitting of the resonance line in the nuclear
resonant response due to interference between different frequency components of the propagating nuclear
polariton known as double-hump profile.

rate Γ = γ/2. To see this, we perform the early-time approximation of the time-domain response
Eq. (2.15), valid if bt � 1, by comparing the first expansion orders of the Bessel and exponential
functions such that

√
b

t
J1(2
√
bt) ≈ be− b2 t (2.16)

and, hence, the early-time nuclear resonant part of the response can be written as

S(t) ≈ −be−iω0te−
γ+b

2 t . (2.17)

Clearly, with increasing sample thickness, this response becomes stronger via the prefactor b and
features enhanced decay via the thickness parameter entering in the exponential. This effect is
known as speed up [Röh04; Smi99; HT99a] and is a consequence of the cooperative spatially coherent
emission of radiation by the nuclear ensemble.

Incoherent nuclear resonant scattering

In the last Section, the effects of coherent enhancement and speed-up of the nuclear emission due to
spatially coherent scattering off of nuclear ensembles was discussed. Its application in time-domain
forward scattering experiments in form of quantum beats will be discussed in more detail in Sec. 2.1.5.
These effects require the atoms to return to their initial ground state after the scattering process
such that the path indistinguishability is not broken, which is crucial for spatial coherence like in a
multi-slit experiment. If an atom returns to a different state after the scattering process, it can be
distinguished from the remaining atoms and cannot interfere with the scattered waves from other
atoms. The subsequent scattering is spatially incoherent and does not experience the features of
enhancement, speed-up or other interference-related effects. There are basically three processes that
lead to a change of the state of the atoms:

a) The nucleus does not return to its original ground state and the nuclear wave function changes.
This can occur, for instance, if the nucleus returns into a degenerate ground state with a different
spin, i.e. a spin-flip. The latter process, therefore, describes elastic incoherent nuclear resonant
scattering.

b) The nucleus returns to its initial ground state but the excitation energy is transferred to the elec-
tronic shell and is released via the ejection of an electron, a process known as internal conversion,
and via fluorescence radiation from the electronic shell. This changes the atomic wave function
and thus singles out the site of the nucleus.
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c) The emission of the a photon by the nucleus is not recoilless, i.e. one or several phonons are created
after the scattering process. This changes the vibrational state of the crystal. While this process,
in principle, can also proceed coherently, this channel is typically strongly suppressed [SK99;
Röh04]. This incoherent process can be used to probe the phonon density of the crystal in a
technique going under the names nuclear inelastic scattering (NIS) [Röh04] or nuclear resonant
inelastic x-ray scattering (NRIXS) [Alp+03] among others.

The spin flip of the nuclear ground state is the only elastic of these processes. All other incoherent
scattering processes described above are inelastic and proceed via a change of energy of either a single
atom or the crystal. While the spatially coherent emission is highly directional, i.e. an enhancement
of emission is seen in the Bragg and forward channels, the incoherent one is not as the emission from
single scatterers is isotropic and thus proceeds into the entire solid angle of 4π. Note that, while
spatially coherent emission can only occur if the absorption of an x-ray photon by a nucleus is re-
coilless, absorption with recoil and creation of phonons can lead to incoherent emission and all three
channels described above can contribute both after absorption with and without recoil. More detailed
descriptions of incoherent nuclear resonant scattering can be found in Refs. [SK99] and [Smi+07].
Within the scope of this thesis, incoherent emission and its relation to the coherent scattering channel
in thin-film cavities with special focus on the low-excitation regime will be discussed in Chapter 5.
Conversion electron Mössbauer spectroscpy (CEMS) [Nom99; SP84; Fro+85; Fry+08] and fluores-
cence radiation detection [Smi+07] related to scattering channel (b) are here the preferred methods
due to the high detection efficiency of electron detection and its depth-sensitivity as further discussed
in Chapter 6.

2.1.5 Detection methods in nuclear resonant scattering

In this Section we discuss basic aspects of time and frequency domain nuclear resonant scattering
experiments which are crucial for time-resolved, frequency-resolved and time- and frequency resolved
spectra as discussed extensively in Chapters 3-5 to interpret quantum optical and many-body phe-
nomena in thin-film cavities.

Time-domain methods

For a long time, time-domain detection dominated nuclear resonant scattering experiments with
synchrotron radiation [Ger+85a; Has+91]. The reason for this is the high temporal resolution of
avalanche photodiodes below 1 ns and the translation of small frequency differences on the neV scale,
caused by hyperfine splittings of the nuclear resonance, into observable beatings in the temporal
response of the nuclear sample, known as quantum beats, as shown in the right panel of Fig. 2.1. Two
main reasons allow for an observation of these quantum beats: First, the nonresonant response and
nuclear resonant response of nuclear samples as discussed, e.g., in Eq. (2.15) are separated well in the
time domain since the duration of x-ray pulses from accelerator-based light sources typically is on
the picosecond time scale or below and the electronic scattering also proceeds on time scales below
picoseconds. In contrast, the nuclear response and the beating periods between nuclear hyperfine
transtions are typical of the order of the nuclear lifetime, which, typically, is orders of magnitude
longer than the pulse duration. This can be seen in the right panel of Fig. 2.1, which shows the time
spectrum of a 2µm α-iron sample enriched in 57Fe, probed in forward scattering. The sharp initial
peak at time zero is the nonresonant scattering contribution while the beating pattern dominating
the spectrum from about 1 ns onwards is caused by nuclear resonant scattering. This allows for a
clear discrimination nuclear resonant scattering and electronic scattering in the time domain.
The second important reason for the observation of a quantum beat pattern is the spatial coherence of
the nuclear scattering in the sample: The phase-coherence of the nuclear excitonic state excited in the
sample allows for interference between radiation scattered from different resonances of different nuclei.
In this sense, the quantum beat pattern like Fig. 2.1 can be interpreted like a time-domain analogue
of a multiple-slit experiment where the spatial coherence of the scattering from the multiple-slit leads
to an observable interference pattern on the screen [Röh04]. In this sense, the spatial coherence of
the scattering is crucial for the observation of quantum beats.
However, time-domain detection also comes with its disadvantages: The interpretation of the time
spectra relies on fitting procedures and they may be ambiguous. For example, different hyperfine field
configurations may lead to the same beating pattern [Röh04]. Further, in a time-domain measurement
the phase information is lost such that a Fourier transform to extract the frequency spectrum cannot
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be performed [Cal+05]. This phase information can also be crucial for the interpretation of the
nuclear dynamics [Hee+21]. Thus, more advanced detection methods are required.

Frequency-domain methods

In addition to the measurement of quantum beats and related methods [Röh+00] as a time-domain
technique, frequency-domain methods are in use.
Many of these methods employ frequency-tunable single-line reference absorbers. Due to the ultra-
narrow linewidth of Mössbauer resonances and little broadening in thin forward scattering targets,
these reference absorbers can be employed in a heterodyne detection scheme: The resonantly scat-
tered radiation in a Mössbauer target interferes with the resonantly scattered radiation off of the
reference absorber. By Doppler shifting the resonance frequency ωa of this analyzer, by moving it
with a constant velocity v, an effective detuning

∆ = ωa

(
1 +

v

c

)
, (2.18)

where c denotes the velocity of light, can be created. This is achieved using a known as Mössbauer
drives [KK12]. By measuring the intensity scattered off of the reference absorber and the target as
a function of the detuning ∆, a frequency-resolved spectrum of the target can be obtained [CCL96;
Ney+98]. This method is widely used in the field of Mössbauer science (see, e.g., [L’a+00; Röh+10;
Hee+13] and Chapter 3). A related method is known as stroboscopic detection, which only records
the intensity in certain periodic time intervals [Cal+03]. By recording the arrival time of photons
at the detector in addition to the detuning, these methods can be generalized to detect time- and
frequency-resolved NRS spectra [Hee+17; Hee+21; Hee14a]. A more detailed account of this mea-
surement approach is given in Chapter 3.
Another approach to measure frequency-resolved NRS spectra at accelerator-based x-ray sources is
the production of highly monochromatized radiation at synchrotron sources using pure nuclear Bragg
reflections [Smi+97a]. As discussed in Sec. 2.2.2, nuclear Bragg scattering features an exponentially-
decaying response and is therefore an ideal candidate for the production of such highly monochro-
matized x-ray radiation as it can feature narrow Lorentzian radiation responses. Commissioned at
synchrotron facilities, these devices are known as synchrotron Mössbauer source.

2.2 Nuclear quantum optics

As discussed in Sec. 2.1, nuclear transitions feature extraordinary narrow resonance lines and well-
separated transitions [HT99a]. Quality factors, characterizing the number of optical cycles within
the lifetime of a specific transition ω0/γ, of the Mössbauer resonances can be of the order 1012

(57Fe) [Röh04] or even up to 1019 (45Sc) [Shv+23], which does not only suggest these transitions for
high precision spectroscopy and fundamental tests but also for quantum optical applications that build
on coherence and interference of quantum states. In addition, the spatial coherence of the excitation
and deexcitation of ensembles of nuclei associated with nuclear excitons Eq. (2.10) in combination
with the high sensitivity to phase and frequency changes of Mössbauer resonances also makes them
an excellent tool for studies of cooperative and many-body phenomena. In recent years, thin-film x-
ray cavities have seen a rising interest as a particular platform for nuclear and x-ray quantum optics.
The reason is two-fold: First, ensembles of Mössbauer nuclei embedded in these multi-layer structures
feature particularly a simple cooperative radiative response with a high degree of controllability of
radiatively-induced nucleus-nucleus interactions that allows for the engineering of effective collective
level schemes. Second, the dynamics and emission from such multilayer systems in grazing incidence is
particularly well understood and can be conveniently studied with existing theoretical methods [R9̈9;
Röh04; HE13; HE15a; Len+20].
In this Section, we will first motivate the transition from the nuclear scattering theory outlined
in Sec. 2.1 into a Hamiltonian description of nuclear dynamics that can conveniently be studied
using density matrix theory and Master equation approaches. Next, thin-film x-ray cavities are
introduced as an excellent platform to realize collective nuclear level schemes and to study and
engineer nuclear quantum-optical and many-body phenomena. Theoretical aspects and important
experimental observations are briefly reviewed.
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2.2.1 Hamiltonian approach to nuclear resonant scattering
In Sec. 2.1, we introduced the basics concepts of Mössbauer science and, in particular, nuclear resonant
scattering based on scattering theory. Here, we cast theses concepts into a semiclassical Hamiltonian
formulation which is an ideal starting point for studying nuclear dynamics and quantum optics using
density matrix descriptions of the nuclear ensembles driven by classical light fields. The concepts
introduced here, form the basis for the quantum optical descriptions of the dynamics of nuclear
ensembles embedded in thin-film cavities and their interactions with x-ray fields in Chapters 4-5.
The general Hamiltonian of a nuclear system interacting with a coherent light field can be written as

Ĥ = Ĥnuc + Ŵ (t) . (2.19)

As discussed in Sec. 2.1, nuclear resonances without hyperfine splitting constitute almost ideal two-
level systems due to their narrow linewidth and the well-separated nuclear transitions. For this reason,
the nuclear part Ĥnuc of the Hamiltonian Ĥ for a single nucleus is written as

Ĥnuc = ~ω0 |e〉 〈e| , (2.20)

whith the reduced Planck constant ~ = 1.055 ·10−34 Js. Here and in the following the nuclear ground
and excited states are denoted with |g〉 and |e〉.
Throughout this thesis we treat the x-ray light field semi-classically, which is consistent with ear-
lier theoretical approaches [Smi99; Shv99; R9̈9; Röh04; LPK11; LPK12] and experimental observa-
tions [Shv+96; Shv+98; R.C+00; Smi+07; Röh+10; Röh+12; Hee+17; Hee+21] in the low-excitation
regime.
For a single two-level nucleus, we write the interaction Hamiltonian in the dipole approximation [SZ97;
HT99a]

Ŵ (t) = −~
2

(
Ω(rn, t)σ̂

+ + h.c.
)

(2.21)

with the nuclear raising/lowering operators σ̂+ = |e〉 〈g| and σ̂− = |g〉 〈e|. Here, h.c. denotes the
hermitian conjugate. The (time-dependent) Rabi frequency Ω(rn, t) is given by

Ω(r, t) =
dE(r, t)

~
(2.22)

with the effective nuclear dipole moment d and the electric field at position r of the nucleus and time
t

E(rn, t) = eE(t)eiνt−ikr (2.23)

with polarization vector e, a temporal field envelope E(t), carrier frequency ν and wave vector k.
Throughout this thesis, we will consider unfocussed plane wave x-ray fields only, which is a valid
assumption in nuclear resonant scattering experiments due to the ultranarrow line width of Mössbauer
transitions such that only a very narrow range of field modes interacts resonantly with the nuclear
transition (cf. [Len21]).
We briefly comment on the choice the interaction Hamiltonian Ŵ (t): The dipole interaction Eq. (2.22),
formally, corresponds to an electric dipole. However, as discussed in Sec. 2.1.3, nuclear transitions
feature multipolarity. While in this thesis we mainly focus on unsplitted single-line systems, the
effective nuclear electric dipole moment d for M1 transitions in free space such as the archetypical
57Fe can be calculated for plane wave fields Eq. (2.23) and the correspondingly defined B via the
Maxwell equation [Len21]

−∂tB = ∇×E (2.24)

and the magnetic dipole interaction
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ΩM1(r, t) =
mB(r, t)

~
, (2.25)

which yields [Len21]

d = −1

ν
m× k . (2.26)

With this result we restrict ourselves to E1 transitions for the rest of this work without loss of gen-
erality. A more rigorous treatment of effective dipole Hamiltonians including higher order multipole
moments and beyond the approximations of plane wave fields and free space is given in Ref. [Len21].
Heuristically, we can now relate the effective dipole moment d to the resonant scattering amplitude
discussed in Sec. 2.1 by calculating the linear response of the Hamiltonian Ĥ. For simplicity, we
consider a dipole parallel to the electic field such that polarization effects can be neglected. A dipole
d driven by an external field E creates a polarization that, in turn creates an electric field, which is
given by

Ed =
1

ε0
〈d̂〉, (2.27)

Here, the expectation value of the dipole operator of a single nucleus, given by

d̂ = dσ̂+ + h.c. , (2.28)

can be calculated by introducing the nuclear density matrix ρ̂(t) that describes the nuclear state at
time t such that

Ed =
1

ε0
Tr
[
d̂ρ̂(t)

]
= dρge(t) + c.c. , (2.29)

where c.c. indicates the complex conjugate and ρge(t) = 〈g| ρ̂(t) |e〉 is called the coherence of the
density matrix since it is related to coherent dipole emission in the way shown above. To obtain the
coherence at time t, the dynamics of the density matrix ρ̂(t) can be described by a Master equation

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ L [ρ̂] , (2.30)

where
[
Â, B̂

]
= ÂB̂ − B̂Â denotes the commutator between operators Â and B̂. The nonunitary

part of the dynamics are described by the Lindbladian

L [ρ̂] =
γ

2

(
2σ̂−ρ̂σ̂+ −

{
σ̂+σ̂−, ρ̂

})
, (2.31)

where γ denotes the full linewidth of the nuclear transition and
{
Â, B̂

}
= ÂB̂+ B̂Â the anticommu-

tator of the operators Â and B̂. The Lindbladian Eq. (2.31) describes the incoherent or non-unitary
dynamics that has its origin in the (quantum mechanical) interaction between the nuclear ensemble
and modes of an electromagnetic bath or continuum [SZ97; MS07; FS05].
Projection of the Master equation Eq. (2.30) onto the ground |g〉 and excited state |e〉 of the

two-level nucleus yields the optical Bloch equations [MS07; SZ97]

ρ̇ee = 〈e| d
dt
ρ̂ |e〉 = −γρee +

i

2
[Ω(t)ρge − Ω∗(t)ρeg] , (2.32a)

ρ̇ge = 〈g| d
dt
ρ̂ |e〉 =

(
iω0 −

γ

2

)
ρge +

iΩ∗(t)

2
(2ρee − 1) , (2.32b)

ρeg = ρ∗ge , ρgg = 1− ρee , (2.32c)
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Eq. (2.32b) shows that the lowest-order contribution in the Rabi frequency Ω(t) to the coherence ρge
is in first order via the last term while a population ρee is first created in second order according to
Eq. (2.32a) since the coherence contribution is minimum first order. Thus, since we are interested in
the linear dipole response, we only keep contributions up to first order in the coherence. To this end,
we set ρee = 0 in Eq. (2.32b), which can subsequently be solved conveniently in frequency space via
a Fourier transformation leading to

ρeg(ω) = − 1

2~
d

(ω − ω0 + iγ/2)
E(ω). (2.33)

With this, the linear susceptibility of the single nucleus χ(ω) can be obtained from

Ed(ω) = χ(ω)E(ω) , (2.34)

which yields

χ(ω) = − 1

2~ε0
|d|2

ω − ω0 + iγ/2
. (2.35)

Using the relation between the susceptibility and the refractive index n =
√

1 + χ ≈ 1 + 1
2χ (see,

e.g., [BP08; MS07]), the dipole response of a single nucleus, that experience both scattering with and
without recoil, can be related to the nuclear resonant index of refraction in Eq. (2.11), which yields

|d| =
√

2π~ε0
k3

0

γ

1 + α

2Ie + 1

2Ig + 1
, (2.36)

which is consistent with the result found in Ref. [Len21] taking into account the different definitions
of the dipole Hamiltonian Ŵ (t).
With this, we showed that the dipole moments of a dipole-interaction Hamiltonian Ŵ (t) Eq. (2.21)
can be related to the nuclear resonant scattering amplitude discussed in Sec. 2.1. Hence, for compu-
tational and interpretational convenience, we switch to a description of nuclear ensembles and their
dynamics in a density matrix formalism the dynamics of which can be described by master equations
of the form Eq. (2.73). For these types of equations numerical and in a number of important cases
even analytical solutions can be obtained. Similar master equations also form the basis of the per-
turbative density matrix expansions introduced in Chapter 4 of this thesis.
More rigorously than presented here, effective many-body nuclear master equations in thin-film cav-
ities incorporating effective nucleus-nucleus interactions and cross-damping terms can be derived in
the framework of macroscopic quantum electrodynamics [Len+20]. This approach is summarized in
the last part of the next Subsection.

2.2.2 Mössbauer ensembles embedded in thin-film cavities
Thin-film x-ray cavities containing one or several nanometer thick layers of nuclei as depicted in
Fig. 2.3 are an excellent platform for studying and engineering cooperative and quantum-optical
effects. Among the quantum-optical effects oberserved in these structures are superradiant decay,
the collective Lamb shift [Röh+10], Fano line shapes [Hee+15a], electromagnetically-induced trans-
parency (EIT) [Röh+12], spontaneously generated coherences [Hee+13], slow light [Hee+15a] and
Rabi oscillations between nuclear ensembles [Hab+17]. The reason for this is the tunability of the
x-ray-nucleus and the nucleus-nucleus interaction mediated by the cavity in these photonic environ-
ments. This can be achieved via control of the angle of incidence, external magnetic fields and the
manufacturing of specific layer structures. In these cavities one or several layers of Mössbauer nuclei
of nanometer thickness are put in between guiding layers of low electronic density featuring low ab-
sorption that allow to sustain different standing electromagnetic field modes. X-rays can couple in
and out of this wave guide via cladding layers that act as mirrors and typically feature a reflectance
close to one. The total height of these multilayer structures is typically only a few 10s of nanome-
ters to sustain only a few modes of the electromagnetic field in the wave guide structure probed

16



Resonant 
layers

Guiding 
layers

Cladding 
layers

Figure 2.3: Scattering off of thin film cavities and multilayer structures: An x-ray of wave vector k impinging
on a cavity surface at small angle of incidence θ is reflected from the surface layer (cladding) of refractive
index nC and coupled in into the wave guide structure of height d, where standing wave modes of length
λ⊥ = d/2m are sustained of which the first two are depicted. These modes interact with the nuclei forming
resonant layers of refractive index nR, which are embedded in between materials of low electronic absorption
forming guiding layers of refractive index nG. After repeated transmission and reflection through the layer
structure, the x-rays are coupled out again and intefere with the reflected radiation.

at grazing incidence. The scattering off of these structures works as follows (cf. Fig. 2.3): X-rays
impinging with angle of incidence θ onto the cladding layer of this multilayer structure. The angle
of incidence has to be small such that the x-rays feature total reflection and evanescent coupling into
the waveguide [RE21a]. Within the cavity, standing wave modes are sustained that determine the
field strength at position of the resonant layers of nuclei. To sustain such modes these resonant layers
are put in between the guiding layers. The x-ray field after repeated reflection and transmission from
the different layers in the cavity is eventually coupled out of the cavity and superimposed with the
reflected x-rays.
To give an intuition on how collective effective quantum optical level schemes arise in x-ray cavities
and how this is related to the geometry of the wave guide structure, we give a brief introduction
into the radiative normal mode analysis of Bragg reflections in nuclear scatterers as described in
Refs. [RE21a; HT99a]. This analysis is related to planar wave guide structures like thin-film cav-
ities using the following argument [RE21a]: The Bragg condition for constructive interference in a
multi-layer crystal is given by

mλ = 2d sin θ , (2.37)

where θ denotes the Bragg angle, d the separation of the crystal layers, λ the wavelength of the
scattered x-rays and m the scattering order for constructive interference. Now, the angle of incidence
θ of the x-ray radiation relative to the cavity surface in a grazing incidence experiment can be related
to the wave number k of the incident radiation and the component normal to the cavity surface via

sin θ =
k⊥
k
. (2.38)

Inserting this relation into the Bragg condition yields

mλ⊥ = 2d , (2.39)

which is the condition for a standing wave of wavelength λ⊥ in a resonator of length d (cf. Fig.2.3).
Thus, x-ray scattering off of an x-ray wave guide, like a thin-film cavity, of height d can be interpreted
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as Bragg scattering off of a lattice with lattice spacing d folded into a single layer by the repeated
reflection by the cavity mirrors. This way, we motivate the following analysis of normal modes for
nuclear Bragg scattering and the extension of the argument about the radiative properties of Bragg
reflection to grazing incidence reflection.
We have seen in Sec. 2.1.4 that, in general, collective nuclear excited states upon excitation by
impulsive x-ray pulses in the LER take the form of nuclear excitons |ψkin〉 Eq. (2.10). Subsequently,
we found that the emission of radiation in nuclear forward scattering even in presence of a single
resonance line features beatings in its time response (cf. Fig. 2.2) indicating interference effects. In
fact, it can be shown by a detailed radiative normal mode analysis [HT99a] that nuclear excitons
|ψ(kin)〉 are not eigenmodes of the Hamiltonian in the intermediate excited state of the nuclei after
x-ray excitation and deexcitation. Instead, the nuclear exciton is a superposition of normal or eigen
modes |ψα〉 of the nuclear Hamiltonian

Ĥrad = ~
∑
n

(
ω0 −

i

2
γ

)
|φn〉 〈φn| − ~

∑
n 6=m

γrad
2
cnm

eikinrnm

kinrnm
|φn〉 〈φm| (2.40)

with the relative distance between two nuclei rnm = |rn − rm| the single-excitation product states

|φn〉 = |g1 . . . en . . . gN 〉 . (2.41)

The coupling terms arise from a radiative coupling between the different nuclei that can be written
as [Röh+12; HT99a]

cnm =

{
3
2 (3 cos2 ϕ− 1)

[
1

(kinrnm)2 − i
kinrnm

]
if rnmkin � 1

3
2 sin2 ϕ if rnmkin � 1

(2.42)

where ϕ is the angle between the polarization of the outgoing and incoming radiation the latter
of which determines the direction of the nuclear dipole moment in the intermediate exciton state.
A general form of this interaction in terms of nuclear currents or dipole moments can be found in
Ref. [HT99a].
The normal modes |ψα〉 can be obtained as eigenstates of Ĥrad. By construction, these modes
experience an exponential decay, i.e.

|ψα(t)〉 = e−iω̃αt |ψ(0)〉 = e−iωαte−
γ
2 t |ψ(0)〉 , (2.43)

where we introduced the complex eigenfrequencies ω̃α = ωα + i
2γα of normal mode α.

Note, that the Hamiltonian Ĥrad is symmetric and not Hermitian and therefore the left and right
eigenmodes are transposed vectors instead of complex adjoints of each other. Due to the invariance
of the trace under the similarity transformation that diagonalizes Ĥrad we find that the real and
imaginary parts of the complex eigenfrequencies ω̃α obey

∑
α

(ωα − ω0) =0 (2.44)

∑
α

(γα − γ) =
∑
α

(
γ

(α)
rad − γrad

)
= 0 . (2.45)

Where we used that only the radiative part γrad of the nuclear linewidth is modified by the radiative
coupling between the nuclei. Without specifying the form the complex eigenfrequencies, this indicates
two things: First, in general, the (real) eigenfrequencies ωα are shifted away from the original nuclear
resonance frequency ω0 with some modes shifted above and others below the single-nucleus value ω0.
Second, the decay rates of some eigenmodes have increased decay rates γ(α)

rad > γrad (superradiant
modes) while other feature reduced decay γ(α)

rad < γrad (subradiant modes). By solving the eigenvalue
problem of Ĥrad explicitely [HT99a] one can now show that the nuclear exciton state Eq. (2.10) is not
an eigenstate of the Hamiltonian Ĥrad in forward scattering and that interference between different
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normal modes leads to the dynamical beats observed in this geometry (cf. left panel of Fig. 2.2).
In contrast, in Bragg scattering off of translationally invariant crystals in the layer plane, if the
Bragg condition Eq. (2.37) is fulfilled, only the symmetric (n even) or antisymmetric (n odd) Dicke
state [Gar11] in the direction normal to the layer plane are driven, which are normal modes of Ĥrad
and feature strong superradiant enhancement [HT99a]. Therefore, the nuclear response S(ω) of an
ensemble of two-level nuclei in Bragg scattering features an exponential decay in the time-domain
and a corresponding Lorentzian line shape

S(ω) ∼ 1

ω − ω0 −∆CLS + i(γ + γs)/2
(2.46)

in the frequency domain, which is shifted by the collective Lamb shift ∆CLS and broadened by the
superradiant decay rate γ/2 compared to the single-nucleus linewidth γ. This behaviour was both
calculated theoretically [HT99a; Man10] and observed experimentally both with synchrotron [SS89b]
and the superradiant decay also with XFEL sources [Chu+18] and also forms the basis of the syn-
chrotron Mössbauer source [Smi+97a] described in Sec. 2.1.5.
In agreement with the earlier argument that thin-film cavities can be interpreted as special cases of
Bragg scattering, single-resonant layer cavities without hyperfine splitting also feature exponentially-
decaying nuclear responses like Eq. (2.46) [Röh+10]. In fact, there are more rigorous approaches
to calculate the reflectivity including the superradiance and the collective Lamb shift of nuclear en-
sembles embedded in thin-film cavities. Three of these approaches we will briefly discuss here: The
transfer matrix or layer formalism, the phenomenological quantum optical model and the ab-initio
Green’s function method.

Layer formalism

The transfer matrix or layer formalism, the application of which to x-ray scattering and, in particular,
nuclear resonant scattering is described in great detail in Refs. [R9̈9; Röh04], relates the incoming
and outgoing field amplitudes of a stack or multilayer, like the one shown in Fig. 2.3, via reflection
and transmission coefficents r′ij and t′ij of the layer boundaries. The propagation within one layer is
described via a phase accumulated by the field during propagation given by [Hee14a; Len21]

φm = k
(m)
⊥ dm , (2.47)

where dm is the thickness of layer m and k(m)
⊥ the wave vector component in layer m normal to the

layer surface given by

k
(m)
⊥ = k2

√
n2
m − cos2 θ (2.48)

One can see, that the layer formalism is a semiclassical method in the sense that it uses the materials
refractive index nm to describe propagation through the material, and reflection and transmission at
the interfaces. The transfer matrix at the layer boundaries can be described in terms of the Fresnel
coefficients and the complete transfer matrix of the full multilayer structure is given by the product
of the transfer matrices of the single layers. A more detailed account of this method is given in
Refs. [Hee14a; Len21]. Prominently, the transfer matrix or layer formalism was succesfully used to
calculate the cavity reflectivities in Refs. [Röh+10; Röh+12] and to interpret the results in terms of
collective phenomena like superradiance, collective Lamb shift and EIT. In particular, explicit values
for the collective Lambshift, the superradiant decay rates and the cavity-mediated control fields in
the case of EIT could be retrieved by comparison with expected quantum-optical responses. The
method is implemented in the software packages CONUSS [Stu00b] and pynuss [Hee19], to both
calculate cavity and forward scattering responses. Both have been demonstrated to be in excellent
agreement with experimental observations at synchrotron light sources. The data evaluated in this
Chapter and Chapter 3 have been calculated using pynuss.

Phenomenological quantum-optical model

The observation of quantum-optical phenomena like the collective Lamb shift, superradiance and EIT
in thin-film cavities and their successful calculation within the semi-classical layer formalism suggests
fully quantum-optical few-level descriptions of the system dynamics. The first full quantum-optical
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model to describe (nonlinear) nuclear dynamics and effective level schemes in thin-film cavities and
to derive superradiant decay rates and the collective Lamb shift was introduced in Ref. [HE13]. Here,
we give a brief summary of its results for effective two-level systems. For simplicity, we neglect the
effects of electromagnetic field polarization as we are mainly interested in nuclear transitions without
magnetic hyperfine splitting.
First, we discuss the reflection response of the empty cavity without nuclei. As discussed earlier by
relating the model of Bragg scattering to the response of wave guide resonators, the cavity depicted
in Fig. 2.3 sustains only standing wave modes satisfying the condition Eq. (2.39) in the direction
normal to the cavity surface. In the following, we restrict ourselves to only on guided mode n = 1.
The standing wave condition Eq. (2.39) is satisfied even if the incidence angle θ changes from the
resonance condition

kc⊥ = k0 sin θ0 , (2.49)

where θ0 is the incidence angle satisfying the standing wave condition for a given resonant wave
number k0. In contrast, if the incidence angle deviates from θ0, the parallel wave vector component
in the cavity is not fixed and for a given wave vector k of the driving external x-ray field is given by

kc‖ = k cos θ . (2.50)

Thus, the detuning ∆c between cavity mode frequency ωc = ckc and external x-ray frequency ν = ck
for small angles of incidence is given by

∆c =

√
ν2 cos2 θ + ω2

c sin2 θ0 − ν ≈ −νθ0∆θ , (2.51)

where ∆θ = θ − θ0 characterizes the deviation of the incidence angle θ from the resonant angle θ0.
This results that not only standing wave order but also the cavity detuning can be controlled by
the angle of incidence θ. Due to the orders-of-magnitude larger bandwidth of the cavity resonance
compared to the nuclear resonance width, this detuning can usually be neglected on frequency scalles
typical for NRS experiments but it is worthwile to note that the incidence angle can have a significant
influence on the cavity mode structure and the cavity response as we will see below.
The Heisenberg equation of motion for the cavity field creation and annihilation operators â†, â can
be written as [HE13]

d

dt
â =

1

i~

[
â, Ĥc

]
− κâ , (2.52)

where κ denotes the cavity decay constant related to losses of the cavity into the continuum of external
field modes. The cavity Hamiltonian Ĥc in the interaction picture oscillating with the external mode
frequency ν is given by [HE13]

Ĥc = ∆câ
†â+ i

√
κR
(
ainâ

† − a∗inâ
)
. (2.53)

Here,
√
κRain accounts for the coupling of the incident x-ray field with the cavity mode, which can

be adjusted by, e.g. changing the material or thickness of the cladding layer.
Explicit evaluation of Eq. (2.52) leads to the explicit expression for the stationary state cavity field
mode, defined by the condition d

dt â
SS = 0, [RE21a; HE13]

âSS =

√
2κRain
κ+ i∆c

. (2.54)

The empty-cavity reflectance can be calculated using the input-output relations aout = −ain +√
2κRâ [RE21a; Len21] as

Tc =
〈âout〉
ain

=
2κR

κ+ i∆c
− 1 (2.55)
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On resonance ∆c = 0 and the so-called critical coupling 2κR = κ, the empty-cavity response vanishes,
which can be interpreted as destructive interference between the the radiation reflected at the cavity
surface and the radiation coupled out of the cavity in direction of the reflected beam.
If the nuclei are included, the nuclear polarization modifies the cavity response. In the so-called bad
cavity regime [MS07] of fast dissipation κ typical for thin-film x-ray cavities, the cavity modes â can
be expressed in terms of the incoming field modes and the nuclear source currents in a method called
adiabatic elimination by calculating the stationary solution of the Heisenberg equation of motion for
the cavity mode operators â including the nuclear source terms [HE13]. In the low-excitation regime,
where nuclear collective states are given by the nuclear excitons

|ψ(kc)〉 =
1√
N

N∑
n=1

eikcrn |g1 . . . en . . . gN 〉 , (2.56)

an effective Master equation for the nuclei only can be written down, which leads to a modified cavity
reflectance [RE21a]

T (∆) = Tc −
i

ain

2κR
κ+ i∆c

g∗
√
N 〈ψ(kc)| ρ̂ |G〉 , (2.57)

where g denotes the coupling between a single cavity mode and nucleus, ρ̂ the nuclear density matrix
and

|G〉 = |g1 . . . gn . . . gN 〉 (2.58)

is the collective ground state with all nuclei in their respective ground state |gn〉. Eq. (2.57) shows
that the nuclear coherence ρEG = 〈ψ(kc)| ρ̂ |G〉 strongly modifies the cavity response. From the
effective Master equation the effective nuclear dynamics can be obtained by projection onto the
collective ground and excited states |G〉 and |ψ(kc)〉, which yields effective Bloch equations similar to
Eqs. (2.32) but now involving collective parameters instead of single-particle ones. Like for the solution
of Eqs. (2.32), in the linear regime defined by 〈G| ρ̂ |G〉 only the coherence ρEG has a nonvanishing
contribution while the population ρEE remains zero. The equation of motion for the coherence within
the phenomenological model reads [HE13]

d

dt
〈ψ(kc)| ρ̂ |G〉 = −i

√
2

3
Ng

√
2κRain
κ+ i∆c

+ i

[
∆−∆CLS + i

γ + γs
2

]
〈ψ(kc)| ρ̂ |G〉 (2.59)

with collective frequency shifts ∆CLS and superradiant line broadening γs defined as

∆CLS =
2

3
N |g|2Im

[
1

κ+ i∆c

]
, (2.60)

γs =
4

3
N |g|2Re

[
1

κ+ i∆c

]
. (2.61)

Finally, by inserting the stationary state solution d
dt 〈ψ(kc)| ρ̂ |G〉 = 0 into Eq. (2.57) one obtains the

final form of the cavity reflectance including an ensemble of two-level nuclei as

T (∆) = αt − i(αt + 1)

(
γs
2 + i∆CLS

)
∆−∆CLS + iγ+γs

2

(2.62)

with

αt =
2κR

κ+ i∆c
− 1 . (2.63)
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Remarkably, the line shape observed in the cavity reflectance is not a simple Lorentzian but is modi-
fied by interference with the cavity reflectance Tc. This leads to an effective Fano line shape that can
be modified by changing the angle of incidence as was studied in experiments [Hee+15a].
Regarding the nuclear resonant part of the response T (∆)−Tc in Eq. (2.62), we were able to derive the
collective Lamb shift ∆CLS and the superradiance γs observed in thin-film x-ray cavities employing a
quantum-optical model. Within this approach, these parameters are associated with a collective ef-
fective two-level scheme with states corresponding to nuclear excitons of the form Eq. (2.56) and with
modified collective decay rate Γc = γ+γs

2 and renormalized transition frequency ω0+∆CLS. Similar ap-
proaches were used to also derive more complex level schemes including magnetic hyperfine splittings
of the nuclear level [HE13] to study spontaneously generated coherences [Hee+13] and three-level sys-
tems [HE15a] including effective coherent control fields between the excited states [DLE22a] to realize
EIT [Röh+12] and coherent couplings to observe Rabi oscillations between these states [Hab+17].
As a consequence of these results, we can write down an effective few-level master equation (see, e.g.,
Refs. [Len+20; DLE22a])

d

dt
ρ̂ =

1

i~

[
Ĥeff, ρ̂

]
+ Leff [ρ̂] (2.64)

with full Hamiltonian

Ĥeff = Ĥnuc + Ŵ (t) (2.65)

can be written down with a few-level Hamiltonian

Ĥnuc = ~
∑
l

ωl |l〉 〈l| − ~
∑
ll′

∆ll′ σ̂
+
l σ̂
−
l′ , (2.66)

where ωl denotes the single-nucleus transition frequencies of effective level l and ∆ll the collective
Lamb shifts while ∆ll′ for l 6= l′ describes coherent couplings between the excited states. The effective
raising and lowering operators σ̂±l describe excitation/deexcitation of level l from or into the ground
state. The effective interaction Hamiltonian can be written as

Ŵ (t) =− ~
2

∑
l

(
Ω(t)σ̂+

l + h.c.
)

(2.67)

with Rabi frequency

Ω̂(t) =
dlÊl(t)

~
(2.68)

and an effective dipole moment dl between states |0〉 and |l〉 and an effective field Êl, that can be
quantized or classical, driving that transition. Finally, the effective Lindbladian can be written as

L [ρ̂] =
∑
ll′

Γll′
[
2σ̂−l′ ρ̂σ̂

+
l −

{
σ̂+
l σ̂
−
l′ , ρ̂

}]
, (2.69)

where Γll′ includes potential cross-decay terms for l 6= l′ and (superradiant) effective decay rates of
level l as Γll. These types of effective few-level models will be employed to study the cooperative
dynamics upon the excitation of time-dependent x-ray pulses of different shape in the LER in Chap-
ters 6 and 7. Further, some implications for dynamics beyond the LER within these effective few-level
descriptions are discussed in Chapter 5.

Ab initio Green’s function approach

In the previous two Subsections we have seen how effective collective few-level schemes naturally arise
in thin-film cavities both in experiment and employing phenomenological quantum-optical models.
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However, the validity of these models is limited for different reasons: The semi-classical layer formal-
ism is based on linear response theory and, thus, is only valid in the LER. For future observations
at novel coherent x-ray light sources such as XFELs and XFELOs with higher number of resonant
photons it cannot be expected to yield accurate results. Further, as based on an effective description
based on the nuclear refractive index, it does not provide access to the underlying nuclear dynamics
of the system. Finally, quantum-optical effects of the electromagnetic field such as photon correla-
tions can not be studied in this semi-classical model. The phenomelogical quantum-optical model,
while in principle solving all these issues, is not complete as important deviations from the layer
formalism experimentally-observed quantum-optical effects such as EIT, even if additional heuristic
extensions are made to the model, are found [HE15a; Len+20]. To solve these problems ab initio
quantum models were developed to account for the effects of high-loss cavities and overlapping cavity
modes [Len+20; LE20] were developed. Apart from resolving disagreements with experiments found
in the phenomenological model, these ab initio models also offer more fundamental insights into the
interactions between bath and cavity modes and the nuclear ensemble.
Most relevant for this thesis is the ab initio Green’s function approach developed for thin-film x-
ray cavities in Ref. [Len+20]. The reason for this is that it provides rigorous derivations of both
many-body nuclear master equations in the cavity evironment as employed in Chapter 5 and of the
effective few-level master equation Eq. (2.64). With this, exact expressions for the effective nuclear
and few-level parameters can be given within this approach and become computable in an efficient
way. In this approach, the full Hamiltonian of the coupled nuclei and electromagnetic field is given
by [Len+20]

Ĥ =

∫
d3r

∫ ∞
0

dω~ωf̂†(r, ω)f̂(r, ω)

+
∑
ln

~ωnlσ̂+
lnσ̂
−
ln −

∑
ln

[
σ̂+
lnd
∗
l + σ̂−lndl

]
· Ê(rln) (2.70)

with bosonic mode operators f̂(r, ω) and the electromagnetic field operator Ê(rln) at position rln of
a nucleus n in layer l given by

Ê(r) = i

√
~
πε0

∫ ∞
0

dω

∫
d3r′

√
Im [ε(r′)]G(r, r′, ω) · f̂(r′, ω) (2.71)

where the Green’s tensor is defined as the solution to Maxwell’s equation

[
∇×∇×G(r, r′, ω)− ω2

c2
ε(r, ω)G(r, r′, ω)

]
= δ(r− r′) . (2.72)

with the complex-valued frequency-dependent dielectric permittivity ε accounts for both absorp-
tion an dispersion. This approach that describes the quantized electrimagnetic field Eq. (2.71) in
terms of the classical Green’s tensor G(r, r′, ω) is known as macroscopic quantum electrodynamics
(QED) [Len+20; SB09]. Starting from the Hamiltonian an effective master equation for the nuclei
can be derived using the common steps of Born-Markov and rotating wave-approximation by tracing
out the bath modes [FS05; Aga74]. The result reads [Len+20; AG+17]

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ L[ρ̂] . (2.73)

with the Hamiltonian Ĥ separated into parts

Ĥ = Ĥnuc + Ŵ (2.74)

with nuclear Hamiltonian

Ĥnuc =~
∑
nl

ωnlσ̂
+
nlσ̂
−
nl − ~

∑
nn′ll′

Jnn′ll′ σ̂
+
nlσ̂
−
n′l′ . (2.75)
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where the coherent couplings are related to the Green’s tensor via [Len+20]

Jnn′ll′ =
µ0ω

2
nl

~
d∗l · Re [G(rln, rl′n′ , ωnl)] · dl′ (2.76)

with the vacuum permeability µ0. The nucleus-field coupling part reads

Ŵ =− ~
2

∑
nl

(
Ω̂nlσ̂

+
nl + h.c.

)
. (2.77)

Here, the Rabi frequency is given by

Ω̂nl =
dnlÊnl

~
. (2.78)

Finally, the Lindbladian describing the non-unitary or incoherent part of the dynamics is given by

L[ρ̂] =
∑
n,l

∑
n′,l′

(
Γnn′ll′ + δnn′δll′Γ

IC
nl

) (
2σ̂−n′l′ ρ̂σ̂

+
nl −

{
σ̂+
nlσ̂
−
n′l′ , ρ̂

})
(2.79)

with cross-decay terms

Γnn′ll′ =
µ0ω

2
nl

~
d∗l · Im [G(rln, rl′n′ , ωnl)] · dl′ . (2.80)

With this, effective master equations for interacting nuclei in thin-film cavities with one or more
resonant nuclear layers as discussed in Chapters 4 and 5 are put on a solid ground via the ab initio
theory developed in Ref. [Len+20]. Using this approach one can also derive effective LER master
equations featuring effective few-level schemes as introduced in the previous Subsection. This is done
by assuming that the excited state of the nuclei is unpopulated, i.e. 〈σ̂+

nlσ̂
−
nl〉 ≈ 0 and via a Fourier

transformation of all relevant quantities the layer plane of the cavity using the in-plane translational
invariance of thin-film cavities. Then, the collective parameters defining the effective Hamiltonian
Eq. (2.66) and Lindbladian (2.69) can be calculated via

∆ll′ =
N

A‖

µ0ω
2
l

~
d∗l · Re

[
G(zl, zl′ ,k‖, ωl)

]
· dl′ , (2.81)

Γll′ =
N

A‖

µ0ω
2
l

~
d∗l · Im

[
G(zl, zl′ ,k‖, ωl)

]
· dl′ , (2.82)

where A‖ is the area covered by the nuclei in the planar cavity, zl is the depth of the resonant
layer l and the parallel wave space Green’s operator ist related to the position-space Green’s tensor
via [Len+20]

G(rln, rl′n′ , ωnl) =

∫
d2k‖

(2π)2
G(zl, zl′ ,k‖, ωl)e

ik‖·(r‖,n−r‖,n′ ) , (2.83)

where the subscript ‖ denotes the component of the wave vector and position in the layer plane of
the cavity.

Nuclear quantum optics under nonlinear excitation conditions

Another aspect of the narrow linewidth of nuclear transitions is that it makes strong driving challeng-
ing, which is required for nonlinear excitations associated with many quantum-optical phenomena and
related spectroscopic techniques. At synchrotron sources, typically less than one photon of the orders-
of-magnitude broader pulse spectrum is resonant with the nuclear resonance such that experiments
at these sources are restricted to the linear or low-excitation regime. New coherent x-ray sources
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such as XFELs and XFELOs with significantly higher resonant photon numbers, thus, can open up
a completely new regime of nonlinear optics and quantum optics with Mössbauer nuclei. Further,
higher excitations and even inversion of nuclear ensembles were predicted theoretically in x-ray wave
guides [Che+22] or cavities using suitable focussing, tailoring of the cavity environment and specific
isotopes [HKE16a; Len21; DLE22b]. From a theoretical perspective, this raises the question how
low-excitation descriptions of nuclear ensembles and corresponding quantum-optical phenomena as
introduced in this Section change at higher excitations and under multi-photon excitation conditions.
In principle, nonlinear excitations of the nuclear ensemble can be studied in the phenomenolgical
model [Hee14a] and the Green’s function formalism [Len21]. However, it remains the question how to
detect nonlinearities if the LER is only slightly surpassed and indications of strong driving [HKE16a]
can not be observed yet. Another related question is which pulse structure of the x-ray driving field
should be used to observe specific nonlinear dynamics and whether and, if yes, which advanced data
analysis techniques are required to observe these effects. This question will be discussed in more
detail in Chapter 5.

2.3 Phase control of the nuclear resonant response

We have seen in the previous Sec. 2.1 that the essential features of experiments with Mössbauer
nuclei are related to the long lifetimes and corresponding sharp linewidths of nuclear transition in
combination with the Mössbauer effect. These features lead to strong spatially coherent scattering
that, for example, enables hyperfine spectroscopy in the time domain related to the observation of
quantum beats (cf. Sec. 2.1.5). In Sec. 2.1.5 we explained how the narrow linewidth of Mössbauer
nuclei can be exploited to perform frequency-resolved measurements using single-line nuclear reference
absorbers. This technique is based on Doppler shifting the nuclear resonance frequency, which leads
to a detuning in the nuclear resonant response compared to the static case. Here, we generalize this
concept to imprint arbitrary time-dependent phases φ(t) onto the nuclear resonant response S(t).
Consider first the dipole response Eq. (2.29) of a single nucleus where the time evolution for the
coherence is given by the Bloch equation Eq. (2.32b). Now, if the nuclear resonance frequency ω0 is
shifted in time by an amount −φ̇(t), the equation of motion for the coherence in the linear response
regime, where ρee = 0, is modified to

ρ̇eg =
(
−i(ω0 − φ̇(t))− γ

2

)
ρge +

iΩ(t)

2
. (2.84)

The solution of this equation is

ρeg(t) =
i

2

∫ t

t0

dt′e−iω0(t−t′)eiφ(t−t′)e−γ(t−t′)Ω(t′) (2.85)

as can be easily verified by inserting it into the complex conjugate of Eq. (2.84). From Eq. (2.85),
the linear response of a single nucleus including a time-dependent shift of its transition frequency by
the function φ̇(t) can be read off as

Ssn(t) ∼ i

2
eiφ(t)e−iω0te−γt (2.86)

by comparison with the defining relation of the resonant response function [Smi99]

Eout(t) =

∫ t

t0

dt′S(t− t′)Ein(t′) , (2.87)

and by noting that the nuclear coherence is related to the outgoing field via Eq. (2.29). The response
function technique will be discussed in more detail in Chapter 3. Here, it is important that the linear
response of the single nucleus acquires a time-dependent phase shift φ(t) via the time-dependent
phase shift φ̇(t) of its resonance frequency. This time-dependent shift caused, for instance, by a linear
motion in propagation direction of the incident field in forward scattering, i.e.
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φ̇MB(t) =
v

c
ω0 = ∆ , (2.88)

like in the case of a Mössbauer drive, which leads to a linear phase shift φ(t) = ∆t associated with
a detuning that can be used to detect frequency-resolved spectra as discussed in Sec. 2.1.5. Like for
the Mössbauer drive, if the time-dependent frequency-shift affects all the nuclei at the same time,
this frequency-shift is also reflected in the intermediate exciton state and the response function of the
entire nuclear ensemble will acquire a phase shift in its full response function

T (t, φ) = eiφ(t)T (t) . (2.89)

Such phase shifts in praxis can, for example, be induced fast piezo motion of the sample in propagation
direction of the incident field in forward scattering [Vag+14; Hee+17; Hee+21]. Other techniques
can be the fast time-dependent change of the magnitude of an external magnetic field [Boc+21] or
of the direction of the magnetic hyperfine field [Shv94; LPK12]. The latter method can only provide
phase shifts of φ = π of hyperfinge transitions by a 180 flip of the magnetic field. These methods
can be realized experimentally due to the long lifetimes of nuclear excitons. Typically, however,
these techniques are not fast enough to be applicable to the nonresonantly scattered radiation which
proceeds on the time scale of the excitation pulse with a duration of ps or shorter as discussed in
Sec. 2.1.4. Thus, the time-dependent phase shift effectively is only applied to the nuclear resonant
part S(t) of the sample response, i.e.

T (t) = δ(t) + eiφ(t)S(t) , (2.90)

which allows for the interpretation of the forward scattering response as a phase-coherent double
pulse as the relative phase φ(t) can be tuned by, e.g., sudden phase jumps after the excitation pulse
has passed the sample. In the past, this technque has successfully be used to flip the relative sign
of the resonant and nonresonant part of a single line reference absorber to both turn destructive
interference between both parts into constructive interference thus enhancing the resonant part of
the radiation [Hee+17]. A similar method is employed in our numerical studies in Sec. 7.3.1 In another
experiment, such a sign flip was used to control the dynamics of a nuclear exciton from enhanced
emission to enhanced excitation [Hee+21]. One can envision such phase control techniques to realize
phase coherent multi-pulse techniques such as Ramsey interferometry, photon echo spectroscopy or
multidimensional spectroscopy to study, e.g., coherent couplings between nuclear excited states. In
Sec. 3.4 we show that such phase control can be used to disentangle different contributions of NRS
spectra by measuring various phase combinations, which subsequently are subtracted or added to each
other. This technique is inspired by similar approaches in collinear multidimensional spectroscopy,
called phase-cycling, where the response functions of different excitation order of the driving electric
field are separated by measuring and combining the intensities for different values of the driving pulse
phases [Tan08; Cho19]. For a more detailed discussion of double-pulse applications to study nuclear
dynamics, the reader is referred to Chapter 7.
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Chapter 3

Evaluation of nuclear resonant scattering experiments
using frequency-frequency correlation spectra

This chapter is based on the following publication:

Unraveling time- and frequency-resolved nuclear resonant scattering spectra
L. Wolff and J. Evers
Physical Review Research 5, 013071 (2023)

The author of this thesis is the main author of this publication. The content has been reproduced
almost verbatim with permission of the journal (© 2023 American Physical Society) and coauthors.
The manuscript has undergone minor changes to adapt to the thesis style and structure. The results
and content compared to the above-mentioned publication is not altered.

3.1 Advanced measurement and data analysis techniques

Exploring the regime of nonlinear [HKE16b; Che+22; BS97] and non-equilibrium phenomena [SR08]
using novel coherent x-ray sources, which has only started to be explored experimentally [Chu+18],
will require advanced measurement and data analysis techniques to access a broader range of ob-
servables, and to compare theoretical predictions with experimental observations. Examples include
spectroscopy beyond the linear response regime [Muk95], photon-correlation measurements [Gla63], or
methods to study the time-resolved sample dynamics after external stimuli, potentially on a per-shot
basis [She12].
As a first step towards this goal, recent experiments employed a time- and frequency-resolved

measurement of the scattered x-ray intensity [Hee+17; Hee+21; SS22; Hee+22], as compared to the
established approaches of measuring time-resolved or frequency-resolved spectra separately [KK12],
the latter of which can be obtained, for instance, by probing the nuclear absorption using pure nuclear
Bragg reflections to produce highly monochromatic x-ray light on the scale of the nuclear line-width
[Smi+97a]. Alternatively, the frequency-selectivity can be achieved using a heterodyne approach by
adding an additional single-line reference absorber, in the following referred to as analyzer, on a
velocity drive up- or downstream of the target under investigation [CCL96; Ney+98], see Fig. 3.1.
This method is also used to perform time- and frequency-resolved data acquisition, which provides a
number of significant advantages over other detection schemes using single-line reference absorbers,
even though it does not require changes to the experimental setup apart from the electronics. On
the one hand, it allows one to apply several established data analysis methods using a single experi-
mental data set only. For example, late-time integration methods established as a standard analysis
approach for x-ray cavities probed in reflection [CCL96; Deá+06; Röh+10] or related stroboscopic
methods [Cal+02; Cal+03; Röh+12] can be employed by integrating the two-dimensional data set
along part of the time axis. Importantly, the time- and frequency-resolved spectra allow one to im-
prove the recovery of the target spectra by optimizing the integration range throughout the data
analysis [R.C+00; HE20]. Similarly, off-resonant methods can be employed in spectral regions with
large detuning between analyzer and target, which may even provide access to the complex-valued
target response [Cal+05; Cal+02; Cal+03; Goe+19]. These methods typically exploit the interfer-
ence between particular scattering pathways, which can be studied in the time [Cal+05]- or frequency
domain [Goe+19]. However, these established methods share the drawback that they only make use
of select regions of the recorded two-dimensional spectra. On the other hand, the two-dimensional
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Figure 3.1: Schematic of a setup to record time- and frequency-resolved Nuclear Resonant Scattering
spectra in forward and grazing incidence geometry. The goal is to characterize the resonant target response.
An additional single-line analyzer mounted on a Doppler drive is used to introduce a variable frequency
dependence. Resonant and non-resonant scattering in analyzer and target lead to four interfering scattering
pathways contributing to the detection signal. An example for the experimentally accessible scattered intensity
as function of analyzer frequency and arrival time of the scattered photons is shown in the lower right panel.
The corresponding frequency-frequency correlation (FFC) spectrum studied in this work is obtained via a
Fourier transform along the time axis. An example FFC spectrum for the data in the lower-right panel
is shown in the lower-left panel. It exhibits clear horizontal and diagonal linear structures which can be
interpreted in terms of spectral correlations within the combined analyzer-target-system. In the second part
of this work, an additional phase control between resonant and non-resonant response of the analyzer is
considered to disentangle the different scattering pathways.

data set allows for a much more stringent comparison between theory and experiment. One reason
for this are the rich interference structures, which are lost in the usual one-dimensional data by the
integration over the other axis (see bottom-right panel of Fig. 3.1 for an example). Interestingly,
these structures encode intensity and phase of the target response. In Refs. [Hee+17; Hee+21], the
complex-valued target response was determined by fitting theory models to the entire two-dimensional
spectrum, thereby using all recorded data rather than only parts of it. However, this approach is
computationally demanding as compared to other methods, and requires model fits in order to extract
the desired target properties.
This raises the question, if the two-dimensional spectra can also be analyzed in different ways, which

ideally provide access to the desired target properties in a more transparent way, without requiring
global fits to the entire spectra, but still allow one to exploit the time- and energy correlations in the
spectra, and to make use of large parts or even the entire experimental data set in the analysis.
Motivated by this, here, we develop spectroscopy and analysis techniques which are based on the

Fourier transform of experimentally accessible time- and frequency-resolved intensities along the time
axis. The resulting complex-valued frequency-frequency correlation (FFC) spectra exhibit particularly
simple signatures comprising horizontal and diagonal structures, which can be associated to different
contributing scattering processes. These signatures (see the bottom-left panel of Fig. 3.1 for an
example) facilitate a selective analysis of the different scattering contributions. We in particular focus
on two analysis approaches. First, we discuss linear fits to the diagonal structures in the frequency-
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frequency correlation spectra, which allow one to extract nuclear resonance energies, as well as spectral
line features such as collective energy shifts and superradiant line broadenings. Second, we show that
horizontal or vertical sections through the diagonal structure provide access to amplitude and phase
of the nuclear resonant part of the target response, cross-correlated with the analyzer response. This
retrieval of the response without contributions from the off-resonant scattering in the target is of
particular interest for x-ray cavity targets containing Mössbauer nuclei, since their spectra typically
are strongly affected by the interference of electronic and nuclear response, in dependence on the
x-ray incidence angle. We further show that an additional control of the relative phase between the
electronic and nuclear response of the analyzer allows one to disentangle different scattering pathways,
thereby facilitating their selective analysis without imposing additional constraints such as a large
analyzer-target detuning. All approaches are illustrated using examples of practical relevance.
This Chapter is structured as follows: The next Section briefly describes a generic experimental

setup used to record time- and frequency-resolved spectra including phase- and frequency-control of
the nuclear reference absorber. Further, we derive expressions for the frequency-frequency correlation
spectra in linear response theory, and discuss them in particular limiting cases. Section 3.3 presents
the two analysis approaches for the diagonal structures, including numerical examples in forward
scattering and cavity reflection. Section 3.4 introduces the phase control of the analyzer as an ad-
ditional control parameter, and discusses its implications for the analysis of the diagonal structure.
Finally, Sec. 3.5 summarizes the results.

3.2 Linear-response formalism and spectral correlations in
nuclear resonant scattering

For our analysis, we consider the setup shown schematically in Fig. 3.1. A temporally short and
spectrally broad x-ray pulse delivered by an accelerator-based x-ray source is used to probe a target
containing Mössbauer nuclei. Both, forward scattering geometries and reflection from x-ray cavities
will be considered. Additional frequency information is gained by introducing a single-line refer-
ence absorber, which can be tuned in frequency by ∆ via a Doppler drive. Throughout this paper,
frequencies are given in units of the target single-nucleus line-width γ. Each target features a near-
instantaneous electronic response ∝ δ(t), and a delayed nuclear response, which we denote as Si(t),
with i ∈ {a, t} for analyzer and target [LHH60a; KAK79; Smi99; Shv+98; Röh04; HT99a]. The
two-stage setup thus gives rise to four different scattering channels [Smi+05; Cal+05], as illustrated
in Fig. 3.1. In the experiment, the time- and frequency-resolved intensity of the scattered light is
measured, which gives rise to two-dimensional spectra as illustrated in the bottom right panel of
Fig. 3.1 [Hee+17; Hee+21]. A Fourier transform along the time axis then leads to the frequency-
frequency correlation spectra considered here. We note that Ref. [Goe+19] employed a similar Fourier
transform in order to select a particular frequency region for a subsequent analysis in the time do-
main. The bottom left part of Fig. 3.1 shows the real value as an example, clearly exhibiting the
horizontal and diagonal structures. In Sec. 3.4, we will further consider the possibility of controlling
the relative phase φ between the electronic and nuclear response of the analyzer.

3.2.1 Time- and frequency resolved spectra in the linear response
formalism

A theoretical description of time- and frequency-resolved Nuclear Resonant Scattering spectra can
be given employing the linear response formalism (see e.g. [Smi99; HT99a]) which is justified by
the narrow line-width characteristic of Mössbauer transitions that typically leads to low excitation in
state-of-the-art experiments, even at high-brilliance third-generation synchrotron sources. Neglecting
polarization effects [SBH99], each target i in the beam path can be described by a scalar transfer
function T̂i(ω) in the frequency domain or (impulse) response function Ti(t) in the time domain. Here
and in the following, the “hat” denotes quantities in the frequency domain. Then, the outgoing field
is given by

Êout(ω) = T̂i(ω)Êin(ω) , (3.1)

Eout(t) = (Ti ∗ Ein)(t) (3.2)
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in the frequency- or time domain, respectively. Next to the convolution ∗ in Eq. (3.2), we also define
the cross-correlation ?,

(f ∗ g)(x) =

∫ ∞
−∞

dyf(x− y)g(y) , (3.3)

(f ? g)(x) =

∫ ∞
−∞

dyf∗(y − x)g(y) , (3.4)

for two complex-valued functions f, g of frequency or time variables x, y. The convolution can be
interpreted as applying a filter f to g, or a propagation of an input g at point y to the final output
f ∗g at point x by virtue of the response function f . The cross-correlation f ?g on the other hand can
be thought of as scanning the functions f and g for similarities by introducing relative shifts x between
them. Both quantities and their interpretations will turn out to be instrumental for understanding
the diagonal and horizontal structures appearing in Fourier-transformed time- and frequency-resolved
spectra, the real part of which is shown in the lower left plot of Fig. 3.1 as an example.
The responses of nuclear targets in forward scattering and grazing incidence geometry comprise

two fundamentally different scattering processes: Prompt scattering nonresonant with the nuclear
transition and coherent resonant scattering delayed by the slow decay of the nuclear transition. On
the time scale of the nuclear decay, the prompt radiation can be described by a Dirac-δ(t)-like pulse
and thus the outgoing field in Nuclear Resonant Scattering is of the form

Eout(t) = α[δ(t) + Si(t)] ∗ Ein(t) . (3.5)

Here, the prefactor α accounts for attenuation and dispersion imposed by the surrounding nonresonant
material and Si(t) denotes the nuclear resonant part of the target’s response. A two-target setup
formed by a reference absorber foil Ta (analyzer) and an unknown target Tt in forward scattering
geometry as depicted in Fig. 3.1 can be described by the total response function T (t) = (Tt ∗ Ta)(t).
The response of the reference absorber with tunable transition frequency ωa + ∆ and relative phase
φ between the prompt and scattered part can be written as

Ta(t,∆, φ) = αa
[
δ(t) + e−i∆teiφSa(t)

]
. (3.6)

Note that, typically, we will consider thin reference absorbers whose spectral features are more narrow
than those of the target absorber. However, the subsequent analysis does not employ approximations
of the reference absorber’s response function based on this thin-analyzer limit, and our numerical
results below will exhibit effects beyond this limit. In the following, for notational brevity, we will
absorb the detuning and phase dependence into the nuclear scattering response as

Sa(t,∆, φ) = e−i∆teiφSa(t) , (3.7)

and suppress the dependence on φ throughout this Section as phase control will become of relevance
only later in Sec.3.4.
With these considerations, the experimentally accessible time- and frequency-dependent intensity

at the detector can be expressed in terms of response functions as

I(t,∆) = |(T ∗ Ein)(t)|2 = (T ∗ Ein)∗(t) (T ∗ Ein)(t) , (3.8)

where the ∆-dependence arises via Ta in the response function T . Such two-dimensional time- and
frequency-resolved spectra allow for a much more stringent comparison of experimental data to theory
predictions than the corresponding one-dimensional time-spectra or energy-spectra alone, and have
been measured in recent experiments [Hee+13; Hee+17; Hee+21]

3.2.2 Frequency-frequency correlation spectrum
In order to discuss spectral correlations, we define the frequency-frequency correlation (FFC) spectrum
as the Fourier-transform of the experimentally accessible intensity Eq. (3.8) along the time axis,

I(ν,∆) =

∫ ∞
−∞

dt eiνt I(t,∆) (3.9)

= E2
0

∫ ∞
−∞

dt eiνt T ∗(t) T (t) =
E2

0

2π
(T̂ ? T̂ )(ν) , (3.10)
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Figure 3.2: Decomposition of FFC spectra into single-target and two-target contributions. (a) shows the
real part of the FFC spectrum I(ν,∆) after removal of the off-resonant background. It can be separated into
two parts shown in (b) and (c). The first part in (b) is the sum of the individual responses of target and
analyzer, corrected for the non-resonant absorption. The horizontal structures are due to quantum beats in
the target. As guide to the eye, the relevant mutual detunings between the target transitions are indicated
by dashed red lines. (c) is the difference between the spectra in (a) and (b). This spectrum is dominated
by diagonal structures, which originate from the interference of the resonant scattering off of the different
target resonances with the resonant analyzer response. These results are obtained for a 2µm thick enriched
α − 57Fe target with hyperfine field B = 33.3 T and a stainless-steel single-line analyzer as described in the
main text. The corresponding level structure and the relevant transitions in the target are shown in Fig. 2.1.
The orange, red and green transitions describe the scattering of left-circularly, linearly and right-circularly
polarized light, respectively.

where the initial pulse was written as Ein(t) = E0δ(t) as it is typically orders of magnitude shorter
than the nuclear evolution time scales. Note that I(t,∆) vanishes for times t < 0 since the excita-
tion occurs at t = 0. However, the symmetric integration will allow us to derive simple analytical
expressions for the case with detection time gating in Sec. III D. Interestingly, the FFC spectrum
Eq. (3.9) can be expressed as the (spectral) auto-correlation of the total response function T̂ . The
result Eq. (3.10) can thus be regarded as a frequency-domain instance of the Wiener-Khinchin theo-
rem which relates the Fourier transform of the power spectral density |T (t)|2 to the autocorrelation
(T̂ ? T̂ )(ν) (see, e.g., [Eng07]). As we will see in the following, the Fourier transformation in Eq. (3.9)
translates temporal interference effects into spectral correlations from which spectral features and the
phase information of the nuclear target can be extracted. However, it is important to note that the
FFC spectrum itself is not an intensity, as it is complex-valued for general Fourier frequencies ν. The
reason is that it is derived via the Fourier transform from the experimentally accessible real-valued
intensity. Regarding previous detection schemes using single-line reference absorbers as mentioned
in the introduction, we note that the FFC spectrum reduces to the real-valued time-integrated spec-
trum for ν = 0 (cf. [CCL96]). By only integrating over certain parts of the time-axis, late-time
and stroboscopic spectra (see, e.g. [Cal+03]) can be recovered from the same ν = 0 contribution.
In this sense, the FFC spectrum can be regarded as a generalization of these methods to arbitrary
Fourier frequencies ν using the same data set. The case where the signal at early times is discarded,
is discussed in more detail in Sec. 3.3.4 and appendix A.1. In the following, we focus on the ideal
case in which all times are available for data analysis in order to derive analytical expressions for the
most relevant features of these spectra.
A numerical example for the FFC spectrum in Eq. (3.9) is given in Fig. 3.1. The bottom-right

panel shows the experimentally accessible time- and frequency-resolved intensity I(t,∆) in Eq. (3.8).
The bottom-left panel shows the real part of the FFC spectrum in Eq. (3.9), which is dominated
by a set of horizontal and diagonal spectral features in the ∆−ν-plane. Note, that throughout this
paper, we only plot and analyze the positive ν branch of the FFC spectrum since the inversion of the
Fourier frequency ν → −ν leads to complex conjugation of the FFC signal. The main part of our
FFC analysis, however, will be carried out on its real part or absolute value and thus the negative ν
branch contains only redundant information.
For an interpretation of these diagonal features, we rewrite the spectral auto-correlation function

Eq. (3.10) using the Fourier-domain response functions

T̂ (ω) = T̂t(ω)T̂a(ω) , T̂a(ω,∆, φ) = αa

[
1 + Ŝa(ω,∆, φ)

]
(3.11)
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as

I(ν,∆) =
E2

0 |αa|2
2π

[
(T̂t ? T̂t)(ν) + (T̂t ? T̂tŜa)(ν) + (T̂tŜa ? T̂t)(ν) + (T̂tŜa ? T̂tŜa)(ν)

]
. (3.12)

Eq.(3.11) shows the clear separation of nonresonant (electronic) scattering, which is approximately
constant on the scale of the nuclear resonances, and the frequency-dependent nuclear resonant scat-
tering in form of the nuclear resonant response Sa(ω,∆, φ) in the frequency-domain. This separation
is crucial for the evaluation of the FFC spectrum in the form of Eq.(3.12), the single parts of which
can be interpreted as follows: the first term describes spectral correlations between different transi-
tions in the target, as will be further discussed below. The other three terms contain the contribution
T̂tŜa = αt[Ŝa + ŜaŜt] combining target and analyzer. Its first addend ∼ Ŝa arises from the afore-
mentioned nonresonant (electronic) scattering in the target followed by resonant (nuclear) scattering
processes in the analyzer foil. It forms the basis of the heterodyne-type detection schemes which
determine the target response using interference between radiation emitted from the target and an-
alyzer, respectively (cf. [Cal+05; R.C+00]). It will turn out to be the main origin of the diagonal
structure found in FFC spectra. The second addend ∼ ŜaŜt = Ŝa,t, known as radiative coupling
[Smi99; HT99a; Sch+02b; Smi+05], describes processes with resonant scattering in both analyzer
and target. In the following, we will exploit that these two scattering contributions are naturally
separated owing to their different scattering amplitudes as a function of detuning between analyzer
and target and will focus on the first contribution, as it dominates the FFC spectra in the large
analyzer-target detuning limit.

3.2.3 Large analyzer-target detuning limit

The resonantly scattered part of the analyzer response Ŝa(ω) is nonzero in the vicinity of the resonance
frequency ω = ωa + ∆ only. For the same reason, the full target response becomes spectrally flat
far-off nuclear resonance, i.e., T̂t(ω) ≈ αt. As a result, we can approximate

T̂t(ω)Ŝa(ω) ≈ αtŜa(ω) (3.13)

in the limit of large detunings ∆+ωa−ωt between the analyzer and target transitions with frequencies
ωt. In this approximation, the spectral auto-correlation function can be written as

Ioff(ν,∆) ≈ E2
0 |αa|2
2π

[
(T̂t ? T̂t)(ν) + |αt|2(Ŝa ? Ŝa)(ν) + αt(T̂t ? Ŝa)(ν) + α∗t (Ŝa ? T̂t)(ν)

]
. (3.14)

The first two terms correspond to the full target response F [|Tt(t)|2] and the resonantly scattered part
of the analyzer response F [|Sa(t)|2], where F denotes the Fourier transform. These contributions can
be determined from separate measurements of the time-dependent scattered intensity of the target
and the analyzer alone, i.e., in the absence of the respective other target. Their complex-valued
contributions to Eq. (3.14) then follow from a Fourier transformation analogous to Eq. (3.9).
This separation of the single-stage contributions T̂t ? T̂t and Ŝa ? Ŝa from the FFC spectrum is

illustrated in Fig. 3.2. The full FFC spectrum in panel (a) decomposes into the single-stage response
parts shown in (b) and the residual two-target contributions in (c). Clearly, the single-stage responses
correspond to the horizontal lines in (a) since they do not depend on ∆, whereas the two-target parts
give rise to the diagonal lines. Note that, if the single-stage contributions are removed by subtracting
the time-resolved analyzer and target intensities, the count rates of the three measurements of the
time- and frequency-resolved spectrum, the time-resolved target spectrum and the time-resolved
analyzer spectrum, have to be adjusted to each other, e.g. by adapting the count rates such that
after subtraction the horizontal lines have been removed. Alternatively, the horizontal lines can be
removed directly from the FFC spectrum by determining their vertical position and shape far away
from the diagonal structure. As these contribution to the FFC spectrum are detuning-independent, a
subtraction of the result directly clears the horizontal lines from the entire spectrum without the need
of additional measurements. We pursue the first approach in the numerical analysis in Sec. 3.3, while
the second one is applied to the horizontal lines appearing in the sum spectrum Iinv in Sec. 3.4.1.
After subtracting the single-stage contributions, we remove the constant off-resonant background

contribution to T̂t, which can be written in the same form as Eq. (3.11), i.e. the part proportional
to |αt|2 in the second line of Eq. (3.14), to study the nuclear resonant part Ŝt of the response alone.
This can be done, e.g. by rejecting the first few nanoseconds after pulse arrival at the detector. Then,
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finally, the spectral auto-correlation function in the large analyzer-target detuning limit Eq. (3.14)
can be written as

IDia(ν,∆) =
INR0

2π

[
(Ŝa ? Ŝt)(ν) + (Ŝ∗a ? Ŝ

∗
t )(−ν)

]
, (3.15)

where we used (f ? g)(ν) = (g∗ ? f∗)(−ν). Further, we defined INR0 = E2
0 |αaαt|2 which describes the

intensity at the detector after the two-target setup in the absence of nuclear scattering.
It is important to note that throughout the derivation of Eq. (3.15), no assumptions were made

on the analyzer and target response functions, except for the general features that the scattering
contributions to the response functions cover only a limited spectral region, and that the full response
function is spectrally flat outside this nuclear resonance region. Therefore, the expression Eq. (3.15)
holds for general nuclear targets.
The interpretation of Eq. (3.15) will be discussed in more detail in Sec. 3.2.5 which also reveals

its relation to the diagonal structures in the FFC spectrum and how it can be employed to extract
the complex-valued nuclear resonant part of the target response from experimentally accessible FFC
spectra.

3.2.4 Relation to off-resonant methods in the time domain
The derivation of Eq. (3.15) relied on the large analyzer-target detuning, in order to isolate a single
scattering channel of interest. In the literature, several methods have been reported which employ a
similar parameter regime in order to study time- and frequency-resolved Nuclear Resonant Scattering
spectra, specifically for the recovery of the complex-valued target response function [Cal+05; Goe+19].
These latter methods operate in the time-domain, and we can connect our energy-domain result
Eq. (3.15) to them via the so-called cross-correlation theorem [Wei] as

IRM (ν,∆) =
INR0

2π

[
(Ŝt ? Ŝa)(ν) + (Ŝa ? Ŝt)(ν)

]
=
INR0

2π

{(
F [S∗t (t)] ∗ F [Sa(t)]

)
(ν) +

(
F [S∗a(t)] ∗ F [St(t)]

)
(ν)
}

=2INR0

∫ ∞
−∞

dteiνtRe [S∗t (t)Sa(t)] . (3.16)

We see that the spectral cross-correlation between target and analyzer response are mapped to the
interference between the corresponding time-domain responses and thus, studying the diagonal struc-
ture in the FFC spectrum is analogous to studying the hyperbolic interference pattern appearing in
the time- and frequency-resolved intensities.
Our analysis below exploits specific features of the energy-domain representation, and extends

the previous results in several ways. Most notably, we will discuss the spectroscopy of thin-film
cavities probed in grazing incidence, and show that the off-resonant approaches allow one to access
the nuclear target response alone, without the usual interference with the electronic scattering on the
cavity structure.
Further, it is important to note that both the energy- and time-domain approaches discussed so

far are restricted to off-resonant spectral regions, in which the radiative coupling contributions are
negligible. Hence, data recorded near resonance between analyzer and target cannot be employed
for the analysis and, as a consequence, these spectroscopy methods do not allow one to access the
interesting regime in which radiative couplings substantially modify the target dynamics [Sch+02b;
Smi+05; Hee+21; SS22; Hee+22]. To overcome these limitations, below in Sec. 3.4, we will discuss a
method to suppress different scattering channels to become more independent of the large analyzer-
target detuning limit or related approximations, and will demonstrate its advantages by comparison
to the off-resonant method.
A brief comparison of the off-resonant methods to the so-called late-time integration spectroscopy

methods is given in Appendix A.1.

3.2.5 Interpretation of the frequency-frequency correlation spectrum
After having derived the spectral auto-correlation function Eq. (3.10) in the large analyzer-detuning
limit Eq. (3.15), and hence a representation of the FFC spectrum in terms of response functions in
this limit, we now turn to its interpretation, which will form the basis for further analysis below.
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Thin-analyzer limit

To this end, we for the moment assume an idealized case of a single-line analyzer with negligible line-
width and absorption αa and resonance frequency ωa + ∆ given by the scattering response function

Ŝa(ω,∆) = δ(ω −∆− ωa). (3.17)

Then, Eq. (3.15) simplifies to

Iid(ν,∆) =
INR0

2π

[
Ŝt(ωa + ∆ + ν) + Ŝ∗t (ωa + ∆− ν)

]
. (3.18)

Thus, in this idealized (“id”) analyzer case, the FFC spectrum provides direct access to the desired
nuclear resonant target response Ŝt. Interestingly, the two contributions of Ŝt in Eq. (3.18) are
centered around ωa + ∆ ± ν. This can be understood by noting that the analyzer response at
ωa + ∆ is shifted by the Fourier frequency ±ν in the cross correlation. We can thus identify the two
contributions as the origin of the two branches of the diagonal structures with positive or negative
slopes in the FFC spectrum.
Below, we will also consider analyzers with finite thickness, in which case Eq. (3.18) generalizes

to Eq. (3.15), i.e., the target response is additionally cross-correlated with the analyzer response
function.
As a final remark, we note that, while the diagonal structure is directly related to the nuclear

resonant target response Ŝt, the FFC spectrum in principle also allows to study the full target
response T̂t if the nonresonant background is not removed in the derivation of Eq.(3.15), at the cost
of retaining a large nonresonant background in the FFC spectrum. This approach, however, is out of
the scope of this publication.

Extracting information on the target response from the diagonal structures in the FFC
spectrum

As a result of Eq. (3.18), the target can be characterized via the diagonal structures in the FFC
spectrum in two different ways. First, the diagonals are governed by the relation

ν(∆) = ±(∆− ωt + ωa) , (3.19)

which defines lines in the ν-∆-plane with slope ±1 and offset ±(ωa − ωt). Thus, upon extrapolating
the diagonals in the FFC spectrum, they both cross the ν = 0 coordinate axis at ∆ = ωt − ωa, and
thereby provide access to the target transition frequency. Note that this argument generalizes to
multiple target transitions as discussed below.
Second, one may analyze the spectral shape of the diagonals in the FFC spectrum as function of

∆ or ν. From Eq. (3.18) it follows that in both cases, this shape corresponds to the desired shape of
the nuclear resonant target response. Note that the FFC spectrum is complex-valued, and thereby
provides access to the amplitude and the phase of the resonant response Ŝt. This “phase problem”
of extracting the phase of a target response is an ubiquitous problem in spectroscopy, imaging and
diffraction experiments [ANM11; Tay03; Stu01; Cal+05].
Both approaches will be discussed in Sec. 3.3. There, the more realistic situation with a finite

analyzer width in Eq. (3.15) will be considered. Then, the target spectrum is broadened and modified
in amplitude through the correlation with the analyzer spectrum. Therefore, in practice, analyzers
with a spectrum narrow as compared to the desired target spectrum should be employed. Further,
different horizontal and vertical cuts through the diagonals can be combined in order to reduce
uncertainties in the recovery of the target response.

Horizontal structures in the FFC spectrum

The horizontal lines appearing in the FFC spectrum (c.f. Fig. 3.2) can be attributed to a beating
of light scattered on target transitions with different resonance frequencies. The different scattering
channels interfere due to the coherent nature of the scattering, giving rise to the so-called quantum
beats [Smi99; HT99a; Röh04]. As in the case of the diagonal structures in the FFC spectrum, the
Fourier-transform of the time- and frequency resolved intensity of this beating pattern will peak
whenever the Fourier frequency ν equals one of the detunings between a pair of interfering hyperfine
transitions (Fig.3.2 (b)). Note, however, that not all detunings between hyperfine transitions, which
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are indicated in Fig.3.2 (c), appear as horizontal lines in the spectrum. This is due to the fact that
in our calculation the sample is irradiated by an unpolarized beam and the hyperfine field is oriented
perpendicularly to the beam direction. Hence, photons scattered off the ∆m = 0 and ∆m = ±1 are
orthogonally polarized and do not interfere with each other (cf. [SBH99]) and thus the corresponding
peaks/lines do not appear in Fig.3.2.

3.3 Analysis of the diagonal structure
In the previous Sec. 3.2.5, we have shown that the diagonal structure in the FFC spectrum is formed
by correlations of analyzer and target responses centered around positions ν(∆) = ±(∆ − ωt +
ωa). This allows for the determination of spectral target parameters by extrapolating the diagonals
towards the crossing point with the ν- or ∆-axis. Furthermore, horizontal or vertical cuts through the
diagonals provide access to the complex-valued nuclear resonant part of the target response function Ŝt
(cross-correlated with the analyzer response function). In this Section, we demonstrate the practical
feasibility of both of these approaches, by evaluating representative model data of nuclear forward
scattering targets and thin-film cavities.

3.3.1 Computational details on the analysis
The model data evaluated in this Section are calculated using the software package pynuss [Hee19],
which features methods to evaluate Nuclear Forward Scattering and cavity reflection spectra, similar
to the software package conuss [Stu00a], but is written in the language Python [VRD09] and features
substantial extensions for the analysis of quantum optical applications in Nuclear Resonant Scattering.
In pynuss, forward scattering and cavity reflection spectra are calculated using the transfer matrix
and layer formalism, respectively [Röh04; Stu00a]. Our model system is the Mössbauer isotope 57Fe
with transition energy ~ωt = 14.4keV and single-nucleus decay rate ~γ = 4.7neV. As analyzer, an
enriched stainless steel sample (57Fe 55Cr25Ni20) of thickness 1µm with the same transition frequency
ωa = ωt (the isomeric shift is neglected for simplicity, without loss of generality) and single-nucleus
line-width is used for the calculation. Different targets will be considered in the analysis, as specified
below.
Following Sec. 3.2, the diagonal analysis is then performed on the complex-valued quantity

Ibc(ν,∆) =F
[(
I(t,∆)− |αt|2Ia(t)− |αa|2It(t)

)
Θ(t− t1)

]
, (3.20)

where I(t,∆) is the experimentally accessible time- and frequency-resolved intensity, Ia(t) and It(t)
are the individual time-spectra of analyzer and target, respectively, and αa, αt the prefactors describ-
ing electronic absorption. Compared to the discussion of the FFC spectrum in the Sec. 3.2, these two
terms correspond to the single-stage contributions T̂t ? T̂t and Ŝa ? Ŝa in the first line of Eq. (3.14) In
the following discussion we will refer to Ibc(ν,∆) as the background-corrected FFC spectrum.
In practice, this quantity can be measured in different ways. One approach is to measure I(t,∆),

Ia(t) and It(t) separately. One then has to consider possible variations in the total number of
resonant incident photons contributing to the different spectra in order to perform the subtraction.
Alternatively, one can measure I(t,∆) only, and then determine the ∆-independent background to
be subtracted directly in the FFC spectrum in regions far away from the diagonal structures. This
latter approach will be discussed in more detail in Sec. 3.4.
As discussed in Sec. 3.2.3, the background correction in Eq. (3.20) removes the horizontal lines and

low-frequency background as shown in Fig. 3.2. Further, the Heaviside Θ-function serves to exclude
the first few nanoseconds of the recorded intensity after the nuclear excitation, mainly for two reasons:
First, from a theoretical point of view, it is desirable to exclude the contribution from the prompt
pulse from the analysis since it is orders of magnitude more intense than the nuclear resonant response
and thus leads to a large background in the Fourier spectrum. This lower cutoff can, in principle,
be set during data evaluation if the spectrum has been measured reliably at all times. However, the
second reason for rejecting the intensity at early times is the fact that the prompt radiation leads
to a detector overload during the first few nanoseconds after pulse arrival. Thus, typically the first
few ns are not available for data evaluation. Throughout the analysis, we will first consider the ideal
case with all times available for data analysis and then discuss the effect of a finite measurement time
range in Sec. 3.3.4.
Regarding the discussion of the FFC spectrum and diagonal structure around Eq. (3.14) and

Eq. (3.15), the background removal via the time-gating Θ(t−t1) in Eq.(3.20) removes the off-resonant
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Table 3.1: Magnetic hyperfine splittings of 57Fe extracted using the line fits to the off-resonant FFC spec-
trum’s diagonal structures. The results compare results with and without optimization of the fit range, and
corresponding data for two different time gatings. The first column indicates reference values obtained from
a calculation using pynuss. All results are given in units of the single-nucleus line-width γ.

pynuss Ref. Off-resonant Off-resonant (opt.) Gating (20ns) Gating (40ns)

8.7596 8.652(25) 8.719(12) 8.83(32) 9.32(39)
32.0605 31.956(27) 32.053(17) 32.35 (51) 32.32(52)
55.3406 55.159(42) 55.267(15) 56.00(55) 55.1(1.1)

background proportional to |αt|2 in the second line of Eq. (3.14) (for details, the reader is referred
to the discussion in Sec. 3.2.3) and thus the background-corrected FFC spectrum is expected to be
described well by Eq. (3.15) in the large analyzer-target detuning limit, which will be exploited to
reconstruct the complex-valued nuclear resonant target response in Sec. 3.3.3.

3.3.2 Extracting spectral parameters via linear fits to the diagonal
structure

We start by performing linear fits to the diagonal structure, which we then extrapolate towards the
crossing points with the ν- or ∆-axes, in order to extract spectral information on the target such as
resonance energies. In spectroscopic applications of Nuclear Resonant Scattering, the spectra often
feature multiple splitted, broadened and shifted resonances, e.g., due to magnetic or electric hyperfine
fields. In such a multi-resonance case, the condition Eq. (3.19) generalizes to

νj(∆) = ±(∆− ω(j)
hf + ωa) (3.21)

with slope ±1 and points of intersection (ωa − ω(j)
hf ) with the ν-axis for each transition resonance

frequency ω(j)
hf separately. In order to extract these resonance frequencies via linear fits to the diagonal

structures in the FFC spectrum, one has to determine points along the diagonals through which the
lines should be fitted. In the following, we discuss two approaches to perform such linear fits, based
on horizontal or vertical sections through the FFC spectrum. Note that in both cases, each resonance
frequency ω

(j)
hf is obtained via a fit of a diagonal line with the offset as the single free parameter,

which combines data over a broad range of detunings values, thereby reducing the detrimental effect
of statistical or systematic uncertainties. These fits do not require prior knowledge about the target
systems, and in this sense are model-independent. This suggests the diagonal analysis of FFC spectra
as a versatile spectroscopic technique at pulsed x-ray sources.
As a specific example, we extract the magnetic hyperfine splittings of 57Fe with internal hyperfine

field B = 33.3T from the FFC spectra. As a reference to compare the linear fit results to, we
determine the three positive hyperfine transition frequencies as peak maxima of the nuclear resonant
target spectrum calculated with pynuss for a 0.3µm thin target foil. The results are tabulated as a
function of the single-nucleus line-width γ in Table 3.1 in the column “pynuss Ref.”.
Figure 3.3(a) shows the real part of the background-corrected FFC spectrum of a 2µm thick α−57Fe

foil irradiated by linearly polarized light in forward scattering geometry as given in Eq. (3.20). The
magnetic hyperfine field is oriented perpendicular to the beam propagation direction and tilted by an
angle of 45 degrees with respect to the beam polarization axis to ensure that all hyperfine transitions
are adressed during the scattering process. In computing the FFC spectrum, we first consider the
ideal case, by including intensities from times slightly after the x-ray excitation in order to suppress
the prompt non-resonant contribution, up to measurement times larger than 10γ−1 to ensure high
resolution along the ν-axis. The effect of more restricted measurement time intervals will be discussed
in Sec. 3.3.4 below. Further, we choose the real part of the (complex-valued) FFC spectrum for the
peak evaluation since it is more symmetric and spectrally narrower than its absolute value, as the
imaginary part features a broad asymmetric line shape.
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Vertical cuts along the ν-axis

The first approach employs vertical cuts along the ν-axis through the FFC spectrum. As an example,
we analyze diagonals with positive slope. In order to avoid spectral overlap with diagonals of negative
slope, we restrict the analysis to detunings ∆ which are larger in magnitude than the outermost
crossing point of the diagonals with the ν = 0 axis, as indicated by the red diagonal lines in Fig. 3.3(a).
For each such ∆, we analyze a vertical cut through the diagonal structure in the FFC spectrum, as
exemplified by the yellow line in Fig. 3.3(a). The section corresponding to the yellow line in (a)
is shown in (b), which shows that the maxima of the different diagonals are clearly resolved. The
respective lines formed by these maxima across different detunings are then linearly fitted with a
fixed slope of 1 and offset b. The detuning range considered for the linear fits is indicated by the red
lines in Fig.3.3(a), which represent the result of the linear fits. The fit parameters then allow one to
determine the transition frequencies ω(j)

hf relative to the resonance frequency ωa of the analyzer via
Eq. (3.21).
The results of this analysis for the three positive-valued hyperfine splittings ∆ω together with the

corresponding fit errors are given in Table 3.1 in the column “Off-resonant”. In order to check for
residual effects of resonant contributions on the diagonal structure at small detunings, we further re-
peated the above analysis for different ∆ fit ranges. To this end, we evaluated 20 fits j ∈ {1, 2, . . . , 20}
in which the first 5j datapoints (stepsize δ∆ = 0.5γ) with the lowest detunings ∆ were excluded.
Out of those 20 fits, we then chose the one with the lowest fit error as the optimized result. The
results of this procedure are shown in column “Off-resonant (opt.)” in Table 3.1. The comparison of
the unoptimized and optimized off-resonant fit results with the corresponding theory reference values
shows a good agreement within a 2% margin of the relative error which demonstrates the feasibility
of spectral parameter determination from the diagonal structure. Further, the optimized result yields
lower fit errors and more accurate results indicating that there indeed is a residual effect of resonant
(e.g., radiative coupling) effects or the negative-slope diagonal branches on the positive-slope diagonal
structure close to ∆ = 0.

Horizontal cuts along the ∆-axis

Alternatively, an analogous second approach based on horizontal cuts along the ∆-axis is possible.
This approach can be advantageous in case of finite measurement time range for the time-dependent
intensity imposed by experimental constraints such as the pulse structure of the x-ray source. The
reason is that this time range determines the frequency resolution along the ν axis in the FFC
spectrum. If this resolution becomes too coarse due to the experimental limitations, then an accurate
determination of the maxima along the vertical sections may be challenging. An example for this will
be discussed in Sec. 3.3.4. In contrast, the resolution along the horizontal ∆-axis is determined by
the Mössbauer drive, and can be chosen independent of the pulsed x-ray source characteristics. For
an analysis along the ∆-axis, smaller detunings ∆ should be avoided since they may be perturbed by
resonant effects such as the radiative coupling of analyzer and target. Further, also the tails of the
negative-slope diagonal structure branch may lead to a slight asymmetry of the positive-slope branch
and vice versa at low ∆. In practice, it is possible to perform both the horizontal and the vertical
cut analysis on the same data set, and to compare the results for a consistency check.
Summarizing this part on extracting spectral parameters, we conclude that the results of the

analysis underpin the theoretical explanation of the diagonal structure given in Sec. 3.2.2 and provide
us with an intuitive and simple way of determining the spectral structure of nuclear targets from FFC
spectra.

3.3.3 Extracting the resonant target response function via sections
through the diagonal structure

In this Subsection, we consider the second method to extract information from the diagonal structure
in the FFC spectrum, by making use of the fact that horizontal or vertical cuts through the diagonals
in the limit of large analyzer-target detuning provide access to the complex-valued resonant target
response function. In the large analyzer-target detuning and thin-analyzer limit, this follows from
Eq. (3.18), which states that the FFC spectrum is expected to be essentially proportional to the
desired nuclear resonant part of the target response. For thicker analyzers, this result generalizes to
Eq. (3.15), which shows that then the FFC spectrum is determined by the cross-correlation between
nuclear resonant part of the target response and analyzer response.
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Figure 3.3: Extraction of spectral parameters via linear fits to the diagonal structure. (a) shows the real
part of the FFC spectrum for a 2µm thick α-iron enriched in 57Fe probed in Nuclear Forward Scattering
(see main text for details). The analyzer is a stainless steel foil as described in the main text. The diagonal
structure is clearly visible. The line fits used to extract the resonance positions are marked in red. (b) shows
a vertical cut through (a) at a detuning ∆ = 100γ. This detuning is indicated by the yellow vertical line in
(a). The six resonances of the magnetically split α-Fe spectrum can clearly be distinguished.

Extraction of the complex-valued resonant target response function in nuclear forward
scattering

As a first example, we consider the same target and analyzer configuration as in Sec. 3.3.2. To this
end, as the reference, we calculate the nuclear resonant target response Ŝt(∆) alone using pynuss.
Figure 3.4(a) shows the desired energy spectrum |Ŝt(∆)|2 obtained with this calculation.
Our goal then is to determine the complex-valued nuclear target response Ŝt(∆) itself from the

experimentally accessible FFC spectrum which, in turn, is complex-valued as the Fourier transform
of the time- and frequency-resolved intensity. Following Eq. (3.15), in the large target-analyzer
detuning case, the complex-valued FFC spectrum corresponds to Ŝt(∆), cross-correlated with the
analyzer response Ŝa(∆). In order to verify this prediction, we show the absolute value of a vertical
cut through the FFC spectrum at ∆ = 100γ as the dashed blue line in Fig. 3.4(b). The black solid
line shows the absolute value of the cross-correlated nuclear target response Ŝt(∆), according to
Eq. (3.15), obtained from the reference calculation using pynuss. It can be seen that the two curves
agree very well.
The corresponding results for the phase of the cross-correlated Ŝt(∆) are shown in Fig. 3.4(c).

Again, the two curves agree well, except for lower frequencies ν, where the phase of the FFC spectrum
deviates from the reference calculation. This deviation can be attributed to resonant couplings
between target and analyzer which lead to a low-frequency background at lower ν. It shows that
resonant effects do also affect the spectral shape of vertical sections through the FFC spectrum and
suggests that small values of ν should be avoided as well. The influence of this defect can be reduced
by choosing larger detunings ∆ for the vertical cut, such that the relevant part of the target spectrum
moves away from lower ν values.
The effect of the cross-correlation of the desired target response with the analyzer response in the

FFC spectrum can be seen in the comparison of Fig. 3.4(a) and (b). The resonances in the spectrum
in Fig. 3.4(a) exhibit so-called double-hump profiles, which is a well-known effect in thicker targets
(see, e.g., [Smi99]). In contrast, these effects are not visible in (b) due to the cross-correlation with
the analyzer response, which broadens the observed spectrum.
Overall, we find that the FFC spectrum indeed provides access to the complex-valued nuclear
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Figure 3.4: Extraction of the target response function. Results are shown for a target and analyzer config-
uration as in Fig. 3.3. (a) shows the true nuclear resonant target spectrum without analyzer as a reference,
evaluated using the extsc pynuss software package. (b) depicts the absolute value of a vertical cut at ∆ = 100γ
through the FFC spectrum (dashed blue line). For comparison, the absolute value of the reference nuclear
resonant target response correlated with the analyzer response according to eq.(3.15) is shown as solid black
line. (c) shows the corresponding phase of the two quantities in (b).

resonant target response function. The broadening due to the cross-correlation with the analyzer
response again highlights the usefulness of thin analyzers, which allow one to resolve target spectra
with higher spectral resolution.

Extraction of the complex-valued resonant target response function in reflection from
x-ray cavities

As a second example, we discuss the recovery of the complex-valued resonant target response function
for Mössbauer nuclei embedded in x-ray cavities. Similar to the forward-scattering case in the previous
section, the nuclear energy spectra observed in reflection and evaluated by standard methods like
the late-time integration are modified by an interference with the electronic response of the cavity
structure [Röh04]. This interference is particularly prominent in the cavity case, since it depends
on the x-ray incidence angle around the cavity resonance, and may lead to a full response with
an asymmetric Fano profile [Hee+15a]. For this reason, the extraction of the nuclear response,
unperturbed by the electronic cavity response, from the FFC spectrum is of particular relevance for
the field of nuclear quantum optics, as discussed below.
For the cavity settings, all calculations are performed using the software package Pynuss [Hee19],

which uses the layer formalism [Röh04] to calculate the full (resonant and nonresonant) response,
see Sec. 3.3.1. As our model system, we use a thin-film cavity with layer structure 2.2nm Pt/10nm
C/0.6nm 57Fe/10nm C/ Pt from top to bottom probed by near-resonant x-rays in grazing incidence
(cf. Fig. 3.1). Here, the last Pt layer is assumed to be sufficiently thick to prevent any transmission
through this layer. Due to the low thickness of the Fe layer, magnetic long-range order is absent, and
the nuclei do not experience a magnetic hyperfine field. As a result, no magnetic splitting appears
in the spectra. Fig. 3.5 shows the background-corrected FFC spectrum of such a cavity at incidence
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Figure 3.5: Extraction of the complex-valued target response function in reflection for Mössbauer nuclei
embedded in a thin-film cavity. The Figure shows the absolute value squared of the background-corrected
FFC spectrum as given in Eq. (3.20) with the intensity at time zero set to zero. The cavity structure is
2.2nm Pt/10nm C/0.6nm 57Fe/10nm C/ Pt (layer structure from the top to the bottom), and the probing
x-rays impinge at a fixed incidence angle θ = 2.8mrad. In comparison to Fig. 3.3(a), the single-line nature of
the nuclear response is clearly visible, as well as an asymmetry of the spectrum around ∆ = 0. The yellow
vertical line indicates the cut at ∆ = 100γ used in the further analysis.

angle θ = 2.8mrad, specifically, the absolute value squared of the quantity given in Eq. (3.20) with
the intensity at time zero set to zero.
In contrast to forward scattering, the electronic response of the cavity is different in that it also

has a resonance structure, due to the different modes of the cavity. As a result, the magnitude of the
off-resonant electronic background observed in reflection varies with the x-rays incidence angle around
the cavity resonance, as the variation in the angle effectively scans the incident light frequency across
the cavity resonance. On the other hand, a variation of the incidence angle also leads to a relative
phase between the electronic and the nuclear response, such that the Lorentzian response of the
nuclei appears as Fano line shapes in the total cavity response [Hee+15a] (for details, see Appendix
A.2). Both effects are clearly visible in Fig. 3.6(a), which shows reference cavity spectra evaluated
using pynuss for different incidence angles. The nuclear response corresponds to the spectral Fano
structures around ∆ = 0. The off-resonant electronic background becomes visible at large detunings
|∆| � γ away from the nuclear resonance.
In Fig. 3.6(b), we show the corresponding nuclear target responses reconstructed via vertical cuts

through the FFC spectrum, as illustrated in Fig. 3.5 for one particular incidence angle. In contrast
to the reference spectra in (a), in all cases, the reconstructed resonances are of Lorentzian shape, and
the off-resonant background is low. In the following, we will show that this difference to Fig. 3.6(a)
is due to the fact that the recovery via the FFC spectrum determines the target response function
independent of the electronic scattering contribution. As a result, no off-resonant background con-
tributes, and the nuclear line shape is observed in its original Lorentzian form. We note that this is
a qualitative difference to the standard late-time integration method for measuring energy spectra of
cavity targets, which does not provide access to the nuclear response alone.
As a first approach to verifying the recovery of the nuclear target response alone, we exploit that

the resonances for the various incidence angles in Fig. 3.6(b) differ in line-width and center frequency.
The variations of the line-width with the incidence angle in Fig. 3.6(b) are known in the literature
as superradiance γs [Dic54; GH82; Gar11; Röh+10; Chu+18; HT99a; LHH60a; KAK79; GRK17]
and the variations in the resonance position are related to the collective Lamb shift ∆CLS [Röh+10;
LKE16a; SS89a; FHM73; Scu09b; RJ16; Kea+12; Pey+18; Roo+16; Bro+16]. They are of particular
relevance, since the manipulation of the resonance properties via these collective effects forms the
basis for the implementation of more advanced quantum optical level schemes with nuclei [Röh+12;
HE13; Hee+13; Hee+15c; Hab+16; Hab+17; Len+20; KCP20a; DLE22b; DLE22a; RE21b].
In the ideal two-level case, the nuclear response comprises a single Lorentzian [HE13; Len+20;

KCP20a] which can be characterized by the parameters γs and ∆CLS only. In the following, we
therefore show that these nuclear parameters can be determined from FFC spectra, and thereby the
nuclear response. To this end, we employ a fit model to extract γs and ∆CLS from cuts through the
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Figure 3.6: Cavity spectra for different x-ray incidence angles θ1 = 2.75mrad, θ2 = 2.8mrad, θ3 = 3.0mrad
and θ4 = 3.3mrad. (a) shows full reference cavity reflection spectra calculated using the software package
pynuss. The effect of the electronic scattering on the cavity structure is clearly visible in the off-resonant
background varying with the incidence angle, and in the modification of the Lorentzian nuclear response into a
Fano line profile. (b) shows the nuclear target response recovered from the FFC spectrum by vertical sections
at ∆ = 100γ (cf. yellow line in Fig. 3.5). These spectra are not affected by the electronic scattering on the
cavity, and therefore remain of Lorentzian shape for all incidence angles. Therefore, the dependence of the
superradiant line broadening and the resonance energy shift on the incidence angle become clearly visible.

FFC spectra (details on the fit model are provided in Appendix A.2). For ∆CLS , we alternatively
use a simple determination of the maxima of the cuts through the FFC spectrum, similar to the
resonance determination in Sec. 3.3.3.
The results are shown in Fig. 3.7. Panel (a) shows the shift ∆CLS of the resonance energy as

function of the incidence angle θ. The red dashed line depicts the parameters extracted via the fit to
the cut through the FFC spectrum. Results from the simple maxima determination are shown as the
green dashed line. In comparison, the black solid line shows the corresponding values obtained via
Fano line fits to the reference cavity spectra in Fig. 3.6(a) calculated using pynuss. It can be seen that
the overall agreement of all curves is good across the entire angular range. At two incidence angles,
around θ ≈ 2.5mrad and θ ≈ 3.1mrad, the simple maxima determination method suffers slightly
larger deviations from the other two curves. This deviation can be traced back to uncertainties in
the maxima determination because of the residual double-hump spectrum of the analyzer, which
becomes relevant since the line-width of the cavity falls below the effective analyzer width at off-
resonant angles and thus the shape of the analyzer response dominates the cross-correlation of both
response functions.
Fig. 3.7(b) shows corresponding results for the collectively-enhanced total decay rate Γc = (γ +

γs)/2 as function of the incidence angle θ. As expected [HT99a; SS89a; Röh+10; LKE16a], the
superradiance is highest close to the cavity resonance. Again, the agreement between results extracted
from the FFC spectrum to the reference calculations is good. Towards off-resonant incidence angles,
the line-width extracted from the FFC spectrum saturates to a value slightly larger than that of the
reference spectra. The reason for this is the convolution with the analyzer response, which sets a
lower limit to the line-width in the FFC spectrum. In contrast, the resonance position in Fig. 3.7(a)
is not affected by the broadening due to the cross-correlation with the analyzer response.

Determination of the complex-valued nuclear response of an EIT cavity

Next, we demonstrate that the FFC spectrum also provides direct access to the complex-valued
nuclear response of a more complex cavity structure, using the relevant example of a cavity featuring
electromagnetically-induced transparency (EIT) [FIM05; Röh+12; Len+20]. More specifically, we
consider a layer structure Pd(1.5nm)/ B4C(49.8nm)/ 57Fe(0.57nm)/ B4C(97.1nm)/ 57Fe(0.57nm)/
B4C(35.4nm)/ Pd(43.7nm)/ Si at incidence angle θ = 2.28mrad, as it was discussed in [DLE22a].
To recover the nuclear resonant target response from the diagonal structure, we consider vertical

cuts through the FFC spectrum at ∆ = −200γ, and show the corresponding real and imaginary
parts in Fig. 3.8. As a reference, the figure further shows the cross-correlation between the resonant
target and analyzer responses calculated using pynuss, i.e., it does not contain contributions from
the electronic response of the cavity. As in the forward scattering case, the spectral shape of both
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Figure 3.7: Collective nuclear parameters of the two-level system realized by the cavity structure in Fig. 3.5.
(a) shows the energy shift of the nuclear resonance related to the collective Lamb shift as function of the x-ray
incidence angle, and (b) the corresponding superradiantly enhanced decay rate. The red dashed lines are the
recovery results obtained from fitting a model to the FFC spectrum (see main text for details). The green
dashed line in (a) is obtained using a simple maximum determination. As a reference, the solid black line
shows the parameters obtained via a Fano line fit to the reference cavity spectrum calculated using pynuss.

real and imaginary part is reproduced well by the FFC spectrum, and we again find that the FFC
spectrum calculated from the diagonal spectra provides direct access to the complex-valued nuclear
target response. Note, that evaluation of the FFC spectrum at larger detunings ∆ compared to
the discussion in Sec. 3.3.3 reduces the low-frequency background that impedes the full response
reconstruction in the forward scattering case Fig. 3.4.
To summarize the results of Sec. 3.3.3, we showed that the complex-valued target response function

can be recovered from the FFC spectrum in the case of nuclear forward scattering as well as in the case
of reflection from a cavity. In the latter case, it is important to note that the method presented here
indeed provides access to the complex-valued nuclear target spectrum, independent of the background
of and interference with possible electronic scattering channels usually present in the cavity reflection
spectra. This is a key difference to other spectroscopy techniques such as the late-time integration,
which retrieve the absolute value of the total cavity reflection spectrum. The possibility to access
the complex-valued nuclear response alone is of considerable interest for the further development
of nuclear cavity QED, as discussed in [DLE22a], since the spectra corresponding to the nuclear
response relate to the quantum optical level scheme governing the nuclear dynamics inside the cavity.
Furthermore, from the recovered spectra, also the collectively-modified quantum optical level scheme
parameters can be extracted. Therefore, the techniques presented here are expected to fuel further
developments in nuclear quantum optics.

3.3.4 Finite Gating Times
Both, the theoretical discussion and the numerical results presented so far have assumed the ideal
case of all times from arrival of the prompt pulse at t1 = 0 at the detector until a time t2 � 1/γ,
where practically all primary and secondary radiation has decayed, being available for data analysis.
However, under realistic experimental conditions the first nanoseconds after pulse arrival can not be
used for reliable data evaluation due to detector overload caused by the large intensities of the prompt
radiation produced by accelerator-based light sources (cf.[R.C+00]). On the other hand, repetition
rates of these light sources set an upper limit to recording time after pulse arrival before the next
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Figure 3.8: Extraction of the nuclear response of a cavity-target probed in reflection. The figure shows the
(a) real (b) imaginary parts of a cut through the diagonal structure in the FFC spectrum along the ν axis
at detuning ∆ = −200γ (dashed blue curves). The solid black lines show the corresponding cross-correlation
of the nuclear resonant responses of cavity and analyzer as given by Eq. (3.15) as a reference. The dip in
the spectra is an electromagnetically induced transparency feature. The cavity layer structure is Pd(1.5nm)/
B4C(49.8nm)/ 57Fe(0.57nm)/ B4C(97.1nm)/ 57Fe(0.57nm)/ B4C(35.4nm)/ Pd(43.7nm)/ Si, and the x-ray
incidence angle is θ = 2.28mrad.

bunch hits the target and detector (cf. [Röh04]). To understand the effect of these restrictions on
the FFC spectra, we first reconsider the theoretical derivation of the Fourier-transformed time- and
frequency-resolved intensity given in section 3.2.2 by introducing finite integration boundaries and,
subsequently, discuss the applicability of diagonal analysis of magnetic hyperfine splitting in 57Fe
under these circumstances.

Theoretical analysis

For the theoretical discussion, we formally introduce Heaviside Θ-functions excluding the interval
[−t1, t1] and times above t2 as well as below −t2 to ensure proper symmetry in the Fourier domain.
The usual lower cutoff of the integral boundaries in the time-domain necessary for causality reasons
is part of the target response, i.e. Tt(t) ∼ Θ(t) (cf. Appendix A.3), and gives us this freedom in
choosing the form of the gating function at negative times in order to simplify the theoretical analysis.
In this case, the Fourier-transformed intensity reads

It1,t2(ν,∆) =E2
0

∫ ∞
−∞

dteiνtT ∗(t)T (t)Θ(|t| − t1)Θ(t2 − |t|)

=
E2

0

4π2

{
F [Θ(|t| − t1)Θ(t2 − |t|)] ∗ F [T ∗T ])

}
(ν)

=
E2

0

2π2

(
δt1,t2 ∗ (T̂ ? T̂ )

)
(ν) (3.22)

where the operator F denotes the Fourier transform and the (∗) and (?) operators the convolution
and cross-correlation as defined in Eqs. (3.3) and (3.4), respectively. Further, we introduced

δt1,t2(ν) =
1

2
F [Θ(|t| − t1)Θ(t2 − |t|)] (ν)
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Figure 3.9: Effect of time gating on the extraction of target parameters from the diagonals in the FFC
spectra. The two panels show FFC spectra as in Fig. 3.3, but with initial time vetos of (a) 20 ns and (b)
40 ns. In both cases, only times up to an upper limit of 192 ns are considered. Although the Fourier effects
due to the time windows are clearly visible, the data can still be reliably fitted with lines of slope one, as
indicated by the red lines.

=

∫ t2

t1

dt cos(νt) =
sin(νt2)− sin(νt1)

ν
.

The δt1,t2 -function acts as a convolutional filter on the autocorrelation of the response T̂ of the com-
plete setup, reduces frequency resolution by virtue of the upper integration boundary t2 and leads
to additional oscillations in the final spectrum characteristic of the chosen time-window [t1, t2] (cf.
[R.C+00; HE20]). In principle, these oscillations can be reduced by different means, e.g., experimen-
tally by using crossed polarizer-analyzer setups (cf. [Toe+95]), by choosing sufficiently late lower
cutoff times t1 (late-time integration) [Röh+10; Hee+15a] (see also Appendix A.1), by smoothing
the time window of the lower cutoff during data evaluation [Cal+05], or by stroboscopic detection
techniques [Cal+02; Cal+03]. Furthermore, event-based data acquisition providing access to time-
and frequency-resolved two-dimensional datasets allow one to choose and optimize the integration
limits after the experiment throughout the data analysis [Hee+17; Hee+21]. There are also estab-
lished deconvolution techniques which, however, face the challenge that the filter function δt1,t2 is
zero outside the time range [t1, t2].
Finally, we note that the time-gated expression Eq. (3.22) is consistent with the previous results

without time-gating, since

δt1,t2(ν)
t1→0−−−−→
t2→∞

πδ(ν) (3.23)

in the limit of vanishing time gating, where δ(ν) is the Dirac delta distribution. Then, Eq. (3.22)
reduces to Eq. (3.10).

Effect of temporal gating on the analysis of diagonal spectra

After having derived the expression for the FFC spectrum in the presence of gating, we now consider
the effect of the gating on the diagonal spectra analysis. For this, we again analyze our example of the
magnetic hyperfine splitting in 57Fe as described in Section 3.3.2, using spectra calculated according
to Eq. (3.20) with lower gating times t1 = 20ns, 40ns and upper integration time t2 = 192ns. The
latter upper integration limit corresponds to a typical time windows in experiments performed in
the 40-bunch mode at the P01 High Resolution Dynamics Beamline [Wil+10] at the synchrotron-
radiation facility PETRA III [Pet]. The results are shown in Fig. 3.9 and Table 3.1. It can be seen
that the resolution in Fourier space along the ν axis is decreased by lowering the upper boundary
t2. In addition to the lower resolution introduced via t2, well-known periodic structures distort the
spectra, an effect that is stronger in the case of the higher lower integration boundary t1 = 40ns due
to the stronger truncation of the Fourier transform along the time axis. Further, the visibility of the
diagonal structures reduces with increasing t1 such that the spectra become difficult to analyze for
gating times larger than t1 = 40ns.
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To overcome these limitations due to the gating, we applied the analysis procedure introduced in
Sec. 3.3.2 to cuts through the diagonal structure along the ∆ axis, which does not suffer from the
reduced resolution, as discussed in Sec. 3.3.2. For this reason, the ∆− and ν-axes are interchanged
in Fig. 3.9 as compared to Fig. 3.3(a). We found that the line fits marked as red lines in Fig. 3.9 still
could be performed reliably, and the hyperfine splittings obtained from the crossing points with the
ν-axis given in Table I under ”Gating (20ns)” and ”Gating (40ns)” are accurate up to relative errors
in the few percent range.
We therefore conclude that the peak analysis of the background-corrected FFC spectra involving

vertical or horizontal cuts through the diagonal structure combined with line fits through the series
of found peaks allows one to recover the nuclear target parameters via time- and frequency-resolved
Nuclear Resonant Scattering spectra even in the presence of considerable time gatings constraining
the measurement. Furthermore, a direct analysis of single cuts allows one to recover the complex-
valued nuclear part of the target response, although cross-correlated with the analyzer response. This
is particularly interesting for target nuclei embedded in thin-film cavities as the nuclear response
provides direct access to the underlying quantum optical level scheme, independent of the usual
interference with nonresonant electronic scattering off of the cavity structure. In this sense, our
method is complementary to existing analysis methods which provide access to the complete (resonant
and nonresonant) cavity response, thereby rendering the retrieval of the pure nuclear response more
difficult.

3.4 Analysis of the FFC spectrum beyond the large
target-analyzer detuning limit using phase control

In Sec. 3.2.2 we exploited that some of the different scattering pathways contributing to the total
detection signal (see Fig. 3.1) can be approximately isolated from the others in the large-detuning limit
between target and analyzer. This formed the basis for the off-resonant spectral analysis methods
discussed in the present work and the previous literature (cf. Sec. 3.2.4). However, this approach
faces several drawbacks. On the one hand, it fails in spectral regions where resonant and off-resonant
contributions to the signal overlap, thereby excluding the possibility to study resonant effects such as
radiative couplings between targets and related target-analyzer correlation effects. On the other hand,
only a restricted ∆ range of the diagonal spectra can be used for the off-resonant analysis, since these
overlapping parts cannot be disentangled close to resonance using the previously described recording
and analysis scheme. Motivated by this, in this Section, we discuss a more sophisticated method to
separate the total detection signal into its various contributions, which is based on a phase control
of the analyzer response. We demonstrate that this method can selectively remove undesired signal
contributions and thus allows access to a larger amount of data, thereby improving the stability of the
diagonal line fit analysis against residual resonant effects and the reconstruction of the phase-resolved
nuclear target response. In the future, it may further be employed to study resonant effects that
currently are discarded in the off-resonant analysis.
The basic idea of this approach is to conduct a series of measurements, systematically varying pa-

rameters that change the different scattering contributions in a controlled and unique way. Combining
the different data sets then allows one to separate the different scattering contributions. For example,
in the infrared to ultraviolet regime, coherent phase control of laser pulses is exploited to remove unde-
sired scattering contributions in collinear geometry by so-called phase cycling [HZ11; Tan08; Cho08;
Wit+20]. This raises the question, if similar methods could be applied in nuclear forward scattering
as well. While the phase between subsequent pulses at state-of-the-art accelerator-based x-ray light
sources can not be controlled, the control of the relative phase between the exciting x-ray pulse and the
light scattered off of the nuclei has been demonstrated using various approaches. Examples include the
rotation of the hyperfine field quantization axis [Shv+94; Shv94; Shv+96; PKE09; LPK12; WL18],
mechanical displacements of the sample after the excitation [Hel+91; Vag+14; SVK13; Hee+17;
Hee+21], or transient changes in the magnetic field strength [Boc+21]. In all cases, a rapid manip-
ulation is applied to the nuclei after the initial excitation has passed the sample, such that it only
affects the scattered light. Note that the latter two approaches in principle provide access to arbitrary
relative phases between incident and scattered light.
In the following, we show that such phase control allows one to separate different scattering con-

tributions without having to impose the large detuning limit or to conduct reference measurements
of target and analyzer alone. To this end, we denote the controllable relative phase between incident
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and scattered light in the analyzer as φ. We consider the ideal case in which the phase is applied
near-instantaneously after the initial excitation. Then, the analyzer response can be written as (cf.
Appendix A.4),

Ta(t,∆, φ) = αa
[
δ(t) + eiφSa(t,∆)

]
. (3.24)

It is well-known that the scattering off of two targets in general is not commutative [Smi+05]. In the
present case, the outgoing field behind both targets takes a different form depending on whether the
analyzer is placed before (subscript 1) or behind (subscript 2) the target in the beam propagation
direction (for details, see Appendix A.4):

E1(t,∆, φ) =E0αaαt
[
δ(t) + eiφSa(t,∆) + St(t) + eiφSa,t(t,∆)

]
, (3.25)

E2(t,∆, φ) =E0αaαt
[
δ(t) + eiφSa(t,∆) + St(t) + Sa,t(t,∆)

]
. (3.26)

In these expressions,

Sa,t(t,∆) =

∫ ∞
−∞

dωe−iωtSa(ω,∆)St(ω) (3.27)

describes the radiative coupling between analyzer and target in the time domain. In particular, the
radiative coupling contribution to the outgoing field depends on the ordering of analyzer and target,
since the controllable phase only affects the coupling term if the analyzer is placed in front of the
target (case 1). The reason is that in the reverse ordering (case 2), the analyzer phase change is
already completed before the scattered light from the upstream target reaches the analyzer, such that
no relative phases appear in the coupling term.
The time- and frequency-resolved intensity for the two orderings then evaluate to

I1(t,∆, φ) =Ib + 2INR0 Re
[
eiφS∗t Sa + eiφS∗t Sa,t + S∗aSa,t

]
, (3.28a)

I2(t,∆, φ) =Ib + 2INR0 Re
[
eiφS∗t Sa + S∗t Sa,t + eiφS∗aSa,t

]
. (3.28b)

Here, INR0 = E2
0 |αaαt|2 as introduced in Sec. 3.2.2. Further, the background intensity is given by

Ib = Ip + INR0

(
|St|2 + |Sa|2 + |Sa,t|2

)
. (3.29)

Ip comprises the terms containing the δ(t) function characteristic of the prompt unscattered con-
tributions, describing the incoming radiation as well as interference between the prompt pulse and
resonantly scattered radiation at t = 0. Like the other contributions in Ib, it is phase-independent if
the prompt radiation has passed before the phase imprint onto the analyzer response has taken place.
The intensities in Eqs. (3.28) comprise the four contributions Ib, S∗t Sa, S∗aSa,t and S∗t Sa,t. By

forming suitable sums or differences of two intensities recorded with appropriate phases, any two
combinations of the above contributions can be isolated, by suppressing the respective other two.
In the present context, the term S∗aSt is of primary interest, as it is the time-domain version of the

scattering paths in Eq. (3.15) which gives rise to the diagonal structure. Therefore, we focus on the
combinations

D1(t, χ) = I1(φ = χ)− I1(φ = χ+ π) = 4INR0 Re
[
eiχ (S∗t Sa + S∗t Sa,t)

]
, (3.30a)

D2(t, χ) = I2(φ = χ)− I2(φ = χ+ π) = 4INR0 Re
[
eiχ (S∗t Sa + S∗aSa,t)

]
, (3.30b)

S(t, χ) = I1(φ = χ+ π) + I2(φ = χ+ π)

= 2Ib + 2INR0 Re
[
−2eiχS∗t Sa + (1− eiχ) (S∗a + S∗t )Sa,t

]
. (3.30c)

which each isolate S∗aSt with one of the three other terms S∗aSa,t, S∗t Sa,t and Ib, respectively, if χ = 0
is chosen in S. Note that D1 and D2 each involve one particular ordering of target and analyzer
along the beam propagation direction, while S is a combination of both orderings. Further, the terms
S∗aSt in Eqs. (3.30) feature a prefactor of two as compared to the individual spectra Eqs. (3.28).
Corresponding to doubled statistics for the desired scattering contribution, this compensates for the
larger measurement time required to record two spectra for the sum- and difference evaluations. The
additional degree of freedom χ can be used to perform a tomography by scanning the phase of the
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Figure 3.10: FFC spectra obtained with phase-control of the resonant analyzer response. Each panel shows
a combination of two FFC spectra recorded with different phase settings: (a) shows the phase-combined
spectrum ISa with analyzer placed in front of the target. (b) shows the corresponding result ISt with
analyzer behind the target. (c) shows Iinv after removing the off-resonant background.

Table 3.2: Magnetic hyperfine splittings of 57Fe extracted from spectra using analyzer phase control. As in
Tab. 3.1, line fits to the off-resonant diagonal structures of the FFC spectrum are used. The different columns
compare results for the three phase-combined quantites in Eqs. (3.31), both, with and without optimization
of the fit range. The first column indicates reference values obtained from a calculation using pynuss. All
results are given in units of the single-nucleus line-width γ.

pynuss Ref. ISa ISa (opt.) ISt ISt (opt.) Iinv Iinv (opt.)

8.7596 8.689(23) 8.748(10) 8.819(2) 8.824(2) 8.854(9) 8.852(1)
32.0605 32.032(20) 32.104(12) 32.169(7) 32.193(5) 32.247(8) 32.241(4)
55.3406 55.245(24) 55.310(10) 55.336(13) 55.374(5) 55.416(6) 55.416(6)

desired scattering contribution. Such an analysis, however, is beyond the scope of this paper and a
value of χ = 0 is chosen as it recovers the form of the diagonal term S∗t Sa as discussed in previous
sections (cf. e.g. Eq.(3.16)).
In the following, we perform the FFC analysis developed in Sec. 3.3 on the detection signals in

Eqs. (3.30a-3.30c).

3.4.1 Extracting spectral parameters from spectra with phase control

We start with the extraction of spectral parameters as in Sec. 3.3.2, by applying line fits of slope one
to diagonals formed by the peak maxima of sections along the ν-axis. To allow for a comparison of the
different approaches, we again determine the hyperfine splittings of the 2µm thick α-iron target with
magnetic hyperfine field B = 33.3T. As in Sec. 3.3.2, the sample is irradiated with linearly polarized
light while the hyperfine field is oriented perpendicularly to the beam propagation direction and tilted
by 45 degrees with respect to the beam polarization axis, in order to observe all six transition lines
in the spectrum. For the spectral analysis then the real part of the FFC sum- and difference spectra

ISa(ν,∆) = F [D1(t, χ = 0)] , (3.31a)

ISt(ν,∆) = F [D2(t, χ = 0)] , (3.31b)

Iinv(ν,∆) = −F [S(t, χ = 0)Θ(t− t1)]− Ib(ν0) (3.31c)

are considered. The first spectra do not require additional corrections, since the background con-
tributions are automatically removed by taking the difference of two spectra with phase control in
Eqs. (3.30a, 3.30b). The third spectrum Eq. (3.31c) contains two background corrections. First, the
contribution of the initial prompt pulse is suppressed by the step function Θ(t − t1). Second, the
single-target contributions Ib(ν0) are removed. However, in contrast to the procedure in Eq. (3.20)
involving the subtraction of single-target spectra, here, we follow another approach, directly based on
the FFC spectra measured with both targets. For this, we make use of the fact that the FFC spectra
approximately reduce to the background in regions away from the diagonal structure. Specifically,
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we determine the background correction from the FFC contribution at the largest recorded detuning-
value ∆ for ν values up to an upper limit ν0 well below the diagonal structure. For ν values above
this threshold, we instead approximate the background by the FFC contribution at ∆ = 0. This way,
the background correction Ib(ν0) is obtained directly from the FFC spectra, in regions away from the
diagonals for the entire ν range.
For the numerical analysis, we again calculate all spectra using pynuss, including a time-dependent

phase shift for the analyzer response which is zero at t = 0 and φ for times t > 0. The FFC sum- and
difference spectra Eqs. (3.31a)-(3.31c) considered for the analysis are shown in Fig. 3.10. A comparison
of plots (a) and (b) shows that the ordering of analyzer and target indeed has an influence: While
the diagonal structure is perturbed by residual effects if the analyzer is placed first, corresponding to
ISa(ν,∆), shown in plot (a), no such perturbations are visible in plot (b) showing the opposite order,
corresponding to ISt(ν,∆). Like in the case with the target placed first (plot (b)), the background-
corrected case Iinv(ν,∆) in plot (c) does not show these perturbations.
The retrieved transition frequencies obtained by the diagonal analysis of the phase-combined FFC

spectra Eqs. (3.31a)-(3.31c), corresponding to spectra recorded with the analyzer first, the target first
and upon reversing target order, respectively, are summarized in Table 3.2 in the columns ISa , ISt and
Iinv for comparison with the results obtained in Sec. 3.3.2 displayed in Table 3.1 without phase control.
For the three columns containing the additional “(opt.)”, again the optimization procedure involving
multiple fits with different ranges of detuning data were performed by subsequently excluding low-
detuning data points. From the different fit results, the one with the least fit error is chosen. Overall,
all results agree well with the respective theoretical reference values within a 2% margin. We find
that the optimization is most effective if the analyzer is placed first (ISa), which likely is due to the
residual perturbations visible in Fig. 3.10(a), while the other two results do not change significantly
upon optimization. Together with the undistorted appearance of the diagonal structures in these
cases in Fig. 3.10 this implies a larger range of detuning values that can reliably be employed for
linear fit analysis compared to the off-resonant case in Sec. 3.3.2 and Tab. 3.1, since the result with
the least fit error is reached very close to resonance already.

3.4.2 Effects of the target thickness on the parameter extraction

For a more systematic comparison of phase-combined and off-resonant FFC spectra, we analyze the
influence of thickness effects on the diagonal structure of a single-line 57Fe target (i.e., in the absence
of hyperfine splitting). Fig. 3.11(a) shows the line shape as function of target thickness. It can be
seen that for thicker targets, the single line splits into a double-hump profile [Smi99], which impedes
the simple determination of a single maximum. Therefore, next to the simple fit of a line through
the maxima in the FFC spectra, we further consider a model to fit the line shape of the single-line
target, analogous to the approach in Sec. 3.3.3. We use the model function (for a derivation, see
Appendix A.3)

ffit(ν) = A

[
exp

(
bt

i(ν − x)− SΓ

)
− 1

]
+ h (3.32)

with amplitude A ∼ baI
NR
0 accounting for electronic absorption and dispersion via INR0 as well as

the resonant coupling of the radiation to the analyzer nuclei via ba, x = ∆ − ωt + ωa denoting the
center frequency of each vertical spectrum and SΓ = (γt + γa + ba)/2 the decay rate of the target
broadened by the effective analyzer decay width. The thickness parameters ba, bt for both analyzer
and target are defined in Appendix A.3. Note that, in deriving this formula, we distinguish between
analyzer and target line-width γa and γt to gain better insight into the functional dependence on
both quantities though the analyzed numerical data will continue to use γa = γt = γ.
The exponential form of the fit model Eq. (3.32) is a consequence of multiple scattering of photons
propagating through the target, also causing the double-hump profile. An additional offset h was
added to account for background in the Fourier spectrum due to residual resonant effects. Knowing
that the spectral shape of vertical or horizontal sections through the diagonal structure corresponds
to a double-hump profile, the simple maxima determination can also be adapted to include the two
most prominent maxima of such sections followed by an average over the lines formed by both sets
of maxima.
Results of this analysis are shown in Fig. 3.11(b). It depicts the recovered target-analyzer detuning
∆0 = ωt − ωa if no Doppler shift is applied as function of target thickness. Since for a 57Fe target
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Figure 3.11: Extraction of target parameters as function of target thickness. Panel (a) illustrates how
the diagonal structure along the ν-axis at ∆ = 100γ varies with target thickness. For thicker targets, a
characteristic “double-hump” profile appears. (b) compares the deviations between the reference transition
frequency and the corresponding transition frequencies obtained by linear fits to the diagonals using different
methods: The off-resonant method (yellow line), and the phase-difference methods based on ISa (green),
ISt (red) and Iinv (blue). In all cases, the solid lines correspond to results obtained by simple maxima
determination while the dashed lines are based on model fits to vertical sections through the diagonal structure,
as explained in the main text. (c) compares the thickness parameters extracted from the different methods
with the theoretical reference value (black).

without hyperfine splitting and a stainless steel analyzer without isomeric shift both transition fre-
quencies are identical (ωt = ωa), the plotted quantity also describes the deviation between the real
detuning and the value recovered via diagonal analysis.
Eight curves falling into two categories of diagonal analysis methods are compared: The solid curves
represent the method introduced in Section 3.3.2 which determines simple maxima of each section
along the ν-direction and subsequent linear fits to the resulting diagonals to give an estimate of the
target-analyzer detuning ∆0. The dashed curves use the same linear fit approach to retrieve the
target-analyzer detuning but the peak position of each section along the ν-axis is determined using
the fit model Eq. (3.32) via the parameter x. Both of these diagonal analysis methods are applied
to four types of FFC spectra: The yellow curves evaluate the off-resonant spectra discussed in Sec-
tion 3.3 while the other curves result from evaluation of spectra including phase-control, specifically,
difference spectra Eq. (3.31a)-(3.31b) with analyzer (green) and target (orange) placed first in the
beam path and the sum spectrum Iinv after background removal (blue). In obtaining these results,
the detuning fit range was kept constant as [25γ, 175γ).
From Fig. 3.11(b) we find that all four simple-maxima evaluations exhibit a maximum deviation from
the reference value at around 1.5γ which can be attributed to the appearance of the double-hump
profile for this target thickness. In contrast, the sum spectrum (Iinv, blue curve) is hardly affected.
Apart from this, the sum spectrum and the difference spectrum with target placed first (ISt , orange
curve) reproduce the reference value ∆0 = 0 much better than the other two curves across the en-
tire thickness range, and become almost constant towards larger thicknesses. This feature can be
explained by noting that in the corresponding Eqs. (3.31b) and (3.31c), the target spectrum is absent
except for the desired diagonal contribution. In contrast, Eq. (3.31a) contains further contributions
of the target response which distort the diagonal spectrum with increasing target thickness. Hence,
to retrieve reliable spectral information for targets thick compared to the analyzer width it appears
to be favourable to choose phase-combinations eliminating the term S∗t Sa,t the influence of which
becomes significant towards higher target thicknesses.
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Figure 3.12: Reconstruction of the nuclear resonant target response from phase-combined FFC spectra:
(a) depicts the absolute value of a vertical cut through the FFC spectra at ∆ = 100γ (dashed lines). For
comparison, the absolute value of the reference nuclear resonant response correlated with the analyzer response
according to eq.(3.15) is shown as solid black line. (b) shows the corresponding phase of the quantities shown
in (a). The blue line corresponds to the background-corrected sum spectrum Iinv while the green and orange
line correspond to the cases with the analyzer (ISa) and the target (ISt) placed first in the beam path,
respectively.

The results using the model fit approach (dashed lines) all agree well with the expected result of zero
throughout the entire thickness range, without perturbation by the double hump at around 1.5γ,
since the shape of this double-hump profile is included in the fit model Eq. (3.32). However, towards
larger target thicknesses, these curves start to deviate more from the reference values than the two
better-performing simple-maxima results. We attribute this to the fact that at higher target thick-
ness, both the positive and negative ν diagonal structures become spectrally broader and overlap
stronger with the each other leading to deviations from the fit model Eq.(3.32). This effect can be
reduced by excluding low-frequency data points in the vertical spectra.
Figure 3.11(c) shows corresponding results for the thickness parameter extracted from the four eval-
uated spectra as function of the target thickness. In all cases, the retrieved thickness parameter are
almost identical and agree well with the calculated values for intermediate thicknesses, even though
the deviation increases with the target thickness. Also, in the limit of thin targets, a plateau in the
recovered thickness parameter develops as the width of the diagonal spectra is bounded from below
by the analyzer spectral width.
In summary, we found that the linear fit analysis of spectra obtained using phase control not only
allows one to use larger parts of the recorded data than the corresponding off-resonant methods,
but also may provide better target parameter recovery results. As a function of target thickness,
a comparison between different phase control approaches revealed that it appears most favorable
to eliminate the scattering channels containing the term S∗t Sa,t. Then, the phase control methods
provide a better recovery than the corresponding approaches based on the off-resonant part of the
spectrum only. Finally, a more reliable recovery of the spectra as function of target thickness could
be achieved using fit models incorporating the known double-hump profile.

3.4.3 Extracting the target response function using phase control

We conclude our comparison of FFC spectra obtained using phase-control with the off-resonant regime
by reconstructing the complex-valued target response from sections along the ν-axis as described in
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Section 3.3.3.
Fig. 3.12 compares absolute value and phase of a vertical cut through the FFC spectrum at ∆ = 100γ
for the three phase combinations Eq. (3.31a)-(3.31c) with the reference spectrum obtained by cross-
correlating nuclear resonant target and analyzer response explicitly (solid black line). It can be seen
that the results based on the difference spectra ISa (orange line) and ISt (green line) agree very well
with the theoretical reference. In particular for the case with the target placed first in the beam path
(orange line), the phase at lower frequencies ν is recovered even better than in the analysis based on
the off-resonant regions of the FFC spectrum in Fig. 3.4(b). Interestingly, the analysis based on the
sum spectrum Iinv performs much worse, in particular towards higher frequencies. We attribute this
to the background removal, which distorts the final result if resonant effects still contribute at the
detuning values used to determine the background contributions (cf. discussion after Eq. (3.31c)).
Overall, we therefore conclude that additional control of the relative phase between the resonant and
non-resonant radiation in Nuclear Resonant Scattering experiments can improve spectral analysis
and target response reconstruction, as it allows one to selectively separate otherwise overlapping
scattering channels across the entire detuning range. This improvement is manifest in a higher
amount of data close to resonance that can be evaluated during the line fit analysis as well as a better
recovery of the phase of the nuclear response in the lower Fourier frequency range compared to the
off-resonant approach without phase control. Further, thickness effects impeding a reliable recovery
of the spectral target structure via the diagonal lines can be suppressed by selecting appropriate
scattering contributions thus allowing the study of thick targets that are not accessible to the off-
resonant approach without phase control.

3.5 Discussion and summary
In this Chapter, we introduced frequency-frequency correlation (FFC) spectra as a promising tool
for spectral analysis and phase-retrieval of arbitrary Mössbauer targets. These FFC spectra are
obtained as Fourier transforms of experimentally accessible time- and frequency-resolved Nuclear
Resonant Scattering spectra along the time-axis. Our approach is motivated by the observation that
FFC spectra exhibit a simple structure comprising horizontal and diagonal features which relate
to different physical processes contributing to the scattered light, and which can conveniently be
analyzed.
We showed that this approach translates interference between different scattering channels into

frequency-frequency correlations revealing the spectral structure of the underlying scattering system.
Specifically, the cross-correlation between nuclear resonant part of analyzer and target response ap-
peared as a diagonal structure in these frequency-frequency correlation spectra that allowed access
to target properties in two ways.
First, using linear fits to these diagonals, we were able to extract the resonance frequencies of the

target, as well as spectral line features such as collective energy shifts and line broadenings, thereby
establishing an intuitive and straightforward analysis tool for the FFC spectra.
Second, we found that sections through the diagonal structure provide access to amplitude and

phase of the nuclear resonant part of the target response, cross-correlated with the analyzer response.
In particular, they are not affected by the off-resonant electronic scattering in the target. This is of
immediate interest for characterizing collective nuclear level schemes in x-ray cavities, which so far
have been associated to cavity reflection spectra [RE21b]. However, these spectra also depend on
the in- and out-coupling of the x-rays into the cavity and the interference of the nuclear response
with the non-resonant empty-cavity scattering, and therefore the associated level schemes may not
represent the actual nuclear dynamics inside the cavity [DLE22a]. Then it may be favorable to
instead associate a level scheme to the nuclear dynamics inside the cavity alone, and the approach
presented here allows one to experimentally access the corresponding nuclear response unperturbed
by the electronic scattering contribution. In this sense, the analysis approach presented here has a
qualitative advantage over the established late-time integration method. We note that time-domain
off-resonant methods, as discussed in Sec. 3.2.4, share this advantage, although so far they have
primarily been discussed in the forward scattering case [Cal+05; Goe+19]. This again highlights the
advantage of time- and frequency-resolved measurements over time-resolved or frequency-resolved
approaches, since they not only allow one to choose the late-time integration range in the data analysis
after the actual experiment, but also provide the basis for both off-resonant analysis methods in the
time- and energy-domain. In other words, a single dataset can be evaluated using three different
methods, thereby also allowing for consistency checks.
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To demonstrate the practical feasibility of both FFC analysis approaches in relevant settings, we
employed them to determine magnetic hyperfine splittings of α-iron in forward scattering geometry
as well as the collective Lamb shift of thin-film x-ray cavities as function of incidence angle θ from
simulated data. In all cases, good agreement was achieved with corresponding reference calculations.
Further, the superradiant enhancement of the nuclear decay in the cavity could successfully be re-
trieved using an appropriate fit model. We also considered experimental resolution limitations along
the Fourier frequency ν in FFC spectra, which may arise due to measurement constraints in the time
domain, e.g., due to the x-ray pulse repetition rate determined by the radiation source. This can be
mitigated by employing our approach based on the relative detuning ∆ between analyzer and target
rather than on ν, since the former has an experimentally controllable resolution independent of the
x-ray pulse structure. An example analysis of the hyperfine splitting of α-iron including time gating
effects indeed showed that this way, results with reasonable accuracy could be obtained.
In a second part, we considered the possibility of further extending the FFC approach based on

a control of the relative phase between the resonant and off-resonant analyzer response. In the
presence of such phase-control, the overall response becomes dependent on the ordering of target and
analyzer. We showed that sums or differences of FFC spectra recorded with suitable phase shifts
or analyzer-target orderings allow one to disentangle different scattering pathways across the entire
FFC spectrum. In contrast, most previous approaches separated the pathways by restricting the
analysis to particular parameter regions such as the large target-analyzer detuning case. This way,
spectral backgrounds can be removed, or scattering paths be excluded which prevent an accurate
FFC analysis, especially close to the resonances. In the present work, we employed this technique to
isolate the interference contribution between the individual resonant target and analyzer scatterings.
We could thereby improve the recovery of phase and spectral target structure as compared to the
off-resonant case without phase control and reliably retrieve the target’s resonance structure even for
thick targets where the off-resonant limit is difficult to reach. In addition, we expect that the approach
will also facilitate the study of transition-specific dynamics and resonant couplings [Sch+02b; Smi+05;
Hee+21] by suppressing non-resonant contributions to time- and frequency-resolved spectra.
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Chapter 4

Time-dependent density matrix perturbation theory

Abbreviations used in this Chapter:

• LER: low-excitation regime

• NRS: nuclear resonant scattering

• XFEL : x-ray free electron laser

• XFELO : x-ray free electron laser oscillator

In this Chapter two types of perturbative density matrix expansions are developed, which form the
basis the theoretical descriptions of the dynamics of effective nuclear few-level schemes (Chapter 6,
7 and 5) and the dynamics of interacting nuclear ensembles (Chapter 5). Perturbation theory is a
corner stone of the understanding of quantum mechanics [SC95] and quantum field theory [PS95]
and entire branches of physical phenomena could not be explained or studied theoretically without
perturbative treatments of otherwise unsolvable physical problems. The success of perturbation
theory dates back to the first days of quantum mechanics, which can explain such effects in atomic
physics and scattering theory such as the Stark effect, Fermi’s golden rule [BJ89] or spontaneous
emission [SZ97; MS07], and is still in use nowadays, for example, to study physics within and beyond
the standard model [PS95]. Time-dependent density matrix perturbation theory is a widely employed
tool to interpret and devise coherent multi-pulse experiments in nonlinear optics [Muk95; BP08] and
multidimensional spectroscopy [HZ11; Cho19], where (nonlinear) dynamics of complex molecular
and atomic systems under the action of time-dependent coherent light fields is studied. With the
advent of coherent control techniques and x-ray pulse shaping suitable to design coherent multi-pulse
experiments in nuclear resonant scattering, such methods are of great interest also to the Mössbauer
community. Moreover, while experiments so far have been mostly conducted in the regime of linear
x-ray-nucleus interactions, novel light sources such as XFELOs [Ada+19a] and XFELs including
techniques including hard x-ray self-seeding [Ama+12], promise to surpass this regime in the near
future. Therefore, perturbative treatments of nuclear dynamics as a function of the nucleus-field
interaction seem a logical next step from a theoretical point of view.
The Chapter is structured as follows: In the first part, self-consistent equations for the excited-state
population and coherence of quantum optical two-level systems are derived as a formal solution to the
optical Bloch equations. In the second part, a more general perturbative density matrix expansion is
developed that is based on similar approaches in multidimensional spectroscopy. Finally, the relevance
of the results presented here is briefly summarized.
This Chapter is mainly dedicated to technical derivations of the expressions used in the following three
Chapters. Readers more interested in the application of the density matrix expansions developed here,
are referred to Chapters 5, 6 and 7.

4.1 Self-consistent solution of the optical Bloch equations for
two-level systems

In this Section self-consistent solutions for the (time-dependent) population ρee(t) and coherence
ρge(t) of quantum optical two-level systems are derived from the optical Bloch equations (cf. Sec. 2.2.1):
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ρ̇ee = −γρee +
i

2
[Ω(t)ρge − Ω∗(t)ρeg] , (4.1a)

ρ̇ge =
(
iω0 −

γ

2

)
ρge +

iΩ∗(t)

2
(2ρee − 1) , (4.1b)

ρeg = ρ∗ge , ρgg = 1− ρee . (4.1c)

Recall that, in case of nuclear transitions, γ is the single-nucleus linewidth, ω0 its resonance frequency
and

Ω(t) =
dE(t)

~
(4.2)

the time-dependent x-ray-nucleus coupling or Rabi frequency. For later discussions we note that, even
though these are the equations of motion for a single nucleus, effective collective two-level systems
arising, e.g., in thin-film cavities in the LER (cf. Sec. 2.2.2) are governed by the same equations of
motion, however, with collectively modified parameters ω0, γ and Ω(t).
A similar Ansatz as presented here, has been used in Ref. [HZ11] for multi-level density matrices and
in Ref. [MS07] to study few-level operator dynamics in the Heisenberg-Langevin approach.
The optical Bloch equations Eqs. (4.1) can be solved self-consistently in two steps: First, the equations
can be integrated formally and, second, the result of both integrations can be inserted into the other
density matrix element to decouple the dynamics of the excited-state population and the coherence.
By introducing the new variables

ρ̃ge(t) = e(−iω+ γ
2 )tρge(t) , ρ̃ee(t) = eγtρee(t) (4.3)

the time evolution is governed by

˙̃ρge(t) =
i

2
e−iωt+

γ
2 tΩ∗(t)(2ρee(t)− 1) (4.4)

˙̃ρee(t) =− eγtIm [Ω(t)ρge(t)] (4.5)

which we solve by formal integration from an initial time t0 until observation time t yielding

ρ̃ge(t)− ρ̃ge(t0) =
i

2

∫ t

t0

dt′e−iωt
′+ γ

2 t
′
Ω∗(t′)(2ρee(t

′)− 1) (4.6)

ρ̃ee(t)− ρ̃ee(t0) =−
∫ t

t0

dt′eγt
′
Im [Ω(t′)ρge(t

′)] (4.7)

Rearranging these equations and reinserting the untransformed density matrix elements leads to the
following formal coupled integral equations for the density matrix elements:

ρee(t, t0) =e−γ(t−t0)ρee(t0)−
∫ t

t0

dt′eγ(t′−t)Im
[
Ω(t′)ρge(t

′, t0)
]

(4.8)

ρge(t, t0) =eiω(t−t0)e−
γ
2 (t−t0)ρge(t0)

+
i

2

∫ t

t0

dt′e−iω(t′−t)e
γ
2 (t′−t)Ω∗(t′)[2ρee(t

′, t0)− 1] (4.9)

where the initial density matrix element is defined as ρij(t0) := ρij(t0, t0). Inserting the second
equation into the first one and vice versa yields:
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ρee(t, t0) =e−γt
{
eγt0ρee(t0) + e

γ
2 t0

∫ t

t0

dt′e
γ
2 t
′
Re(ieiω(t′−t0)Ω(t′)ρge(t0)) (4.10a)

− Re
[ ∫ t

t0

dt′eγt
′
Ω∗(t′)

∫ t′

t0

dt′′eiω(t′′−t′)e
γ
2 (t′′−t′)Ω(t′′)

(
ρee(t

′′, t0)− 1

2

)]}
ρge(t, t0) =eiωte−

γ
2 t
{
e−iωt0e

γ
2 t0ρge(t0) + i

∫ t

t0

dt′e−iωt
′
Ω∗(t′)

(
eγ(t0− t

′
2 )ρee(t0)− e

γ
2 t
′

2

)
− i
∫ t

t0

dt′e−iωt
′
e−

γ
2 t
′
Ω∗(t′)

∫ t′

t0

dt′′eγt
′′
Im
(
Ω(t′′)ρge(t

′′, t0)
)}

(4.10b)

These equations can systematically be expanded in orders of the semiclassical driving field Ω(t).
Note that the coherence ρge(t) only features contributions from odd orders in the x-ray-nucleus inter-
action Ω(t), while Ω(t) contributes only in even orders to the population ρee(t). This has important
consequences for the low-excitation behaviour of nuclear many-body dynamics as studied in Chap-
ter 5. The power of these equations is that they incorporate the intrinsic two-level dynamics, i.e.
nuclear decay and oscillation with the resonance frequency ω0 to all orders and that, in principle,
arbitrary (time-dependent) pulse shapes and sequences including pulse phases and detunings between
pulse carrier frequency and nuclear resonance frequency can be studied. This is in contrast to some
established analytical approaches such as the pulse area theorem (cf. Appendix A.9), which requires
zero detuning between pulse and two-level system, or exact solutions of the two-level dynamics for
constant pulse envelopes |Ω(t)| = const., that can not incorporat nuclear decay [SZ97].
Within the scope of this thesis, Eqs. (4.10) will be employed to calculate and compare the dynamics of
incoherent and coherent radiation emitted by two-level nuclei, associated with the population ρee(t)
and coherence ρge(t), respectively, in the LER (for details, see Chapter 5). In Chapters 5 and 6, where
only single-pulse results are studied and the nuclear system is assumed to be in its ground state at
the beginning of the interaction with the x-rays, such that initially, at time t0, ρee(t0) = 0 = ρge(t0)
and these equations reduce to

ρee(t, t0) =
1

2
e−γtRe

[ ∫ t

t0

dt′e
γ
2 t
′
e−iωt

′
Ω∗(t′)

∫ t′

t0

dt′′eiωt
′′
e
γ
2 t
′′
Ω(t′′)

]
(4.11a)

− e−γtRe
[ ∫ t

t0

dt′e
γ
2 t
′
e−iωt

′
Ω∗(t′)

∫ t′

t0

dt′′eiωt
′′
e
γ
2 t
′′
Ω(t′′)ρee(t

′′, t0)
]}

ρge(t, t0) =− i

2
eiωte−

γ
2 t

∫ t

t0

dt′e−iωt
′
Ω∗(t′)e

γ
2 t
′

(4.11b)

− ieiωte− γ2 t
∫ t

t0

dt′e−iωt
′
e−

γ
2 t
′
Ω∗(t′)

∫ t′

t0

dt′′eγt
′′
Im
[
Ω(t′′)ρge(t

′′, t0)
]

For a study of the convergence behaviour of the self-consistent Eqs. (4.11) to the numerical solution
of the optical Bloch Eqs. (4.1), the reader is referred to Appendix A.5.

4.2 Perturbative expansion of the density matrix
Even though the self-consistent Eqs. (4.11) are a powerful tool for studying the dynamics of single
collective two-level systems upon very general time-dependent driving fields and pulse sequences, a
more general approach is needed to include many interacting two-level systems or to investigate more
complex level schemes as studied in Chapters 5 and 6, respectively. These systems are of particular
interest for different reasons: While effective few-level descriptions of nuclear ensembles are valid in the
LER (cf. Sec. 2.2.2), these are likely to break down at higher excitations conditions as can be reached
at XFELs or XFELOs. In this case, a full description of the interacting many-body dynamics of the
nuclear ensemble may become necessary. Apart from this, effective few-level schemes involving more
than two-levels realized in thin-film cavities (cf. 2.2.2) offer some of the most intriguing phenomena
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in nuclear quantum optics such as EIT [Röh+12] and couplings between nuclear ensembles [Hab+17].
Therefore, the development of a density matrix perturbation theory applicable to these types of
systems is of immediate interest for near-future experiments and applications in nuclear quantum
optics.
The time-dependent density matrix perturbation theory derived in this Section is based on similar
approaches in nonlinear optics [BP08] and multidimensional spectroscopy [Cho19; HZ11] and was
developed especially by Shaul Mukamel [Muk95]. In contrast to many comparable derivations in
textbooks, we aim to explicitely include many-body effects and retain nonunitary dynamics in our
derivation as these effects can play a significant role in nuclear resonant scattering experiments as
argued above.
After a derivation of a general form self-consistent form of the density matrix, the two cases of
multi-level and many-body dynamics and the involved approximations are discussed separately.

4.2.1 Many-body nuclear dynamics
In the most general setting, we perturbatively solve the master equation

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ L[ρ̂] . (4.12)

We consider Hamiltonians that can be separated into a system part Ĥnuc and a nucleus-field coupling
part Ŵ (t) such that

Ĥ = Ĥnuc + Ŵ (t) (4.13)

with the nuclear part incorporating the transition energies and potentially coherent couplings between
different levels or nuclear few-level systems, i.e. [Len+20]

Ĥnuc =~
∑
nl

ωnlσ̂
+
nlσ̂
−
nl − ~

∑
nn′ll′

Jnn′ll′ σ̂
+
nlσ̂
−
n′l′ (4.14)

the form of which requires coupling constants of the form J∗n′nll′ = Jnn′l′l such that Ĥnuc is hermitian.
The (coherent) dipole-dipole couplings Jnn′ll′ between the nuclei are radiation-induced and are medi-
ated by surrounding reservoir modes [FS05]. They can be calculated for a specific nuclear environment
such as a thin-film cavity or waveguide, e.g. by using the ab initio Green’s function approach (for
details, see, [Len+20] or Sec. 2.2.2). The diagonal terms Jnnll are known as intensity-dependent
Stark shifts or Lamb shifts leading to a renormalization of the bare nuclear transition frequencies
ωnl [FS05]. The operators σ̂+

nl = |ln〉 〈gn|, σ̂−nl = |gn〉 〈ln| are the raising/lowering operators creating
or destroying excitation in transition l at the nuclear system n. The l labelling may include magnetic
Zeeman splittings of the magnetic hyperfine states or different levels arising in effective collective nu-
clear level schemes in nuclear cavity QED [Len+20]. Here, it is chosen such that each dipole-allowed
transition has its own unique label l [FS05]1. The nucleus-field coupling is modelled as a semiclassical
field-dipole coupling allowing for different coupling strengths for each nuclear transition, i.e.

Ŵ =− ~
2

∑
nl

(
Ωnl(t)σ̂

+
nl + h.c.

)
(4.15)

Here, Ωnl(t) is the (time-dependent) nucleus-field coupling, which will also be referred to as time-
dependent Rabi frequency, acting on nuclear system n and transition l given by

Ωnl(t) =
dnlEnl(t)

~
(4.16)

The electric field Enl(t) we allow to be position- and time-dependent and different for each nuclear
system n and level l. The effective nuclear dipole moments can vary for different transitions l if
1For a discussion of effective dipole Hamiltonians for higher order multipole moments see, e.g.,Ref. [Len21] or Sec. 2.2.1.
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Zeeman or quadrupole splittings occur, for instance [Len21].

The non-unitary part of the time-evolution is described by the Lindbladian

L[ρ̂] =
∑
n,l

∑
n′,l′

(
Γnn′ll′ + δnn′δll′Γ

IC
nl

) (
2σ̂−n′l′ ρ̂σ̂

+
nl −

{
σ̂+
nlσ̂
−
n′l′ , ρ̂

})
(4.17)

Here, the off-diagonal elements correspond to cross-damping terms, also referred to as incoherent
couplings, arising from the system-reservoir interaction with background radiation modes, like the
coherent coupling constants Jnn′ll′ [FS05]. Similarly, they can be calculated within the ab initio
Green’s function approach [Len+20] (cf. also Sec. 2.2.2). The diagonal terms contain contributions
from two-different processes: First, Γnnll describes losses of the individual nuclear transitions due to
radiative processes related to interactions with the background radiation field while the second part
ΓIC
nl has its origin in non-radiative losses of nuclear excitation due to internal conversion and related

secondary emission processes (cf. 2.1.4). The total line-width γnl of each nuclear transition combines
both loss processes γnl = 2

(
Γnnll + ΓIC

nl

)
.

4.2.2 Expansion in the nucleus-field coupling
As discussed, nuclear excitations at present day synchrotron and XFEL sources are typically in the
low-excitation regime or at the boundary to the observation of nonlinear effects. For this reason, it
is reasonable to expand the density matrix in orders of the field-nucleus coupling Hamiltonian

ρ̂(t) =

∞∑
j=0

ρ̂(j)(t) (4.18)

where the jth order of the expansion is characterized by the semiclassical nucleus-field coupling acting
j times on the initial density matrix. At the same time we want to include the nuclear Hamiltonian
and the nonunitary dynamics nonperturbatively to all orders. To this end, we write the Lindbladian
in the form

L [ρ̂] = L′ [ρ̂]−
{

Γ̂, ρ̂
}

(4.19)

with

Γ̂ =
∑
nn′ll′

(
Γnn′ll′ + ΓIC

nl δnn′δll′
)
σ̂+
nlσ̂
−
n′l′ (4.20)

L′ [ρ̂] = 2
∑
nl

∑
n′l′

(
Γnn′ll′ + ΓIC

nl δnn′δll′
)
σ̂−n′l′ ρ̂σ̂

+
nl (4.21)

In analogy to the interaction picture used extensively in time-dependent perturbation theory in
quantum mechanics and quantum field theory [Joa75; SC95; PS95], we introduce the operators

T̂t = exp

(
−Γ̂t+

i

~
Ĥnuct

)
, T̂−1

t = exp

(
Γ̂t− i

~
Ĥnuct

)
= T̂−t (4.22)

ρ̂I(t) =
(
T̂−1
t

)†
ρ̂(t)T̂−1

t (4.23)

Note, that though the transformation T̂t is not unitary, ρ̂I is still hermitian.
For reference in Sec. 5.3.3, we note that T̂t can be expressed as

T̂t = exp

 ∑
n,n′,l,l′

κnn′ll′ σ
+
nlσ
−
n′l′ t

 , (4.24a)

κnn′ll′ = −(Γnn′ll′ + i Jnn′ll′)− (ΓIC
nl − iωnl)δnn′δll′ . (4.24b)
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With this, the master equation Eq.(4.12) can be written as

˙̂ρ(t) =
1

i~

[
Ĥ(t), ρ̂(t)

]
−
{

Γ̂, ρ̂(t)
}

+ L′[ρ̂(t)] (4.25)

=
d

dt

[
T̂ †t ρ̂I(t)T̂t

]
(4.26)

=
1

i~

[
Ĥ0, ρ̂(t)

]
−
{

Γ̂, ρ̂(t)
}

+ T̂ †t
˙̂ρI(t)T̂t (4.27)

Comparison and rearrangement of the last and first line leads to the time evolution of the operator
ρ̂I (note that T̂−1

t = T̂−t which we will use to simplify notation further):

˙̂ρI(t) =
1

i~

[
ŴI(t)ρ̂I(t)− ρ̂I(t)Ŵ †I (t)

]
+ T̂ †−tL′[ρ̂(t)]T̂−t (4.28)

where we introduced the (non-hermitian!) perturbation operator

ŴI(t) = T̂ †−tŴ (t)T̂ †t (4.29)

that governs the perturbative dynamics of ρ̂I(t) in the same way as the corresponding interaction
picture Hamiltonian does in the unitary case. As we are interested in an expansion of ρ̂(t) in orders of
the (weak) driving fields Ωnl(t), we formally integrate Eq.(4.28) and rewrite the resulting expression
for ρ̂I(t) with Eq.(4.23) to obtain a self-consistent equation for ρ̂(t):

ρ̂I(t) =ρ̂I(t0)− i

~

∫ t

t0

dt′
[
ŴI(t

′)ρI(t
′)− ρ̂I(t′)Ŵ †I (t′)

]
+

∫ t

t0

dt′T̂ †−t′L′[ρ̂(t′)]T̂−t′ , (4.30)

ρ̂(t) =T̂ †t ρ̂(t0)T̂t −
i

~

∫ t

t0

dt′T̂ †t−t′
[
Ŵ (t′), ρ̂(t′)

]
T̂t−t′ +

∫ t

t0

dt′T̂ †t−t′L′[ρ̂(t′)]T̂t−t′ . (4.31)

The first line of Eq. (4.31) is similar to perturbative density matrix expansions presented in many
nonlinear and multi-dimensional optics textbooks [BP08; Muk95; HZ11]. However, here we explicitely
include many-body and incoherent effects which are often not taken into account explicitely in these
types of approaches.
A particular problem for the perturbative density matrix expansion including non-unitary dynamics
presented here, in contrast to above-mentioned textbook examples, is the last term in Eq. (4.31). It
prevents a straightforward iterative solution of Eq.(4.31) in a Dyson series [SC95]. Therefore, in this
thesis we discuss two cases of interest that allow us to neglect this term for the relevant part of our
calculations:

i) Only excitations up to second order are considered which is the defining feature of the low-
excitation regime. In the following, we refer to this case, studied in Sec. 4.2.3, as LER case

ii) There are no cross-damping terms but only radiative decay, i.e. Γnn′ll′ = Γnlδnn′δll′ and the
system has a common ground state |gn〉 = |g〉, which is approximately the case, e.g. if an
effective single-particle few-level scheme is considered as is the case in the low-excitation regime
in x-ray waveguides [Len+20]. This case, studied in Sec. 4.2.4, is referred to as few-level case2.

4.2.3 The LER case

The LER case is studied in great detail in Chapter 5. In this case, the last term of Eq. (4.31) only
contributes to the total ground state of the many-body system up to second order as will be shown
by explicite calculation of this term up to second order in the driving field Hamiltonian part Ŵ (t).
Assuming the nuclear system to be in the many-body ground state

2Regarding the negligibility of the cross-damping terms it is an interesting but still unanswered question whether the
general case including cross-damping terms can be reduced to the specific case studied here and in Chapter 6.
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ρ̂(t0) = |G〉 〈G| =
N⊗
n=1

|gn〉 〈gn| (4.32)

initially, the zero order contribution to the last term Eq. (4.31) becomes

σ̂−n′l′ |G〉 〈G| σ̂+
nl = 0 ⇒ L′[ρ̂(0)] = 0 (4.33)

such that this term does not contribute to the zeroth order density matrix. Note that the action
of the time evolution operators T̂t does not change this result since it conserves the total number
of nuclei (or, equivalently, the total population including ground and excited states) in the system
and thus, if the system is in the many-body ground state at time t0 it will remain so at all times.
Consequently, the zeroth order density matrix contribution is given by

ρ̂(0)(t) = T̂ †t ρ̂(t0)T̂t = ρ̂(t0) (4.34)

and remains constant in time. For calculating the contribution of the L′[ρ̂] to the first order density
matrix contribution we again use that the time evolution operators do not change the number of
nuclei such that we obtain after a first order excitation by the driving field at time τ1

σ̂−m′k′
[
Ŵ (τ1), ρ̂(0)(τ1)

]
σ̂+
mk

=− ~
2

∑
nl

σ̂−m′k′
(
Ωnl(τ1)σ̂+

nl |G〉 〈G| − h.c.
)
σ̂+
mk

=0 ⇒ L′[ρ̂(1)] = 0 (4.35)

We conclude that, in first order, the problematic term does not contribute to the dynamics of the
nuclear system either such that the first order density matrix can be written as

ρ̂(1)(t) = − i
~

∫ t

t0

dτ T̂ †t−τ

[
Ŵ (τ), ρ̂(0)(τ)

]
T̂t−τ . (4.36)

Finally, the second order contribution to the density matrix can be calculating by reinserting
the first order contribution into Eq. (4.31). The excitation state of the many body system is thus
determined by the double commutator with the driving field part Ŵ (t) at time τ2 and the contribution
to L′[ρ̂(2)(τ2)] is

σ̂−m′k′
[
Ŵ (τ2),

[
Ŵ (τ1), ρ̂(0)(τ1)

]]
σ̂+
mk

=
~2

4
σ̂−m′k′

∑
nl

∑
n′l′

(
Ω∗nl(τ2)Ωn′l′(τ1)σ̂−nlσ̂

+
n′l′ |G〉 〈G|+ h.c.− Ωnl(τ2)Ω∗nl(τ1)σ̂+

nl |G〉 〈G| σ̂−n′l′ + h.c.
)
σ̂+
mk

=− ~
4

(Ωm′k′(τ2)Ω∗mk(τ1) + Ωmk(τ2)Ω∗m′k′(τ1)) |G〉 〈G| . (4.37)

We find that, in second order in the driving field, the problematic term Eq. (4.31) contributes to the
ground state dynamics only and, thus, can be neglected if only the excited state sector is of interest.
The second order contribution to this sector of the density matrix can then be calculated via another
iteration in the self-consistent solution Eq. (4.31):

ρ̂
(2)
ES(t) = − i

~

∫ t

t0

dτ T̂ †t−τ

[
Ŵ (τ), ρ̂(1)(τ)

]
T̂t−τ , (4.38)
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where the subscript ES(= excited state sector) denotes that the ground state dynamics is not taken
into account by Eq.( 4.38).
The effect of L′[ρ̂] up to second order is consistent with the observation that this term is usually
responsible for refilling of the ground state which, if the system is initially in its ground state, can
only occur in second order of the driving field in which excited state population is first created during
the excitation as can be seen, e.g. from the self-consistent Eqs. (4.11). Therefore, the problematic
term can contribute to the excited state coherences and populations beginning from third order
excitations. In this case, which is beyond the scope of this thesis, calculation of the excited state
density matrix elements in general becomes much more involved.

4.2.4 The few-level case

In the few-level case of negligible cross-damping terms and a single ground state relevant for effective
nuclear few-level schemes in x-ray waveguides, the integrand in the last line of Eq. (4.31) simplifies
to

2T̂ †t−t′
∑
nl

∑
n′l′

(Γnn′ll′ + ΓIC
nl δnn′δll′)σ̂

−
n′l′ ρ̂(t′)σ̂+

nlT̂t−t′ (4.39)

=T̂ †t−t′
∑
nl

γnlρ̂lnln(t′)P̂gn T̂t−t′ (4.40)

=T̂ †t−t′
∑
nl

γnlρ̂lnln(t′)T̂t−t′ P̂g (4.41)

where we assumed Γnn′ll′ = Γnlδnn′δll′ in the first and P̂gn = P̂g in the second step, consistent with
the initial assumptions. It is crucial for this representation that the nonperturbative dynamics of the
excited state sector described by T̂t decouple from the ground state dynamics in this specific case such
that

[
P̂g, T̂−t

]
= 0. If the ground states of the nuclear few-level systems are different, the coherent

couplings between the systems can scramble excitation between different few-level systems which can
effectively couple the ground and excited state sector of individual nuclei by transferring excitation
from one system to another. In contrast, in the few-level case considered here, this scrambling of
excitation does not occur since only a single multi-level system is involved.
Hence, we can neglect the last term of Eq. (4.31) in the few-level case and the dynamics of the excited
state sector in each nuclei-field excitation order can just be calculated iteratively inserting the left-
hand side into the right hand side of the first line of Eq. (4.31) yielding the desired density matrix
expansion Eq. (4.18) with expansion orders

ρ̂(0)(t) = T̂ †t−t0 ρ̂(t0)T̂t−t0 (4.42)

ρ̂
(j>0)
ES (t) =

(−i
~

)j ∫ t

t0

dτj · · ·
∫ τ3

t0

dτ2

∫ τ2

t0

dτ1× (4.43)

× T̂ †t−τj
[
Ŵ (τj), . . . T̂

†
τ2−τ1

[
Ŵ (τ1), T̂ †τ1−t0 ρ̂(t0)T̂τ1−t0

]
T̂τ2−τ1 . . .

]
T̂t−τj

It is important to note, however, that the ground state state dynamics has to be calculated separately
in this case in each order using unitarity of the density operator Tr [ρ̂] = 1 such that

1 =
∑
l

ρ
(0)
ll , 0 =

∑
l

ρ
(j)
ll , j ≥ 1 (4.44)

where we dropped the index n referring to the index of each nucleus instead considering the system
with the single ground state as a single multi-level system with ground state |G〉 and excited states
|l〉. We emphasize that the expression Eq. (4.43) is only true for the excited state sector and if the
ground state populations are correctly calculated using the Eq. (4.44).
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We conclude this Chapter with a brief summary of the results: In the first part, we derived self-
consistent equations for the population and coherence of two-level systems that allows for the calcu-
lation of the nuclear dynamics, including decay to all orders, for a wide range of pulse shapes and
sequences. These equations will be used in Chapter 5 to compare the incoherent and coherent dynam-
ics of effective two-level systems in the LER and beyond and in Chapter 7 to compare the dynamics
of two-level systems excited by different double pulse sequences. In the second part of this Chapter,
a more general density matrix expansion was presented, that allows to include multiple excited states
and many-body dynamics. Two cases of special interest and the necessary approximations to derive
explicit perturbative expansions were discussed: First, the case of low excitations, for which explicit
expressions for zeroth to second density matrix could be derived. Second, for the few-level case an
explicit expression for all orders of the excited state sector could be derived for specific cases of inter-
est. The low-excitation case will be discussed further in Chapter 5 while the few-level case is treated
in Chapter 6.
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Chapter 5

Detecting and characterizing x-ray excitation of
Mössbauer nuclei beyond the low-excitation regime

This chapter is based on the following publication:

A characterization and detection method for x-ray excitation of Mössbauer nuclei in
the low-excitation regime
L. Wolff and J. Evers
Accepted by Physical Review A
A preprint version can be found on arxiv:
https://arxiv.org/abs/2308.07644

The author of this thesis is the main author of this publication. The main content has been repro-
duced in many cases verbatim with permission of the journal (© 2023 American Physical Society)
and coauthors. A part on the low-excitation emission properties of noninteracting many-body systems
was added in Sec. 5.3.2 as an intermediate instructive step to the full interacting case, an alterna-
tive derivation of the population-coherence correspondence in a nuclear exciton basis is presented in
Appendix A.6, complementing the product basis approach chosen in the publication and main text.
Further, the definition of the pulse area A has been changed by a factor of 1/2 such that it can be
interpreted as the polar angle on the Bloch sphere. The plots and calculations have been adapted
accordingly. The main physics content has not changed. Finally, two Sections discussing the Autler-
Townes splitting of the nuclear resonance at higher excitations (Sec. 5.5.5) and the effect of decaying
pulses and nuclear two-level decay have been added to elaborate on corresponding discussions in the
publication. To integrate the publication into this thesis some minor changes in the introduction have
been undertaken, to avoid repeating content, and the derivation of the density matrix expansions was
moved Chapter 4, since it is also used in other Chapters and is seen by the author as an integral part
of this thesis.

List of abbreviations used in this Chapter:

• LER: low-excitation regime

• NRS: nuclear resonant scattering

• XFEL : x-ray free electron laser

• XFELO : x-ray free electron laser oscillator

• FFC spectrum : frequency-frequency correlation spectrum

5.1 Introduction

In Chapter 3 we studied and evaluated NRS spectra using linear response theory. This is valid since
experiments on Mössbauer nuclei have been restricted to the low-excitation regime (LER) so far,
because of their narrow spectral linewidth (cf. 2.1.1), which is orders of magnitude smaller than the
bandwidth of x-ray pulses by state-of-the-art accelerator-based x-ray sources. This can be a severe
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Figure 5.1: Schematic setup and summary of the main results. The central goal of this work is to identify
experimentally relevant signatures which enable one to verify the excitation of an ensemble of Mössbauer
nuclei beyond the low-excitation regime (LER) explored up to now. For this, we consider an ensemble of two-
level nuclei embedded in an x-ray waveguide, probed by near-resonant x-rays in grazing incidence. To detect
the non-linear excitation, the coherently and the incoherently (e.g., following internal conversion) scattered
intensities are recorded. Our theoretical analysis shows that in the LER, the ratio R(t) = R0 of the two
intensities is constant, even though both intensities individually depend on time. We show this by analytically
calculating the relevant dynamics of the excited-state populations and the x-ray-induced coherences of the
general interacting N -body system in second order of the x-ray pulse area A. Upon excitation beyond the
LER, the ratio R changes its properties in a characteristic way. In case of near-instantaneous impulsive
excitation of an effective single-particle system or a sufficiently weakly-coupled many-body system, the ratio
R remains constant, but changes its value from R0 depending on the degree of excitation. For a strongly-
interacting impulsively-driven many-body system, the ratio becomes time-dependent upon excitation beyond
the LER. In case of non-impulsive x-ray excitation with duration of the order of the nuclear lifetime, the
ratio is also time-dependent at higher excitation. Based on these results, a variety of different experimental
signatures or data analysis approaches is developed which allow one to verify excitations beyond the LER.

restriction, as for many applications in quantum optics and spectroscopy, nonlinear light-matter in-
teractions are essential.
The situation is expected to change with the recent availability of (seeded) x-ray-free electron lasers [Emm+10;
Ama+12; Ish+12; Ino+19; Dec+20; Nam+21; Liu+], which can provide a large number of nuclear-
resonant photons per pulse. Further progress is anticipated with x-ray free-electron laser oscillators
(XFELO) [KSR08; Ada+19b]. Theoretical studies suggest that this may allow one to excite nuclear
ensembles even up to the point of inversion [HKE16a; Che+22; BS97; Len21]. However, a first experi-
ment on multi-photon excitation still found data consistent with linear excitation conditions [Chu+18],
and initially, future experiments are likely to only slightly surpass the LER. While experiments to
verify high excitation and inversion in nuclear resonant scattering have been suggested [HKE16a],
experimentally relevant signatures at the onset of non-linear excitation of the nuclear ensemble are
still largely lacking.
To fill this gap, here, we develop and explore a method to verify the excitation of nuclear ensembles

by intense x-ray light beyond the LER. To this end, we propose to correlate two observables that are
readily accessible in nuclear resonant scattering experiments, namely the highly directional coherently
scattered intensity on the one hand and incoherent scattering products such as fluorescence emission
and conversion electrons that are scattered into the entire solid angle on the other hand, see Fig. 5.1.
Our results show that in the LER, i.e. up to second order in the x-ray-nuclei interaction, these two
observables become essentially equivalent. In particular, we prove that the ratio of both observables
becomes constant, a result that is largely independent of the details of the nuclear system and the
temporal and spectral shape of the x-ray-nuclei interaction. Conversely, we demonstrate that already
in leading nonlinear excitation order, this ratio changes with the strength of the interaction and in
a number of important cases becomes time-dependent. In particular, we study the case of impulsive
excitation of nuclear ensembles with weak and strong nucleus-nucleus interactions corresponding to
standard pulse conditions at accelerator-based light sources. Further, we identify clear experimental
signatures of excitations beyond the LER for near-monochromatic pulses, e.g., from synchrotron-
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Mössbauer-like sources [Ger+85b; Smi+97b; Set+09; Mas+08; Pot+12] generalized to operation
at x-ray free-electron lasers [Chu+18]. The correlation of coherently and incoherently scattered
intensities also allows one to rigorously benchmark theoretical models of nonlinear excitations against
experimental data and helps to characterize deviations from effective low-excitation descriptions of
nuclear ensembles.
This Chapter is structured as follows: In Sec. 5.2 the theoretical model for the nuclear ensemble is

introduced, the two relevant observables are presented and the cases of impulsive and non-impulsive
x-ray excitation are defined. Sec. 5.3 outlines the basic principle of the distinction between the LER
and excitations beyond that regime. Subsequently the proof of the equivalence between coherent and
incoherent dynamics up to second order in the x-ray-nuclei coupling is given first for effective two-
level schemes, second for non-interacting many-body systems and finally for interacting many-body
systems. The last two sections focus on signatures of excitation beyond the LER for different pulse
structures. Sec. 5.4 compares analytical results for weakly-coupled nuclear ensembles with numerical
studies of strongly coupled nuclei upon impulsive excitations. Section 5.5 identifies different signatures
for nonlinear excitation of effective two-level systems upon near-resonant and exponentially-decaying
x-ray fields. Finally, Sec. 5.6 discusses and summarizes the results.

5.2 Theoretical background

In this Section, the theoretical model used to describe the nuclear ensemble dynamics is presented.
Subsequently, the two observables relevant for the characterization of nonlinear excitation and the
different types of x-ray excitation considered in our analysis are introduced.

5.2.1 Theoretical model for the nuclear ensemble

In the following, for definiteness, we focus our discussion on the case of nuclei embedded in planar
thin-film waveguides, probed by the x-rays in grazing incidence on the waveguide structure [HT99b;
RE21a; Röh04]. Such photonic environments allow one to tailor the nuclear dynamics, and the
possibility to enhance the nuclear excitation for a given x-ray pulse using a suitable design of the
nuclear environment has been suggested [HKE16a; Che+22; DLE22b; DLE22c]. Interestingly, the
lossy nature of the x-ray waveguides leads to an interplay of multiple cavity modes [Len+23] which
may affect the nuclear dynamics favorably. Furthermore, one may expect that waveguides probed in
reflection can be more stable under the action of intense x-ray light, as compared to thicker sample
foils probed in forward direction. Finally, a detailed quantum optical description has been developed
for the waveguide setting [HE13; HE15b; Len+20; KCP20b], which serves as the starting point for
our present analysis.
In general, the interaction of x-rays with nuclei gives rise to a large variety of processes, e.g., based on

recoil-less interaction or interaction with recoil, or on radiative or non-radiative de-excitation channels.
A detailed discussion of these contributions in the LER regime can be found, e.g., in [Smi+07;
HT99b]. In the following, we aim at a description of the nuclear dynamics beyond the LER, focusing
on coherent scattering in propagation direction of the driving x-ray pulse and incoherent emission
following internal conversion as the main observables. To this end, we employ the model of N identical
interacting nuclei introduced in Sec. 4.2.1. Here, we consider the specific case of two-level systems
such that the indices l, l′ labelling different excited states in Eqs. (4.14), (4.15) and (4.17) can be
dropped. We further assume the identical transition frequencies ω0 and radiative and non-radiative
decay rates Γnn and ΓIC which is reasonable in the absence of local perturbations of the nuclear
ensemble. In this case, the Hamiltonian of the nuclear ensemble [Aga74; FS05; Kif+10; Len+20;
KCP20b; LKE16b; LE14a; LE14b; AG+17] can be written as

Ĥ =~
N∑
n=1

ω0 σ̂
+
n σ̂
−
n −

~
2

N∑
n=1

[
Ω(rn, t) σ̂

+
n + h.c.

]
− ~

N∑
n,n′=1

Jnn′ σ̂
+
n σ̂
−
n′ . (5.1)

Here, n and n′ label the individual two-level systems and σ̂±n are the raising and lowering operators
of nucleus n in its two-level Hilbert space. Further,

Ω(rn, t) =
dE(rn, t)

~
(5.2)
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denotes the semi-classical light-matter coupling in the form of the time-dependent Rabi frequency with
E(rn, t) describing the electric field amplitude at the position rn of nucleus n, and d the transition
dipole moment 1. Note that, compared to Sec. 4.2.1, the dependence of the Rabi frequency on the
nuclear index n is assumed to depend on the value of the x-ray field E at positions rn only as the
nuclear dipole moments are identical. Finally, possible interactions between the nuclei are included
via the dipole-dipole coupling parameters Jnn′ which satisfy the symmetry property Jnn′ = J∗n′n.
The nuclear many-body dynamics is then characterized by a density operator ρ̂NB governed by the

master equation [Aga74; FS05; Kif+10; Len+20; KCP20b; LKE16b; LE14a; LE14b; AG+17]

d

dt
ρ̂NB =

1

i~

[
Ĥ, ρ̂NB

]
+ L[ρ̂NB] , (5.3)

where “NB” stands for N-body, and the Lindblad term is given by

L[ρ̂NB] =

N∑
n,n′=1

Γnn′
(
2σ̂−n′ ρ̂

NBσ̂+
n −

{
σ̂+
n σ̂
−
n′ , ρ̂

NB})+

N∑
n=1

ΓIC

(
2σ̂−n ρ̂

NBσ̂+
n −

{
σ̂+
n σ̂
−
n , ρ̂

NB}) . (5.4)

It incorporates both, single-particle decay as diagonal elements with n = n′, and incoherent dipole-
dipole couplings between the nuclei with n 6= n′. Note that the total natural line width γ of the nuclei
comprises radiative decay contributions (∝ Γnn), and non-radiative internal conversion contributions
(∝ ΓIC),

γ = 2 (Γnn + ΓIC) . (5.5)

The coupling constants entering the master equation Eq. (5.3) can conveniently be calculated ab-
initio using the classical Green’s function [GW96; DKW02; SB08; AG+17; NH06; BW07] characteriz-
ing the nuclear environment [Len+20], which is analytically known [Tom95; BW07; AG+17]. In turn,
a suitable optimization of the environment can be used to reverse engineer desired couplings [BB20;
DLE22b; DLE22c].
The many-body problem Eq. (5.3) in general is challenging to solve. However, in the LER, enforced

in the equations of motion by neglecting possible populations of the nuclear excited states by setting
〈σ̂+
n σ̂
−
n 〉 = 0, the problem allows for a substantial reduction of the relevant Hilbert space. In this

case, by rewriting the system in Fourier space in terms of a spin-wave basis, the problem of many
interacting nuclei embedded in the cavity environment can equivalently be rewritten in terms of an
effective single-particle level scheme [Röh+10; Röh+12; HE13; HE15b; Len+20; RES20b; RE21a;
KCP20b; DLE22c; DLE22b]. Interestingly, the effective level scheme may differ from the original
level scheme of the individual nuclei. The number of relevant energy eigenstates can be engineered,
and it may also comprise additional couplings between levels induced by the cavity environment which
can simulate otherwise unavailable control laser fields. As a result, level schemes can be realized which
otherwise are not available with Mössbauer nuclei. This feature forms the basis of most experiments
on nuclear quantum optics with nuclei in waveguides reported so far [RES20b; RE21a; Röh+10;
Röh+12; Hee+13; Hee+15c; Hab+16; Hab+17; Hee+15b; Ma+22]. A more detailed discussion of
the dynamics of effective few-level schemes in the LER can be found in Chapter 6.
It is expected that this equivalent description in terms of a single few-level system breaks down

towards higher excitation of the nuclear ensemble [Len+20; LE14a; LE14b]. Nevertheless, the single-
particle description provides a good starting point for the following analysis of experimental signatures
at the onset of effects beyond the LER. Afterwards, in Sec. 5.3.3, we will also consider the full many-
body dynamics in leading and next-to-leading order of the interaction between x-rays and nuclei
accompanied by numerical simulations of higher excitation orders to explore possible deviations from
the single-particle results in the excitation beyond the linear regime.
Note that a similar treatment in principle can also be applied to nuclear forward scattering (for an

introduction, see e.g. [HT99b; Röh04]), by employing the corresponding free-space Green’s function
to calculate the parameters entering the master equation. However, in this geometry, the incident
x-rays typically excite multiple eigenmodes of the many-body Hamiltonian, and propagational effects
arising due to multiple interactions in the thicker samples lead to further modifications of the scattered
light signatures [LHH60b; HT99b]. Therefore, for simplicity, we focus on reflection geometries in the
following analysis.
1Note that the Mössbauer transitions in some isotopes such as 57Fe may instead feature other dominant multipole
moments, such as M1 magnetic dipole moments. In this case, the expression for the Rabi frequency should be
modified accordingly. For details, see also Sec. 2.2.1.
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5.2.2 Observables

In the following discussion, we will consider two standard observables in nuclear resonant scattering,
see Fig. 5.1. First, the time-dependent intensity Icoh(t) of the coherently scattered x-rays. This
quantity is highly directional: In forward scattering geometry, this signature is emitted in forward
direction, due to interference between the scattering contributions of the different nuclei [Smi86;
HT99b; Röh04]. In reflection geometry, it is emitted in a direction essentially given by Bragg’s law.
Second, the time-dependent intensity Iinc(t) of the incoherent signatures, e.g., fluorescence photons
or conversion electrons of the nonradiative de-excitation of the nuclei via internal conversion [Stu+96;
BHS94; Bar+96; Ser+06; Smi+07]. The relative contribution of the nonradiative to the radiative
channel to the total nuclear decay is described by the internal conversion coefficient α [HT99b; Röh04].
Note that the two observables can be measured concurrently [Smi+07]. In the following, we will show
that the comparison of these two observables allows one to identify excitations of the nuclei beyond
the LER.
In incoherent scattering, the nuclei decay independently, such that the observed signal intensity is

proportional to the sum of excited-state populations of the nuclei [Aga74; FS05],

Iinc(t) ∝
N∑
n=1

〈σ̂+
n σ̂
−
n 〉 . (5.6)

Note that the pre-factors will not be of relevance in the following analysis. This has the additional
advantage that experimental details such as the detection geometry, or attenuation within the sample
or between sample and detector do not have to be characterized quantitatively for our analysis.
In contrast, the radiatively emitted scattered light can be evaluated by relating the positive-

and negative-frequency components of the electric field operators Ê(±) to the transition operators
σ̂∓n [Aga74; FS05], which act as source operators for the emitted radiation. The total coherently
emitted intensity in direction kout can then be written as [Aga74; FS05],

Irad(t,kout) ∝
N∑

n,m=1

〈σ̂+
n σ̂
−
m〉 eikout(rn−rm) , (5.7)

where kout is the wave vector of the emitted radiation, and we again have omitted the pre-factors.
Using a decomposition of the transition operators into their expectation values and a fluctuation part
σ̂±n = 〈σ̂±n 〉+ δσ̂±n [CT77], we can extract the coherently scattered contribution as

Icoh(t,kout) ∝
N∑

n,m=1

〈σ̂+
n 〉 〈σ̂−m〉 eikout(rn−rm)

=

∣∣∣∣∣
N∑
n=1

eikoutrn〈σ̂+
n 〉
∣∣∣∣∣
2

. (5.8)

The last expression clearly exhibits the interference between the contributions scattered by the in-
dividual two-level nuclei. If the incident x-rays with wave vector kin imprint a position-dependent
phase pattern on the two-level nuclei, the additional phase accumulated due to kout together with
the sum over all two-level atoms leads to the directional emission described at the beginning of this
section.
Note that the incoherently and coherently scattered intensities Eqs. (5.6), (5.8) can be expressed

in terms of single-particle reduced density matrix elements,

〈σ̂+
n σ̂
−
n 〉 =Tr

[
ρ̂NBσ̂+

n σ̂
−
n

]
= ρenen , (5.9)

〈σ̂+
n 〉 =Tr

[
ρ̂NBσ̂+

n

]
= ρgnen . (5.10)

Here, |gn〉 [|en〉] denote the ground [excited] state of nucleus n, ρ̂NB is the N-body density matrix
the dynamics of which is governed by the master equation Eq. (5.3), and Tr [·] denotes the trace over
the many-body Hilbert space. Analogous relations hold for effective single-particle level schemes as
introduced below in Sec. 5.2.1.
Throughout this Chapter, we will consider ratios of these two observables
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R(t) =
Icoh(t)

Iinc(t)
(5.11)

and show that this ratio becomes time-independent in the LER, essentially independent of the specific
properties of the nuclear ensemble and the time- and frequency structure of the exciting x-ray pulses.
Further, we will argue that a time-dependent ratio R(t) or a change of its value as a function of the
incident pulse energy signifies excitation beyond the LER.

5.2.3 Impulsive and non-impulsive x-ray excitation
Throughout this work, we consider two qualitatively different x-ray excitation approaches for the
nuclei. Accelerator-based x-ray sources typically deliver x-ray pulses with durations on the ∼ps (syn-
chrotron) or ∼fs (x-ray free electron laser) scale. In contrast, typical lifetimes of standard Mössbauer
isotopes are orders of magnitude longer (for example, the natural lifetime of the most commonly used
Mössbauer resonance in 57Fe is 141 ns [Röh04]). As a result, the x-ray excitation is impulsive in the
sense that it is near-instantaneous as compared to all natural time scales of decay and coupling dy-
namics of the nuclei. Therefore, collective effects such as couplings between the nuclei or their decay
processes can be completely neglected throughout the x-ray excitation, and the nuclear excitation
dynamics can be evaluated simply by considering the x-ray induced dynamics on the single-nucleus
level. After initial excitation, the nuclei then evolve on their natural time scales in the absence of
the exciting x-ray pulse. This temporal separation of excitation and subsequent nuclear ensemble
dynamics considerably simplifies the analysis. [Len21]
Next to this impulsive excitation, we further consider the case in which the duration of the incident

x-ray field is not restricted to very short times. We denote this more general case as non-impulsive
excitation, and will in particular consider the case in which the duration of the driving x-ray field
is comparable to the other evolution time scales of the nuclei. This situation becomes of relevance
if x-ray pulses are used which are monochromatic on the nuclear energy scales, e.g., delivered by
a synchrotron (or analogously extended free-electron laser) Mössbauer source [Ger+85b; Smi+97b;
Set+09; Mas+08; Pot+12; Chu+18], or in setups employing additional reference absorbers to shape
the incoming x-ray pulse like the recently demonstrated coherent control schemes for nuclear dynam-
ics [Hee+21]. In the non-impulsive case, the complete dynamics involving x-ray excitation, couplings
and decay processes must be considered at the same time.
In Sections 5.4 and 5.5, the two cases will be analyzed separately.

5.3 Characterization and detection of dynamics beyond the
low-excitation regime

In this Section, we present and analyze the main idea of our approach to detect and characterize
nuclear dynamics beyond the low-excitation regime. We start with the simplest possible example
involving the coherent dynamics of a two-level system, to illustrate the main idea of identifying
dynamics beyond the LER based on a comparison of the coherently scattered intensity and the
incoherently scattered intensity. Next, we generalize the idea to the full dissipative dynamics of a
single effective two-level system, which is of relevance, e.g., in the context of a nuclear ensemble in a
cavity environment. Finally, we establish our approach in the general case of an interacting nuclear
many-body system. The main purpose of this Section is to prove the equivalence of coherently and
incoherently scattered intensity in the LER, largely independent of the specific details of the nuclear
ensemble and the x-ray driving fields, and establish deviations from this equivalence as a means to
characterize excitation beyond that regime.

5.3.1 Example illustrating the approach to detect excitation beyond the
low-excitation regime

As discussed in Sec. 5.2.1, effective single-particle models for nuclei in waveguides provide a good
starting point for the analysis of experimental signatures at the onset of effects beyond the LER.
Here, we start with the simplest possible case, and consider the excitation dynamics of a single
two-level system resonantly driven by an impulsive x-ray pulse.
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We denote the ground and excited states of the two-level system as |g〉 and |e〉, respectively, and
characterize its state via a density operator with matrix elements ρij(t) (i, j ∈ {e, g}; see Sec. A.10
for the equations of motion). Assuming the system to be initially in its ground state, i.e.

ρee(t = 0) = 0 , ρge(t = 0) = 0 ,

ρeg(t = 0) = 0 , ρgg(t = 0) = 1 ,

the time-dependent density matrix elements describing the excited-state population and the x-ray
induced coherence in a suitable interaction picture can be evaluated using the area theorem (for a
derivation, see Sec. A.9 or Refs. [AE75; MS07]) to give

ρee(t) = sin2

[
1

2
A(t)

]
, (5.12a)

ρge(t) = − i
2
eiφ sin [A(t)] , (5.12b)

where t denotes the time after the impulsive x-ray pulse has passed the system, which is much shorter
than the lifetime of the resonance such that the decay can be neglected. The x-ray pulse area A is
given by

A(t) =

∫ t

t0

Ω(t′)dt′ , (5.13)

where Ω(φ, t) = Ω(t) exp(−iφ) is the Rabi frequency in the interaction picture (cf. Sec. A.9) propor-
tional to the time-dependent x-ray field amplitude, with constant phase φ which accounts, e.g., for
the spatial dependence of the incident x-ray field. Note that the pulse area enters the diagonal density
matrix element corresponding to the nuclear excited-state population with a pre-factor of 1/2. As a
result, the two quantities ρee(t) and |ρge(t)|2 related to the incoherent and coherent x-ray emission
from the nuclei are not equivalent in general.
To explore the relation of the two observables in more detail, we expand Eqs. (5.12) for the case of

low pulse area,

ρee(t) =
1

4
A(t)2 − A(t)4

48
+
A(t)6

1440
+ . . . , (5.14a)

|ρge(t)|2 =
1

4
A(t)2 − A(t)4

12
+
A(t)6

90
+ . . . . (5.14b)

We find that, in leading order, the coherently and incoherently scattered light proportional to the
coherence squared and the population are equivalent,

ρ(0−2)
ee (t) =

1

4
A2(t) = |ρ(0−2)

ge (t)|2 , (5.15)

where the superscript (0− 2) indicates the Taylor expansion including all contributions up to second
order of the indexed quantities.
In contrast, if the nuclei are excited beyond the leading low-excitation order, we find that the two

observables differ,

ρ(4)
ee (t) 6=

(
|ρge(t)|2

)(4)
= 2Re

[
ρ∗(1)
ge (t)ρ(3)

ge (t)
]
, (5.16)

where the superscript (i) denotes the ith-order contribution of the series expansion only. As a result,
we conclude that suitably analyzed deviations in the two observables provide a direct signature for
the excitation of the nuclear ensemble beyond the LER.
Equation (5.16) also shows how the expansion of the off-diagonal density matrix element itself enters

the expansion of its magnitude squared. As expected, the leading order violating the equivalence of
the coherent and incoherent scattering comprises contributions from the third order of the off-diagonal
density matrix elements, which illustrates the significance of the x-ray-nuclei interaction beyond the
linear regime for this contribution.
In analyzing experimental data, it may be favorable to consider ratios of coherently and incoher-

ently scattered light, corresponding to suitable ratios of squared coherences and populations such as
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|ρge|2/ρee as experimentally-accessible quantities to characterize excitation beyond the leading low-
excitation order. The reason is that then, experimental aspects such as pre-factors related to the
detection geometry or efficiency become largely irrelevant in analyzing the data. The ratio expands
in orders of the pulse area as

|ρge(t)|2
ρee(t)

=
A(t)2 − A(t)4

3 + 2A(t)6

45 + . . .

A(t)2 − A(t)4

12 + A(t)6

360 + . . .

= 1− 1

4
A2(t) +

A4(t)

48
+ . . . . (5.17)

Thus, it deviates from unity already in second order of the pulse area. However, it is important to
note that this is due to cancellations in the expansion order of the numerator and the denominator
of the ratio. Corrections of order A2(t) in the ratio may only occur if the off-diagonal density matrix
elements ρeg and ρge have contributions of order A3(t) or higher, and/or the populations ρee of order
A4(t) or higher. Therefore, we can attribute deviations in the ratio from unity to excitations of the
system beyond the LER.
In the following Sections, we will extend the characterization of excitation beyond the LER based

on the relation between coherently and incoherently scattered radiation to more complex settings and
to non-impulsive nucleus-field interactions, and will develop various approaches to analyze the two
observables for this purpose.

5.3.2 Effective two-level system excited by non-impulsive x-ray fields

In Sec. 5.3.1 we have used the simplest case of the excitation dynamics of a single effective two-level
system driven by an impulsive x-ray field to illustrate the main idea of comparing the coherent and the
incoherent light scattering off of the nuclei to identify excitation beyond the LER. Next, we develop
this argument further by deriving a self-consistent solution to the dynamics of the two-level system
driven by x-ray fields with arbitrary time-dependence and including decay dynamics. This will allow
us to also study the non-impulsive x-ray excitation case. Note that the effective level scheme may
have decay rates or transition frequencies which differ from the bare nuclear properties [Röh+10;
HE13; Len+20; DLE22b]. Nevertheless, for notational simplicity, in the following, we will continue
to use the symbols γ and ω0 introduced above as the single-nucleus properties also in the effective
two-level case.

Self-consistent solution for the effective two-level system

As discussed in Sec. 5.2.1, the nuclear many-body system in a waveguide can be modeled using
an effective single-particle description in the LER. For the simplest case of an effective two-level
scheme, self-consistent solutions to the equations of motion for the excited-state population and the
x-ray-induced coherence can be derived, which are given by (see Sec. 4.1 for the derivation)

ρee(t, t0) =
1

2
e−γtRe

[ ∫ t

t0

dt′e
γ
2 t
′
e−iω0t

′
Ω∗(t′)

∫ t′

t0

dt′′eiω0t
′′
e
γ
2 t
′′
Ω(t′′)

]
− e−γtRe

[ ∫ t

t0

dt′e
γ
2 t
′
e−iω0t

′
Ω∗(t′)

∫ t′

t0

dt′′eiω0t
′′
e
γ
2 t
′′
Ω(t′′)ρee(t

′′, t0)
]
, (5.18a)

ρge(t, t0) = − i
2
eiω0te−

γ
2 t

∫ t

t0

dt′e−iω0t
′
Ω∗(t′)e

γ
2 t
′

− ieiω0te−
γ
2 t

∫ t

t0

dt′e−iω0t
′
e−

γ
2 t
′
Ω∗(t′)

∫ t′

t0

dt′′eγt
′′
Im
[
Ω(t′′)ρge(t

′′, t0)
]
. (5.18b)

Here, we have assumed that the effective nucleus is initially in the ground state at time t0. Note that
as expected, the population only comprises terms of even orders in the nucleus-field coupling Ω(t)
while the coherence only comprises odd orders.
In the next Subsection 5.3.2, we will systematically expand this solution in orders of the driving

x-ray field amplitude, in order to establish the relations between the excited-state population and the
x-ray induced coherences which will allow us to identify signatures for excitation beyond the LER.
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Coherence-population correspondence in second-order of the driving x-ray field

As illustrated in Sec. 5.3.1, our approach to identify x-ray excitations of the nuclear ensemble beyond
the LER relies on a comparison of the coherently and incoherently scattered light, which relate to the
nuclear excited-state population and the x-ray-induced coherence squared. It is based on the result
that the population and the absolute value of the coherence squared are identical up to second order
in the exciting x-ray field. Any deviation from this equality therefore indicates excitation beyond the
LER.
Next, we derive the correspondence between the population and coherence for effective nuclear

two-level systems driven by general time-dependent x-ray fields. To this end, we expand Eqs. (5.18)
in powers of the driving x-ray field amplitude.
In the absence of the x-ray field, the nuclei are in their ground state,

ρ(0)
ee (t = t0) = 0 , ρ(0)

ge (t = t0) = 0 ,

ρ(0)
eg (t = t0) = 0 , ρ(0)

gg (t = t0) = 1 .

Iteratively solving the self-consistent equations in a perturbative expansion, we find in first order in
the driving x-ray field that

ρ(1)
ge (t) =

∫ t

t0

dτ f(t, τ) , (5.19a)

ρ(1)
ee (t) = 0 , (5.19b)

where we defined the function f(t, τ) as the integrand in Eq. (5.19a) as

f(t, τ) = − i
2
e−

γ
2 (t−τ)eiω0(t−τ) Ω∗(τ) , (5.20)

for reasons which will become clear in the next step. Note that Eq. (5.19a) bears similarity to the
lowest-order result in Sec. 5.3.1 involving the pulse area in Eq. (5.13) in that the off-diagonal density
matrix element depends on an integral over the coupling Rabi frequency over time. However, the
more complete analysis here allows us to incorporate more degrees of freedom in our analysis such as
detunings between exciting x-ray pulse and two-level system or decay processes.
Going further in the perturbative expansion, we find that the second-order contributions can be

written as,

ρ(2)
ge (t) = 0 , (5.21a)

ρ(2)
ee (t) = 2 Re

[∫ t

t0

dt′ f(t, t′)

∫ t′

t0

dt′′ f∗(t, t′′)

]

=

∣∣∣∣∫ t

t0

f(t, τ) dτ

∣∣∣∣2 =
∣∣∣ρ(1)
ge (t)

∣∣∣2 . (5.21b)

The first relation in Eq. (5.21b) follows from a simple re-arrangement of the different terms in the
self-consistent Eq. (5.18a). In the second step, we have used a general relation for complex-valued
functions, derivable directly using integration by parts. Note that ρ(2)

ge (t, t0) in our notation is the
second-order correction, and not the result up to second order.
Hence, we find that the excited-state population and the coherence-squared are identical up to

second order in the driving x-ray field also in this more general case,

ρ(0−2)
ee (t) =

∣∣∣ρ(0−2)
ge (t)

∣∣∣2 , (5.22)

where the superscript (0− 2) indicates that all contributions up to second order are included.
As a result, we have shown for general two-level systems including decay and driven by weak

time-dependent x-ray pulses that the coherently emitted intensity is equivalent to the intensity of the
incoherent emission in second order of the x-ray-nucleus coupling. Note that this result is independent
of the temporal shape of the x-ray field, such that it also holds for pulse sequences.
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In terms of experimentally-accessible quantities, this implies that the ratio of the coherently and
incoherently scattered intensities Eqs. (5.6),(5.8) is constant as function of time in the LER, i.e., if
both observables are expanded up to second order in the driving x-ray field. Conversely, deviations
from this time-independence therefore imply dynamics beyond the LER. In particular, as discussed
in Sec. 5.3.1, the ratio is expected to change quadratically with the integrated Rabi frequency in
leading higher-excitation order. In Secs. 5.4 and 5.5, we will explore particular x-ray pulse examples
of experimental relevance for such dynamics beyond the LER, which will also allow for analytical
solutions of the nuclear dynamics to higher order.

Incoherent and coherent radiation emitted by non-interacting two-level systems

In this section, we investigate the coherently and incoherently scattered intensity of identical non-
interacting two-level nuclei in the LER. This case introduces the basic assumptions of ensemble-
scattering and serves as a reference for studies of interacting nuclear systems.
The case of a non-interacting nuclear ensemble is characterized by vanishing coherent couplings Jnn′
and cross-decay rates Γnn′ . The Hamiltonian Eq. (5.1) and Lindbladian Eq. (5.4) separate into
independent contributions for each nucleus

Ĥ =
∑
n

ĥn , L[ρ̂NB] =
∑
n

L1Bn [ρ̂1B] (5.23)

with

ĥn =~ω0σ̂
+
n σ̂
−
n −

~
2

(
Ωn(t)σ̂+

n + h.c.
)

(5.24a)

L1Bn [ρ̂1B] =
γ

2

(
2σ̂−n ρ̂

1Bσ̂+
n −

{
σ̂+
n σ̂
−
n , ρ̂

1B}) (5.24b)

In this case, the solution to the N-body problem becomes the product of the solutions to the
one-body problem, i.e.

ρNB =
⊗
n

ρ1Bn (5.25)

Then, the expectation value of any one-body operator ÔNB =
∑
n Ô1B

n becomes

〈ÔNB〉(t) =Tr
(
ÔNBρ̂NB(t)

)
=
∑
n

Tr
(
Ô1B
n ρ̂NB

)
(5.26)

=
∑
n

Tr(Ô1B
n ρ̂1Bn

)
·
∏
l′ 6=l

Tr
(
ρ̂1Bn′
) (5.27)

=
∑
n

Tr
(
Ô1B
n ρ̂1Bn

)
=
∑
n

〈Ô1B〉 (5.28)

which means that the N-body expectation value of Ô is just reduced to the sum of the expectation
values of the one-body operators Ôn acting on each individual nucleus since the dynamics of the
different nuclei are not coupled by the Hamiltonian nor the Lindbladian.
For identical nuclei and assuming a plane wave driving field of the form

Ω(rn, t) = Ω(t) eikin rn , (5.29)

that excites all nuclear dipoles with the same amplitude, this implies that the coherences of the
individual nuclei are only distiguished by their positional phase imprinted via the external driving
field, i.e.
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ρgnen(t) = e−ikin·rnρge(t) . (5.30)

This phase-dependence can be obtained from the self-consistent solution Eq. (5.18b) which always,
regardless of the expansion order, acquires the phase of the outermost x-ray-nucleus interaction am-
plitude Ω∗(rn, t) while the phase contribution from the inner integrals cancels. Hence, the coherently
scattered intensity Eq. (5.8) under the assumptions of identical non-interacting nuclei and an equal-
amplitude excitation by an plane-wave driving field reads

Icoh(t) =

∣∣∣∣∣
N∑
n=1

ei(kout−kin)rn

∣∣∣∣∣
2

· |ρge(t)|2 (5.31)

In contrast to the coherent emission, the incoherent radiation is produced by independently-
decaying nuclei without a specific directionality of the released radiation as described by Eq. (5.6). In
addition, the plane wave driving field does not imprint a phase on the excited-state populations as can
be seen from the self-consistent solution Eq. (5.18a): Here, the positional phase factors of the driving
fields Ω(rn, t) as these always appear in pairs. This is related to the fact that only even scattering
orders contribute to the population. Note that, like for the coherence, this latter fact is independent
of the perturbative expansion order. For these reasons the incoherently scattered intensity Eq. (5.6)
becomes

Iinc(t) =
∑
n

ρenen(t) = Nρee(t) . (5.32)

With these results, the ratio of both observables up to second order in the x-ray nuclei interaction
can be written as

RNB(t) =
Icoh(t)

Iinc(t)
=

∣∣∑
n e

i(kout−kin)·rn
∣∣2

N

|ρge(t)|2
ρee(t)

(5.33)

which is the ratio of the single-nucleus quantities multiplied by a prefactor which is constant in time.
This means that the many-body observables are directly related to the corresponding single-body
quantities if interactions are neglected. In particular, if the single-nucleus ratio is constant, this is
also true for the non-interacting many-body quantity RNB(t), however, with a prefactor including
the directionality of the released coherent radiation. Note, that two assumptions were crucial for the
derivation of this result: First, we assumed a plane-wave driving field that excites all nuclei with
equal amplitude and, second, all nuclei were required to be identical. In the following sections we will
generalize this result to interacting nuclear ensembles.

5.3.3 Perturbative solution of the interacting many-body nuclear
ensemble

Having established the equivalence of coherent and incoherent radiation in the LER for effective
single-particle cases, we now turn to interacting nuclear ensembles. As mentioned, this is of rele-
vance for studies of nuclear ensembles embedded in x-ray waveguides displaying radiation-induced
couplings and cooperative effects even in the LER. We establish this equivalence by deriving the
population-coherence correspondence in a single-particle basis under the assumptions of homogene-
ity of the nuclear ensemble and equal-amplitude plane-wave driving fields. This approach requires
less assumptions about the geometry of the sample compared to a derivation in a nuclear exciton or
spinwave basis, in which the time evolution operator T̂t becomes diagonal [Len+20; AG+17]. This
basis is characteristic for the low-excitation dynamics of nuclear ensembles in x-ray waveguides (cf.
Sec. 2.2.2). The homogeneity assumption in this approach is rephrased in terms of translational
invariance. A derivation in this basis is shown in Appendix A.6 to complement the analysis given in
the main text.
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Solution of the N-body system in the single-particle basis

We start by deriving the equivalence between incoherently and coherently scattered radiation in the
single-particle basis using the perturbative expressions Eq. (4.34), (4.36) and (4.38) in Sec. 4.2. Using
these expressions for the density operator, the relevant density matrix elements for each nuclear
two-level system can be obtained as

ρ(1)
gx,ex(t) = Tr

[
σ̂+
x ρ̂

(1)(t)
]
, (5.34a)

ρ(2)
ex,ex(t) = Tr

[
σ̂+
x σ̂
−
x ρ̂

(2)(t)
]
. (5.34b)

These expressions can be obtained from a calculation in a single-particle or nuclear exciton basis. The
latter is done in Sec. A.6. Here, we instead proceed with a direct calculation in the single-particle
basis.
We start with the coherence, assuming that all nuclei initially are in their ground states, ρ̂(0)(t) =
|G〉〈G| (cf. Eq. (4.34)),

ρ(1)
gx,ex(t) =− i

~

∫ t

t0

dτ Tr
[
σ̂+
x T̂
†
t−τ

[
Ŵ (τ), ρ̂(0)(τ)

]
T̂t−τ

]
, (5.35)

with time evolution operators T̂t defined in Eq. (4.24) and the nucleus-field interaction Hamiltonian
in Eq. (4.15), again specialized to the case of a single excited states and therefore dropping the indices
l, l′.
The trace in the integral of Eq. (5.35) is evaluated to

Tr
[
σ̂+
x T̂
†
t−τ

[
Ŵ (τ), ρ̂(0)(τ)

]
T̂t−τ

]
= 〈G|T̂t−τ σ̂+

x T̂
†
t−τŴ (t)|G〉 − 〈G|Ŵ (τ)T̂t−τ σ̂

+
x T̂
†
t−τ |G〉

= −〈G|Ŵ (τ)T̂t−τ σ̂
+
x |G〉 (5.36)

where we have used the cyclic permutation property Tr(AB) = Tr(BA) in the first step, and

T̂ †t |G〉 = |G〉 = T̂t|G〉 , (5.37)

〈G|T̂t = 〈G| = 〈G|T̂ †t , (5.38)

as well as

〈G|σ̂+
x = 0 (5.39)

in the second step. We further evaluate Eq. (5.36) by inserting the explicit form of the interaction
part Ŵ which yields

−〈G|Ŵ (τ)T̂t−τ σ̂
+
x |G〉 =

~
2

N∑
n=1

Ω∗(rn, τ)〈G|σ̂−n T̂t−τ σ̂+
x |G〉

=
~
2

N∑
n=1

Ω∗(rn, τ)
[
δnx + κnx(t− τ) +

∑
j

κnjκjx(t− τ)2/2 + . . .
]

=
~
2

N∑
n=1

Ω∗(rn, τ)
[
eK(t−τ)

]
nx

. (5.40)

In the second step, we perform a series expansion of the time evolution operator and calculate the ex-
pectation values. In the last step, we re-sum the result. For this, we introduce the matrix exponential
of the coefficient matrix K = (κnm) with entries κnm defined by

κnm = −(Γnm + i Jnm)− (ΓIC − iω0)δnm , (5.41)
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in the single-excited state case and [A]xy is the x, y-element of the matrix A. Using Eq. (5.40) in
Eq. (5.35), we obtain

ρ(1)
gx,ex(t) =

N∑
n=1

∫ t

t0

dτ gnx(τ) , (5.42a)

gnx(τ) = − i
2

Ω∗(rn, τ)
[
eK(t−τ)

]
nx

. (5.42b)

Analogously, the excited-state population evaluates to

ρ(2)
ex,ex(t) = Tr

[
σ̂+
x σ̂
−
x ρ̂

(2)(t)
]

=
2

~2
Re

{∫ t

t0

dτ2

∫ τ2

t0

dτ1M
}
, (5.43)

with the matrix element

M = 〈G|Ŵ (τ2)T̂t−τ2 σ̂
+
x σ̂
−
x T̂
†
t−τ1Ŵ (τ1)|G〉

=
~2

4

∑
nm

Ω∗(rn, τ2)Ω(rm, τ1)〈G|σ̂−n T̂t−τ2 σ̂+
x σ̂
−
x T̂
†
t−τ1 σ̂

+
m|G〉

=
~2

4

∑
nm

Ω∗(rn, τ2)Ω(rm, τ1)
∑
N
〈G|σ̂−n T̂t−τ2 σ̂+

x |N 〉〈N | σ̂−x T̂ †t−τ1 σ̂+
m|G〉

=
~2

4

∑
nm

Ω∗(rn, τ2)Ω(rm, τ1)〈G|σ̂−n T̂t−τ2 σ̂+
x |G〉〈G|σ̂−mT̂t−τ1 σ̂+

x |G〉∗

=
~2

4

∑
nm

Ω∗(rn, τ2)Ω(rm, τ1)
[
eK(t−τ2)

]
nx

[
eK(t−τ1)

]∗
mx

. (5.44)

In this derivation, the crucial step is the insertion of an identity operator 1̂ =
∑
N |N 〉〈N | in the

center of the matrix element where the |N 〉 form a basis of the many-body Hilbert space. Of this
sum, only the ground state projector |G〉〈G| contributes for the following reason: σ̂+

m creates a single
excitation in the state it is acting on, while the time evolution operator T̂ †t−τ1 conserves the total
number of excitations. Then, σ̂−x annihilates a single excitation such that only initial and final states
with the same number of excitations can contribute to M which means that only the ground state
projector remains in the center of the matrix element.
By inserting Eq. (5.44) into Eq. (5.43), we obtain

ρ(2)
ex,ex(t) =

1

2
Re

{∫ t

t0

dτ2

∫ τ2

t0

dτ1
∑
nm

Ω∗(rn, τ2)Ω(rm, τ1)
[
eK(t−τ2)

]
nx

[
eK(t−τ1)

]∗
mx

}

= 2 Re

{∫ t

t0

dτ2
∑
n

gnx(τ2)

∫ τ2

t0

dτ1
∑
m

g∗mx(τ1)

}

=

∣∣∣∣∣
∫ t

t0

dτ2
∑
n

gnx(τ2)

∣∣∣∣∣
2

=
∣∣∣ρ(1)
gx,ex(t)

∣∣∣2 , (5.45)

where we have used Eqs. (5.42) and the general relation for complex-valued functions already employed
in the derivation of Eq. (5.21b).
In summary, from Eqs. (5.42) and (5.45) we thus obtain

ρ(1)
gx,ex(t) =

N∑
n=1

∫ t

t0

dτ gnx(τ) , (5.46a)

ρ(2)
ex,ex(t) =

∣∣∣ρ(1)
gx,ex(t)

∣∣∣2 , (5.46b)

gnx(τ) = − i
2

Ω∗(rn, τ)
[
eK(t−τ)

]
nx

, (5.46c)
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as the desired solution of the N -body dynamics.
As a consistency check, we can reduce the expression Eqs. (5.46a) to the single-particle case. Then,

the matrix exponential reduces to a scalar exponential with

κxx = −Γxx − ΓIC + iωx = −γ
2

+ iω0, (5.47)

such that

ρ(1)
gx,ex(t) = − i

2

∫ t

t0

dτ Ω∗(τ) e−
γ
2 (t−τ) eiω0(t−τ) , (5.48)

which agrees with the single-particle result Eqs. (5.19a). Note, that up to this point, we did not use the
assumption of a homogeneous nuclear ensemble or equal-amplitude driving field as used in Sec. 5.3.2.
For this reason, the derivation can in principle be extended to also account for site-dependent nuclear
transition frequencies ωn and decay rates γn. However, we retain these assumptions for the following
ensemble derivation and the fact that these assumptions are usually justified.

Coherently and incoherently scattered intensity of homogeneous nuclear ensembles

Now, with the results Eqs. (5.46) at hand, we can proceed by showing the equivalence between the
population-based observables and the coherence-based observables also in the many-body case.
The solutions Eqs. (5.46) directly prove the equivalence on the single-particle level,

|ρ(1)
gxex(t)|2 = ρ(2)

exex(t) , (5.49a)

⇒ |ρ(0−2)
gxex (t)|2 = ρ(0−2)

exex (t) . (5.49b)

However, this result on the single-particle level is not sufficient for the experimentally accessible
ensemble-based observables, given by Eqs. (5.6) and (5.8) as

Iinc(t) ∝
N∑
n=1

〈σ̂+
n σ̂
−
n 〉 , (5.50)

Icoh(t,kout) ∝
∣∣∣∣∣∑
n

eikoutrn〈σ̂+
n 〉
∣∣∣∣∣
2

. (5.51)

To evaluate the sums in these expressions, we again make the two assumptions already employed
in the non-interacting case Sec. 5.3.2: First, we assume that all nuclei are excited with the same
amplitude using a plane-wave field with wave vector kin Eq.(5.29). Second, we make the assumption
of a homogeneous ensemble of nuclei, i.e.,

ρ(1)
gx,ex(t) = − i

2

N∑
n=1

∫ t

t0

dτ Ω∗(rn, τ)
[
eK(t−τ)

]
nx

=− i

2
e−ikin rx

N∑
n=1

∫ t

t0

dτ Ω∗(τ)eikin(rx−rn)
[
eK(t−τ)

]
nx

=− i

2
e−ikin rx

N∑
n=1

∫ t

t0

dτ Ω∗(τ)eikin(rn0
−rn)

[
eK(t−τ)

]
nn0

=ρ(1)
ge (t) e−ikin rx . (5.52)

Here, in the second step, we have replaced the index x in the integrand with an (arbitrary) fixed index
n0. This homogeneity assumption requires that the coupling environment of all two-level systems is
equivalent and that the nuclei themselves are identical. Note that even in a regular arrangement,
nuclei at the boundary of the medium experience different couplings to other nuclei than those in
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the center of the ensemble. But in macroscopically large ensembles, these boundary effects can be
neglected to a good approximation. Within the same assumptions, we also find

ρ(2)
exex(t) = ρ(2)

ee (t) , (5.53)

i.e., the nuclear populations evolve independent of the atom index x.
As a result, the result up to second order in the light-matter coupling is

I
(0−2)
inc (t) ∝ N ρ(2)

ee (t) , (5.54a)

I
(0−2)
coh (t,kout) ∝

∣∣∣ρ(1)
ge (t)

∣∣∣2 · ∣∣∣∣∣
N∑
n=1

ei(kout−kin)rn

∣∣∣∣∣
2

. (5.54b)

Together with Eq. (5.49), we thus again find that in second order of the x-ray-nucleus coupling, the
ratio of the coherently scattered x-rays to those incoherently scattered is constant in time,

I
(0−2)
coh (t,kout)

I
(0−2)
inc (t)

=
I

(0−2)
coh (t0,kout)

I
(0−2)
inc (t0)

. (5.55)

Note that, as in the non-interacting case, the geometrical factor in Eq. (5.54b) characterizes the
directionality of the coherently scattered light.

5.4 Impulsive x-ray excitation beyond the low-excitation
regime

In the previous Section, we have analytically established the dynamical equivalence of the coherently
and the incoherently scattered x-ray intensities up to second order in the x-ray-nucleus interaction.
Deviations from this equivalence in higher excitation orders form the basis of our approach to detect
dynamics beyond the LER. Therefore, in this Section, we consider the impulsive excitation case
beyond second-order perturbation theory, in order to show that the equivalence is indeed broken once
higher-order dynamics sets in. While this is easily possible in analytical form for the case of a single
effective two-level system, numerical calculations are required to study the dynamics of an interacting
nuclear ensemble.

5.4.1 Two-level analysis

In the impulsive excitation case, the x-ray excitation and the subsequent decay dynamics in the
absence of a driving x-ray field can be considered separately. For a single particle, the initial state
after the x-ray excitation is given by Eqs. (5.12) as

ρee(t = 0) = sin2

[
1

2
A
]
, (5.56a)

ρge(t = 0) = − i
2
eiφ sin [A] . (5.56b)

Here, for simplicity, we denote the time after the exciting x-rays have passed the nuclei as t = 0, and
A is the total pulse area of the exciting x-ray pulse. Subsequently, the decay is governed by [SZ97]

ρee(t) = ρee(0) e−γt , (5.57a)

ρge(t) = ρge(0) e−
γ
2 t . (5.57b)

As a result, we find that the ratio of the coherent and incoherent intensities Eqs. (5.8) and (5.6)
evaluates to

Icoh(t)

Iinc(t)
∝ |ρge(t)|

2

ρee(t)
=
|ρge(0)|2
ρee(0)

= cos2

[
1

2
A
]
. (5.58)
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Figure 5.2: Ratio R(t) of the coherently and incoherently scattered intensity for a regular chain of N = 8
nuclei with periodic boundary conditions, scaled by N [see Eq. (5.59)]. The lattice constant r0 = 286 pm
and the resonant wavelength λ0 = 86 pm are chosen for the case of α-iron enriched in 57Fe to determine the
coherent dipole-dipole coupling constants J0

nn′ . Results are compared for the LER (A = 0.01π) and stronger
excitation (A = 0.2π), as well as for free-space coupling (J0

nn′) and cavity-enhanced coupling (50 J0
nn′). Note

that the two curves in the LER case coincide, as expected.

Hence, the ratio remains constant over time, but depends on the degree of excitation (cf. Fig. 5.2).
Measuring it as a function of the resonant intensity of the exciting x-rays then allows one to search for
deviations in this ratio from its value at low x-ray intensities, which indicate excitations beyond the
LER. One possibility for this measurement is to exploit the typically large pulse-to-pulse fluctuations
in resonant intensity at x-ray free electron lasers, and to sort the intensity data according to the
incident (resonant) pulse energy.

5.4.2 Dynamics of a coupled nuclear ensemble after impulsive excitation

If the interactions between the nuclei are weak enough such that the dynamics of the individual nuclei
is essentially independent of each other on nuclear decay timescales, then the results of the single
two-level nucleus case are recovered for each nucleus separately.
A more interesting situation arises in case of stronger couplings. For example, a suitably de-

signed [Hab+16; Hab+17; DLE22c; DLE22b] waveguide structure may allow one to realize regimes
of stronger interactions between the nuclei.
In Sec. 5.3.3 we showed that in this regime, the coherence-population correspondence Eq. (5.22) is

still valid up to second order in the nucleus-field interaction. This holds for each nucleus separately
and, more importantly, also the scaled ratio of the total incoherently and coherently scattered intensity

R(t) =
1

N

|∑n e
ikoutrnρgnen(t)|2∑N
n=1 ρenen(t)

(5.59)

is constant in time and equal to one if the two assumptions of excitation by a plane wave field and
a homogeneous nuclear ensemble are satisfied (see Sec. 5.3.3). Note that R(t) is proportional to
the intensity ratio R(t) (see Fig. 5.1), and scaled by the number of nuclei N . The scaling factor
is introduced since for larger ensembles, the coherently scattered intensity dominates, due to the
collective emission with intensity proportional to N2[VB86; Smi86; SS92; HT99b]. In contrast, the
incoherent scattering channels do not exhibit this collective enhancement, and therefore feature an
intensity proportional to N . This difference is compensated by the prefactor in order to ensure that
R(t) is independent of N under the aforementioned conditions.
Next, we analyze the dynamics beyond the LER, also in the presence of stronger couplings between

the nuclei, using a numerical integration of the full master equation for a limited number of nuclei.
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The calculations are performed using the python library QuTiP [JNN12; JNN13]. In particular, we
consider the dynamics of a linear chain of N = 8 regularly arranged nuclei with periodic boundary
conditions after impulsive x-ray excitation. The coherent dipole-dipole coupling parameters Jnn′ are
chosen assuming nuclear dipole moments d̂ oriented perpendicularly to the relative positions rn− rn′

of the nuclei in the chain. Their free space values can then be calculated via [Aga74; FS05]

J0
nn′ =

3

2
Γ

(
cos(ηnn′)

ηnn′
− sin(ηnn′)

η2
nn′

− cos(ηnn′)

η3
nn′

)
, (5.60)

where Γ = Γnn = γ/[2(1 + α)] denotes the radiative decay rate of the nuclei. Here, α = 8.56
is chosen as the internal conversion coefficient of the archetype Mössbauer isotope 57Fe with the
Mössbauer resonance at 14.4 keV transition energy [Röh04]. We further defined ηnn′ = k0 rnn′ . The
resonant wave number k0 = 2π/λ0 and the distances rnn′ = |n− n′| r0 between the nuclei are chosen
corresponding to the resonant wavelength λ0 = 86 pm and the lattice constant r0 = 286 pm for α-iron
enriched in 57Fe. Note that for a small ensemble with periodic boundary conditions, the homogeneity
criterion for the initial phases imprinted on the nuclei by the x-ray excitation can only be satisfied for
particular incidence angles. To satisfy this criterion, we chose the incidence angle such that a relative
phase of k0 rn,n+1 = 2π/N is imprinted onto the coherence of neighbouring nuclei. For the same
reason the decay rates Γ and nuclear transition frequencies ω0 are considered to be the same for all
nuclei in the chain. Further, incoherent couplings Γnn′ were neglected in the numerical simulation.
Figure 5.2 shows the simulation results for different dipole-dipole coupling parameters Jnn′ and

pulse areas A. The chosen parameters correspond to the LER case (A = 0.01π) or excitation beyond
the LER (A = 0.2π), as well as weak dipole-dipole coupling (Jnn′ = J0

nn′) and coupling enhanced by
a factor of 50 relative to the free-space coupling (Jnn′ = 50 J0

nn′).
In the LER case (blue and orange-dashed lines), we find that the ratio R(t) = 1, independent of

the dipole-dipole coupling, consistent with our analytical results in Sec. 5.3.3. For excitation beyond
the LER case in the presence of weak coupling (green curve), we find a constant ratio R, however,
with a value below 1. This agrees with our results in Sec. 5.4.1. In contrast, for excitations beyond
the LER with stronger dipole-dipole couplings (red curve), the ratio R(t) becomes time-dependent
and evolves to lower values, initially starting from the ratio for the low-coupling case. This is due to a
faster transient decay of the coherences entering the expression for the coherently scattered intensity
in the interacting system.
As a result, we conclude that the time-dependent ratio of the coherently- and incoherently scattered

x-rays does not only serve as a criterion for the excitation beyond the LER, but may further also
reveal the presence of stronger dipole-dipole couplings between the nuclei.

5.5 Non-impulsive x-ray excitation beyond the low-excitation
regime

For the case of impulsive excitation, we found that a comparison of the coherently and incoherently
scattered intensity provides a handle to identify excitation of the nuclear ensemble beyond the LER.
In case of effective single-particle dynamics, the ratio between these two intensities remains constant
throughout the decay while it becomes time-dependent at higher excitations in sufficiently-strongly
interacting nuclear ensembles. In the following, we extend this discussion to the non-impulsive regime.
The calculation of the complete dynamics of a large ensemble of coupled nuclei under the action of
time-dependent driving fields and dissipation so far is an unsolved problem, and remains beyond the
scope of this work. Instead, we analyze the non-impulsive dynamics in the (effective) single-particle
case. It is expected that the single-particle description, which is valid in the LER [Len+20], remains
a good approximation at the onset of dynamics beyond the LER but likely breaks down at higher
excitation. Nevertheless, in the following, we also explore the dynamics at stronger excitation using
the single-particle description, with the motivation of identifying possible experimental signatures
for dynamics beyond the LER. Using this approach, the results presented in this Section are then
obtained by numerically integrating the optical Bloch equations Eqs. (A.146).
To analyze the non-impulsive case, we consider nucleus-field couplings of the form

Ω(t) = ΓaA e−i(ω0+∆)t e−Γat , (5.61)
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Figure 5.3: Temporal dynamics of the excited-state population ρee and the coherence squared |ρge|2 of an
effective two-level system for different degrees of excitation. The population and the coherence squared relate
to the observable incoherently and coherently scattered light intensities. The different panels correspond to
driving x-ray pulse areas of (a) A = 0.01π, (b) A = 0.2π, (c) A = 2π, and (d) A = 4π. In the LER [panel
(a)], population and coherence squared agree, consistent with our analytical results. Upon excitation beyond
the LER, the two quantities start to deviate (b), and eventually Rabi oscillations appear (c,d). Note that
in (d), the oscillation frequencies of the coherence squared and of the population differ approximately by a
factor of 2.

which characterizes an x-ray pulse exponentially decaying with rate Γa and center frequency detuned
by ∆ from the nuclear resonance frequency ω0. Its total pulse area according to Eq. (5.13) is given
by A.

This choice for the driving x-ray field is motivated by the availability of synchrotron Mössbauer
sources (SMS) [Ger+85b; Smi+97b; Set+09; Mas+08; Pot+12] which employ pure nuclear reflexes
to produce x-ray pulses which are spectrally narrow on nuclear line-width scales from the incident
broadband synchrotron pulses. In the future, these sources could be generalized for operation at
x-ray free electron lasers [Chu+18]. Another source providing spectrally narrow pulse contributions
is the field scattered in forward direction by thin nuclear targets in the LER, which is approximately
exponentially-decaying [Smi86; HT99b]. By moving the thin nuclear target before or throughout its
decay, the properties of the scattered light relative to those of the incident synchrotron pulse can be
tuned [Hel+91; Tit+93; Sch+02a; Vag+14; Hee+17; Hee+21; SS22; Hee+22; Zha+19; LP17; CE19].
In particular, using suitably tailored x-ray pulses, the quantum dynamics of a nuclear target could
be controlled [Hee+21]. A possible generalization of such schemes to higher excitation at x-ray free
electron lasers again requires further analysis of nuclear dynamics under exponentially-decaying x-ray
pulses such as in Eq. (5.61).

As expected, we will find that the non-instantaneous driving field gives rise to a much richer
dynamics than in the impulsive case, since the x-ray-induced dynamics and the decay dynamics are
not temporally separated in the former case. In particular, this will affect the time-dependence of
the ratio of the coherently and incoherently scattered intensities.

Note that this time-dependence of the effective single-particle observables will also be reflected in
the corresponding many-body observables as can be seen from Eqs. (5.54) such that their ratio will
become time-dependent as soon as the single-particle quantities are.
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Figure 5.4: Analysis of the times with maximum intensities in the coherence squared and the populations.
(a) shows the times defined in Eqs. (5.62) as function of the total pulse area A. The other parameters are as
in Fig. 5.3. While the maxima in the population and the coherence squared coincide in the LER, deviations
appear towards stronger excitation. (b) shows the peak deviation defined in Eq. (5.63) against A. Starting
from zero value in the LER, the deviation steeply increases at the onset of non-linear excitation of the nuclear
ensemble.

5.5.1 Resonant case ∆ = 0

We start by analyzing the case of a resonant x-ray pulse Eq. (5.61) with detuning ∆ = 0 and decay
constant Γa = 2.5γ, where γ denotes the total line-width of the effective single nucleus. Results for
different pulse areas A ∈ {0.01π, 0.2π, 2π, 4π} are shown in Fig. 5.3.
Consistent with the analytical results in Sec. 5.3.2, the coherence squared and the population

characterizing the coherently and incoherently scattered intensity, respectively, agree in the low-
excitation case [panel (a), A = 0.01π]. With increasing excitation, deviations between the two
observables start to appear [see panel (b)]. If the driving field becomes strong enough to induce Rabi
oscillations [panels (c) and (d)], the different oscillation periods of coherence quared and population
become visible. As a result, time-dependent ratios of the coherently and incoherently scattered light
intensities can be expected in the non-impulsive driving case beyond the LER.
From these results we find that a first signature for dynamics slightly beyond the LER is a relative

shift in the peak maxima of the two time-dependent intensities. This relative shift arises from the
competition of the coherent excitation dynamics and the incoherent decay dynamics. To analyze
this shift more quantitatively, we define the two corresponding times tcohmax and tpopmax with maximum
intensities via the conditions

|ρge(tcohmax)|2 = max
t∈[0,∞)

(|ρge(t)|2) , (5.62a)

ρee(t
pop
max) = max

t∈[0,∞)
(ρee(t)) . (5.62b)

We further consider a peak deviation defined as

∆t/tpopmax =
|tcohmax − tpopmax|

tpopmax
. (5.63)

Note that multiple maxima may appear due to Rabi oscillations at stronger x-ray driving. In this
case, we consider the respective maxima appearing first after the onset of excitation.
Figure 5.4 shows the times tcohmax and tpopmax [panel (a)] and the corresponding peak deviation [panel (b)]

as a function of the total pulse area A. The deviations in case of dynamics beyond the LER are clearly
visible. In particular, the steep increase of the peak deviation at small pulse areas renders it a promis-
ing signature for characterizing dynamics at the onset of the nonlinear excitation regime.

5.5.2 Non-resonant case ∆ 6= 0

Next, we generalize to the non-resonant case ∆ 6= 0. To this end, we analyze the coherence squared
|ρge|2 and the population ρee as a function of time and detuning ∆. This correlated analysis of
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Figure 5.5: Time- and frequency-resolved coherence squared (left panels (a) - (d)) and populations (right
panels (e) - (h)) for the case of non-impulsive excitation with an exponentially decaying pulse Eq. (5.61).
The pulse envelope decays with Γa = 2.5γ. The rows from top to bottom are calculated for pulse areas of
A ∈ {0.01π, 0.2π, 2π, 4π}.

temporal- and spectral properties has proven to be a powerful tool in analyzing nuclear resonant
scattering [Hee+17; Hee+21; WE23a]. However, it is important to note that the experimental setup
underlying the theoretical analysis of this manuscript is different from previous approaches to record
such time- and frequency-resolved spectra. Previous studies considered an impulsive x-ray excitation
of the nuclear ensemble. The frequency resolution in these setups is achieved via an additional
frequency-tunable reference absorber with an approximately exponential temporal decay. As a result,
the time-frequency spectra are dominated by the interference of the light scattered by the reference
absorber and the target, respectively [WE23a].
In contrast, here, we consider time-frequency spectra for the target driven by a non-impulsive

frequency-tunable driving pulse of the form Eq. (5.61), in the absence of additional reference absorbers.
This setup could be realized, e.g., using a synchrotron-Mössbauer-source, by correlating the detuning
∆ of the source with the time-dependence of the scattered photons.
Figure 5.5 compares the time-frequency spectra for different pulse areas A. Again, a pulse decay

rate of Γa = 2.5γ is chosen in the calculation. The left panels (a-d) show the coherence squared,
whereas the right panels (e-h) depict the population. In the LER, the two signatures agree, as
expected [top row, panels (a,e)]. Differences between the spectra appearing at larger pulse areas
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Figure 5.6: Frequency-frequency correlation spectra. The results are obtained via Fourier transforms along
the time axes of the time-frequency spectra in Fig. 5.5. Data is shown in color-coded logarithmic scale for the
coherence squared [left panels, (a)-(d)] and for the populations [right panels, (e)-(h)]. As in Fig. 5.5, the rows
from top to bottom refer to different pulse areas of A ∈ {0.01π, 0.2π, 2π, 4π}. The yellow [red] lines indicate
slope one [two] as guide to the eye to facilitate the interpretation.

[panels (c,g) or (d,h)] are most pronounced at small detunings, which can be understood by noting
that the excitation of the nuclei for a given pulse area is highest towards resonance, such that the
deviations from the LER are more pronounced while higher excitation orders are suppressed further
off-resonance. The visible deviations are a consequence of the Rabi oscillations discussed in the
previous Section (cf. Fig. 5.3). Therefore, we conclude that also the energy-time correlation spectra
may be used to identify the presence of excitation beyond the LER. However, it turns out that these
spectra contain additional signatures for a non-linear excitation, which can be revealed using a Fourier
transform along the time axis, as discussed next.
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5.5.3 Frequency-frequency correlation-spectra analysis of the
non-resonant case ∆ 6= 0

The interpretation of the time- and frequency-resolved spectra in Fig. 5.5 is facilitated by a Fourier
transform along the time axis, which yields a frequency-frequency correlation (FFC) spectrum [WE23a].
In particular, the hyperbolic structures in the time-frequency spectra convert into diagonal lines in
the FFC spectra, which greatly assists their analysis. However, we stress again that the present
manuscript considers non-impulsive x-ray driving pulses without additional reference absorbers, such
that the results cannot directly be compared to previous studies (see the discussion in Sec. 5.5.2).
Results for the FFC spectra are shown in Fig. 5.6. For lower pulse areas, the diagonal structures in

the FFC spectra are suppressed as compared to the impulsive case [WE23a], since the nuclear exci-
tation at off-resonant energies is negligible, which is in contrast to the impulsive case, where resonant
contributions from the reference absorber give rise to visible contributions at all detunings. Towards
higher pulse areas and stronger excitation, we recognize two distinct features. First, on resonance
∆ = 0, the population and the coherence squared show qualitatively different behavior, because of
their different Rabi oscillation frequencies in the time domain (cf. Sec. 5.3.1). The appearance of
these differences again serves as a signature for dynamics beyond the LER. Second, off-resonance
(∆ 6= 0), diagonal structures start to appear. Interestingly, the population only exhibit diagonals of
slope one (yellow lines), corresponding to a dependence of its dynamics on the detuning [WE23a]. In
contrast, the coherence squared exhibits diagonals with slope one (yellow lines) and two (red lines),
corresponding to contributions oscillating with frequencies ∆ and 2∆. The additional pair of di-
agonals with slope two arises from a frequency-mixing of different scattering orders in squaring the
coherence. In Sec. 5.5.4, we analyze this feature further, and show that in the LER, only the diagonals
of slope one appear in the coherence squared. Starting from the next higher order, diagonals of both
slopes become visible. Therefore, the appearance of diagonals with slope two are a clear qualitative
signature for excitation beyond the LER. At even higher pulse areas, the Rabi oscillations dominate,
and the diagonals in the FFC spectra develop an anti-crossing-like feature towards their center, which
can be attributed to the onset of an Autler-Townes splitting of the resonance.

5.5.4 Nonresonant excitation of two-level systems beyond the
low-excitation regime

In Fig. 5.6 we found that the FFC spectra of the population exhibit diagonal structures with slope
one, while the corresponding coherence squared may feature diagonals of slope one and two. In this
Section, we explain this difference, based on the exact solution to a two-level system near-resonantly
driven by a continuous light field with constant Rabi frequency Ω0 [SZ97].
The population and the coherence squared for this system can be written in terms of the generalized

Rabi frequency Ω∆ =
√

Ω2
0 + ∆2 as

ρee(t) =
Ω2

0

4Ω2
∆

(
2− eiΩ∆t − e−iΩ∆t

)
,

|ρge(t)|2 =
Ω2

0

16Ω4
∆

[
6∆2 + 2Ω2

∆ − Ω2
0

(
e2iΩ∆t + e−2iΩ∆t

)
− 4∆2(eiΩ∆t + e−iΩ∆t)

]
. (5.64)

Here, we have rewritten the usual form of the expressions [SZ97] in terms of exponential functions,
since they directly reveal the different contributing frequency components. We find that the popu-
lation features oscillations with the generalized Rabi frequency ±Ω∆ only. In contrast, the absolute
square of the coherence evolves with frequency ±Ω∆ and ±2Ω∆. Note that the coherence ρge(t)
itself does not comprise components oscillating at ±2Ω∆. This suggests that the origin of the oscilla-
tion with double frequency in the coherence squared is a frequency-mixing between the negative and
positive frequency component of the dipole oscillation.
In the limit ∆� Ω0 of large detunings, Ω∆ ≈ ∆, and thus oscillations with ±∆ and ±2∆ appear

that convert into the diagonal lines in the FFC spectra in Fig. 5.6 upon Fourier transformation along
the time axis (cf. [WE23a]).
To demonstrate that the second pair of diagonal lines with slope two is a consequence of an excita-

tion beyond the LER, we use the self-consistent Eqs. (5.18) to derive the lowest and next-to-leading
order results for the coherence squared. In order to focus on detuning-dependent effects, we again
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Figure 5.7: Fourier-transformed 1D time-spectra at low and high excitations: The upper panels show the
constant envelope case without nuclear decay, while the lower panels show the exponentially-decaying case
including level decay. In the LER no splitting of the resonance line occurs (left panels), while at higher
excitations an Autler-Townes-splitting of the resonance becomes visible in the constant-envelope case (panel
(b)). This is modified by a broadening and shifting of the resonance position in the exponentially-decaying
case (panel (d)).

assume a pulse with constant envelope Ω0. The results read:

(
|ρge(t)|2

)(0−2)
=

Ω2
0

4∆2

(
2− ei∆t − e−i∆t

)
, (5.65)

(
|ρge(t)|2

)(4)
=2Re

[
ρ∗(1)
ge (t)ρ(3)

ge (t)
]

(5.66)

=− 7

8

Ω4
0

∆4
+

(
Ω4

0

16∆4
− iΩ

4
0 t

8∆3

)
ei∆t +

(
Ω4

0

16∆4
+ i

Ω4
0 t

8∆3

)
e−i∆t − Ω4

0

16∆4

(
e2i∆t + e−2i∆t

)
.

(5.67)

As expected from the general proof of the equivalence of population and coherence squared in second
order of the x-ray-nucleus interaction, the lowest order contribution to the coherence squared features
oscillations with ±∆ only, like the population. In contrast, already in fourth order the coherence
squared oscillates with both frequencies ±∆ and ±2∆. Therefore, we conclude that the diagonals
with slope two only appear in the FFC in case of excitation beyond the LER. This suggests to use
the appearance of the diagonal lines of slope two in the coherently scattered intensity as a feature to
characterize dynamics beyond the LER.

5.5.5 Autler-Townes-splitting on resonance

The Autler-Townes splitting visible in the FFC spectra Fig. 5.6 is further evaluated by plotting a
section through these spectra at ∆ = 0 along the axis of the Fourier frequency ν. This corresponds to
Fourier transforms of the resonant spectra discussed in Sec. 5.5.1. Fig. 5.7 shows the Fourier amplitude
of coherence squared (orange curve) and population (blue curve) on resonance. The constant-envelope
case excluding decay of the nuclear transition is displayed in panel (a) and (b) at low (Ω0 = 0.01πγ)
and high excitations (Ω0 = 2πγ), respectively. Here, γ is the single-nucleus linewidth, which is
introduced even in the case without nuclear decay as a reference frequency to compare to the results
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including nuclear decay. The lower panels (c) and (d) show the non-impulsive case as treated in
Sec. 5.5 for corresponding small (A = 0.01π) and large (A = 4π) pulse areas. To compare the two
results, we note that the Rabi frequency in the constant-envelope case can be interpreted as the total
pulse area per unit time.
In the ideal Rabi case a splitting of the resonance line at higher excitations becomes visible (panels
(a) and (b)). Note that the splitting in the population appears at frequencies ν = ±Ω0 while the
coherence squared shows peaks at both once and twice the Rabi frequency as indicated with the
orange and blue dashed lines. This is in agreement with the analytical results of Sec. 5.5.4 and with
the interpretation of the bending of the diagonal structures as an Autler-Townes splitting [SZ97;
MS07]. In comparison, the experimentally relevant non-impulsive case also developes a splitting of
the resonance line toward higher excitations (panels (c) and (d)). However, these peaks are much
reduced in amplitude and significantly broadened. Further, the peaks seem shifted from the pulse
amplitude at time zero ν = ±ΓaA which we indicated as a frequency reference as blue dashed lines in
the plot. The decrease in peak height we mainly attribute to damping of the resonance due to decay of
the nuclear transition. The broadening and shifting of the peak can be explained by spreading of the
driving pulse’s frequency distribution due to its exponential decay, which is discussed in more detail
in the next Section. We conclude that the bending of the diagonal structures in the lower panels
of Fig. 5.6 can indeed be related to Autler-Townes-splitting of the nuclear resonance. However,
in the non-impulsive case the zero detuning splittings can not directly be related to the driving
pulse amplitude due to the more complex frequency structure of exponentially-decaying pulses. This
reveals the impact that the pulse structure of non-impulsive x-ray excitations can have also on spectral
properties of the scattered radiation beyond the LER.

5.5.6 Interplay of pulse and resonance decay for non-impulsive excitation

In Sec. 5.5.5 the influence of the pulse envelope on the Autler-Townes splitting in the FFC spectra
and Fourier-transformed time spectra was studied. Here, we briefly discuss the effect the time-
dependence of non-impulsive x-ray-nuclei interaction can have on the measured intensity in the LER
and beyond. Specifically, we show that the interplay between nuclear resonance decay and duration
of exponentially-decaying pulses is directly reflected in the time-dependence of the coherently and
incoherently scattered light. This is of importance for future research in nuclear quantum optics for
two reasons: First, for specific quantum optical applications decay rates γ of effective level schemes
in x-ray wave guides have to be designed properly [DLE22a] and, second, in case of single-line refer-
ence absorbers producing near-monochromatic x-ray fields [Hee+21] the thickness of these absorbers
defines the effective decay rate of the driving field. This, however, has to be optimized for specific
experimental needs as the thickness also leads to a different absorption and temporal shape of the
emitted x-ray light. For these reasons, in the following we study features of the temporal dynamics
of coherently and incoherently scattered light as a function of resonance and pulse decay.
Fig. 5.8 compares the time response of coherence squared and population of an exponentially-

decaying pulse envelope with rate Γa = 2.5γ excluding resonance decay (panels (a) and (b)) with the
one of an excitation with constant pulse envelope but including resonance decay (panels (c) and (d)).
Again, both cases are compared at low pulse areas or Rabi frequencies (left panel) and large pulse
areas or Rabi frequencies (right panel) for the same parameter sets as in Sec. 5.5.5. By considering
only one decay parameter at a time, it becomes clear that resonance decay leads to a damping of
the Rabi oscillations (panel (d)), as expected, while pulse decay leads to a stretching (panel (b)).
The latter effect is caused by the amplitude of the x-ray-nuclei interaction reducing in time for the
exponentially-decaying pulse which causes the oscillation to slow down. This change in the oscillation
frequency is also the reason for the broadening and shift in the Autler-Townes splitting frequencies
discussed in Sec. 5.5.5 and for the peak deviation of the local intensity being different from the
constant-envelope case in Fig. 5.4 (b).
Another feature which distinguishes these two cases from the non-impulsive excitation discussed in
Sec. 5.5 is the non-existence of local maxima in the LER (left panels) compared to Fig. 5.3 (a).
Indeed, an analytical evaluation of the self-consistent Eqs. 5.18 in the the lowest excitation order for
exponentially decaying pulse of the form Eq. (5.61) yields

ρ(2)
ee (t) = = |ρ(1)(t)|2 =

1

4
e−γt

∣∣∣∣∫ t

0

dt′e
γ
2 t
′
eiω0t

′
Ω(t′)

∣∣∣∣2 (5.68)
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Figure 5.8: Effects of resonance and pulse decay on coherently and incoherently scattered light: The upper
panels show the case without nuclear decay but an exponentially-decaying driving pulse. No local maximum
appears in the LER case (panel (a)) and a stretching of the Rabi oscillations can be seen at higher excitations
(panel (b)). The lower panels show the case including nuclear decay but feature a driving pulse with a
constant envelope. As in the previous case, no local maximum appears in the LER (panel (c)), while at
higher excitations the Rabi oscillations are damped, as expected (panel (d)).

=
(ΓaA)2

4(∆2 + (∆Γ)2)

[
e−γt + e−2Γat − 2e−Γtott cos(∆t)

]
(5.69)

with Γtot = Γa + γ
2 , ∆Γ = Γa− γ

2 . On resonance, the local maxima of this expression can be found
as

tmax = 2
log
(

2Γa
γ

)
2Γa − γ

, (5.70)

which shows that only an interplay between resonance and pulse decay causes the time-dependent
coherently and incoherently scattered intensity to develop a local maximum in the LER as tmax →∞
if one of the two decay rates tends to zero. The existence of these local maxima in lowest excitation
order is also responsible for the steep increase of the peak deviation Fig. 5.4 (b) starting at zero pulse
area since the maxima of the two observables change smoothly as a function of the pulse area.
Our findings demonstrate the importance of both nuclear decay dynamics and the temporal shape of
non-impulsive driving fields for time spectra measured upon non-impulsive x-ray excitation.

5.6 Discussion and summary
In this Chapter we have developed methods to verify the excitation of an ensemble of Mössbauer
nuclei beyond the low-excitation regime (LER). This is motivated by the recent availability of x-
ray free-electron lasers which are capable of delivering many resonant photons per pulse, such that
the as-yet unexplored regime of stronger excitation of the nuclei comes within reach. Since source
limitations will likely persist at least in the near future, we focused our analysis on practically relevant
and experimentally robust approaches which are applicable already in a regime where the linear x-
ray-nuclei interaction is only slightly surpassed.
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Our approach is based on the comparison of two observables, which can be measured concurrently
in an experiment: the coherently scattered light, which features a directional emission in a narrow
angular range, and the incoherently emitted internal conversion signatures (photons or electrons)
which are emitted essentially into the full solid angle. The latter signature is proportional to the
sum of the excited-state populations of the nuclei, while the former is related to the absolute value
squared of the coherent sum of the induced dipole moments augmented by phase factors related to
the excitation and de-excitation of the nuclei.
As a key step, we established that the time-dependent intensities emitted into the coherent and

the incoherent channels are equivalent up to second-order in the driving x-ray field for a wide range
of systems, such that their ratio is constant in time. To this end, we first proved the corresponding
equivalence between the populations and coherences for an effective single-particle system describing
a nuclear ensemble embedded in a waveguide environment. Subsequently, we extended the proof to a
general homogeneous N -body system of interacting nuclei. As a result, we found that any deviations
in the ratio between the x-rays coherently and incoherently scattered off of the nuclei can directly be
traced back to an excitation beyond the LER.
Throughout our analysis, we considered two relevant cases: First, a near-instantaneous impul-

sive excitation, e.g., via an XFEL. Second, a more general non-impulsive excitation, such as an
exponentially decaying pulse from a synchrotron-Mössbauer-like source. The general results for the
coherence-population equivalence in second-order of the driving x-ray field hold in both cases. We
further focused on the case of nuclei embedded in waveguides, for which the observables are largely
unaffected by propagational effects. It remains an interesting open question whether a generalized
equivalence between coherently- and incoherently scattered intensity can also be established in the
presence of propagational effects.
We found that the various considered settings feature different dynamics in case of excitation

beyond the LER. For an impulsively excited single effective level scheme, the ratio between coherently
and incoherently scattered intensity changes with the degree of excitation, but it remains constant
over time. Analogously, the ratio also depends on the degree of initial impulsive excitation in the
interacting many-body system. However, the many-body system further exhibits a time-dependence
of the intensity ratio if the excitation exceeds the LER and if simultaneously the inter-particle coupling
is sufficiently enhanced beyond the free-space value, e.g., via a suitable waveguide environment.
In case of non-impulsive excitation, we found that the time-dependence of the intensity ratio be-

comes much richer. To this end, we numerically studied the temporal dynamics of a single effective
level scheme driven by an exponentially-decaying x-ray pulse. Based on the results, we proposed
several signatures which can be used to identify excitation beyond the LER. In the case of a resonant
driving field, the first indication are the respective times at which the two intensities become maximal.
These times agree in case of low excitation, but characteristic deviations appear for stronger excita-
tion. At even higher excitation Rabi oscillations typical for the strongly nonlinear regime dominate
the dynamics of both scattering observables, however, with different respective oscillation frequencies.
We further studied off-resonant excitation, using time-frequency correlated and frequency-frequency
correlated spectra. In the time-frequency spectra, near resonance again resonant Rabi oscillations
appear as the strongest indicator of excitation beyond the LER, while the off-resonant regime strongly
resembles the LER even at higher excitations. In the frequency-frequency correlation spectra, char-
acteristic diagonal structures appear. We could show that the incoherent intensity only exhibits a
single pair of diagonals, with slope one. In contrast, at excitation beyond the LER, the coherently-
scattered intensity shows two pairs of diagonals at slopes one and two. Thus, the characteristic
diagonal structure may also serve as a signature for stronger excitation of the nuclear ensemble.
Overall, we therefore conclude that the ratio of the coherently and incoherently scattered intensities

serves as a strong indicator for excitation of a nuclear ensemble beyond the LER. Its time structure
can further reveal the presence of dipole couplings between nuclei.
In general, our approach has the advantage that both observables, the coherently and the inco-

herently scattered light, are well-established in experiments with Mössbauer nuclei. Most related
experiments at accelerator-based x-ray sources have focused on the coherently scattered intensity,
but the incoherently scattered intensity typically could be measured in addition without changing
the original setup significantly. This suggests the usefulness of our approach even for experiments
in which the degree of excitation is not the primary research goal. A comparable situation existed
in the traditional distinction between Mössbauer experiments measuring either in the time or in the
energy domain. It was recently shown [Hee+17; Hee+21; WE23a] that combined spectra correlating
temporal and spectral information of the coherently scattered x-rays provide significant advantages
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over the individual time or frequency spectra, in particular also related to the comparison between
theory and experiment. Also in that case, the original experimental setup could remain largely un-
changed, and only had to be augmented by an event-based detection electronics. We envision that
similar progress will be achieved in future experiments by the additional correlation of the coherently
and incoherently scattered radiation proposed in the present work.
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Chapter 6

Coupling dynamics of effective few-level systems

List of abbreviations used in this Chapter:

• LER: low-excitation regime

• EIT : electromagnetically-induced transparency

• FFC spectrum : frequency-frequency correlation spectrum

• XFEL : x-ray free electron laser

• XFELO : x-ray free electron laser oscillator

• SMS : synchrotron Mössbauer source

• CEMS : conversion electron Mössbauer spectroscopy

6.1 Introduction
In Ch. 5 we studied the dynamics of coupled two-level nuclei upon impulsive x-ray excitation in the
LER and beyond in the full many-body basis. For the non-impulsive case we switched to an effective
two-level description, which is a valid description of the collective behaviour of single layers of Möss-
bauer nuclei embedded in thin-film x-ray cavities (cf. Sec. 2.2.2). This prompts the question whether
our findings for two-level systems can be generalized to more complex level schemes. These can arise,
e.g., if more than one nuclear layer is embedded in the wave guide structure [HE15a; DLE22a; Hab+17;
Röh+12] or if the resonances of nuclear layers experience Zeeman splitting through magnetic hyper-
fine fields [HE13; Hee+13]. Some of the most intriguing phenomena in nuclear quantum optics have
been realized with such multilevel schemes including spontaneously-generated coherences [Hee+13],
electromagnetically-induced transparency (EIT) [Röh+12; DLE22a] and Rabi oscillations between
nuclear ensembles [Hab+17].
Rigorous theoretical descriptions of these systems at low excitations in the framework of cavity

quantum electrodynamics (QED) are now available, e.g. using the ab initio Green’s function ap-
proach [Len+20] (see also Sec. 2.2.2) and both the calculation of quantum optical parameters from the
known cavity structure [Len+20] as well as inverse design of cavities to realize particular level schemes
[DLE22a; DLE22b] are possible. However, it was shown that an interpretation of frequency-resolved
transmission or reflection spectra in terms of collective level schemes may not be unique [DLE22a].
One possibility to resolve this issue is to measure more complex spectra with additional degrees of
freedom or correlate different observables. Chapter 3 presented one such approach, that analyzed
time- and frequency-resolved spectra via Fourier transformation and additionally employed phase
control of the incident x-ray light to selectively enhance specific features of the measured spectra and
suppress others. With this, in Sec. 3.3.3 it was possible to retrieve the complex-valued nuclear reso-
nant response of a thin-film cavity featuring EIT including phase information. Another approach to
obtain additional information about the dynamics of nuclear ensembles correlated the measurement
of incoherent and coherent radiation emitted by these ensembles. This approach was presented in
Chapter 5 and was used to study excitation beyond the LER.
In this Chapter, we build on these approaches to study the dynamics of effective three-level systems
realized in thin-film cavities with two resonant layers including coupling between the excited states
associated with this cavity structure in the LER. Such a cavity and the corresponding three-level
scheme are shown in Fig. 6.1. Regardless of a specific realization of such a collective level scheme,
the retrieval of couplings between nuclear excited states is of general interest. It is known from the
longer wavelength regime that such couplings critically determine the dynamics and reaction prop-
erties of molecular and atomic systems and entire branches of spectroscopy deal specifically with the
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Figure 6.1: Cavity structure with two resonant layers (left panel) and corresponding effective three-level
scheme (right panel) as studied in Ch. 6. Γl denote the effective decay rates of the two transitions, δl the
(renormalized) detunings between ground and excited state l, Ωl are the amplitudes of the time-dependent
Rabi frequencies and ∆21 denotes the coherent coupling between the excited states.

determination and characterization of such couplings [Cho19; HZ11]. Therefore, it is the aim of this
Chapter to discuss how such excited state couplings can be measured using different data acquisition
and evaluation approaches. To this end, methods developed in the previous Chapters are employed:
Time- and frequency-resolved spectra and their analysis as FFC spectra are discussed upon impulsive
and non-impulsive excitation pulses. Further, the coherently and incoherently scattered intensity are
compared. To interpret the data obtained in such measurments, the density matrix perturbation
theory developed in Chapter 4 is used.
This Chapter is structured as follows: For the interpretation of measured spectra in the LER, we
first derive the up-to-second order coherences and populations of effective three-level systems, related
to the coherently and incoherently scattered intensity (cf. Sec. 5.2.2), including excited-state cou-
plings. This is done with the help of the perturbative density matrix expansion developed in Sec. 4.2.
We present a graphical interpretation of the different contributions to these quantities and discuss
specific limits. In the second part numerical simulations of incoherently and coherently scattered
intensities off of these effective three-level systems upon impulsive and non-impulsive excitations in
the LER are compared. Various signatures of the presence of an excited-state coupling are discussed,
including diagonal structures similar to those studied in Chapter 3 and oscillations of the single-layer
coherences that can be retrieved using depth-sensitive measurement methods. Finally, the results are
summarized.

6.2 Density matrix expansions of effective few-level systems
To study the dynamics of collective few-level systems at low excitations, we employ the perturbative
density matrix expansion developed in Sec. 4.2 specialized to the case of a single few-level system
arising in x-ray cavities under low-excitation conditions. In this case, the indices n, n′ indexing
different nuclei in a many-body description can be dropped in the Hamiltonian and Lindbladian
presented in Sec. 4.2. For convenience, we briefly revisit the import equations and parameters: The
dynamics of the nuclear few-level density matrix can be described by the master equation

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ L[ρ̂] . (6.1)

with the Hamiltonian

Ĥ = Ĥnuc + Ŵ (t) . (6.2)

In a few-level description the nuclear system part of the Hamiltonian can be written as

Ĥnuc = ~
∑
l

ωl |l〉 〈l| − ~
∑
ll′

∆ll′ σ̂
+
l σ̂
−
l′ (6.3)
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where ωl denotes the transition frequency of the effective collective transition l and |l〉 〈l| the projector
on the corresponding excited state. The parameters ∆ll′ are coherent couplings between different
excited states for l 6= l′ and account for renormalization of the transition frequencies known as
collective Lamb shift [FS05; Röh+10] if l = l′. These quantities are related to the cavity’s Fourier-
transformed Green’s tensor via [Len21] (see also Sec. 2.2.2)

∆ll′ =
N

A‖

µ0ω
2
l

~
d∗l · Re

[
G(zl, zl′ ,k‖, ωl)

]
· dl′ (6.4)

where N denotes the number of resonant nuclei per layer, A‖ the area covered by the nuclei in the
planar cavity and µ0 the vacuum permeability. The Green’s tensor G depends on the depth of the two
layers zl, zl′ and the cavity in-plane wave vector component k‖. The collective raising and lowering
operators σ̂±l (k‖) for a given parallel wave vector k‖, in contrast to the single-particle operators σ̂±n
introduced in Sec. 5.2.1, create and annihilate exciton states in layer l if acting on the collective
ground state |0〉 with all nuclei in the cavity in their respective ground states |gn〉, i.e.

σ+
l (k‖) |0〉 =

1√
N

∑
n

eik‖rn |g1 . . . ln . . . gn〉 , (6.5)

where |ln〉 refers to the excited state of the nucleus n in layer l.
In the following, we suppress the dependence of the raising and lowering operators on the parallel
wave vector k‖ for notational simplicity.
The nucleus-field interaction part of the Hamiltonian in the few-level description reads

Ŵ (t) =− ~
2

∑
nl

(
Ωl(t)σ̂

+
l + h.c.

)
(6.6)

with time-dependent Rabi frequency

Ωl(t) =
dlE(zl,k‖, t)

~
. (6.7)

Here, the electric driving field is given by the Fourier transform of the incident field in the cavity
layer plane, i.e. [Len+20]

E(zl,k‖, t) =

∫
d2r‖,nE(rln, t)e

−ik‖·r‖,n (6.8)

Finally, the Lindbladian in this effective description becomes

L [ρ̂] =
∑
ll′

Γll′
[
2σ̂−l′ ρ̂σ̂

+
l −

{
σ̂+
l σ̂
−
l′ , ρ̂

}]
(6.9)

Like the coherent couplings ∆ll′ , the cross-damping terms are related to the cavity Green’s function
G via [Len21]

Γll′ =
N

A‖

µ0ω
2
l

~
d∗l · Im

[
G(zl, zl′ ,k‖, ωl)

]
· dl′ (6.10)

Note, that the diagonal damping terms Γl = Γll here include all radiative and non-radiative decay
processes, for notational convenience. Noting that the system has only a single ground state, the per-
turbative expansion described in Sec. 4.2.4 can directly be applied to calculate the LER coherences
and populations of the few-level system if the cross-damping terms Γll′ = 0 are neglected for l 6= l′.

The density matrix elements in zeroth, first and second order can be calculated via the expressions
Eqs.(4.34), (4.36) and (4.38), respectively, from an initial state ρ̂(t0) which we restate here:
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ρ̂(0)(t) = T̂ †t ρ̂(t0)T̂t = ρ̂(t0) (6.11a)

ρ̂(1)(t) = − i
~

∫ t

t0

dτ T̂ †t−τ

[
Ŵ (τ), ρ̂(0)(τ)

]
T̂t−τ , (6.11b)

ρ̂(2)(t) = − i
~

∫ t

t0

dτ T̂ †t−τ

[
Ŵ (τ), ρ̂(1)(τ)

]
T̂t−τ . (6.11c)

where T̂t given by Eq. (4.22), the explicit form of which will be given in the following Section.

6.3 Evaluation of the perturbative expansion

6.3.1 Explicit matrix form of the time evolution operator
Specializing to the case of a three-level system including a coherent excited state coupling ∆21 as
depicted in Fig. 6.1, the solutions to the first and second order density matrix can be obtained by
casting the problem into a matrix form, i.e.

Ĥnuc = ~

 δ2 −∆21 0
−∆12 δ1 0

0 0 0

 , Γ̂ =

Γ2 0 0
0 Γ1 0
0 0 0

 (6.12)

where, without loss of generality, we subtracted the ground state energy from the Hamiltonian such
that δi = ωi−ω0 and we absorbed the collective Lamb shifts ∆ii into the respective transition frequen-
cies. Now, the matrix form of the time evolution operator T̂t−t0 can be obtained via diagonalization
of the excited state sector which, since the nucleus-field coupling Ŵ (t) is treated perturbatively,
separates from the ground state dynamics. A more detailed account of one possible diagonalization
approach of the time evolution operator is given in Appendix A.7. Here, we just state the final matrix
form of this operator:

T̂t = exp

(
−Γ̂t+

i

~
Ĥnuct

)
=

T 22
t T 21

t 0
T 12
t T 11

t 0
0 0 T 00

t

 (6.13)

with entries

T 22
t =

eiδ̄te−Γ̄t

∆R

[
∆R cos

(
∆Rt

2

)
+ (i∆δ −∆Γ) sin

(
∆Rt

2

)]
, (6.14a)

T 11
t =

eiδ̄te−Γ̄t

∆R

[
∆R cos

(
∆Rt

2

)
− (i∆δ −∆Γ) sin

(
∆Rt

2

)]
, (6.14b)

T 12
t = −2i

∆12

∆R
eiδ̄te−Γ̄t sin

(
∆Rt

2

)
, (6.14c)

T 21
t = −2i

∆21

∆R
eiδ̄te−Γ̄t sin

(
∆Rt

2

)
, (6.14d)

T 00
t = 1 , (6.14e)

where

∆R =
√

(∆δ + i∆Γ)2 + 4|∆21|2 , (6.15)

δ̄ =
δ2 + δ1

2
, Γ̄ =

Γ1 + Γ2

2
, (6.16)

∆δ =δ2 − δ1 , ∆Γ = Γ2 − Γ1 . (6.17)
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Note that the cross-terms T ll
′

t , l 6= l′ become identical up to a phase φ21 defined by

eiφ21 =
∆21

|∆21|
(6.18)

which means that transfer between the excited states via the coupling is symmetric except for the case
of a complex-valued coupling ∆21. In contrast, the generalized coupling ∆R becomes complex-valued,
if and only if the two decay rates are different, i.e. Γ1 6= Γ2, independent of the phase φ21 of the
coupling ∆21.

6.3.2 Evaluation of density matrix elements
This said, the density matrix in jth order can be obtained by explicit calculation of each term in
Eq. (4.43) in matrix representation starting with the initial ground state density matrix

ρ̂(t0) = |0〉 〈0| =

0 0 0
0 0 0
0 0 1

 . (6.19)

Up to second order j ∈ {0, 1, 2}, an explicit calculation of the first three terms given by Eqs. (6.11)
yields

ρ̂(j)(t) =


ρ

(j)
22 (t) ρ

(j)
21 (t) ρ

(j)
20 (t)

ρ
(j)
12 (t) ρ

(j)
11 (t) ρ

(j)
10 (t)

ρ
(j)
02 (t) ρ

(j)
01 (t) ρ

(j)
00 (t)

 (6.20)

with all nonzero entries up to second order given by

ρ
(1)
02 (t) =− i

2

∫ t

t0

dτ(T 00
t−τ )∗

[
T 22
t−τΩ∗2(τ) + T 12

t−τΩ∗1(τ)
]
, (6.21a)

ρ
(1)
01 (t) =− i

2

∫ t

t0

dτ(T 00
t−τ )∗

[
T 21
t−τΩ∗2(τ) + T 11

t−τΩ∗1(τ)
]

(6.21b)

ρ
(2)
22 (t) =

∫ t

t0

dτ
{
−|T 22

t−τ |2Im
[
Ω2(τ)ρ

(1)
02 (τ)

]
− |T 12

t−τ |2Im
[
Ω1(τ)ρ

(1)
01 (τ)

]
−Im

[
T 22
t−τ (T 12

t−τ )∗
(

Ω1(τ)ρ
(1)
02 (τ)− Ω∗2(τ)ρ

(1)
10 (τ)

)]}
, (6.21c)

ρ
(2)
11 (t) =

∫ t

t0

dτ
{
−|T 11

t−τ |2Im
[
Ω1(τ)ρ

(1)
01 (τ)

]
− |T 21

t−τ |2Im
[
Ω2(τ)ρ

(1)
02 (τ)

]
−Im

[
T 11
t−τ (T 21

t−τ )∗
(

Ω2(τ)ρ
(1)
01 (τ)− Ω∗1(τ)ρ

(1)
20 (τ)

)]}
, (6.21d)

ρ
(0)
00 (t) =1 , ρ

(2)
00 (t) = −ρ(2)

22 (t)− ρ(2)
11 (t) . (6.21e)

Note that, like in the two-level single- and many-body cases Sec. 5.3.2 and 5.3.3, the excited-state
populations contribute in second order only and the coherences in first order only. From these
equations it becomes clear immediately that excitation from one level is transferred to the coherence
and population of the second level and vice versa via the off-diagonal time-evolution matrix elements
T ll
′

t−τ , l 6= l′. According to Eqs. (6.14), these are proportional to the excited-state coupling ∆21 and
thus correspond to population and coherence transfer via the coupling of the excited states.
A more detailed graphical interpretation of the different contributions to the first and second order

density matrix elements Eqs. (6.21) is given in Fig. 6.2 for the coherence ρ(1)
01 (t) and in Fig. 6.3 for

the population ρ
(2)
11 (t) of state |1〉. The contributions to state |2〉 can be interpreted analogously.

Contributions to the coherences are indicated as large dashed gray ellipses involving the ground state
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(a) Depiction of the direct coherence contribution to
ρ
(1)
01 .

|1〉
|2〉

Ω2(τ)

|0〉

T 12
t−τ

(b) Depiction of the cross coherence contribution to
ρ
(1)
01 .

Figure 6.2: Graphical interpretation of contributions to the ground state coherence ρ01 of a three-level
system as depicted in Fig. 6.1. The dashed gray ellipses indicate a contribution to the coherence between the
states that are encircled.

and excited state between which the coherence is calculated. Contributions to the population are
indicated as small solid gray circles in the corresponding level. Blue arrows indicate propagation via
the time-evolution matrix elements T̂ ll

′

t .
A first-order coherence ρ(1)

01 can be created in two ways, according to Eq. (6.21b):

a) The transition |1〉 is driven directly with Rabi frequency Ω1(τ) at time τ and evolves with diagonal
contribution T 11

t−τ of the time evolution operator until measurement time t (Fig. 6.2a).

b) First, transition |2〉 is driven with Rabi frequency Ω2(τ) at time τ and the coherence ρ(1)
01 (t) is

created by transfer of the excitation to state |1〉 via the cross-coupling term T 12
t−τ (Fig. 6.2b). This

second contribution is nonzero only in the presence of an excited-state coupling while the first one
persists even in case of uncoupled transitions.

In comparison, the population ρ
(2)
11 (t) can be created via four excitation paths, according to

Eq. (6.21d):

a) The coherence ρ(1)
01 (τ) is translated into a population with an additional excitation by the Rabi

drive Ω(τ) and is propagated until time t by the diagonal time evolution matrix element |T 11
t−τ |2.

b) The second order excitation of state |2〉 from the coherence ρ(1)
02 (τ) and the Rabi frequency Ω2(τ)

is transformed into a population ρ(2)
11 (t) via the cross-coupling term |T 12

t−τ |2.

c) + d) a coherence ρ(1)
0l (τ) of one of the states l is combined with an x-ray excitation Ωl′(τ) to create

a population in state |1〉 via the cross coupling T 12
t−τ and a time evolution with the diagonal term

T 11
t−τ .

Of these contributions, the latter three only contribute in presence of an excited state coupling ∆21

while the first one remains even in its absence.
Despite this graphical interpretation, Eqs. (6.21) remain relatively complex and the integrals cannot
be evaluated for arbitrary pulse shapes Ωl(τ). However, they can be solved in a number of important
cases: Under δ-like near-instantaneous Eqs. (6.21) simplify greatly, a case discussed in Sec. 6.4.1.
The integrals can be solved for exponentially-decaying pulses, which will be discussed in Sec. 6.4.2.
Further, in the limit of large coupling or in the absence of coupling the entries of the time evolution
operator Eqs. (6.14) can be simplified which assists the evaluation of Eqs. (6.21) and subsequent
interpretation of time- and frequency-resolved nuclear resonant scattering spectra studied in Sec. 6.4.
In the following, we give a brief overview of the two coupling limits.

6.3.3 The large coupling limit
We start by deriving simplified expressions for the matrix elements of the time evolution operator in
the large coupling limit. We define the large coupling limit by
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Ω2(τ)
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t−τ |2

(b) Depiction of the cross population contribution to
ρ
(2)
11 .

|1〉
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Ω2(τ)
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T 12
t−τ

T 11
t−τ

(c) Depiction of the direct coherence contribution to
ρ
(2)
11 .

|1〉
|2〉

Ω1(τ)

|0〉

T 12
t−τ

T 11
t−τ

(d) Depiction of the cross coherence contribution to
ρ
(2)
11 .

Figure 6.3: Graphical interpretation of contributions to the excited-state population ρ11 of a three-level
system as depicted in Fig. 6.1. Again, dashed gray ellipses indicate coherence contributions between the
encircled states created in first order, while small solid gray circles indicate a finite second-order contribution
in the respective excited state.

∆R ≈ 2|∆21| , (6.22)

i.e. when the coupling dynamics is dominated by the excited state coupling ∆21 instead of the
separate transition frequencies δl and decay constants Γl of the two transitions. Note, that apart
from increasing the coupling ∆21 between the collectively excited states, this limit can also be realized
by tuning the (effective) decay constants and (renormalized) transition frequencies of the two levels
in the cavity such that they become approximately equal to each other. In this case, Eq. (6.22) is
approximately satisfied since the differences of these parameters enter the generalized coupling ∆21.
Numerical methods that can calculate cavity structures that are needed to realize certain effective
level structures have recently been established for thin-film cavities [DLE22b; DLE22a].
In the large coupling limit, the entries in the time evolution operator Eqs. (6.14) reduce to

T 22
t =e−Γ̄teiδ̄t cos(|∆21|t) = T 11

t (6.23a)

T 12
t =− ie−iφ21e−Γ̄teiδ̄t sin(|∆21|t) (6.23b)

T 21
t =− ieiφ21e−Γ̄teiδ̄t sin(|∆21|t) (6.23c)

Remarkably, the intrinsic dynamics of the two excited states becomes identical up to the phase φ21

of the the cross-coupling terms T ll
′

t , l 6= l′, which is indicated by the fact that the diagonal terms T 11
t

and T 22
t become identical in this limit.
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6.3.4 No coupling

In the limit that no coupling is present, i.e. ∆21 = 0, the two levels are expected to evolve in time
independently. Indeed, the cross-coupling terms become zero and the diagonal entries simplify to

T llt = eiδlte−Γlt (6.24)

T ll
′

t = 0 , l 6= l′ (6.25)

such that the intrinsic dynamics of two independent two-level systems is recovered. Note, that the
generalized coupling Eq. (6.15) that governs the dynamics of the effective three-level system is not
zero but reduces to

∆R ≈ ∆δ + i∆Γ (6.26)

in the limit of vanishing couplings ∆21 = 0.

6.3.5 Population-coherence correspondence for effective three-level
systems

In Sec. 5.3, we proved that the (time-dependent) coherence squared and the population of nuclear
two-level systems become identical in the LER even in the case of interactions between the nuclei.
Further, under the conditions of homogeneity of the nuclear ensemble and equivalent plane-wave x-
ray-nucleus couplings for all nuclei, this could be extended to an equivalence of coherently scattered
and incoherently scattered intensity of the entire nuclear ensemble associated with the coherent sum
over the x-ray induced coherences and the nuclear excited state populations, respectively. In this
Section, we aim to establish this correspondence of coherent and incoherent emission for effective
three-level systems for each transition separately. Within the scope of this thesis, this result will
mainly be used in Sec. 6.4 to simplify analytical evaluations of the second-order nuclear dynamics
described by Eqs. (6.21). However, we envision that the methods used to establish this correspondence
in the context of effective three-level systems can also be extended to more general multi-level systems
and help to interpret NRS data obtained from such systems, e.g. via an interpretation in terms of
dressed-states. Here we only state the final result

ρ
(0−2)
ll (t) = |ρ(0−2)

0l (t)|2, (6.27)

while for a derivation of this result using a diagonalization approach of the time evolution operator
T̂t Eq. (6.13) the reader is referred to Appendix A.7.

6.4 Evaluation and interpretation of time and frequency
spectra

In this Section, the dynamics of effective three-level systems upon different driving fields in the LER
is studied numerically. The results are interpreted using explicit analytical evaluations of the density
matrix expressions Eqs. (6.21) in the large and no coupling limits. The time and frequency spectra
discussed below are obtained by numerical evaluation of the optical Bloch equations of the three level
system Fig. 6.1 using the odeint function of the scipy package [Vir+20] in python [VRD09]. The
three-level Bloch equations read

98



ρ̇22(t) =− Im [Ω2ρ
∗
20]− 2Im [∆21ρ

∗
21]− 2Γ2ρ22 , (6.28a)

ρ̇11(t) =− Im [Ω1ρ
∗
10] + 2Im [∆21ρ

∗
21]− 2Γ1ρ11 (6.28b)

ρ̇20(t) =(−iδ2 − Γ2)ρ20 + i∆21ρ10 −
i

2
Ω1ρ21 − iΩ2ρ22 −

i

2
Ω2ρ11 +

i

2
Ω2 , (6.28c)

ρ̇10(t) =(−iδ1 − Γ1)ρ10 + i∆∗21ρ20 −
i

2
Ω2ρ

∗
21 − iΩ1ρ11 −

i

2
Ω1ρ22 +

i

2
Ω1 , (6.28d)

ρ̇21(t) =(−i∆δ − 2Γ̄)ρ21 +
i

2
Ω2ρ

∗
10 −

i

2
Ω∗1ρ20 − i∆21(ρ22 − ρ11) , (6.28e)

ρ̇02 =ρ̇∗20 , ρ̇01 = ρ̇∗10 , ρ̇12 = ρ̇∗21 , ρ̇00 = −ρ̇22 − ρ̇11 . (6.28f)

and are obtained by evaluating the Liouvillian Eq. (6.1) with three-level Hamiltonian Eq. (6.3) and
Lindbladian Eq. (6.9) in the three-state basis {|0〉 , |1〉 , |2〉}. Similar to the discussion in Chapter 5,
we compare two types of excitations: First, impulsive near-instantaneous excitations are considered.
Second, non-impulsive x-ray-nuclei interactions are studied that can be produced using a synchrotron
Mössbauer source [Smi+97a] or the secondary radiation emitted by single-line reference absorbers (cf.
Sec.2.1.5). Both, the incoherently scattered intensities, in form of the time-dependent population (cf.
Sec. 5.2.2), and the coherently scattered intensity, in form of the coherence-squared, are investigated.
The resulting spectra are interpreted employing methods developed and applied in Chapters. 3 and
5.

6.4.1 Impulsive excitations
In this part, we discuss effective three-level dynamics upon impulsive x-ray excitations. We will see
that this gives rise to characteristic oscillations in incoherently scattered intensity Iinc from the single
excited states associated with the populations ρll(t). Such a signal emitted from thin-film cavities
could be measured using depth-sensitive detection methods.
For our simulation of near-instantaneous impulsive x-ray excitations, we use temporal Gaussian pulses
of the form

Ωl(t) =
Al√
2πτ2

e−iωpt exp

(
− (t− texc)2

2τ2

)
(6.29)

where Al is the total pulse area of the nucleus-field coupling of transition |l〉, τ is the duration of the
pulse, ωp its carrier frequency and texc the time of excitation of the nuclear ensemble. Note, that
for short enough interaction periods τ this essentially simulates the effect of a near-instantaneous
δ-like excitation with negligible effect of the detuning between the nuclear transitions and the carrier
frequency of the driving pulse. The fundamental reason for this is that the spectrum of a Gaussian
pulse broadens via Fourier principles if the pulse is made shorter such that a pulse with duration
short enough compared to the nuclear decay dynamics has an effectively flat spectrum and excites
the nuclear transition like a δ-pulse with the pulse effectively resonant with the nuclear transition
essentially independent of the pulse’s carrier frequency.
Fig. 6.4 shows the dynamics of the three-level system Fig. 6.1 as a function of the (real-valued)

excited state coupling ∆21 and time. The parameters are chosen as: A2 = 2A1 = 0.02π, δ1 = 5γ,
δ2 = 15γ, Γ1 = 0.5γ and Γ2 = 4Γ1. The excitation occurs at texc = 10τ with τ = 5 · 10−3γ−1. The
pulse duration τ should not be chosen too short such that numerical integration performs reliably
on the time scale of excitation. Here, we introduced a reference line-width γ which is not necessarily
the single-nucleus linewidth but can be superradiantly broadened. This allows for a comparison of
different realizations of the effective three-level schemes. Panel (a) and (b) show the populations
ρ22 and ρ11, respectively. Oscillations that become faster with increasing excited-state coupling are
clearly visible, clear evidence of population transfer due to these couplings. However, these oscillations
are strongly suppressed if the sum of both populations is considered (panel (c)), which corresponds
to a strong suppression of this signature in the total incoherent radiation captured by a detector
measuring in 4π. Indeed, in the limit Γ1 → Γ2 these oscillations disappear completely only leaving
an exponential decay of the incoherent intensity. This can be understood by the fact that the total
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Figure 6.4: Coupling dynamics of the three-level system as a function of time and coupling strength between
the two excited states upon a short excitation pulse. Panel (a) shows the population ρ22, panel (b) the
population ρ11, panel (c) the sum of both populations ρ11 + ρ22 and panel (d) the absolute squared of
the sum of both coherences |ρ01 + ρ02|2. The pulse areas of the driving Rabi frequencies are related by
A2 = 2A1 = 0.02π.

population in the excited states is not changed by the coherent coupling. In contrast, independent
of the choice of the decay rates Γl, the absolute squared of the sum of the excited state coherences
|ρ01 + ρ02|2 oscillate due to interference between the two transitions, as can be seen in panel (d).
In Fig. 6.5 the Fourier transform of the population ρ22 (panel (a)), ρ11 (panel (b)),

∑
l ρll (panel

(c)) and |ρ01 + ρ02|2 (panel (d)) along the time axis is shown for the case of identical decay rates
Γ2 = Γ1 = 0.5γ. Note, that diagonal structures with slope 1/2 appear at large Fourier frequencies ν
that are most pronounced in the single populations panel (a) and (b). These diagonals we identify as
the frequency-domain analogue of the oscillations found in the time spectra Fig. 6.4. These oscillations
we relate to the generalized coupling ∆R, as we will argue below in the large and no coupling limits.
In particular, in the large coupling limit as introduced in Sec. 6.3.3, the generalized coupling reduces
to

∆R ≈ ±2|∆21| (6.30)

which then explains the diagonals at large Fourier frequencies. The bending of the diagonals towards
zero coupling is caused by the interference between the two transitions such that the generalized
coupling in this regime is given by

∆R ≈ ±(δ2 − δ1) (6.31)

which is indicated by vertical dashed lines as guide to the eye.

To relate the behaviour of the generalized coupling ∆R in Fig. 6.5 to the Fourier frequency ν, we
analytically evaluate the coherences ρ02 and ρ01 in Eqs. (6.21) in the impulsive case, considering the
limit τ → 0 such that the Gaussian pulse Eq. (6.29) reduces to a Dirac δ. The two coherences can
then be written as
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Figure 6.5: Fourier analysis along the time axis of coupling dynamics in the three-level system as a function
of the coupling strength ∆21. Panels (a) and (b) show the populations ρ22 and ρ11, respectively. In panel (c),
the sum of the populations is plotted. Finally, the absolute square of the coherent sum of both coherences is
shown in panel (d). The red dashed lines in (b) and (d) mark the condition Eq. (6.31).

ρ
(1)
02 (t) =− i

2

(
A2T

22
t +A1T

12
t

)
=− i

2
e−Γ̄teiδ̄t

[
A2

(
cos

(
∆Rt

2

)
+

(i∆δ −∆Γ)

∆R
sin

(
∆Rt

2

))
− 2iA1

∆12

∆R
sin

(
∆Rt

2

)]
(6.32)

ρ
(1)
01 (t) =− i

2

(
A1T

11
t +A2T

21
t

)
=− i

2
e−Γ̄teiδ̄t

[
A1

(
cos

(
∆Rt

2

)
− (i∆δ −∆Γ)

∆R
sin

(
∆Rt

2

))
− 2iA2

∆21

∆R
sin

(
∆Rt

2

)]
(6.33)

which contain oscillatory terms with frequency components ∆R and δ̄.
First, we consider the large coupling limit. In this case, the two coherences simplify to

ρ
(1)
02 (t) =− i

2
e−Γ̄teiδ̄t

[
A2 cos(|∆21|t)− iA1e

−iφ21 sin(|∆21|t)
]

(6.34a)

ρ
(1)
01 (t) =− i

2
e−Γ̄teiδ̄t

[
A1 cos(|∆21|t)− iA2e

iφ21 sin(|∆21|t)
]
. (6.34b)

In case of real-valued couplings φ21 = 0, the populations in the LER, that can be calculated as the
absolute square of the coherences in Eqs. (6.34) according to the population-coherence correspondence
Eq. (6.27), read

ρ22(t) = |ρ02(t)|2 =
1

4
e−2Γ̄t

[A2
1 +A2

2

2
+
A2

2 −A2
1

2
cos(2|∆21|t)

]
(6.35a)

ρ11(t) = |ρ01(t)|2 =
1

4
e−2Γ̄t

[A2
1 +A2

2

2
− A

2
2 −A2

1

2
cos(2|∆21|t)

]
(6.35b)
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which corresponds to oscillations at frequencies ν = 0 and ν = ±2|∆21| consistent with Fig. 6.5
(a) and (b). Note, that the sum of both populations does not experience oscillations since the two
oscillating contributions cancel each other. Similarly, the absolute squared of the summed coherences
in the large coupling limit Eq. (6.34) reads

|ρ(1)
02 (t) + ρ

(2)
01 (t)|2 =

1

4
e−2Γ̄t(A1 +A2)2 (6.36)

which explains the disappearence of the oscillations in Fig. 6.4 and of the diagonal structures in
Fig. 6.5 for large couplings.
In the opposite case of negligible couplings, introduced in Sec. 6.3.4, the dynamics of the two transi-
tions decouples such that

ρ
(1)
0l (t) = − i

2
Ale−Γlteiδlt (6.37)

Hence, neither of the populations will show oscillations in this scenario while the absolute squared of
the summed coherences oscillates with the difference of both frequencies which explains the bending
of the diagonals in Fig. 6.5 (d) towards zero coupling. For intermediate generalized couplings ∆R

between the large and no coupling regime, we expect a frequency behaviour that interpolates between
the two regimes. A detailed analytical description of this regime, however, is beyond the scope of this
thesis.
We note, that the oscillations with the coupling strength ±∆R and with it the diagonal structures
are most prominent in the single populations. They completely disappear if no coupling is present
as can be seen from Eqs. (6.35) and Eq. (6.37), which provides us with a criterion for distinguishing
the presence of an excited-state coupling from its absence. One possibility to access these oscillations
in the single populations in experiments on thin-film x-ray cavities, where the two effective excited
states correspond to nuclear ensembles placed at different depths in the cavity, can be offered by
methods that allow for depth-selectivity of the incoherently detected intensity. One such method
used in Mössbauer science is conversion electron Mössbauer spectroscopy (CEMS) [Röh04; Fro+85;
Fry+08] which captures conversion electrons and secondary radiation emitted after the process of
internal conversion. These electrons experience absorption by the surrounding material whilst trav-
elling through the cavity to the surface where they can be detected. Electrons or secondary radiation
emitted from a nuclear ensemble deeper in the cavity thus feature more absorption which leads to a
different electron yield from the two ensembles associated with the two effective excited states in the
cavity (cf. Fig. 6.1). In this way, the relative weight between the incoherently scattered ratiation from
each nuclear ensemble, associated with the excited state population of each collective state, becomes
different and oscillations like those shown in Fig. 6.4 (a) and (b) could be detected.

6.4.2 Non-impulsive excitations
The results of the simulations for the impulsive case Sec. 6.4.1 with varying coupling strength ∆21

suggest that a frequency-resolved detection scheme may be of advantage in analyzing the coupling
dynamics of effective three-level schemes. To this end, we continue our evaluation by employing
non-impulsive excitation pulses of the form

Ω(t) = ΓaA e−i(ω0+∆)t e−Γat , (6.38)

which can be realized in experiment using synchrotron Mössbauer sources or single-line nuclear
reference absorbers (cf. Sec. 5.5). Recall, that A denotes the total pulse area of the temporally-
extended driving pulse as defined in Eq. (A.126), Γa the decay rate of the exponentially-decaying
pulse, ω0 the center frequency of the resonant reference absorber and ∆ the detuning imposed by,
e.g., a Doppler shift.
Fig. 6.6 shows the time-resolved populations (panel (a) and (b)), the sum of the populations

(panel (c)) and the absolute squared of the summed coherences (panel (d)) upon the excitation by a
exponentially decaying pulse of the form Eq. (6.38) with a decay rate Γa = 2.5γ and a pulse frequency
of ω0 +∆ = δ2+δ1

2 +10γ. The decay rates of the two transitions are chosen identically Γ2 = Γ1 = 0.5γ.
The remaining parameters are identical to those of Fig. 6.4. Apart from weak hyperbolic oscillations
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Figure 6.6: Coupling dynamics of the three-level system as a function of time and coupling strength between
the two excited states upon an exponentially-decaying excitation pulse. Panel (a) shows the population ρ22,
panel (b) the population ρ11, panel (c) the sum of both populations and panel (d) the absolute squared of the
sum of both coherences. The total pulse areas of the driving Rabi frequencies are related byA2 = 2A1 = 0.02π.
Condition Eq. (6.39) is indicated as a red dashed line in panel (b).

reminiscent of those appearing in nuclear time-frequency-spectra (cf. ch. 3), most prominent are peak
structures appearing very pronounced in all plotted quantities. They occur at couplings that satisfy
the condition

∆21 =
1

2

√
|(ω0 + ∆)2 − (δ2 − δ1)2| (6.39)

which are indicated in panel (b) as dashed red lines. This condition corresponds to the driving field
being resonant with the generalized coupling ∆R which suggests to study the coupling dynamics using
time-frequency spectra like Sec. 5.5. Note that these resonant features also appear in the incoherently
and coherently scattered light off of both transitions as shown in panel (c) and (d), in contrast to
the impulsive case where strong oscillations were mainly restricted to the single populations and
coherences squared.
Fig. 6.7 compares the sum of the populations ρ11 + ρ22 (upper panels) and the absolute squared of

the summed coherences |ρ01 +ρ02|2 (lower panels) in the case without excited state coupling ∆21 = 0
(left panels) and with a coupling of ∆21 = 10γ (right panels). As a reference frequency for the pulse’s
center frequency a value between the two transition frequencies is chosen, i.e. ω0 = δ1+δ2

2 . The
remaining parameters are the same as in Fig. 6.6. As in that Figure, pronounced peak structures
appear in all plotted quantities that peak at detunings

∆ = ±∆R

2
(6.40)

which are indicated as dashed red lines in panel (c) and (d). Note, that there is an asymmetry in
the intensity of the two peaks at positive and negative generalized couplings: Without coupling (left
panels) the peak at positive detuning ∆ = ∆δ is more pronounced, corresponding to the transition
from state |0〉 to state |2〉. In contrast, in the case of finite coupling (right panels), the negative
detuning peak, corresponding to ∆ = −∆R

2 has a higher visibility while the positive detuning contri-
bution is barely visible. For a qualitative understanding of this behaviour, we evaluate the first-order
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Figure 6.7: Time-frequency spectra with an excited state coupling of ∆21 (right panels) and without coupling
(left panels) upon an exponentially decaying pulse. The upper panels shows incoherently scattered intensity
in form of the summed populations while the lower panels show the coherently and resonantly scattered
intensity in form of the absolute square of the superposition of both coherences. The red dashed lines in (c)
and (d) indicate the condition Eq. (6.40).

coherence ρ(1)
02 (t), given in Eq. (6.21), in the limit of large coupling (cf. Sec. 6.3.3) and no coupling

(cf. Sec. 6.3.4).
The result for the large coupling case, again assuming the coupling constant ∆21 to be real, reads:

ρ
(1)
02 (t) =

i

4
e−Γt

∫ t

0

dτe−∆Γτ
[
Ω2

(
ei(δ̄+∆21)tei∆−τ + ei(δ̄−∆21)tei∆+τ

)
+Ω1

(
ei(δ̄−∆21)tei∆+τ − ei(δ̄+∆21)tei∆−τ

)]
=− i

4

[
(Ω2 − Ω1)

e−Γtei(δ̄+∆21)t − e−Γatei(ω0+∆)t

∆Γ− i∆−

+ (Ω2 + Ω1)
e−Γtei(δ̄−∆21)t − e−Γatei(ω0+∆)t

∆Γ− i∆+

]
(6.41)

where we introduced the quantities

∆± = ω0 + ∆− δ̄ ± |∆21| , (6.42)

Ωl = ΓaAl . (6.43)

This result shows that the first-order coherence, and with it the second order population of state
|2〉 peaks at ∆ = ±∆21 in the large coupling limit if ω0 = δ̄ is chosen. This becomes evident
from the time-independent prefactors (∆Γ− i∆−)

−1 and (∆Γ− i∆+)
−1. Further, it can be seen

that the contribution that reaches its maximum at ∆− is suppressed by the difference of the two
pulse amplitudes Ω2 − Ω1 while the contribution at ∆+ is enhanced by the sum Ω2 + Ω1. We
conclude, that the ∆− component is suppressed compared to the ∆+ component, which explains the
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asymmetry in the peak intensity in the right panels of Fig. 6.7. Recall, that in the large coupling
limit, the time-evolution of the two coherences becomes analogous such that ρ(1)

01 (t) can be obtained
from Eq. (6.41) by interchanging Ω1 and Ω2. Consequently, the ∆− component is suppressed for
this coherence as well and thus the mentioned asymmetry of the two peak intensities in the right
panels of Fig. 6.7 is preserved if we sum over both coherences. Since this asymmetry is a feature of
both coherences separately, it can also be found in the two populations (lower panels of Fig. 6.7),
which can be calculated as the absolute square of each coherence separately in the LER according to
the population-coherence correspondence Eq. (6.27). Further note, that the numerical results further
suggest that this asymmetry is still present at intermediate couplings since the right panels of Fig. 6.7
correspond to that intermediate regime. As a final remark, we note that Eq. (6.41) suggests that the
∆− peak will completely disappear in the limit Ω2 → Ω1, i.e. if the effective x-ray nucleus couplings
at the psitions of the two layers become identical.
In the opposite case without coupling, the dynamics of both transitions becomes independent, such
that the first order coherences read

ρ
(1)
0l (t) = − i

2

Ωl
∆Γ− i∆l

[
e−Γlteiδ2t − e−Γatei(ω0+∆)t

]
(6.44)

where we defined the relative pulse-resonance detuning

∆l = ω0 + ∆− δl (6.45)

Thus, if ω0 = δ̄, the peak intensities of well-separated resonances at δl change with the respective
excitation strengths Ωl squared and are found at the positions ∆ = ±∆δ, consistent with the left
panels of Fig. 6.7 which featured relative excitation strengths of Ω2 = 2Ω1. Thus, for the same nucleus-
field interaction Ω1 = Ω2 of both transitions, the two peaks are of equal intensity. Remarkably, these
results suggest that the relative peak strength in presence of an excited state coupling behaves quite
differently as a function of the relative nucleus-field interaction compared to the case without coupling:
While the asymmetry grows as the excitation interactions differ from each other in the latter case, in
the former case the second peak only appears if the two excitation strengths are different which can
be used to distinguish the two cases.
For later comparison with the result using pulse sequences as produced by single-line reference

absorbers Sec. 7.3.2, Fig. 6.8 shows the corresponding frequency-frequency correlation (FFC) spectra,
i.e. the Fourier transform along the time axis of the coherently and incoherently scattered time-
frequency-spectra for the same parameters as shown in Fig. 6.7. Building on the previous discussions,
the complex structures appearing in these spectra can be interpreted one by one: First, the asymmetric
non-oscillating peak structures discussed before that dominated the time-frequency-spectra Fig. 6.7
translate into intense peaks at ν = 0. These peaks are located at detunings satisfying Eq. (6.40),
like in the time domain as indicated by vertical red dashed lines in the lower panels of Fig. 6.8.
Second, diagonal structures extending from these peaks with slope one are related to weak hyperbolic
oscillation patterns barely visible in Fig. 6.7 and reminiscent of similar structures in Sec. 5.5.2 and
Ch. 3. Finally, additional horizontal detuning-independent lines appear in the coherently scattered
intensities which relate to weak oscillations in the time-domain (cf. Fig. 6.7 panel (b)). These
horizontal lines are the frequency-analogue of the oscillations discussed extensively in Sec. 6.4.1,
related to the generalized couupling between the excited states. As a validation of this interpretation,
red dotted horizontal lines corresponding to the condition

ν = −∆R (6.46)

were drawn in panel (a) and (b) of Fig. 6.8 as a guide to the eye which is consistent with the
discussion of the oscillatory behaviour of the nuclear dynamics in Sec. 6.4.1. Recall, that these (time-
domain) oscillations disappear in the sum of the populations such that the lower panels of Fig. 6.8
do not contain such horizontal structures.
In summary, we first studied the dynamics of collective nuclear three-level systems in the time domain
upon impulsive x-ray excitations. Oscillations depending on the strength of the coupling between the
excited states were observed that could be measured by accessing the incoherent emission from one of
the nuclear layers in an thin-film cavity alone. This could be achieved by employing depth-sensitive

105



−20

0

20

Fo
ur

ie
rf

re
qu

en
cy

ν
(u

ni
ts

of
γ)

−25 0 25
Detuning ∆ (units of γ)

−20

0

20

Fr
eq

ue
nc

y
ν

(u
ni

ts
of

γ)

−25 0 25
Detuning ∆ (units of γ)

(a) (b)

(c) (d)

10−4

10−3

10−2

10−1

10−4

10−3

10−2

10−1

10−4

10−3

10−2

10−1

10−4

10−3

10−2

10−1

Figure 6.8: FFC spectra of coherently (upper panels) and incoherently (lower panels) scattered intensity
upon a non-impulsive excitation without coupling (left panels) and with a coupling of ∆21 = 10γ. The
horizontal dashed lines in panel (a) and (b) correspond to the condition Eq. (6.46) while the vertical dashed
lines in panel (c) and (d) are drawn at detunings Eq. (6.40).

detection methods such as CEMS. Next, we studied time- and frequency-resolved spectra measured
using narrowband impulsive excitations as provided by SMS or single-line reference nuclear reference
absorbers. We discovered intense peak structures in the scattered intensity as a function of the carrier
frequency of the narrowband excitation pulse, the position of which depend on the coupling between
the excited states.
The main results of this Section are summarized in Table 6.1. It compares the most important

signatures of coupling dynamics in effective three-level systems upon impulsive and non-impulsive
nuclear excitations. The observables compared are the single populations that can be accessed via
depth-sensitive techniques like CEMS, the sum of the populations ρ11 +ρ22 of both nuclear ensembles
that can measured by capturing incoherently emitted radiative contributions and the absolute square
of the coherent sum |ρ01 + ρ02|2 that is accessed by monitoring the cavity reflection spectrum in
propagation direction of the incident radiation (cf. left panel of Fig. 6.1). As the results found in
this Chapter are unpublished and preliminary, we comment on the validity of the assertions made in
Table 6.1: Upon impulsive excitations, we found strong numerical evidence that the single populations
oscillate with the generalized coupling ∆R in the time domain. Analytical calculations confirmed this
in the limit of large and no coupling. Corresponding analytical evaluations for intermediate couplings
have not been carried out so far. The analytical results in these regimes suggest that the incoherently
and coherently scattered intensities associated with the sum of the populations and the coherent sum
of the coherences, respectively, do not show such oscillations. However, the numerical results still
show such oscillations in the intermediate coupling regime that are, however, much weaker than in
the single populations ρll.
In the non-impulsive case we found that, next to the time-domain oscillations also present upon
impulsive excitation, peak structures centered around the half the generalized coupling ∆R appeared
as a function of Doppler-shifted frequency ∆ of the narrow-band reference pulse if the center frequency
of the driving x-ray pulse is placed at the mean transition frequency δ̄ = δ1+δ2

2 of the two nuclear
transitions. These peak structures showed a particular asymmetry characteristic for the strength of
the coupling ∆21 and the form of the x-ray-nucleus coupling of the two-transitions. We saw that
these peaks do also convert into diagonal lines in frequency-frequency correlation (FFC) spectra,
similar to renormalized nuclear transition frequencies in single-layer cavities discussed in Sec. 3.3.3.
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Table 6.1: Signatures of coupling dynamics of three-level systems in the low-excitation regime in relevant
observables upon impulsive and non-impulsive excitations.

pulse excitation ρll ρ11 + ρ22 |ρ01 + ρ02|2

impulsive ν = ±∆R weak oscillations weak oscillations

non-impulsive ∆ = ±∆R

2 ∆ = ±∆R

2 ∆ = ±∆R

2

Again, analytical evaluations in the large and no coupling regimes based on Eqs. (6.21) supported
our findings.

6.5 Conclusion
In this Chapter, we studied the coupling dynamics of collective nuclear three-level systems as realized
in thin-film x-ray cavities with two separate layers of resonant nuclei embedded in its center as shown
in Fig. 6.1 to retrieve the coupling between the excited states. To this end, we derived the up-
to-second order contributions to the time-resolved coherences and populations associated with this
effective few-level system. This allowed us to study and interpret the coupling dynamics of these
systems as reflected in time- and frequency-resolved nuclear resonant scattering spectra upon the
excitation with different experimentally-relevant x-ray pulse shapes. To compare calculations of the
nuclear dynamics based on the numerical integration of the optical Bloch equations with explicit
analytical results, we established the correspondence of coherence squared and population in the
low-excitation regime for each transition separately. A combined numerical and analytical evaluation
of the nuclear dynamics revealed that, in the impulsive case, time-domain oscillations related to the
coupling strength between the effective states appear that are strongest in the incoherent emission
of the effective nuclear populations of the single nuclear ensembles. We suggested that these can be
accessed, e.g., by measuring the electron yield in a cavity setting via depth-selective methods such
as conversion electron Mössbauer spectroscopy. In addition to these time-domain oscillations, we
found that peak structures related to the coupling strength dominate time- and frequency-resolved
spectra measured upon non-impulsive excitation. Both features could also be identified in frequency-
frequency correlation spectra of such non-impulsive excitations again demonstrating the potential of
this evaluation method of time- and frequency-resolved NRS spectra.
In essence, we could define several experimental signatures for excited-state couplings in nuclear
systems that can be accessed using advanced measurement methods such as time- and frequency-
resolved detection and by taking into account incoherent emission from thin film cavities in addition
to the coherent emission channel. We envision the methods presented here to be of great advantage for
the unambiguous interpretation of NRS data to characterize engineered quantum optical level schemes
in x-ray cavities and thus advance nuclear quantum optics, a goal that is of great importance given
that one-dimensional spectra, at least in certain cases can not provide unambiguous interpretations
of such schemes.
Interesting open questions regarding the systems studied in this Chapter regard the generalization
to multi-level schemes and to higher excitations beyond the LER as discussed for effective two-level
systems in Chapter 5.
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Chapter 7

Probing nuclear dynamics using phase-coherent
double pulses

List of abbreviations used in this Chapter:

• LER: low-excitation regime

• SCU: split-and-control unit

• NRS: nuclear resonant scattering

• XFEL : x-ray free electron laser

• XFELO : x-ray free electron laser oscillator

• FFC spectrum : frequency-frequency correlation spectrum

7.1 Introduction

7.1.1 Phase-coherent pulse sequences in nuclear resonant scattering

As discussed in Sec. 2.3, the long coherence times of Mössbauer transitions in combination with the
strong enhancement of coherently scattered radiation allow for the time-domain control of nuclear
resonances using various techniques to shape the temporal and spectral response of the nuclei and to
tune the properties of the resonantly scattered light off of the nuclei [Hee+17]. Among these tech-
niques, we highlight the control of the nuclear hyperfine fields via external static [Shv+96; LPK12]
and transient [Boc+21] magnetic fields and mechanical control of the nuclear transition frequencies
via time-dependent Doppler shifts [KK12; Vag+14; Hee+17; Hee+21]. Recently, x-ray light suitably
shaped using fast piezo motion of nuclear absorbers has been used to also control the dynamics of
nuclear excitonic states with x-ray light alone [Hee+21] via the precise control of the relative phase
between nonresonantly and resonantly scattered light. Moreover, several techniques have been pro-
posed that allow for a controlled suppression or enhancement of the resonantly scattered radiation of
Mössbauer-active targets during selected time-intervals [Ger21; Lee23; Shv+96; LPK12] such that the
production of phase-coherent double-pulses including time delays at hard x-ray energies for NRS ex-
periments comes into reach. Further, direct implementations of split-and-delay-lines for pump-probe
experiments at XFELs are developed [Lu+18]. This raises the question whether suitably shaped
x-ray pulses can be used to devise advanced detection schemes and spectroscopy methods built upon
coherent control of nuclear resonances and time-gating of the resonantly scattered radiation.
In this context, established methods requiring phase-coherent control fields are Ramsey interfer-
ometry [Ram90], pump-probe spectroscopy [Cho19; HZ11] and photon echo experiments [Tan08;
Cho19]. Advanced techniques potentially requiring multiple coherent pulses are multidimensional
spectroscopy [Ern92; ABE76; Muk95; HZ11; Cho19] which have recently been established up to the
XUV regime [Wit+20]. Recently, optical-pump x-ray-probe experiments were performed involving
nuclear scattering [Sak+17]. These developments raise the question whether the gating and phase
control techniques above, applicable in NRS experiments, can be used to establish similar techniques
in the hard x-ray regime. Potential applications involve processes that require time- and frequency-
resolution such as studies of couplings between excited nuclear states or the dynamics of nuclear
ensembles under x-ray, other electromagnetic or thermal perturbations, e.g. to investigate the dy-
namics of the nuclear environment by probing nuclear degrees of freedom. Further, such techniques
as Ramsey interferometry and photon echo experiments can enhance precision of frequency-resolved
measurements due to a reduction field-inhomogeneities and dephasing [Ram50; HZ11]. Many of the
mentioned spectroscopic techniques are typically performed under nonlinear excitation conditions
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which can conveniently be achieved with state-of-the-art laser sources driving atomic or molecular
transitions. The ultranarrow linewidth of nuclear transitions, while ideal for coherent scattering,
makes strong driving at present-day accelerator-based light sources challenging. Thus, it is of imme-
diate interest for the implementation of advanced spectroscopic techniques based on phase-coherent
pulse sequences to understand whether nonlinear excitation conditions are essential for the success of
such studies.

7.1.2 Outline of this Chapter

This Chapter is concerned with the question how suitably shaped double pulse sequences and phase
control can be exploited to study nuclear few-level dynamics with special focus on the comparison of
different shapes of the double-pulse sequence. One of the conceptually simplest cases of the interac-
tion between quantum matter and a pulse sequence with fixed phase-relation is the excitation and
de-excitation of a two-level system by a double-pulse sequence consisting of two short pulses with
variable time delay. Such a setup forms the basis for the technique known as separated oscillatory
field method or Ramsey interferometry [Ram50] that was instrumental in establishing atomic clocks as
time-keeping standards [Ram90] and is the starting point for more advanced spectroscopic techniques
such as photon echo experiments [HZ11; Cho19; Tan08]. While computationally and conceptionally
simple from a theoretical perspective, separated oscillatory x-ray fields with variable time-delay on
nuclear dynamics time scales are experimentally challenging due to the lack of coherence-preserving
x-ray optics and the high stability requirement of these optics down to fractions of the optical cy-
cle of hard x-rays. Nevertheless, methods for coherent time-gating of coherent radiation emitted by
nuclear scatterers have been investigated theoretically [Lee23; LPK12] and even demonstrated exper-
imentally [Ger21; Shv+96]. However, the pulses created with these methods are expected to yield
pulses on the nanosecond scale such that their temporal duration and frequency structure may not
be completely negligible on the nuclear time and frequency scale. For this reason, here we discuss
the influence of pulse shape on the outcome of a Ramsey experiment, specifically comparing the ideal
case of a sequence of two short pulses, in following denoted as standard Ramsey with a sequence of
a short followed by a temporally-extended narrow-band pulse as is typical for the radiation response
of single-line nuclear reference absorber (cf. 2.3). This second case is therefore called nuclear Ramsey
in the following.
A second interesting question is whether the evaluation of double pulse experiments in terms of time-
and frequency-resolved spectra offers advantages in the interpretation of the underlying nuclear dy-
namics. In Chapters 3, 5 and 6 the potential of time- and frequency-resolved spectra their analysis in
frequency space has been shown in various contexts. Therefore, the same methods will be employed
here to get additional insight into time-dependent perturbations of nuclear systems and couplings
between excited states.
A third very important question regarding the realization of advanced multi-pulse schemes in NRS is
whether such techniques, usually associated with nonlinear driving of the transitions of interest can
also be realized in the LER typical for NRS experiments at synchrotron sources.
A schematic illustrating the pulse creation and measurement approach discussed in this Chapter

to adress these three aspects is shown in Fig. 7.1: First, a short pulse delivered by a coherent x-ray
source like as synchrotron or XFEL is split into a double pulse sequence using a split-and-control
unit (SCU)1, that splits the initial x-ray pulse and controls the time delay and relative phase of the
two pulses. This can be any device like a split-and-delay line [Lu+18] or a combination of nuclear
reference absorbers including sample motion and magnetic field control [Hee+21; Ger21; Lee23]. This
pulse sequence excites and de-excites a nuclear two-level system, here depicted in the Bloch sphere
representation, to probe its dynamics during the experiment. The emitted incoherent or coherent
radiation is subsequently detected in a time- and frequency-resolved measurement.
This Chapter is structured as follows: Section 7.1.3 demonstrates the feasibility of Ramsey experi-
ments in the LER by studying the simple example of an two-level system without decay. Building up
on this, Section 7.2 employs a more rigorous model including decay of the nuclear two-level system
and the relative phase between the two pulses to calculate the low-excitation intensity measured in
a nuclear double-pulse experiment. The cases of two short excitation pulses and a pulse sequence
of an impulsive excitation followed by a temporally-extended narrow-band excitation are compared.
Finally, Section 7.3 investigates two cases of nuclear dynamics using double-pulse sequences: First,
time-dependent perturbations of the nuclear resonance frequency are studied with different pulse pat-
1The name split-and-control unit was taken from Ref. [Hee+21]
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Figure 7.1: Double pulse experiment in nuclear resonant scattering: An incident short x-ray pulse delivered
by a coherent x-ray source is split into a double pulse sequence by a split-and-delay unit (SCU) either consisting
of two short pulses (standard Ramsey) or a short pulse followed by a temporally-extended narrowband probe
pulse (nuclear Ramsey). This sequence is used to excite and deexcite a nuclear two-level system to probe its
dynamics during the double pulse experiment. Finally, the radiation emitted by the nuclear two-level system
is captured in a time- and frequency-resolved measurement.

terns. Second, coupling dynamics of effective three-level systems are investigated using double-pulse
sequences and compared to the corresponding single-pulse results in Chapter 6.

7.1.3 Ramsey interferometry under low-excitation conditions

In this Section, we compare the ideal Ramsey case of two pulses of neglibible duration and variable
time delay between the pulses under high-excitation and low-excitation conditions. This serves as a
motivation for more rigorous comparisons of this ideal case with pulse sequences that can be realized
conveniently in NRS experiments. To compare the results with earlier Chapters, we interpret the
intensity measured in a Ramsey experiment in terms of time- and frequency-resolved spectra and
motivate the use of the Ramsey method regardless of the degree of excitation of the two-level system,
which is crucial for future double pulse experiments at coherent x-ray sources since the number of
photons delivered on resonance with the nuclear transitions is typically very small. This is in stark
contrast to the nonlinear excitation conditions usually found in Ramsey experiments in the longer
wavelength regime.
To obtain the intensity measured in a Ramsey interferometer, we calculate the population of a two-
level system initially excited from its ground state by a short near-instantaneous pump pulse of the
form

Ω1(t) =
A1√
2πτ1

e−iωp1
t exp

(
− (t− t1exc)2

2τ2
1

)
, (7.1)

followed by a non-interaction period of duration T . Finally, the system interacts with a second
pulse of the same form as the first pulse but centered at time t2exc = t1exc + T where t1exc refers to the
time of interaction between the two-level system and the first pulse. For our simulation we assumed
the ideal case that all other pulse parameters are identical, i.e. the pulse areas A ≡ A1 = A2,
ωp ≡ ωp1 = ωp2 and τp ≡ τ1 = τ2. The population is calculated by solving the optical Bloch
equations Eq. (A.146) numerically, including nuclear decay. This was done by using the odeint
function from the scipy package [Vir+20] of the python programming language [VRD09]. Recall
that the incoherently scattered intensity in an NRS experiment is proportional to the nuclear excited
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Figure 7.2: Time- and frequency-resolved incoherent intensity upon a double pulse excitation in a Ramsey
experiment as a function of time delay T between the pulses and detuning ∆ between the resonance frequency
and the pulse carrier frequency. The left panel shows the result for a pulse area of A = π/2 while the right
panel shows the LER result with a pulse area of A = 0.01π.

state population as argued in Sec. 5.2.2. The main reason for studying this observable instead of
the coherently scattered intensity is the fact that read-out of the incoherent intensity is typically
preferred in Ramsey experiments and thus, to compare our analytical results with earlier approaches,
we choose the same observable here. As demonstrated in Sec. 5.3.2, however, both observables are
equivalent in the LER. Note that, as discussed in more detail in Sec. 2.2.2, the interpretation of
ensembles of nuclei in terms of effective few-level systems is valid in the LER such that the few-level
excited-state populations and x-ray induced coherences studied here should be thought of as effective
nuclear ensemble quantities.
In Fig. 7.2, the population is plotted as a function of the delay T (cf. Fig. 7.3) and the detuning

∆ = ωp − ω0 between the pulse carrier frequencies ωp and the system’s resonance frequency ω0.
Remarkably, the hyperbolic shape of the Ramsey fringe pattern is very similar to the patterns observed
in time- and frequency-resolved nuclear resonant scattering spectra as discussed, for instance, in Ch. 3
and Sec. 5.5.2. We further note, that the LER result (right panel) looks very similar to the π/2-pulse
result (left panel). This suggests that Ramsey-type experiments could be performed even in the LER,
for instance in NRS with synchrotron radiation if proper coherent pulse patterns are available. To get
a better insight into the origin of these hyperbolic structures in Ramsey interferometry, and for later
comparison with analytical expressions from the LER, we use the analytical result for the excited
state population obtained by Ramsey [Ram50], adapted to the notation of this thesis,

ρee(∆, T ) = 4
Ω2

0

Ω2
δ

sin2

(
Ωδτp

2

)[
cos

(
∆T

2

)
cos

(
Ωδτp

2

)
− δ

Ωδ
sin

(
∆T

2

)
sin

(
Ωδτp

2

)]2

, (7.2)

which assumes two short interaction periods of the two-level system with duration τp, constant Rabi
frequency Ω0 and a detuning of δ within the interaction periods. During the interaction-free period
of duration T in between the two pulses, the detuning between field and nucleus is given by ∆, which
includes potential fluctuations of the two-level system’s transition frequency in this time interval.
Finally, the generalized Rabi frequency of the driving pulse is given by

Ωδ =
√

Ω2
0 + δ2 . (7.3)

Eq. (7.2) can be used to describe the right panel of Fig. 7.2 if decay processes are neglected. This
comparison suggests that the hyperbolic oscillations are described by the sine and cosine terms os-
cillating with ∆T . To see this more clearly, we consider an impulsive excitation such that the initial
detuning can be neglected (δ = 0). In this case Eq. (7.2) reduces to
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ρee(∆, T ) = sin2 (Ω0τp) cos2

(
∆T

2

)
, (7.4)

which clearly connects the hyperbolic structures to the oscillations with ∆T . For the special case
of an pulse area of A = Ω0τp the prefactor is equal to one, which yields the typical cosine squared
oscillation known as Ramsey fringes [Bor+84]. The narrowing of the oscillatory structures in Fig. 7.2
towards larger time delays T can then directly be related to the narrowing of the Ramsey fringe
pattern and the related high precision of frequency determination in measurements using the Ramsey
method.
The numerical and analytical results above suggest that Ramsey fringes are observable even under
low-excitation conditions and thus Ramsey-like experiments and even more complex spectroscopy
schemes like photon echo could be performed with Mössbauer nuclei at state-of-the-art accelerator-
based light sources such as synchrotrons. The crucial assumption here is that pump and probe pulse
both are impulsive. This, together with the apparent similarity of the Ramsey fringe pattern with
time- and frequency-resolved NRS spectra, invites more rigorous comparisons of time- and frequency-
resolved intensities upon different double pulse sequences in the LER.

7.2 Double pulse excitations of two-level systems in the
low-excitation regime

In this Section, we provide a detailed comparison of nuclear two-level dynamics upon double-pulse
excitations in the LER, including level decay, for different time-dependent pulse envelopes. This
allows us to compare the case of a temporally short probe field with the one of a temporally long but
narrowband probe field. Our findings are of importance for future implementations of double pulse
experiments with Mössbauer nuclei as the compared pulses require different pulse-shaping techniques
but on the other hand offer different experimental advantages. Further, the results allow for an
interpretation of the time- and frequency-resolved spectra obtained by solving the optical Bloch
equations.
Specifically, we study the two-pulse sequences depicted in Fig. 7.3, i.e. the ideal case of two short

pulses separated by a variable time-delay of duration T (panel (b)) and a sequence of a short pulse
excitation followed by a temporally-extended narrow-band probe pulse (panel (a)). To study the
action of such double pulses on nuclear two-level systems in the LER, we employ the self-consistent
equations derived in Sec. 4.1. These equations can, in principle, be used to study arbitrary pulse
shapes and sequences and, therefore, are the ideal starting point for our discussion. For convenience,
we restate these equations here:

ρee(t, t0) =e−γt
{
eγt0ρee(t0) + e

γ
2 t0

∫ t

t0

dt′e
γ
2 t
′
Re(ieiω0(t′−t0)Ω(t′)ρge(t0)) (7.5a)

− Re
[ ∫ t

t0

dt′eγt
′
Ω∗(t′)

∫ t′

t0

dt′′eiω0(t′′−t′)e
γ
2 (t′′−t′)Ω(t′′)

(
ρee(t

′′, t0)− 1

2

)]}
,

ρge(t, t0) =eiω0te−
γ
2 t
{
e−iω0t0e

γ
2 t0ρge(t0) + i

∫ t

t0

dt′e−iωt
′
Ω∗(t′)

(
eγ(t0− t

′
2 )ρee(t0)− e

γ
2 t
′

2

)
− i
∫ t

t0

dt′e−iω0t
′
e−

γ
2 t
′
Ω∗(t′)

∫ t′

t0

dt′′eγt
′′
Im
(
Ω(t′′)ρge(t

′′, t0)
)}
. (7.5b)

Recall that ρee denotes the nuclear excited state population associated with incoherent emission (cf.
Sec. 5.2.2) and ρge the x-ray induced coherence related to coherent emission. Further, γ denotes
the total single-nucleus linewidth, ω0 the transition frequency of the nuclear two-level system, t0 the
initial time and Ω(t) the time-dependent nucleus-field coupling related to the nuclear dipole moment
d and the driving x-ray field E(t) by

Ω(t) =
dE(t)

~
. (7.6)
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Figure 7.3: Double pulses created in nuclear resonant scattering using split-and-control units. The measure-
ment time t proceeds from left to right: On the left the first short excitation pulse arriving at initial time
t0 with pulse-nucleus detuning δ1 can be seen, followed by the non-interaction region of duration T with a
corresponding detuning δT . On the right, the two cases of excitation/deexcitation are shown, both with a
pulse nucleus-detuning δ2: Panel (a) shows the nuclear Ramsey case with an exponentially-decaying probe
pulse. In panel (b) the standard Ramsey case with a second short probe pulse is shown.

The time-dependent nuclear excited state population calculated with these equations allows to
compare the result for different pulse shapes and sequences. Moreover, it provides a generalization of
the result Eq.(7.2) in that it incorporates the nuclear decay at low excitations, where Eqs. (7.5) can
be expanded up to second order in the x-ray-nucleus interaction Ω(t). In this regime, it also allows
for more detailed insights into the dependence of the detuning between x-ray pulses and the nuclear
resonance compared to the area theorem A.9 that has been demonstrated to provide good results
upon impulsive excitations, where detunings can typically be neglected.
To calculate the time-dependent nuclear excited-state population ρee(t) we split the double pulse
experiments into three parts as depicted in Fig. 7.3: First, the two-level system is excited by a short
pump pulse at time t0. Second, the system evolves freely in time for a duration of T . Finally, two cases
are distiguished: Panel(b) shows the standard Ramsey case with a second short pulse probing the
system dynamics followed by subsequent free-induction decay. Panel (b) depicts the case of a nuclear
reference absorber with an exponentially-decaying probe pulse. Finally the measurement is performed
at time t. During the different regions we allow the detuning between pulse carrier frequency ωp and
nuclear resonance frequency ω0 to vary to account for two aspects: First, possible time-dependent
variations in the nuclear environment may change the resonance frequency ω0. Second, especially in
the case of a narrow-band probe pulse (panel (a)), the pulse frequency ωp can vary in the different
regions. To simplify notation we account for these variations by assuming a different nuclear resonance
frequency in the three parts since only relative detunings between pulse carrier frequency and nuclear
resonance frequency are important for the final result: The initial excitation is characterized by a
pulse-nucleus detuning of δ1 = ωpω1, the non-interaction region by a detuning of δT = ωp − ωT and
the second interaction region by a detuning δ2 = ωp − ω2. This allows us to distinguish the influence
of variations during the different parts of the experiment on the final measurement outcome. In the
following, we provide a detailed analysis of the three regions.

7.2.1 Initial excitation and free time evolution

To obtain the time-dependent nuclear populations ρee(t) at measurement time t after the double
pulse sequence, we start by calculating the initial density matrix elements ρee(t0) and ρge(t0), which
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can be done in two ways depending on the properties of the first-pulse excitation in the double-pulse
sequence:

a) In case of an impulsive initial excitation which is subsequently probed either by a second short
pulse or a temporally-extended narrowband pulse, Eqs. (7.5) can be used to include an initial state
of the system that can be computed using any analytical method that is suitable to the specific
problem, e.g. the area theorem or the exact solution for a short constant-envelope pulse (see
below), which can even provide results to all orders with the restriction if nuclear decay during the
excitation period is negligible. This approach further allows for an interpretation of the double-
pulse setup as a scheme for studies of non-equilibrium dynamics: The system is initially prepared
in the state ρ̂(t0) and the induced dynamics are probed by the second pulse.

b) Regardless of the pulse shapes of the first and second pulse, both pulses can be treated perturba-
tively starting from an initial ground state, i.e.

ρee(t0) = 0 = ρge(t0) (7.7)

before the first pulse arrives.

The results obtained within both approaches should provide identical results in the LER. Here, we
mainly pursue the first approach using the exact solution of a short constant-envelope pulse to model
the initial near-instantaneous excitation as provided by synchrotron or XFEL sources. This can be
done as long as the nuclear decay can be neglected during the initial excitation2 and the spectral
and temporal details of the short pump pulse are not relevant on nuclear interaction and decay time
scales such that, in the analytical derivation, a short rectangular pulse as introduced below, a narrow
Gaussian pulse like Eq. (7.1) or a Dirac δ description may be used equivalently depending on the
specific calculation method. This, in principle, allows one to study the influence of the underlying
pulse structure on the measured signal, which is of importance, for instance, if the pulses are not
short compared to nuclear evolution time scales.
Under these assumptions, the initial density matrix after a short rectangular pulse of the form

Ω1(t) = Ω1e
−iωptΘ(t)Θ(τ1 − t) (7.8)

of duration τ1, a pulse-level detuning δ1 = ωp − ω1 and pulse envelope frequency Ω1 starting from
the system’s ground state at time t0 = 0 can be obtained analytically (see, e.g., Ref. [SZ97]) as

ρge(τ1) =− eiωpτ1
[Ω1δ1

Ω2
δ1

sin2
(Ωδ1τ1

2

)
+

iΩ1

2Ωδ1
sin (Ωδ1τ1)

]
(7.9a)

ρee(τ1) =
Ω2

1

Ω2
δ1

sin2
(Ωδ1τ1

2

)
(7.9b)

with the generalized Rabi frequency given by

Ωδ1 =
√

Ω2
1 + δ2

1 . (7.10)

Eqs. (7.9) have been derived neglecting nuclear decay, which is reasonable for accelerator-based pulse
durations much shorter than the nuclear decay dynamics (cf. Sec. 5.2.3). However, this decay can not
be neglected during the subsequent time evolution. Therefore, we need a refined model including the
nuclear decay which is provided by the self-consistent Eqs. (7.5) with initial values ρee(t0) and ρge(t0)
obtained from Eq. (7.9). As we mainly focus on synchrotron applications in the present discussion,
which typically operate in the LER, we expand Eqs. (7.9) up to second order in the x-ray-nuclei
interaction. Note that this simplification is convenient for our purposes but, in principle, a more
rigorous treatment of the initial excitation including all scattering orders as given in Eqs. (7.9) is
2for a more detailed discussion of pulse durations and nuclear dynamics time scales, see also Sec. 5.2.3
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possible if initial excitation conditions beyond the LER can be provided in experiment. In the limit
of low excitations, the initial density matrix contributions Eqs. (7.9) reduce to

ρ(0−2)
ge (τ1) = − i

2
eiω1τ1Ω1τ1 (7.11a)

ρ(0−2)
ee (τ1) =

1

4
Ω2

1τ
2
1 (7.11b)

where we used that the detuning between the excitation pulse and the nuclear resonance can be
neglected during the time τ1, i.e. δ1τ1 ≈ 0. Note, that Eqs. (7.11) are in agreement with the
population-coherence correspondence in the LER derived in Sec. 5.3.2, Eq. (5.22), i.e. the absolute
square of the x-ray-induced coherence ρ(0−2)

ge (τ1) is identical to the nuclear excited state population
ρ

(0−2)
ee (τ1) up to second order in the driving field Ω1, as expected.

After the initial excitation, the system evolves in time freely, i.e. without interaction with an external
driving field. The internal two-level dynamics governing the time evolution during this period is
included to all orders in the self-consistent Eqs. (7.5). An evaluation of these equations for the
population and coherence after time T of the initial excitation and with a potentially modified but
constant transition frequency ωT of the nuclear system in this interaction period yields:

ρ(0−2)
ee (T, τ1) = e−γ(T−τ1)ρ(0−2)

ee (τ1) ≈ 1

4
Ω2

1τ
2
1 e
−γT (7.12a)

ρ(0−2)
ge (T, τ1) = eiωTT e−iω1τ1e−

γ
2 (T−τ1)ρ(0−2)

ge (τ1) ≈ − i
2

Ω1τ1e
iωTT e−

γ
2 T (7.12b)

where we neglected the exponential terms e−γτ1 , e−
γ
2 τ1 for consistency as nuclear decay was also

neglected during the excitation period of duration τ1. Again, the two results are consistent with the
population-coherence correspondence Sec. 5.3.2.

7.2.2 Probing the system dynamics with a second pulse
After the initial excitation of the two-level system by a short pulse described by Eqs. (7.11) and a
subsequent non-interaction period of variable length T leading to Eqs. (7.12), we now discuss two
different cases of nuclear and pulse dynamics depicted in Fig. 7.3:

a) First, after the non-interaction period an exponentially-decaying narrow-band probe pulse

Ω2(t) = Ω2e
iφe−iωpte−ΓatΘ(t− T ) (7.13)

with decay rate Γa, amplitude Ω2, phase φ and detuning δ2 probes the nuclear two-level system
until observation time t. This exponential decay is typical for the resonant response of thin single-
line nuclear reference absorbers (see, e.g., Sec. 2.1.4 or Ref. [Hee+21]) and is therefore referred to
as nuclear Ramsey in the following. In the following, we will adopt the name split-and-control unit
(SCU) for these reference absorbers which was introduced in Ref. [Hee+21]. The name arises from
the fact that these absorbers create double pulses from near-instantaneous impulsive single pulse
excitations (split) via resonant nuclear and nonresonant electronic scattering while the frequency-
and phase-structure of nuclear resonant part of the radiation can be controlled via mechanical
motion or other control means (cf. Sec. 2.3). In the present discussion, however, the term SCU
refers to any device or method that produced phase-coherent double pulses from a short coherent
x-ray pulse.
Note, that in Eq. (7.13) we assumed a pulse with zero-amplitude until time T , i.e. an non-
interaction region of duration T , that is switched on at time T . However, we assume that until
that time the amplitude has already decayed and evolved in time from time zero on. This is the
reason why the exponential factor e−iωpte−Γat instead of e−iωp(t−T )e−Γa(t−T ) appears in Eq. (7.13).
The reason for this is that gating schemes realized with Mössbauer nuclei prevent the secondary
radiation from reaching the sample stage but the secondary radiation emitted by the reference ab-
sorber still evolves in time and decays during the gating period which leads to a loss in probe pulse
amplitude over time [Shv+96; Ger21]. Note, that typical SCU responses without an additional
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phase φ are shifted in phase by π with respect to the incident radiation leading to an additional
minus sign in front of the secondary pulse contribution Ω2(t) leading to destructive interference
(absorption) between the two contributions. This sign is absorbed into the amplitude Ω2 in our
analytical calculation but is crucial for the interpretation of numerical and experimental data.

b) Second, a scenario with another short pulse interaction period of duration τ2, detuning δ2, ampli-
tude Ω2 and a pulse phase of φ relative to the first pulse described by

Ω2(t) = Ω2e
iφe−iωptΘ(t− T )Θ(T + τ2 − t) (7.14)

is considered. After the interaction of duration τ2 the system undergoes free induction decay until
measurement time t. This scenario closely resembles the assumptions of the Ramsey method in the
longer wavelength regime and is therefore referred to as Standard Ramsey. Important differences
to the calculation leading to Eq.(7.2) [Ram50] are the incorporation of resonance decay and a
different pulse-nucleus detuning δ2 = ωp − ω2 and amplitude Ω2 from that one of the first pulse.
This choice is made here because current proposals of double-pulse creation in NRS experiments
do rely on gating of exponentially-decaying pulses as discussed in case a) such that at time T of
the second interaction period the second pulse has a modified amplitude Ω2 that is related to the
decay of the nuclear excitation in the SCU. This amplitude relative to the first pulse amplitude
can in principle be modified by employing reference absorbers of different thickness (for a more
detailed discussion, see Sec. 2.1.4. Finally, the detuning δ2 = ωp − ω2 of this second pulse relative
to the resonance frequency ω2 can be different from the one of the first impulsive excitation to
account for frequency control of the narrow-band probe pulse, e.g., via mechanical motion of an
SCU absorber (cf. Sec. 2.1.5).

In the following, the two cases are discussed separately.

Standard Ramsey case

We start by evaluating the conceptually and computationally simpler standard Ramsey case where
the second pulse takes the form Eq. (7.14). The coherence at time t can be calculated using Eq. (7.5b)
up to first order in the driving field Ω2(t) using the expression Eq. (7.12b) as initial state ρge(t0).
According to the population-coherence correspondence Eq. (5.22), discussed in Sec. 5.3.2, the popula-
tion up to second order is obtained as the absolute square of the coherence. Recall that the coherence
only acquires contributions from the first excitation order while the population only from the second
order. The results are:

ρ(0−2)
ge (t, τ2, T, τ1) = − i

2
eiω2(t−T )e−

γ
2 (t−T )

(
Ω1τ1e

iωTT e−
γ
2 T + Ω2τ2e

−iφeiωpT
)

(7.15)

ρ(0−2)
ee (t, τ2, T, τ1) =

1

4
e−γ(t−T )

(
Ω2

1τ
2
1 e
−γT + Ω2

2τ
2
2 + 2e−

γ
2 TΩ1Ω2τ1τ2 cos(δTT − φ)

)
(7.16)

For simplicity, we again omitted exponential terms containing the parameter γτ2 in the final expres-
sion, assuming negligible decay during the pulse duration. The results can be interpreted as follows:
The coherence Eq. (7.15) is easily interpreted as a superposition of the two first-order excitation con-
tributions from the two pulses, respectively. The population result is more interesting and consists of
three terms: The first term describes excitation by the first pulse with subsequent exponential decay,
the second term excitation by the second pulse followed by exponential decay. Finally, the third
contribution is the interference between these two excitation contributions the amplitude of which
depends, via the cosine term, on the detuning δT = ωp − ωT between pulse carrier frequency ωp and
nuclear resonance frequency ωT during the non-interaction period, the time T the system spends in
the non-interaction region, i.e. the time delay between the two pulses, and the second pulse’s phase
φ. This result describes the Ramsey fringe interference pattern shown in the right panel of Fig. 7.2.
Note, that the result Eq. (7.16) becomes identical to Eq. (7.2), expanded in second order of the pulse
area A = Ω0τp, if identical pump and probe pulses are assumed, i.e. Ω0 ≡ Ω1 = Ω2, τp ≡ τ1 = τ2 and
if nuclear decay and the detuning during the interaction periods can be neglected δτ ≈ 0.
With Eq. (7.16), we obtained a more general expression for the measured signal in a Ramsey exper-
iment in the LER compared to Eq. (7.4). This allows for the discussion of the influence of nuclear
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decay γ and the probe pulse phase φ on the measured spectrum. In this context, we first note that
the phase φ entering the cosine function can be used to shift the fringe pattern, for instance from a
symmetric line shape at resonance to an asymmetric one, which is used in atomic clocks to lock onto
the resonance [Ram90]. Further, it can be used to change the relative sign between the oscillating and
the non-oscillating terms in Eq. (7.16) turning destructive interference into constructive interference
and vice versa as demonstrated in Ref. [Hee+17] and further discussed in Sec. 7.3.1. In addition,
by varying the time-delay T the decay dynamics described by γ can be studied in a time-resolved
manner.
In summary, we conclude that Ramsey fringe patterns are observable even in the LER and if frequen-
cies and amplitudes of the two pulses do not match. The crucial condition is the impulsive type of
excitation during the two interaction periods, i.e. the detuning during the interaction periods has to
be negligible, a condition which is well satisfied for nuclear resonant excitation at accelerator-based
x-ray sources due to the orders-of-magnitude larger bandwidth of synchrotron and XFEL radiation
compared to the nuclear resonance width. The only limiting factor is the reduced visibility due to
the small pulse area during the interaction periods.

Nuclear Ramsey case

We showed that suitably-shaped x-ray double pulses can be used to measure Ramsey fringe patterns
like in Fig. 7.2 even at low-excitation conditions typical for nuclear resonant scattering experiments.
Since SCU double pulses produced by nuclear resonance control consist of a short excitation pulse
followed by a temporally-extended narrow-band probe pulse, we also discuss such double-pulse se-
quences as a case of immediate experimental interest. Note, that such pulse sequences were also
instrumental in creating the interference patterns in the time-frequency-spectra discussed in Ch. 3.
In the latter case, however, the second narrow-band part of the SCU was only used as a reference
field heterodyning the nuclear target response and not to steer the dynamics of the nuclear ensemble
in the target.
Analogously to the standard Ramsey case, the up-to-second-order coherence and population can be
calculated using Eq. (7.5) with initial density matrix elements given by Eqs. (7.12) upon an excitation
with an exponentially-decaying pulse of shape Eq. (7.13):

ρ(0−2)
ge (t, T, τ1) =− i

2
Ω1τ1e

iω2(t−T )eiωTT e−
γ
2 t − iΩ2

2(iδ2 −∆Γ)
e−iφeiωpT e−ΓaT×

×
(
eiωp(t−T )e−Γa(t−T ) − eiω2(t−T )e−

γ
2 (t−T )

)
, (7.17)

ρ(0−2)
ee (t, T, τ1) =

1

4

{
Ω2

1τ
2
1 e
−γt +

1

δ2
2 + (∆Γ)2

[
Ω2

2e
−2ΓaT (e−2Γa(t−T ) + e−γ(t−T ))

+2Ω1τ1Ω2e
−Γtott (δ2 sin(δ2(t− T ) + δTT − φ)

− ∆Γ cos(δ2(t− T ) + δTT − φ))

−2Ω1τ1Ω2e
−γte−2ΓaT (δ2 sin(δTT − φ)−∆Γ cos(δTT − φ))

− 2Ω2
2e
−Γtot(t−T )e−2ΓaT cos(δ2(t− T ))

]}
. (7.18)

Here, we defined the relative decay ∆Γ = Γa−γ/2 between the pulse decay Γa and the nuclear decay
γ/2 and the total decay Γtot = Γa + γ/2.
The first line of Eq. (7.18) consists of the single pulse results: The term proportional to Ω2

1 is the
population initially created by the first short pulse subsequently decaying. The term proportional to
Ω2

2, in turn, is the population created by the second long pulse starting to interact at time T until
measurement time t. The remaining terms are interference terms between the excitations created by
the first and second pulse: The contributions proportional to Ω1Ω2 describes interference between
the first pulse and second pulse excitation and contains the Ramsey-like oscillation contribution from
the non-interaction region. Finally, the term in the last line proportional to Ω2

2 describes interference
between the two long-pulse contributions oscillating with the driving pulse frequency ωp and the two-
level resonance frequency ω2 in the long-pulse interaction region (case a) in Fig. 7.3), respectively.
For an interpretation of the result Eq. (7.18), its comparison to the standard Ramsey case Eq. (7.16)
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and the interpretation of numerical time-frequency-spectra discussed in Sec. 7.3, in the following we
specifically focus on three aspects: The oscillatory behaviour of the measured signal, the frequency-
dependence of the amplitude of the measured signal and the influence of probe pulse phase φ. First, os-
cillations with the detuning δT and the time delay T in the non-interaction region appear in Eq. (7.18)
like in the standard Ramsey case Eq. (7.16). However, additional oscillations that also depend on
measurement time t occur in Eq. (7.18) that cannot be found in the standard Ramsey case Eq. (7.16).
These account for the continuous driving and beating of the two-level response with the narrow-band
probe pulse leading to oscillations with the detuning δ2 = ωp − ω2 between the nuclear resonance
frequency ω2 and the probe pulse carrier frequency ωp in the second interaction region. In this respect
the nuclear Ramsey case is different as these oscillations are not field-free which leads to an oscillation
pattern that does not only depend on the underlying nuclear dynamics but also on the pulse specifics.
This can be seen, e.g., by noting that the terms oscillating with δ2 i.e. the beating terms in the
second interaction region decay with the total decay constant Γtot = Γa + γ/2 instead of the nuclear
decay γ/2 alone, which makes nuclear decay dynamics more accessible in the standard Ramsey case
Eq. (7.16), since it is not perturbed by details of the probe pulse, a feature that is well-known in
nonlinear spectroscopy (see, e.g., [HZ11]).
A feature of the nuclear case Eq. (7.18), that does not appear in the standard Ramsey case Eq. (7.16),
is the envelope term 1

δ2
2+(∆Γ)2 characterizing the contributions to the population involving the second

pulse. This envelope leads to a decrease of the Ramsey fringe pattern off-resonance, which is the
reason that time- and frequency-resolved NRS spectra feature narrow peak structures as found, e.g.,
in Sec. 6.4.2, which are further discussed in Sec. 7.3. The specific Lorentzian shape of this envelope is
typical for exponentially decaying pulses and leads to a centering of the scattered intensity around the
nuclear resonance in the second pulse interaction region. However, such a reduction of the measured
signal is typical for narrow-band probe pulses. While this narrowing causes the Ramsey fringe pattern
to decrease quickly off-resonance, it provides access to the target resonance structure via the center
of the hyperbolic interference pattern as will be discussed in more detail in Sec. 7.3.1.
The last aspect to be discussed is the influence of the probe pulse phase φ. It can be seen in Eq. (7.18)
that this phase, as in the standard Ramsey case Eq. (7.16), enters the oscillatory terms such that
similar applications of phase control can be thought of: The fringe pattern can be shifted to an
asymmetric or symmetric line shape on resonance depending on the specific needs of the conducted
experiment and the relative sign between background and oscillatory contributions can be changed
thus turning destructive interference between pump and probe contributions into constructive inter-
ference, a case discussed in Sec. 7.3.1.
In this Section, two cases of double-pulse sequences were compared to study nuclear dynamics in
the LER: First, the standard Ramsey case of two short-pulse excitations with an intermediate non-
interaction period of variable duration T was discussed. As a main result, it was found that Ramsey-
fringe patterns can be observed under low-excitation conditions typical for NRS experiments provided
that the pulse excitation is impulsive, i.e. that the detuning between the pulse carrier frequency and
the nuclear resonance frequency can be neglected during the interaction period. Next, the case of
short-pulse excitations followed by temporally-extended narrow-band excitations was studied, which
showed oscillatory structures that are typically found in time-and frequency-resolved NRS experi-
ments, and that are similar to Ramsey fringe patterns. Compared to the case of two short pulses,
two additional features were observed: First, the pulse characteristics of probe pulse influence the
measured signal and can make the analysis of nuclear decay dynamics more challenging. Second, in
the narrow-band probe pulse case a decrease of the visibility of the fringe pattern was found around
the resonance, which can be used as an additional indicator of the underlying nuclear resonance
structure. Finally, the application of phase control to optimize the measured signal were discussed.

7.3 Studying nuclear dynamics using double-pulse sequences

The previous Section provided analytical expressions for the time-dependent nuclear excited-state
population for the two cases of a short-pump short-probe double pulse sequence and a short-pump
long probe double pulse sequence. Here, specific dynamics of interest occuring in nuclear few-level
systems using such pulse sequences are studied numerically by solving the optical Bloch equations
Eqs. (A.146). In particular, two types of effects are investigated: First, in Sec. 7.3.1 time-dependent
perturbations of resonance frequencies in nuclear two-level systems are studied using time-frequency-
spectra. Second, in Sec. 7.3.2 the coupling dynamics of effective three-level schemes as discussed in
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Ch. 6, are investigated using double pulse excitations and compared to the single-pulse results in
Sec. 6.4.2. Regarding the pulse sequence of a short pump followed by a narrow-band probe pulse,
we restrict ourselves to the case with vanishing time delay T , which can conveniently be provided
experimentally, e.g. by mechanical motion of a nuclear reference absorber SCU [Hee+21].
The pulse sequences used in the numerical studies in this Section are described by the nucleus-field
interaction

Ωdp
l (t) = Ω1(t) + Ω2(t) (7.19)

where the superscript ’dp’ indicates a double-pulse sequence of an initial impulsive excitation Ω1(t)
given by Eq. (7.1) followed by either another short pulse of the same form to model the standard
Ramsey case or a non-impulsive probe pulse Ω2(t) described by Eq. (7.13) with delay T = 0. The
subscript l refers to the excited state |l〉 in case a nuclear three-level system with different nucleus-field
couplings Ωl is studied as is the case in Sec. 7.3.2.

7.3.1 Time-dependent perturbations of the nuclear transition frequency
in two-level systems

As a simple example of time-dependent external perturbations we study a changing resonance fre-
quency of the nuclear two-level system. This can be caused, e.g., by transient magnetic fields [Boc+21]
or by mechanical motion via the Doppler effect (cf. Sec. 2.1.5) and can be used to retrieve the actual
time-dependent behaviour of these external perturbations without interfering with their dynamics.
As a special and instructive case we investigate linear drifts in the resonance frequency ω2 during the
interaction with an exponentially-decaying probe pulse given by

ω2(t) = ω0(1 + γt) (7.20)

Fig. 7.4 shows the excited state population of a nuclear two-level system with such a linear drift in
the resonance frequency excited by different pulse sequences: Panel (a) shows the standard Ramsey
case of two short pulses and a non-interaction period of time delay T in between. Panel (b) shows
the nuclear Ramsey case of a short-long pulse sequence without time delay in between the pulses and
no additional relative phase imprinted onto the exponentially-decaying probe pulse. Panel (c) shows
the same excitation but now with an additional phase of φ = π imprinted onto the second pulse
thus turning the original destructive interference between the nonresonantly scattered short pulse
response of the SCU and the resonantly-scattered exponentially-decaying response into constructive
interference. The central intensity minimum in the center of the hyperbolic oscillatory structure
in panel (b) is thus turned into an intensity maximum in panel (c). Finally, panel (d) shows the
corresponding time- and frequency-resolved intensity upon a single-pulse narrow-band excitation like
Eq. (7.13), for comparison.
Panel (a) supports the earlier finding in Sec. 7.2.2 that the center of the Ramsey fringe pattern can
be used as an indicator of changes in the nuclear resonance frequency since the pattern is leaning
towards larger detunings with increasing time and thus with increasing resonance frequency ω2(t). A
similar drift in the hyperbolic oscillation pattern and the central peak structure is also observed in
panels (b) - (d) featuring a narrow-band probe pulse. However, the center of the fringe pattern less
shifted towards larger detunings than in the standard Ramsey case panel (a). We attribute this to
the fact, that in case of a temporally-extended probe pulse, the population at measurement time t is
averaged over the nuclear response up to time t in contrast to the standard Ramsey case that only
evaluates the shifted resonance frequency at delay time T . We conclude that effects of temporal shifts
of the nuclear resonance frequency can be observed in time-frequency-spectra using both nuclear and
standard Ramsey pulse configurations. The extraction of such shifts is potentially simpler in the
standard Ramsey case as only the resonance frequency at time delay T contributes while a time-
averaged value of the nuclear response describes the time-frequency-spectrum at measurement time
t in the nuclear Ramsey case.
We conclude our discussion about studies of time-dependent perturbations of nuclear resonances
via double-pulse sequences with some remarks: The comparison between panel (b) and (c) shows
the potential of using phase control to specifically study certain features of time- and frequency-
resolved NRS spectra, here by increasing the resonant peak structure that follows the dynamics of
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Figure 7.4: Time-frequency spectra of two-level systems with linearly increasing transition frequency: Panel
a) shows the Ramsey case as a function of the detuning and the delay between the two pulses, panel (b) the
SCU case with zero time delay and without additional relative phase between the pump and probe pulse and
panel (c) the SCU case with an additional relative phase of φ = π. For comparison, panel (d) shows the
excited state population upon a single exponentially-decaying monochromatic pulse.

the nuclear transition in time. While the oscillatory structure is more pronounced in the destructive
interference case (b), the central peak is enhanced in the φ = π case in panel (c). A similar feature was
also studied experimentally for pure frequency-resolved spectra in Ref. [Hee+17]. Regarding time-
dependent phase shifts φ(t) we also note that similar asymmetric time-frequency-spectra were already
studied experimentally in the coherent channel in Ref. [Goe+19]. Finally, a comparison between the
single-pulse result panel (d) and the double pulse result panel (c) demonstrates that temporal shifts
of the nuclear resonance frequency can also be studied using single narrow-band excitations only,
however, with reduction of both the interference pattern visibility as well as the overall visibility.
Note that the advantages of phase control in shaping the measured signal as shown in panel (b) and
(c) can only be harvested in the double pulse case.

7.3.2 Coupling dynamics in effective three-level systems
In Sec. 6.4.2, signatures of excited-state couplings in effective three-level systems arising in thin-film
cavities with two resonant layers of nuclei upon non-impulsive single-pulse excitations were discussed
to characterize the dynamics and level structure of effective collective level schemes in these systems.
Here, we extend this discussion to nuclear Ramsey double-pulse excitations.
Fig. 7.5 shows time-frequency-spectra of the coherently (upper panels) and incoherently (lower

panels) scattered intensity associated with the x-ray induced coherence squared |ρgl(t)|2 and the
nuclear excited state populations ρll, respectively, upon an excitation like Eq. (7.19). Here, l labels the
excited state associated with nuclear ensembles in a thin-film cavity as depicted in Fig. 6.1. The left
panels of Fig. 7.5 show the case of no coupling and the right panels the case of a coupling ∆21 = 10γ.
The remaining pulse and level parameters are chosen as A1 = 0.01π Γa = 2.5γ, Γ1 = Γ2 = 0.5γ,
δ1 = 5γ, δ2 = 15γ, t1exc = 10τ1 and τ1 = 5 · 10−3γ−1 with level parameters of the three-level system
defined in Fig. 6.1 and the first and second pulse parameters in Eq.(7.1) and Eq.(7.13). In the last
equation φ = 0 and Ω2 = Γa was chosen. Compared to the non-impulsive case Fig. 6.7, the peak
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Figure 7.5: Time- and frequency-resolved coherently (upper panels) and incoherently (lower panels) scattered
radiation after an initial impulsive pump pulse probed by a non-impulsive second pulse with zero time-delay.
Compared are the cases without coupling (left panels) and with a coupling of ∆21 = 10γ (right panels)

structures are inverted in intensity due to the destructive interference between short pump pulse and
extended probe pulse excitation. Recall that the peak structures in the left panels (no coupling)
are only related to the transition frequencies of the two resonances in the three-level scheme but
are modified by the coupling between the excited states in the right panels including coupling. In
Sec. 6.4.2 we found that they lie at positions

∆ = ±∆R

2
(7.21)

with the generalized coupling

∆R =
√

(∆δ + i∆Γ)2 + 4|∆21|2 , (7.22)

which is indicated as red dashed lines in the left and right panels as guide to the eye. Further,
the hyperbolic oscillations as well as the detuning-independent oscillation along the time axis are
much more pronounced owing to the strong initial excitation by the pump pulse. In addition, the
observation of the destructive interference in the peak structures in Fig. 7.5 compared to Fig. 6.7
in combination with the finding in the previous Subsection promises enhancements of the resonant
peak structures employing phase control in the double-pulse case compared to the single pulse result.
This can facilitate the fitting of these peak structures for the characterization of the excited-state
couplings ∆21, for instance.
As we are interested in the frequency structure of the three-level system, we also study the

frequency-frequency correlation (FFC) spectrum obtained as the Fourier transform of the time-
frequency-spectra shown in Fig. 7.5 along the time axis (cf. Chapter 3). Fig. 7.6 shows this FFC
spectrum. Compared to the single-pulse result Fig. 6.8 the double-pulse result Fig. 7.6 features the
same horizontal and diagonal lines. Again, the diagonal lines point to a crossing with the detuning
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Figure 7.6: FFC spectrum of coherently (upper panels) and incoherently (lower panels) scattered intensity
after an initial impulsive pump pulse probed by a non-impulsive second pulse with zero time-delay. Compared
are again the cases without coupling (left panels) and with a coupling of ∆21 = 10γ (right panels)

axis at detunings satisfying Eq. (7.21) where the peak structures lied in the time-frequency-spectra
Fig. 7.5. This condition is indicated via vertical dashed lines. While these crossings are less visible
towards zero Fourier frequencies, the horizontal lines in the coherent channel (upper panels) are more
pronounced compared to the corresponding single-pulse result Fig. 6.8. This is expected, since the
horizontal lines in Fig. 7.6 are the frequency-domain analogue of the strong detuning-independent
oscillations in Fig. 7.5 along the time axis, which were also more pronounced in the double pulse case
compared to the single pulse result. The horizontal lines are described by the equation

ν = ±∆R , (7.23)

which is indicated as red dashed lines in the lower plots of Fig. 7.6. In summary, it was found
that time-frequency-spectra and FFC spectra obtained after double-pulse excitation show the same
features as the corresponding non-impulsive single-pulse spectra, however, with more pronounced
time-domain oscillations induced by the initial short pulse and overall better visibility. One can
speculate to use phase control to enhance or remove specific features, such as the horizontal lines
or diagonal structures in Fig. 7.6 as was possible in Fig. 7.4 or similar to the methods presented in
Sec. 3.4.

7.4 Discussion and outlook
In this Chapter, we studied the dynamics of effective nuclear two-level systems upon different double-
pulse sequences in terms of time- and frequency-resolved spectra. Specifically, we discussed the
observability of Ramsey-fringe patterns as a particular realization of coherent multi-pulse experi-
ments. A perturbative analysis of the low-excitation incoherently-scattered intensity revealed that
such experiments are indeed feasible if the condition of an initial impulsive excitation with negli-
gible detuning during the initial excitation period is satisfied. This result promises the possibility
to conduct advanced spectroscopy schemes using phase-coherent double pulses in nuclear resonant
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scattering at state-of-the-art coherent x-ray sources without further need of nonlinear excitation or
even inversion of the nuclear two-level system.
In addition to this promising result two different pulse sequences were compared to study the de-
pendence of the measured signal on the pulse specifics: First, a sequence consisting of two short
pulses with variable delay T was studied and, second, a sequence of a short pump followed by a long
narrow-band pulse. As a result, we found that the first case can have advantages in determining
the nuclear decay dynamics due to the absence of perturbations introduced by the probe field, as
expected. Further, the narrow-band probe-pulse case featured a decrease of the fringe pattern off-
resonance that could be exploited to determine the nuclear resonance structure. Finally, both pulse
sequences have the potential advantage of steering the relative weight of different contributions to
the measured signal by controlling the phase of the probe pulse.
In the last part, two specific cases of nuclear dynamics were studied numerically: A time-dependent
shift of the nuclear resonance frequency during the double pulse experiment and a coupling between
nuclear excited states as can be realized, e.g., in thin-film cavities betwenn nuclear ensembles. In the
first case, the shift of the resonance frequency could clearly be observed for the short-pump short-
probe sequence, the short-pump narrowband-probe sequence and the single narrowband excitation.
Compared to the single pulse, we highlight the higher visibility of the time-dependent peak and
fringe structure in the double pulse cases and the possibility of enhancing the signal on resonance
using phase control. The second study of excited-state couplings in effective three-level systems re-
vealed the same features as the single pulse result but again with a higher visibility of the relevant
features. The case of a short-pump short-probe sequence was not studied here. In this context, we
note that this Chapter presents ongoing research that several questions remain open at this point.
These include, for instance, the rigorous comparison of both pulse sequences in all considered cases
and a comparison to the single pulse results. Further, one could study short pulses with finite pulse
duration, which are likely to be created by nuclear SCUs. The full potential of phase control as
studied, e.g., in Sec. 3.4 has not been exploited so far. Also, one could aim for the exctraction of
decay parameters from the measured signal. These are but a few questions that could be tackled in
future investigations using the methods presented here. Nevertheless, we found evidence that at least
a certain class of coherent multi-pulse experiments can be performed under low-excitation conditions
similarly as in the nonlinear regime, which promises new insights in nuclear many-body decay and
coupling dynamics in the near future.
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Chapter 8

Summary and conclusion

This thesis started with the goal of bringing together two different branches of current research with
Mössbauer nuclei, namely the coherent control of nuclear resoances in the time-domain employed to
shape x-ray light, on the one hand, and the design and study of collective quantum optical phenomena
in thin-film x-ray cavities on the other. To this end, several advanced measurement and data evalua-
tion techniques were discussed with the goal of retrieving collective nuclear dynamics beyond what is
currently possible with widely-used one-dimensional data acquisition techniques using single observ-
ables. To interpret the data obtained from such time-, frequency- and phase-resolved measurement
methods and to devise future experiments using suitably-shaped x-ray driving pulses for advanced
spectroscopy schemes with Mössbauer nuclei, we developed perturbative density matrix expansions
to study few-level and many-body dynamics of nuclei in the low-excitation regime (LER) for a wide
range of x-ray pulse shapes and sequences. In the following, we briefly review the main methods and
results of this thesis:
In Chapter 3, we discussed time- and frequency-resolved spectra measured by employing frequency-
tunable single-line nuclear reference absorbers via Fourier transforms along the time axis. This
resulted in frequency-frequency correlation (FFC) spectra that could be shown to provide unique
access to the underlying resonance structure and the phase-resolved nuclear response of Mössbauer
targets. By employing linear response theory we were able to explain the features appearing in time-
and frequency-resolved nuclear resonant scattering spectra and FFC spectra one-by-one. This way
we could link diagonal structures appearing in these spectra directly to the phase-resolved nuclear
resonant target response, that is of immediate interest for the characterization of quantum optical
phenomena in thin-film cavities. By selecting certain parts of these spectra, this contribution could
be singled out with a high quality of the retrieval of nuclear parameters in this regime. In addition,
we could show that the additional control of the phase of the emitted radiation of the reference ab-
sorber can be used to selectively suppress certain scattering paths and contributions to these FFC
spectra and enhance others that are desirable for a specific experiment. The evaluation of time- and
frequency-resolved spectra in terms of FFC spectra proved further useful in the interpretation of phe-
nomena studied in the remaining Chapters of this thesis. Therefore, we envision this technique to be
very versatile in evaluating NRS data for different experimental platforms and excitation conditions,
i.e. to say for both, cavities or nuclear forward scattering, for both synchrotron and XFEL data and
experiments with very different pulse structures.
Next, in Chapter 4, two types of density matrix expansions where presented that were used successfully
in the following Chapters to interpret time- and frequency-behaviour of nuclear ensembles embedded
in thin-film cavities upon differently-shaped x-ray light pulses. The first of these techniques provided
self-consistent equations for the populations and coherences of effective nuclear two-level schemes
that could be studied including decay dynamics and detunings between driving pulse and nuclear
resonance. Further, with this approach, in principle arbitrary pulse shapes and sequences can be
studied. This approach was subsequently be generalized to a perturbative density matrix expansion
to also include multi-level and many-body systems, which is crucial for the interpretation of many
intriguing phenomena in nuclear quantum optics. We are convinced that these methods can assist
the interpretation and development of advanced coherent spectroscopy techniques in nuclear resonant
scattering.
Both types of density matrix perturbation theory were employed in Chapter 5 to compare the co-
herently and incoherently scattered intensity measured in NRS experiments with nuclear two-level
ensembles. Using these methods we could show that both observables are essentially equivalent
largely-independent of the nuclear ensemble properties in the cavity and the time- and frequency-
structure of the x-ray excitation. This lead us to establish the time-independence of the ratio of both
observables as a criterion for detecting excitation beyond the LER. This helped to propose various
experimental signatures for nonlinear excitation in a regime, which only slightly surpasses the LER,
as is expected for near-future experiments at XFEL sources. Thus, we expect this measurement
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approach to be of high relevance for upcoming XFEL experiments.
In Chapter 6 the coupling dynamics of effective three-level schemes arising in thin-film cavities with
two resonant layers containing Mössbauer nuclei were studied with the goal of retrieving couplings
between the collective excited states. To this end, we devised various signatures of such couplings in
time and time- and frequency-resolved measurements by studying numerical solutions to the equa-
tions of motion of the effective three-level system. Using the perturbative density matrix expansions
developed in Chapter 4, these signatures could be related to the coupling of the excited states. This
way couplings between nuclear excited states can be retrieved to characterize quantum-optical few-
level schemes.
Finally, Chapter 7 discusses the feasibility and features of coherent double pulse experiments with
Mössbauer nuclei. We could show that, from a theoretical point of view, Ramsey interferometry with
effective two-level systems can be achieved even under low-excitation conditions such that coherent
double pulse experiments with Mössbauer nuclei seem feasible using impulsive excitations. Further,
could present first results comparing narrowband single pulse excitations, short-pump short-probe
double pulse sequences and short-pump narrowband probe sequences, which suggested that phenom-
ena requiring time- and frequency resolution can be studied in all three approaches but that additional
degrees of freedom like phase- and time-delay control can be advantageous for the study for such phe-
nomena.
In total, we conclude that control of time-, frequency- and phase-variables of x-ray pulses shaped using
Mössbauer nuclei or by other means bears a great potential for future studies of quantum optical and
dynamical phenomena at both synchrotron and XFEL facilities. Further, due to the availability of
gating and pulse-shaping techniques the realization of coherent multi-pulse spectroscopy techniques
is not a distant dream but is expected to be feasible in the near future, which could unlock all the
methods and phenomena that are studied in the longer wavelength regime for the field of Mössbauer
science as a whole. We hope that the theoretical and data evaluation methods presented in this thesis
can contribute to this development.
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Appendix A

A.1 Spectroscopy via late-time integration
The late-time integration spectroscopy method also employs frequency-tunable reference absorbers
and has proven to be particularly successful in quantum optical studies involving thin-film cavities
[Röh+10; Röh+12; Hee+13; Hee+15a; Hee+15c; Hab+16; Hab+17]. To gain insight into its main
assumptions, we briefly recall the derivation of the late-time method given in Ref. [Röh+10]. The
experimentally accessible time- and frequency-resolved intensity I(t,∆) as given in Eq. (3.8) is inte-
grated for late photon arrival times [t1, t2] yielding the frequency-resolved observable

ILTM (∆) = E2
0 |αa|2

∫ t2

t1

dt|Tt(t) + (Tt ∗ Sa)(t)|2 (A.1)

where the detuning dependence enters via the Doppler-shifted analyzer response Ta(t) = αa [δ(t) + Sa(t,∆)].
If the nuclear resonant part of the analyzer response Sa is only nonzero in the vicinity of ω = ωa + ∆
and the target response varies slowly over this frequency range, their convolution can be written as

(Tt ∗ Sa)(t) = F−1
[
T̂t(ω)Ŝa(ω,∆)

]
≈ T̂t(ωa + ∆)Sa(t,∆) . (A.2)

This approximation can be extended straightforwardly to include first order derivatives of the phase
of T̂t (cf. [HE20; Hee14a]) but in general requires that the target response is approximately constant
across the spectral range of the analyzer. Assuming further that at late times t1 � 0 the target
response Tt(t) has already decayed, one can further approximate

ILTM (∆) ≈ E2
0 |αa|2C|T̂t(ωa + ∆)|2 , (A.3)

where C =
∫ t2
t1
dt|Sa(t)|2. Thus, for sufficiently late integration times the integrated intensity ILTM

becomes proportional to the absolute squared of the frequency-domain target response |T̂t(ωa+ ∆)|2.
The two key approximations performed above require target spectra which are spectrally broad

and smooth on scales of the spectral analyzer width. Therefore, the method is particularly useful for
thin-film cavities probed in reflection which feature spectrally broad resonances.
The strengths of the late-time method lies in its simple measurement and analysis approach. How-

ever, in comparison to the FFC methods discussed here, the late-time integration has several draw-
backs. First, it does not allow one to retrieve the complex-valued target response. Second, it relies
only on data recorded at late times, such that most of the signal photons cannot be used for the spec-
trum recovery. Finally, the recovery sensitively depends on the choice of t1 and t2, and the obtained
spectra may be perturbed by time gating effects. Some of these challenges are illustrated in Fig. A.1,
which shows late-time spectra of a thin-film cavity with layer structure as given in Sec. 3.3.3 for the
incidence angles considered in Fig.3.6 with integration boundaries of t1 = 180ns, t2 = 1600ns.
At incidence angles θ1 and θ2, the target spectra are reproduced well. However, the neglect of the

early photons causes a reduction of the usable spectral intensity by about three orders of magnitude,
as can be seen in comparison to the reference spectra Fig.3.6, which are drawn using the same scale.
Further, the late-time spectra for incidence angles θ3 and θ4 are completely distorted, even though
only the incidence angle was changed. The reason for this is that at these incidence angles, the
cavity resonance line-width is small (cf. Fig. 3.7(b)), such that the approximations underlying the
late-time integration method break down. Note that time- and frequency-resolved data acquisition
can partially compensate for this downside since it allows for a posteriori selection of the integration
time window.

A.2 Collective parameters in cavity reflection spectra
In order to retrieve collective nuclear parameters such as the collective Lamb shift ∆CLS and super-
radiance γs from the diagonal structure appearing in FFC spectra, a model function is required to fit
the section along the ν-axis through the diagonals shown in Fig. 3.6.
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Figure A.1: Recovery of cavity-spectra using late-time integration. The Figure shows spectra obtained
by integrating the time- and frequency-resolved spectra over the time interval between t1 = 180ns and
t2 = 1600ns. The four curves correspond to incidence angles θ1 = 2.75mrad, θ2 = 2.8mrad, θ3 = 3.0mrad
and θ4 = 3.3mrad. The cavity is the same as the one considered in Sec. 3.3.3, and the intensity scale is as in
Fig. 3.6(a). At incidence angles θ1 and θ2, the nuclear resonant response is spectrally broad, and the spectra
are reproduced well by the late-time integration, though with reduced visibility. In contrast, the late-time
spectra at incidence angles θ3, θ4 suffer from artefacts of the time integration and do not represent the refrence
spectra in Fig. 3.6 well.

To obtain such a fit function, we employ a quantum optical model [HE13] of Mössbauer nuclei
embedded in thin-film cavities, which allows one to derive analytical expressions for these parameters.
For this, we calculate the time-domain response for grazing-incidence reflection from a thin-film cavity
with a single layer of Mössbauer nuclei embedded in its center (cf. Fig.3.1) by Fourier transforming
the cavity’s frequency-domain response [Hee14a]

Tt(ω) = αt − i(αt + 1)

(
γs
2 + i∆CLS

)
ω − (ωt + ∆CLS) + iΓc

(A.4)

where the empty-cavity reflection coefficient is given by

αt =
2κR

κ+ i∆c
− 1 . (A.5)

Here, κ is the total loss rate of the cavity, ∆c the detuning between the cavity mode and an external
driving mode, and κR is the in- and outcoupling rate of the cavity [HE13]. Γc = (γ + γs)/2 denotes
the total decay rate of the nuclei in the cavity with γs the superradiant line-width [Dic54; GH82;
Gar11; Röh+10; Chu+18; HT99a; LHH60a; KAK79; GRK17], and ∆CLS a level shift experienced
by the nuclear ensemble known as collective Lamb shift [Röh+10; LKE16a; SS89a; FHM73; Scu09b;
RJ16; Kea+12; Pey+18; Roo+16; Bro+16]. Though in general frequency-dependent through the
cavity-detuning ∆c, we regard ∆CLS , γs and αt as constants as function of frequency since the cavity
resonances are typically orders of magnitude broader than nuclear resonances [Len+20] and thus the
empty-cavity part becomes essentially flat in frequency-space. In this case, a Fourier transform of the
frequency response yields:

Tt(t) =αtδ(t)− (αt + 1)
(γs

2
+ i∆CLS

)
e−i(ωt+∆CLS)te−ΓctΘ(t) , (A.6)

Employing the early-time approximation Eq. (A.12) for the analyzer response, the FFC spectrum
in the large analyzer-target detuning limit Eq. (3.15) for a cavity target given by Eq. (A.6) can be
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calculated in the time domain as

I(ν,∆) =E2
0

∫ ∞
0

dteiνte−SΓt
[
ce−ixt + c∗eixt

]
=iE2

0

[
c

ν − x+ iSΓ
+

c∗

ν + x+ iSΓ

]
=4E2

0

[
Re(c)(iν − SΓ)− Im(c)x

(ν + iSΓ)2 − x2

]
. (A.7)

Here, we have introduced the parameters

SΓ = Γc +
γa + ba

2
, (A.8a)

x = ∆− (∆CLS + ωt − ωa) , (A.8b)

c = αt(α
∗
t + 1)

(γs
2
− i∆CLS

)
ba . (A.8c)

Note that evaluating the absolute value squared of the complex-valued FFC spectrum Eq. (A.7) yields
two Lorentzians in the limit of large detunings,

|I(ν,∆)|2 =16E4
0

( |c|2
(ν − x)2 + S2

Γ

+
|c|2

(ν + x)2 + S2
Γ

+ 2Re
[

c2

(ν − x+ iSΓ)(ν + x− iSΓ)

])

−−−−→
x�SΓ

16E4
0 |c|2

(
1

(ν − x)2 + S2
Γ

+
1

(ν + x)2 + S2
Γ

)
.

This is consistent with our observation of a Lorentzian line shape in diagonal cavity spectra in
Sec. 3.3.3, and further supports our key result that the diagonal cavity spectrum indeed yields the
nuclear resonant part St of the spectrum only. This is most easily seen by the fact that spectra affected
by the interference of the nuclear response with the electronic background response in general have
Fano line shapes, see Fig.3.6. As in the case of nuclear forward scattering, the response is shifted in
the FFC spectrum by the analyzer-target detuning via x, and broadened by the analyzer response
width via SΓ.
In order to retrieve collective nuclear parameters from vertical cuts through the diagonal structure,

we define a more general fit function based on the absolute value of Eq. (A.7) as

D(ν) = |I(ν,∆)| = A

√
ν2 + (px)2

(ν2 − x2 + S2
Γ)2 + 4x2S2

Γ

(A.9)

where we assumed that SΓ

x � 1, which is consistent with the off-resonant approximation used to
derive I(ν,∆). The fit parameters related to Eqs. (A.8) are A = 4E2

0Re(c) and p = Im(c)/Re(c).
The position of the maximum of each vertical section is given by x and the lines formed by these
maxima can be fitted similarly to the procedure described in Section 3.3.2 to obtain ∆CLS as crossing
point with the ν-axis. The total decay rate Γc is determined by averaging over the SΓ retrieved from
each vertical section and subsequent subtraction of the effective analyzer width γa+ba

2 = 1.67γa for a
1µm thick stainless steel analyzer containing 55% of 57Fe.
Since cavity spectra can be considerably broadened by superradiance, we use two optimization strate-
gies to reduce resonant effects: First, we optimize the ∆ fit range towards the lowest line fit error as
described in Section 3.3.2, however, by evaluating the first 40 fits. This suppresses resonant effects
affecting the shape of the diagonal line at small detunings while at the same time taking into account
as many data points as possible. The second optimization is related to low-frequency deviations from
the Lorentzian line shape also caused by resonant effects: To minimize its influence on the fit out-
come, a series of model fits given by eq.(A.9) with adapted ν fit range is performed on each vertical
cut taking into account a different number of data points below the peak maximum. Specifically, we
first include a frequency range starting right below the expected peak maximum only and evaluate
eight fits j ∈ {0, 1, . . . , 7} in which 10j datapoints are added at the lower end of the vertical cut.
Again, the fit with the least fit error is selected. It was found that this approach improves the fit
result especially in the vicinity of the superradiance maximum where resonant effects are expected to
be strongest.
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A.3 Line shapes in nuclear forward scattering
In this Appendix, we briefly discuss the response functions of single-line targets in nuclear forward
scattering in the time domain, and employ them to evaluate their line shape in the FFC spectra.
For a single-line target, the scattering part of the generic response function in the time domain

Eq. (3.5) evaluates to [LHH60a; KAK79; Smi99; Shv+98; Röh04; HT99a]

St(t) = −Θ(t)

√
bt
t
J1(2

√
btt)e

− γt2 t e−iωtt , (A.10)

where Θ(t) is the Heaviside step function, γt the decay rate of the individual nuclei, and ωt the
transition frequency. The thickness parameters bi for target (i = t) and analyzer (i = a) are given by

bi =
πρifLMγi
k2
i (1 + α)

di (A.11)

where ρi denotes the number density of resonant nuclei, γi its line-width, ki the wave number of
the resonant radiation, di the target’s thickness, fLM the Lamb-Mössbauer factor and α the internal
conversion coefficient (for more details, see e.g. [HT99a; Röh04]). For α-iron the internal conversion
coefficient is given by α = 8.56 [Röh04] and the Lamb-Mössbauer factor at ambient conditions is of
the order fLM ≈ 0.8 [Stu04].

In the early-time approximation bat� 1, the corresponding response for a thin single-line analyzer
evaluates to

Sa(t,∆) = −Θ(t) ba e
− γa+ba

2 t e−i(ωa+∆)t . (A.12)

This early-time approximation of the analyzer response is based on√
ba
t
J1(2

√
bat) ≈ bae−

ba
2 t (A.13)

which is valid for bat� 1 up to first order.
The two response functions Eq. (A.10) and (A.12) can be used to evaluate the expression for the

FFC spectrum in Eq. (3.15) in the time domain. Then, the Fourier transform of the positive branch
(also c.f. Eq. (3.16)) is given by

f(ν) =INR0

∫ ∞
−∞

dt eiνt S∗t (t)Sa(t)

=INR0 ba

∫ ∞
0

dt

√
bt
t
ei(ν−x)te−SΓtJ1(2

√
btt)

=A

[
exp

( −ibt
ν − x+ iSΓ

)
− 1

]
(A.14)

with

x = ∆− ωt + ωa , (A.15)

SΓ =
γt + γa + ba

2
, (A.16)

A = baI
NR
0 . (A.17)

Since the line shapes obtained from the FFC spectrum coincide with the target response functions as
shown in the main text, Eq. (A.14) also corresponds to the well-known frequency response function in
nuclear forward scattering, as expected. However, as compared to the standard expressions [Smi99],
Eq. (A.14) contains a spectral broadening entering in SΓ caused by the convolution with the analyzer,
and an additional frequency shift due to the interference with the analyzer radiation leading to the
diagonal structure of the FFC spectrum.
In the main text, we employ Eq. (A.14) as the fit model in Eq. (3.32) to extract spectral parameters

from the phase-combined and off-resonant spectra.
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A.4 Phase-dependence of fields and intensities upon reversing
sample order

In this appendix, we derive the x-ray field behind a combination of two nuclear absorbers, both of
which acquire sudden relative phase shifts immediately after arrival of the x-ray pulse, either by
near-instantaneous displacements or by rapid changes of the magnetic field at the nuclear positions
(for details, see Sec. 3.4). In particular, we focus on the effect of the ordering of the two absorbers.
We start by deriving the field behind a single absorber. In order to evaluate the response of the

absorber, it is convenient to transform into its rest frame, which refers to the frame where the nuclear
resonances are time-independent. Denoting the lab frame incident field ELin(t), the corresponding
incident field in the rest frame is

ERin(t) = e−iφ(t)ELin(t) , (A.18)

where φ(t) is the time-dependent phase shift. The outgoing field in the rest frame is

ERout(t) =
(
T ∗ ERin

)
(t) =

∫ ∞
−∞

dt′ T (t− t′) e−iφ(t′) ELin(t′) . (A.19)

Finally, transforming back into the lab frame yields

ELout(t) =eiφ(t)ERout(t) =

∫ ∞
−∞

dt′ ei[φ(t)−φ(t′)] T (t− t′) ELin(t′) . (A.20)

Next, we calculate the field behind two absorbers, the nuclear resonances of both change with time.
We denote the response function of the upstream [downstream] absorber as T1 [T2], with phase shifts
given by φ1 [φ2]. We obtain

Eout(t) =

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′ ei[φ2(t)−φ2(t′)] T2(t− t′)ei[φ1(t′)−φ1(t′′)] T1(t′ − t′′) ELin(t′′) . (A.21)

Assuming a near-instantaneous incident field ELin(t′′) = E0δ(t), we find

Eout(t) =E0

∫ ∞
−∞

dt′ ei[φ2(t)−φ2(t′)] T2(t− t′)ei[φ1(t′)−φ1(0)] T1(t′)

=E0

[
δ(t) + ei[φ1(t)−φ1(0)] S1(t) + ei[φ2(t)−φ2(0)] S2(t)

+

∫ t

0

dt′ei[φ2(t)−φ2(t′)] ei[φ1(t′)−φ1(0)]S2(t− t′)S1(t′)
]

(A.22)

Here, we have used T (t) = δ(t)+S(t), neglected for simplicity the non-resonant electronic absorption,
and the integral ranges are constrained since S(t) ∝ Θ(t), where Θ(t) is the Heaviside unit step
function. As expected, the individual resonant responses of the two absorbers are modified by their
respective phase shift, as can be seen from the second and third term in in Eq. (A.23). However, the
last term, which corresponds to the radiative coupling, is only affected by the motion of the upstream
absorber in case of near-instantaneous phase-jumps. This is due to the fact that the effect of the
step-like shift of the second absorber can be neglected since exp(i[φ2(t)− φ2(t′)]) in the radiative
coupling term contributes only in the negligible interval t′ = 0. Intuitively, only relative phase shifts
between in- and outgoing radiation may modify the outgoing field, and all x-rays scattered by the
upstream absorber reaching the second absorber after the incident pulse at t = 0 are not affected
by its change in phase since it is already finished. For analogous reasons, the contribution of the
step-like phase φ1 can be moved out of the integral, since φ1(t′) = φ1(t′′) for any t′, t′′ > 0. With
this, Eq.(A.22) can be written as

Eout(t) =E0

[
δ(t) + ei[φ1(t)−φ1(0)] S1(t) + ei[φ2(t)−φ2(0)] S2(t) + ei[φ1(t)−φ1(0)]S1,2(t)

]
, (A.23)

where we have defined the radiative coupling contribution

S1,2(t) =

∫ ∞
−∞

dt′S2(t− t′)S1(t′) . (A.24)
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Using Eq. (A.23), adding the absorption and dispersion prefactors α, assuming φ1(0) = 0 = φ2(0)
without loss of generality, and specifying the ordering of analyzer and target, immediately leads to
Eqs. (3.25)-(3.26) of the main text.
Finally, the intensity after the two absorbers follows from Eq. (A.23) as

I(t) =Ib + 2I0Re
[
ei(φ2−φ1)S∗1S2 + S∗1S1,2 + ei(φ2−φ1)S2S

∗
1,2

]
, (A.25)

where we have again assumed φ1(0) = 0 = φ2(0) and defined φi ≡ φi(t > 0). From this result,
two important conclusions can be drawn. First, phase control of both absorbers does not add an
additional degree of freedom beyond the phase control of only one absorber, since only the difference
of the two phases enters the expression for the experimentally accessible intensity. Hence, we restrict
our discussion to the phase control of the analyzer, since a target phase control may not always be
experimentally feasible, i.e., for thin-film cavities. Second, if only one of the absorbers (analyzer) is
moved, then the ordering of the two absorbers is crucial. The corresponding intensities for either the
first or the second absorber being moved are given in Eqs. (3.28) of the main text.

A.5 Convergence of self-consistent density matrix elements
The self-consistent equations Eqs. 4.11 can be used to calculate each perturbation order separately
and study the convergence of the perturbation series of the density matrix elements to the result
obtained by numerical integration of the Bloch equations. This can be used to estimate how many
orders of x-ray-nucleus interaction are relevant for the interpretation of a specific measurement of the
observables ρee(t) and ρge(t).
Fig. A.2 studies this convergence for both quantities, coherence squared and population, for the

two cases of a total pulse area Ω0 = 0.2π and Ω0 = π, where Ω0 is defined as

Ω0 =

∫ ∞
t0

dt′Ω(t′) . (A.26)

The result obtained by (exact) integration of the Bloch equations Eq. (A.146) using the odeint
function of the scipy [Vir+20] package in python [VRD09] is shown as a red solid curve, the lowest
order contribution as a blue dashed curve and the perturbative result obtained by iteratively solving
Eqs. (4.11a) and (4.11b) including all calculated orders is shown as a black dashed curve. The single-
order contributions are shown as dashed lines in different colors in the plots. The lower excitation
result (left panel) indicates that the perturbative result describes the true dynamics well in the next-
to-leading order already which can be seen from the fact that the highest order included (brown
dashed curve) is very close to zero. Including this highest order both, the perturbative and Bloch
result, become essentially identical (red solid and black dashed curve). In contrast, for a total pulse
area of Ω0 = π (right panel) convergence can only be assured by including many orders into the
expansion. Convergence is achieved at early times first while the blow-up of higher expansion orders
slows down convergence at later times.
As a main result of the discussion above, we conclude that the perturbative expansion Eqs. (4.11)
indeed provide accurate results for the two-level dynamics if enought orders in the x-ray-nucleus
interaction Ω(t) are included.

A.6 Derivation of the coherence-population correspondence in
a nuclear exciton basis

To complement the derivation of the coherence-population correspondence in single-particle space
given in the Section 5.3.3, we derive the same result in a nuclear exciton basis. This provides us
with new insights into the physics underlying this correspondence in the LER which can also support
further research in the direction of nuclear many-body dynamics beyond that regime. The reason for
this is that collective nuclear excited states, so-called nuclear excitons (cf., e.g., Sec. 2.2.2), dominate
the dynamics of nuclear ensembles in the LER. In particular, the nuclear exciton can be described
by the symmetric superposition of all states with a single nucleus excited including the position-
dependent phase of the x-ray excitation, i.e.
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Figure A.2: Convergence behaviour of the self-consistent equations Eqs. (4.11a) and (4.11b) for pulse areas
Ω0 = 0.2π (left panel) and Ω0 = π (right panel) : At lower excitations the perturbative result approximates
the (exact) numerical result (red curve) well already in next-to-leading order and becomes essentially identical
to it if one additional order is added (black curve). At higher excitations (right panel) higher order blow up
at later times and convergence is ensured only at early times.

|E〉 = σ̂+
kin
|G〉 =

1√
N

N∑
n=1

eikinrn |g1 . . . en . . . gn〉 (A.27)

known as timed Dicke state [HE13]. The exciton creation and annihilation operators σ̂±k are related
to the single-particle raising and lowering operators σ̂±n via the discrete Fourier transform

σ̂±k =
1√
N

N∑
n=1

e±ikrn σ̂±n , (A.28a)

σ̂±n =
1√
N

∑
k

e∓ikrn σ̂±k . (A.28b)

on a discrete finite lattice with translational invariance. These operators satisfy the canonical anti-
commutation relations
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{
σ̂+
k , σ̂

−
k′

}
=δkk′ (A.29){

σ̂+
k , σ̂

+
k′

}
=
{
σ̂−k , σ̂

−
k′

}
= 0 (A.30)

using the analogous anticommutation relations for the single particle operators σ̂+
n and the plane

wave orthonormality condition holding on a translationally invariant lattice

∑
k

eik(rn−rn′ ) = Nδrn,rn′ ,

N∑
n=1

ei(k−k
′)rn = Nδk,k′ (A.31)

Having defined the basis transformation into the exciton basis, we proceed as follows to show the
single-nucleus identities Eqs. (5.49) as well as the time-independece of the ratio between coherently
and incoherently scattered intensity Eq.(5.55): First, it is shown that the exciton transformation
Eq. (A.28) diagonalizes the coupling matrix K defined in Eq. (4.24). Next, an equivalent excitonic
basis representation of the identities Eqs. (5.49) is formulated to inform about the quantities to be
calculated perturbatively. Finally, the relevant quantities are calculated up to second order in the
nucleus-field coupling and the identity Eqs. (5.49) is proven in its excitonic representation.
We start by diagonalizing the time evolution operators T̂t. Again, assuming translational variance,
one can diagonalize the interaction Hamiltonian using the excitonic basis as follows

Ĥsw
int =− ~

∑
k,k′

σ̂+
k σ̂
−
k′

N∑
n=1

N∑
n′=1

e−ikrneik
′rn′Jnn′ (A.32)

=− ~
N

∑
k,k′

σ̂+
k σ̂
−
k′

N∑
n=1

e−i(k−k
′)rn

N∑
n′=1

eik
′(rn′−rn)Jnn′ (A.33)

=− ~
N

∑
k,k′

σ̂+
k σ̂
−
k′Jk′

N∑
n=1

e−i(k−k
′)rn (A.34)

=− ~
∑
k

Jkσ̂
+
k σ̂
−
k (A.35)

where the excitonic coupling constant

Jk =

N∑
n′=1

Jn0n′e
−ik(rn0

−rn′ ) (A.36)

was introduced in the third step. This form, as in the single-particle derivation Sec. 5.3.3, assumes
a coupling environment of each nucleus independent of the position of that specific nucleus in the
ensemble such that its index n can be replaced by any fixed index n0. Note that Jk is real-valued due
to the Hermiticity of the matrix (Jnn′). Analogously, the remaining parts of the nuclear Hamiltonian
Ĥnuc and the diagonal and cross-damping terms can be diagonalized under the same assumptions
assuming identical internal conversion decay constants ΓIC

n = ΓIC and transition frequencies ωn = ω0,
as before, such that the time evolution operator T̂t defined in Eq. (4.24) can be rewritten as

T̂ exct = exp

(∑
k

κkσ̂
+
k σ̂
−
k t

)
=
⊗
k

exp
(
κkσ̂

+
k σ̂
−
k t
)

(A.37a)

κk =− (Γk + iJk)− (ΓIC − iω0) (A.37b)

The product form of the time propagation operators is possible since the excitonic state projectors
for different k modes commute, i.e.

134



[
σ̂+
k σ̂
−
k , σ̂

+
k′ σ̂
−
k′

]
= 0 (A.38)

Before calculating the zeroth to second order contributions to the exciton space density matrix ρ̂exc,
we derive relations for the excitonic density matrix elements, that are equivalent to Eq. (5.49), and
allow for a complementary interpretation of the population-coherence correspondence in the LER in
terms of excitonic modes. This is done by rewriting the single particle raising and lowering operators
in terms of their excitonic quantities such that the single-particle density matrix elements can be
written as

ρgxex(t) =〈σ̂+
x 〉 =

1√
N

∑
k

e−ikrx〈σ̂+
k 〉 (A.39a)

ρexex(t) =〈σ̂+
x σ̂
−
x 〉 =

1

N

∑
kk′

e−i(k−k
′)rx〈σ̂+

k σ̂
−
k′〉 (A.39b)

Hence, the identity Eq. (5.49) can be rewritten in the following way:

1

N

∑
kk′

e−i(k−k
′)rx〈σ̂+

k 〉1〈σ−k′〉1 =
1

N

∑
kk′

e−i(k−k
′)rx〈σ̂+

k σ̂
−
k′〉2 (A.40)

where we used the fact that 〈σ̂−k 〉 = 〈σ̂+
k 〉∗ and introduced subscripts for the expectation values to

indicate whether the first or second order density matrix is used to calculate it. This shows that to
prove Eq. (5.49) in single-particle space, we need to show the relationship

〈σ̂+
k 〉(0−2)〈σ−k′〉(0−2) = 〈σ̂+

k σ̂
−
k′〉(0−2) (A.41)

with the subscript referring to the expectation value including the density matrix up to second order.
One interpretation of Eq. (A.41) is that the equivalence of coherence squared and population in
the LER is equivalent to the fact that up to second order in the nucleus-field coupling the classical
correlations or interference between excitonic dipolar emission for different modes k, k′, described by
the left hand side, are identical to the first-order quantum correlations between different excitonic
dipole modes, represented by the right hand side.
To calculate the expectation values

〈σ̂+
k 〉j(t) =Tr

[
σ̂+
k ρ̂

(j)
exc

]
, (A.42a)

〈σ̂+
k σ̂
−
k′〉j(t) =Tr

[
σ̂+
k σ̂
−
k′ ρ̂

(j)
exc(t)

]
(A.42b)

where the index j = 0, 1, 2, we also have to transform the nucleus-field coupling Hamiltonian Ŵ (t)
into excitonic space, in addition to the time evolution operator T̂ exct Eq. (A.37). This is done by
inserting the Fourier representation of σ̂±n into Eq. (4.15) for a single layer, yielding

Ŵ exc(t) =− ~
2

∑
k

(
Ωk(t)σ̂+

k + h.c.
)

(A.43)

with the Fourier-transformed nucleus field couplings

Ωk(t) =
1√
N

∑
n

e−ikrnΩ(rn, t) (A.44)

With this the zero order density matrix can be written as

ρ̂(0)
exc(t) =

(
T̂ exct−t0

)†
ρ̂exc(t0)T̂ exct−t0 = ρ̂NB(t0) = |G〉 〈G| (A.45)
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if the system is initially in its ground state, which is the same in both single particle and excitonic
space. Note, that the zeroth order contribution to the excitonic coherence and population of mode k
becomes zero since the two traces in the Eqs. (A.42) vanish in the collective ground state, i.e.

ρ(0)
gk,ek

(t) = 0 = ρ(0)
ekek′

(t) (A.46)

The first order density matrix can be calculated using Eq. (4.36) with the corresponding excitonic
operators T̂ exct , Ŵ exc(t) and ρ(0)

exc(t) derived above. The action of the operator Ŵ sw on the ground
state ρ̂(0)

exc(t) creates a superposition of nuclear exciton states like Eq. (A.27) for each k-mode. The
exciton states are eigenstates of the time evolution operators by construction, which can be shown
excplicitely by

σ̂+
k′ σ̂
−
k′ σ̂

+
k ρ̂

(0)
exc(τ) =σ̂+

k′

[
{σ̂−k′ , σ̂+

k } − σ̂+
k σ̂
−
k′

]
ρ̂(0)
exc(τ) (A.47)

=δkk′ σ̂
+
k ρ̂

(0)
exc(τ) (A.48)

where we used the canonical anticommutation relations and the fact that

σ̂−k ρ̂
(0)
exc(τ) = 0 = ρ̂(0)

exc(τ)σ̂+
k (A.49)

in the second step. Therefore, the action of the time evolution operator on the single exciton states
yields

(
T̂ exct−t0

)†
σ̂+
k ρ̂

(0)
exc(τ) = eκ

∗
k(t−t0)σ̂+

k ρ̂
(0)
exc(τ) (A.50)

With this, the

ρ̂(1)
exc(t) =

∑
k

[
i

2

∫ t

t0

dτΩk(τ)eκ
∗
k(t−τ)σ̂+

k ρ̂
(0)
exc(τ) + h.c.

]
(A.51)

The first order contribution to the single exciton expectation value Eq. (A.42a) becomes

〈σ̂+
k 〉1(t) =− i

2

∫ t

t0

dτ
∑
k′

Ω∗k′(τ)eκk(t−τ)Tr
[
σ̂+
k ρ̂

(0)
exc(t)σ̂

−
k′

]

=− i

2

∫ t

t0

dτΩ∗k(τ)eκk(t−τ) (A.52)

where we used the cyclic property of the trace and the fact that the trace is only nonzero if both
bra and ket are in the ground or excited state, i.e.

Tr
[
σ̂+
k ρ̂

sw,(0)(t)σ̂−k′
]

= δkk′ (A.53)

Tr
[
σ̂+
k′ ρ̂

(0)
sw (τ)σ̂+

k

]
= 0 (A.54)

since the initial state is the collective ground state. Similarly, the first-order correlation between
mode k and k′ Eq. (A.42b) vanishes since the traces

Tr
[
σ̂+
k σ̂
−
k′ ρ̂

sw,(0)(t)σ̂−k′′
]

= 0 (A.55)

Tr
[
σ̂+
k′′ ρ̂

(0)
exc(τ)σ̂+

k σ̂
−
k′

]
= 0 (A.56)
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are zero in the collective ground state ρ̂(0)
exc(τ) and thus

〈σ̂+
k σ̂
−
k′〉1 = 0 . (A.57)

The second order contribution to the excitonic density matrix can be obtained by evaluation of
Eq. (4.38) using again the exciton space quantities Ŵ exc(t), T̂ exct and the first order density matrix
Eq. (A.51). The result reads:

ρ̂(2)
exc(t) =− 1

4

∫ t

t0

dτ2

∫ τ2

t0

dτ1

∑
k′,k

Ωk′(τ2)Ωk(τ1)eκ
∗
k(t−τ1)eκ

∗
k(t−τ2)σ̂+

k′ σ̂
+
k ρ̂

sw,(0)(τ1)

− Ωk′(τ2)Ω∗k(τ1)eκk(t−τ1)eκ
∗
k′ (t−τ2)σ̂+

k′ ρ̂
sw,(0)(τ1)σ̂−k

+Ω∗k′(τ2)Ωk(τ1)eκ
∗
k(t−τ1)eκk′ (t−τ2)σ̂−k′ σ̂

+
k ρ̂

sw,(0)(τ1) + h.c.
]

(A.58)

Upon calculation of the second order correlation of mode k and k′ Eq. (A.42b) the following traces
and their complex-conjugates have to be evaluated:

Tr
[
σ̂−k′ σ̂

+
k ρ̂

(0)
exc(τ1)σ̂+

k′′ σ̂
−
k′′′

]
= 0 , (A.59)

Tr
[
σ̂+
k′ σ̂

+
k ρ̂

(0)
exc(τ1)σ̂+

k′′ σ̂
−
k′′′

]
= 0 , (A.60)

Tr
[
σ̂+
k′ ρ̂

(0)
exc(τ1)σ̂−k σ̂

+
k′′ σ̂

−
k′′′

]
= δkk′′δk′k′′′ . (A.61)

Thus, the second order contribution to the k and k′ mode correlation in the exciton basis reads

〈σ̂+
k σ̂
−
k′〉2(t) =

1

4

∫ t

t0

dτ2

∫ τ2

t0

dτ1

{
Ωk′(τ2)Ω∗k(τ1)eκk(t−τ1)eκ

∗
k′ (t−τ2)

+ Ω∗k(τ2)Ωk′(τ1)eκ
∗
k′ (t−τ1)eκk(t−τ2)

}
(A.62)

and the second order contribution to the single-exciton expectation value

〈σ̂+
k 〉2(t) = 0 (A.63)

vanishes with the traces

Tr
[
σ̂−k′ σ̂

+
k ρ̂

(0)
exc(τ1)σ̂+

k′′

]
= 0 , (A.64)

Tr
[
σ̂+
k′ σ̂

+
k ρ̂

(0)
exc(τ1)σ̂+

k′′

]
= 0 , (A.65)

Tr
[
σ̂+
k′ ρ̂

(0)
exc(τ1)σ̂−k σ̂

+
k′′

]
= 0 . (A.66)

Defining the functions

g(τ) =− i

2
Ω∗k′(τ)eκk(t−τ) (A.67)

f(τ) =− i

2
Ω∗k(τ)eκk′ (t−τ) (A.68)

and the general relation between complex-valued functions
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∫ t

t0

g∗(τ2)dτ2

∫ t

t0

f(τ1)dτ1 =

∫ t

t0

dτ2g
∗(τ2)

∫ τ2

t0

dτ1f(τ1) +

∫ t

t0

dτf(τ2)

∫ τ2

t0

dτ1g
∗(τ1) (A.69)

proves Eq. (A.41) since the left-hand side of Eq. (A.69) is identical to 〈σ̂+
k 〉1〈σ̂−k′〉1 while its right-hand

side yields the two terms in Eq. (A.62). With this, we have shown that the classical single-exciton
correlations are identical to the quantum correlations up to second order. This together with the
Eqs. (A.39) and (A.40), also proves the identity Eq. (5.49).
In summary, we have derived the equivalence of single-particle incoherent emission, which is propor-
tional to the single-particle excited state population ρ̂exex , and the single-particle coherent emission
proportional to |ρgxex |2 up to second order in the x-ray-nuclei interaction using a coupling matrix
diagonalization approach. It is complementary to the single-particle derivation used in Sec. 5.3.3
and allowed for an interpretation of this equivalence in terms of correlations between nuclear exciton
correlations that are crucial for quantum optical interpretations of many-body nuclear dynamics in
the LER and beyond.

Incoherent and coherent emission of nuclear ensembles in the exciton basis

To show that the ratio Eq. (5.55) of the incoherently and coherently scattered intensities I(0−2)
inc (t)

Eq. (5.6) and I(0−2)
coh (t) Eq. (5.8) is constant, we need to derive explicitely the single-particle coherences

and populations. This can be done using the backtransform of the exciton creation and annihilation
operators Eq. (A.29) such that

ρ(1)
gx,ex(t) =

1√
N

∑
k

e−ikrx〈σ̂+
k 〉1(t) (A.70)

=− i

2
√
N

∫ t

t0

dτ
∑
k

e−ikrxΩ∗k(τ)eκk(t−τ) (A.71)

ρ(2)
ex,ex(t) =

1

N

∑
k,k′

e−i(k−k
′)rx〈σ̂+

k σ̂
−
k′〉2 (A.72)

=
1

4N

∑
k,k′

e−i(k−k
′)rx

∫ t

t0

dτ2

∫ τ2

t0

dτ1

{
Ωk′(τ2)Ω∗k(τ1)eκk(t−τ1)eκ

∗
k′ (t−τ2)

+ Ω∗k(τ2)Ωk′(τ1)eκ
∗
k′ (t−τ1)eκk(t−τ2)

}
(A.73)

Now, using the assumption that all nuclei are excited by the same-amplitude of a plane-wave driving
field Eq. (5.29), also employed in Sec. 5.3.3, the Fourier transform of the field-nucleus coupling can
be written as

Ωk(t) =
√
NΩ(t)δk,kin (A.74)

if the plane wave orthonormality relations Eqs. (A.31) are used. Note, that for the incident wave
vector to satisfy this orthonormality with one of the exciton modes, full translational invariance or,
rephrased a homogeneous nuclear ensemble, is crucial. This is of special importance if finite systems
are considered since an incident wave vector kin not matching an exciton mode creates phase offsets
between the nuclei at the boundaries this way breaking translational invariance. Thus, in finite
systems, only certain incident wave vectors in agreement with a nuclear exciton mode, satisfy the
conditions necessary for the ratio of incoherently and coherently scattered radiation to be constant
in time. However, for all practical purposes this restriction can be neglected since boundary effects
are usually negligble in macroscopic nuclear ensembles.
This said, the single-particle coherence can be written as

ρ(1)
gx,ex(t) =− i

2
e−ikinrx

∫ t

t0

dτeκkin
(t−τ)Ω∗(τ) = ρge(t)e

−ikinrx (A.75)
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Note that the site-independent coherence ρge(t) defined here indeed is identical to the one in Eq. (5.52)
since

[
eK(t−τ)

]
nn0

= e−ikin(rn0−rn)eκkin
(t−τ) (A.76)

which can be shown by explicity applying the diagonlizing transformation Eq. (A.29) to the matrix
exponential eK(t−τ). Hence, the exciton and single-particle basis approach provide identical results.
Analogously, the single-particle population Eq. (A.73) can be shown to be independent of the position
of the nucleus in ensemble Eq. (5.53). This finally demonstrates that the exciton basis approach
to evaluate the irradiance of nuclear ensembles in the LER is consistent with the single-particle
derivation. Further, it provides an alternative method to compute the ensemble scattering observables
of coupled many-nuclei systems via the relation Eq. (A.76).

A.7 Derivation of the population-coherence correspondence for
effective three-level systems

Here, derive the population-coherence correspondence for effective three-level systems as described in
Sec. 6.3.5.
In view of the discussed transfer of population and coherence from one excited state to another
as evident in Eq. (6.21) and its graphical interpretation Figs. 6.2 and 6.3, it may seem surprising
that a population-coherence correspondence similar to Eq. (5.22) is still valid in the case of effective
three-level systems. Indeed, we will show that

ρ
(2)
ll (t) = |ρ(1)

0l (t)|2 (A.77)

is true for each transition l = 1, 2 separately using a diagonalization approach of the excited-state
sector of the three-dimensional state space. This result will help us to compare incoherent and
coherent nuclear resonant scattering spectra discussed in Sec. 6.4.
To prove Eq. (6.27), we follow a similar procedure as the one used in Sec. A.6: First, the time
evolution operators

T̂t = eiΛt = exp

(
−Γ̂t+

i

~
Ĥnuct

)
(A.78)

are diagonalized using the similarity transformation

Â−1ΛÂ =

d2 0 0
0 d1 0
0 0 1

 , d2,1 = δ̄ + iΓ̄± 1

2
∆R (A.79)

Next, conditions for the diagonal-basis density matrix elements equivalent to Eq. (6.27) are derived,
which will be used to show that this identity is valid even in the presence of coherent couplings
between the excited states. This equivalent condition reads:

|ρ(1)
g+|2 = ρ

(2)
++ , |ρ(1)

g−|2 = ρ
(2)
−− , ρ

(1)
g+ρ

(1)
−g = ρ

(2)
−+ (A.80)

which, like in the exciton case Sec. A.6, can be interpreted as the equality of first-order correlation
between dipoles in the diagonal basis and classical interference or correlation between dipole-emitted
radiation. In the last two steps, the perturbative expansion of the density matrix Eq. (4.43) is
calculated in the diagonal basis to obtain the first and second order density matrix elements, which
are used to eventually prove Eq. (A.80) and with it Eq. (6.27).

A.7.1 Diagonalization of the time evolution operator
The density matrix elements in the diagonal basis appearing in Eq. (A.80) are the entries of the
transformed density matrix

139



ρ̂d(t) = Â†ρ̂(t)Â =

ρ++(t) ρ+−(t) ρ+g(t)

ρ−+(t) ρ−−(t) ρ−g(t)

ρg+(t) ρg−(t) ρgg(t)

 (A.81)

where the subscript d refers to the dressed-state picture since the transformation diagonalizing the
excited state sector including coupling is analogous to the dressed-atom model in quantum optics
[MS07; SZ97; FS05]. Note, that in Eq. (A.81) the adjoint of Â appears instead of its inverse as
in Eq. (A.79). These two quantities, for general non-Hermitian Λ are not identical. Appendix A.8
discusses the conditions an effective three-level system has to satisfy such that Â can be chosen
unitary. Here, however, we accept non-unitary similarity transformations Â and, in analogy to the
dressed-state picture transformation [MS07], we define

Â =

 cos θ −eiφ sin θ 0
e−iφ sin θ cos θ 0

0 0 1

 , Â−1 =

 cos θ eiφ sin θ 0
−e−iφ sin θ cos θ 0

0 0 1

 (A.82)

which transforms the excited-state sector only since the common ground state is not affected by the
coupling and evolves trivially in time under the action of T̂t (cf. Eqs. (6.14)). To ensure diagonal-
izability of Λ, the phase φ in the similarity transformation has to be equal to the coherent coupling
phase Eq. (6.18), i.e.

φ = φ21 . (A.83)

The generalized angle θ can be derived from the off-diagonal elements of the excited state sector in
Eq. (A.79) and satisfies

tan(2θ) =
2|∆21|

∆δ + i∆Γ
(A.84)

Note, that θ in general is complex-valued and thus Â is not unitary except for the case when Γ1 = Γ2

which is the same condition under which the energy-decay matrix Λ (cf. Eq. (A.118) in Appendix A.8)
becomes normal. Considering the general case with Γ1 6= Γ2, the time evolution operators in the
dressed-state basis become diagonal by construction, i.e.

T̂ dt = Â−1eiΛtÂ =

eid2t 0 0
0 eid1t 0
0 0 1

 . (A.85)

With this, the first step of the proof, i.e. the diagonalization of the intrinsic (incoherent and coherent)
nuclear dynamics, is finished.

A.7.2 Population-coherence correspondence in the dressed-state basis
Before the perturbative density matrix expansion is calculated, the bare-state identity Eq. (6.27)
has to be translated into an equivalent form involving the dressed-state density matrix elements
Eq. (A.81). To this end, we write down the explicit form of the backtransformation from the dressed-
state basis to the bare-state basis to be inserted into Eq. (6.27) which reads

ρ̂(j)(t) =(Â−1)†ρ̂
(j)
d (t)Â−1 =


ρ

(j)
22 ρ

(j)
21 ρ

(j)
20

ρ
(j)
12 ρ

(j)
11 ρ

(j)
10

ρ
(j)
02 ρ

(j)
01 ρ

(j)
00

 (A.86)

with entries
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ρ
(j)
22 =ρ

(j)
++|cos θ|2 + ρ

(j)
−−|sin θ|2 − (ρ

(j)
−+e

iφ21 sin θ∗ cos θ + ρ
(j)
+−e

−iφ21 sin θ cos θ∗) (A.87)

ρ
(j)
11 =ρ

(j)
−−|cos θ|2 + ρ

(j)
++|sin θ|2 + (ρ

(j)
−+e

iφ21 sin θ cos θ∗ + ρ
(j)
+−e

−iφ21 sin θ∗ cos θ) (A.88)

ρ
(j)
20 =ρ

(j)
+g cos θ∗ − ρ(j)

−ge
iφ21 sin θ∗ , ρ

(j)
10 = ρ

(j)
+ge
−iφ21 sin θ∗ + ρ

(j)
−g cos θ∗ (A.89)

ρ
(j)
21 =ρ

(j)
+−|cos θ|2 − ρ(j)

−+e
2iφ21 |sin θ|2 + eiφ21

(
ρ

(j)
++ sin θ cos θ∗ − ρ(j)

−− cos θ sin θ∗
)

(A.90)

ρ
(j)
12 =

(
ρ

(j)
21

)∗
, ρ

(j)
02 =

(
ρ

(j)
20

)∗
, ρ

(j)
01 =

(
ρ

(j)
10

)∗
, ρ

(j)
00 = ρ(j)

gg (A.91)

By inserting the matrix elements of transition |2〉 into Eq. (6.27), one obtains

|ρ(1)
02 (t)|2 = ρ

(2)
22 (t) (A.92)

⇔|ρ(1)
g+|2|cos θ|2 + |ρ(1)

g−|2|sin θ|2 − 2Re
[
ρ

(1)
g+ρ

(1)
−ge

iφ21 cos θ sin θ∗
]

=ρ
(2)
++|cos θ|2 + ρ

(2)
−−|sin θ|2 − 2Re

[
ρ

(2)
−+e

iφ21 cos θ sin θ∗
]

(A.93)

which, for arbitrary times t can be satisfied if and only if Eqs. (A.80) are valid. Note, that the
evaluation of the analogous expressions for transition |1〉 yields identical conditions.

A.7.3 Density matrix expansion in the dressed-state basis
To calculate the dressed state density matrix elements required to prove Eqs. (A.80), the perturbative
expansion of the density matrix is performed with the help of Eq. (4.43) or, in the lowest expansion
orders, using Eq. (6.11). To this end, note that each perturbation order is transformed separately
into the dressed-state picture via Eq. (A.81). By inserting identity operators 1̂ = Â−1Â such that
the lower order density matrices and the nucleus-field coupling part Ŵ (t) are properly transformed
into the dressed-state picture, we obtain the zeroth to second order density matrix contributions

ρ̂
(0)
d (t) =

(
T̂ dt−t0

)†
ρ̂d(t0)T̂ dt−t0 (A.94)

ρ̂
(1)
d (t) =− i

~

∫ t

t0

dτ(T̂ dt−τ )†
[
(Ŵ d(τ))†ρ̂d,(0)(τ)− ρ̂d,(0)(τ)Ŵ d(τ)

]
T̂ dt−τ (A.95)

ρ̂
(2)
d (t) =− i

~

∫ t

t0

dτ(T̂ dt−τ )†
[
(Ŵ d(τ))†ρ̂d,(1)(τ)− ρ̂d,(1)(τ)Ŵ d(τ)

]
T̂ dt−τ (A.96)

with the dressed state time evolution operators Eq. (A.85) and the non-Hermitian dressed state
nucleus-field interaction matrix

Ŵ d(t) = Â−1Ŵ (t)Â = −~
2

 0 0 Ω+g(t)
0 0 Ω−g(t)

Ωg+(t) Ωg−(t) 0

 (A.97)

Its entries are given by

Ω+g(t) = Ω2(t) cos θ + Ω1(t)eiφ21 sin θ (A.98)

Ω−g(t) = Ω1(t) cos θ − Ω2(t)e−iφ21 sin θ (A.99)

Ωg+(t) = Ω∗2(t) cos θ + Ω∗1(t)e−iφ21 sin θ (A.100)

Ωg−(t) = Ω∗1(t) cos θ − Ω∗2(t)eiφ21 sin θ (A.101)
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With this, the density matrix contributions in zeroth to second order can be evaluated. If the
system is initially in its ground state, it remains so in zeroth order and is constant in time, i.e.

ρ
(0)
d (t) = ρd(t0) = ρ̂(t0) =

0 0 0
0 0 0
0 0 1

 (A.102)

Note that we used that the dressed and bare ground state are identical in the second step. We
conclude that in zeroth order the dressed-state coherences and excited state populations are zero, i.e.

ρ
(0)
g+(t) = ρ

(0)
g−(t) = 0 = ρ

(0)
++(t) = ρ

(0)
−−(t) (A.103)

The first order is given by

ρ̂
(1)
d (t) =


0 0 ρ

(1)
+g(t)

0 0 ρ
(1)
−g(t)

ρ
(1)
g+(t) ρ

(1)
g−(t) 0

 (A.104)

with entries

ρ
(1)
g+(t) =− i

2

∫ t

t0

dτe−Γ̄(t−τ)eiδ̄(t−τ)e
i
2 ∆R(t−τ)Ωg+(τ) (A.105a)

ρ
(1)
g−(t) =− i

2

∫ t

t0

dτe−Γ̄(t−τ)eiδ̄(t−τ)e−
i
2 ∆R(t−τ)Ωg−(τ) (A.105b)

ρ
(1)
+g =(ρ

(1)
g+)∗ , ρ

(1)
−g = (ρ

(1)
g−)∗ (A.105c)

ρ
(1)
++(t) =0 = ρ

(1)
−−(t) , (A.105d)

i.e., like in previous nuclear systems considered, only coherences but no populations are created in
first order. Finally, the second order reads

ρ̂
(2)
d (t) =


ρ

(2)
++(t) ρ

(2)
+−(t) 0

ρ
(2)
−+(t) ρ

(2)
−−(t) 0

0 0 ρ
(2)
gg (t)

 (A.106)

with entries

ρ
(2)
++(t) =

∫ t

t0

dτe−(2Γ̄+Im[∆R])(t−τ)Im
[
Ωg+(τ)ρ

(2)
+g(τ)

]
(A.107a)

ρ
(2)
−−(t) =

∫ t

t0

dτe−(2Γ̄−Im[∆R])(t−τ)Im
[
Ωg−(τ)ρ

(2)
−g(τ)

]
(A.107b)

ρ
(2)
+−(t) =

i

2

∫ t

t0

dτe−2Γ̄(t−τ)e−iRe[∆R](t−τ)
(

Ω∗g+(τ)ρ
(1)
g−(τ)− Ωg−(τ)ρ

(1)
+g(τ)

)
(A.107c)

ρ
(2)
−+(t) =

i

2

∫ t

t0

dτe−2Γ̄(t−τ)eiRe[∆R](t−τ)
(

Ω∗g−(τ)ρ
(1)
g+(τ)− Ωg+(τ)ρ

(1)
−g(τ)

)
(A.107d)

ρ
(2)
g+(t) =0 = ρ

(2)
g−(t) (A.107e)

Note, that the second order ground state population can in principle be derived by evaluating the
trace condition Tr[ρ̂] = 1 in the dressed state basis. However, as we are interested in the coherences
and excited state populations only, an explicit evaluation is not necessary at this point. With this,
the density matrix expansion up to second order in the x-ray-nucleus coupling is established and we
can proceed to prove the population-coherence correspondences Eq. (A.80) and Eq. (6.27).
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A.7.4 Proof of the population-coherence correspondence
The first and second order dressed-state density matrix elements Eqs. (A.105) and (A.107) will now
be used to prove Eq. (A.80) Eq. (6.27). To this end, we follow a similar procedure as in the two-level
case Sec. 5.3.2 by defining the functions

f(t, τ) =− i

2
e−Γ̄(t−τ)eiδ̄(t−τ)e−

i
2 ∆R(t−τ)Ωg−(τ) (A.108)

g(t, τ) =− i

2
e−Γ̄(t−τ)eiδ̄(t−τ)e

i
2 ∆R(t−τ)Ωg+(τ) (A.109)

such that the dressed state coherences can be expressed as

ρ
(1)
g+(t) =

∫ t

t0

dτg(t, τ) (A.110)

ρ
(1)
g−(t) =

∫ t

t0

dτf(t, τ) (A.111)

Using the general identities for complex-valued functions already employed in Eqs. (5.21b) and (A.69),
one can show

ρ
(2)
−−(t) =2Re

[∫ t

t0

dτf∗(τ)

∫ τ

t0

dτ ′f(τ ′)

]
=

∣∣∣∣∫ t

t0

dτf(τ)

∣∣∣∣2 =
∣∣∣ρ(1)
g−(t)

∣∣∣2 , (A.112)

ρ
(2)
++(t) =2Re

[∫ t

t0

dτg∗(τ)

∫ τ

t0

dτ ′g(τ ′)

]
=

∣∣∣∣∫ t

t0

dτg(τ)

∣∣∣∣2 =
∣∣∣ρ(1)
g+(t)

∣∣∣2 , (A.113)

which proves the first two identities of Eq. (A.80). The last identity can be shown by employing the
relation Eq. (A.69). Using the definitions above, one immediately finds

∫ t

t0

g∗(t, τ2)dτ2

∫ t

t0

f(t, τ1)dτ1 = ρ
(1)
g+(t)ρ

(1)
−g(t) (A.114)

and, by direct calculation, one can also verify

ρ
(2)
−+(t) =

∫ t

t0

dτ2g
∗(t, τ2)

∫ τ2

t0

dτ1f(t, τ1) +

∫ t

t0

dτ2f(t, τ2)

∫ τ2

t0

dτ1g
∗(t, τ1) (A.115)

=

∫ t

t0

g∗(t, τ2)dτ2

∫ t

t0

f(t, τ1)dτ1 = ρ
(1)
g+(t)ρ

(1)
−g(t) (A.116)

which proves Eq. (A.80) and together with the equivalence Eq. (A.93) also Eq. (6.27). Since the re-
maining matrix elements up to second order are zero, this also proves the equivalence of the coherences
squared and populations up to second order:

ρ
(0−2)
ll (t) = |ρ(0−2)

0l (t)|2 (A.117)

In the following, we will use this interesting result to simplify analytical calculations allowing for an
interpretation of numerical studies of the coupling dynamics in effective nuclear three-level systems
including excited-state coupling. Beyond this specific use in the scope of this thesis, we envision
future research of nonlinear and many-body dynamics of Mössbauer nuclei to benefit from similar
analysis approaches even beyond the LER since the dressed-state diagonalization approach of the time-
evolution operator T̂t can also be applied in the nonlinear excitation regime. Further, the generalized
dressed-state approach may help to interpret complex phenomena and corresponding NRS spectra
like similar approaches in traditional quantum optics [SZ97; MS07].

143



A.8 Unitary similarity transformations for effective three-level
systems

Here, we briefly discuss the condition a matrix Λ, defined in Eq. (A.78), has to satisfy such that a
unitary similarity transformation Â, i.e. Â−1 = Â† can be found to diagonalize Λ. To this end, the
matrix Λ has to be normal, i.e.

[
Λ†Λ,ΛΛ†

]
= 0 . (A.118)

Explicit calculation yields the following form of the two operator products in the commutator

ΛΛ† =

 ω2
2 + Γ2

2 + |∆12|2 −∆21 [ω2 + ω1 + i(Γ2 − Γ1)] 0

−∆12 [ω2 + ω1 + i(Γ1 − Γ2)] ω2
1 + Γ2

1 + |∆12|2 0

0 0 1

 (A.119)

Λ†Λ =

 ω2
2 + Γ2

2 + |∆12|2 −∆21 [ω2 + ω1 + i(Γ1 − Γ2)] 0

−∆12 [ω2 + ω1 + i(Γ2 − Γ1)] ω2
1 + Γ2

1 + |∆12|2 0

0 0 1

 (A.120)

It can be seen that these two expressions become identical if the two decay rates are the same, i.e.
Γ1 = Γ2 which is the condition under which the decay matrix Γ̂ and the nuclear Hamiltonian Ĥnuc

can be diagonalized simultaneously in the case of neglibible cross-damping terms (cf. Sec. A.7).

A.9 Area theorem
We derive the area theorem for two-level systems and time-dependent Rabi-drives. Assume a two-
level system with ground state |g〉 and excited state |e〉 and transition frequency ω. The system is
driven by a Rabi drive of the form e−iφeiνtΩ(t) thus leading to an interaction Hamiltonian

V̂ (t) = ~

(
ω − 1

2e
−iφeiνtΩ(t)

− 1
2e
iφe−iνtΩ(t) 0

)
(A.121)

Transforming into a corotating frame with frequency ν, we get the interaction picture Hamiltonian

ĤI(t) = ~

(
∆ − 1

2e
−iφΩ(t)

− 1
2e
iφΩ(t) 0

)
(A.122)

with detuning ∆ = ω − ν and real-valued envelope Ω(t). In general, the Schrödinger equation

i~∂t |ψ(t)〉I = ĤI |ψ(t)〉I (A.123)

is not analytically solvable. However, if the detuning ∆ between driving pulse and two-level system
becomes negligible (either because the drive is resonant with the two-level system or because it is
short enough such that the two-level is driven in the impulsive limit) the solution to this equation is
given by

|ψ(t)〉I = ÛI(t, t0) |ψ(t0)〉I (A.124)

with the time-evolution operator calculated self-consistently as

ÛI(t, t0) =I +
∞∑
n=1

(
i

2

)n(
0 e−iφ

eiφ 0

)n ∫ t

t0

dtnΩ(tn)

∫ tn

t0

dtn−1Ω(tn−1)· · ·
∫ t2

t0

dt1Ω(t1)

=I +

∞∑
n=1

in

n!
σnφ

(
1

2
A(t)

)n
(A.125)
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where we defined the pulse area A(t) as

A(t) =

∫ t

t0

Ω(t′)dt′ (A.126)

and used the identity for real-valued functions f

1

n!

∫ t

t0

dt′f(t′)
[ ∫ t′

t0

dt′′f(t′′)
]n

=
1

(n+ 1)!

[ ∫ t

t0

dt′f(t′)
]n+1

(A.127)

to simplify the nested integrals. Further, we introduced the matrix σφ =

(
0 e−iφ

eiφ 0

)
. Using that

σnφ =

{
I , n ∈ 2Z
σφ , else

(A.128)

the time-evolution operator splits up into

ÛI(t, t0) =I

∞∑
n=0

(−1)n

(2n)!

[
1

2
A(t)

]2n

+ iσφ

∞∑
n=0

(−1)n

(2n+ 1)!

[
1

2
A(t)

]2n+1

=

(
cos
(

1
2A(t)

)
ie−iφ sin

(
1
2A(t)

)
ieiφ sin

(
1
2A(t)

)
cos
(

1
2A(t)

) )
(A.129)

The key feature of this solution is that the dynamics are essentially independent of the shape of
the pulse envelope Ω(t) but only depend on its integrated value from initial time t0 until time t. Note
that the pulse area A can be interpreted as the polar angle on the Bloch sphere while φ is related
to the azimuthal angle. This can be seen by calculating the state of a two-level system, being in its

ground state |g〉 =

(
0
1

)
initially, under the action of the time evolution operator Û(t, t0) which yields

ÛI(t, t0) |g〉 = ie−iφ sin

(
1

2
A
)
|e〉+ cos

(
1

2
A
)
|g〉 (A.130)

where we introduced the notation |e〉 =

(
1
0

)
, similarly to the ground state |g〉. Comparison whith

the polar form of the Bloch representation of state |ψ〉

|ψ〉 = eiϕ sin(θ/2) |e〉+ cos(θ/2) |g〉 (A.131)

where θ defines the polar angle and ϕ the azimuthal angle shows that the pulse area A corresponds to
the polar angle of excitation from the ground state towards the excited state that is covered during
the interaction period of the Rabi frequency Ω(t). The phase φ and the system’s free unitary time
evolution, on the other hand, correspond to drifts along the azimuthal direction.
The density matrix of a two-level system initially in state

ρ(t0) =

(
ρee ρeg
ρge ρgg

)
(A.132)

after application of a resonant pulse with pulse area A(t) in the interaction picture can be written as

ρ̂I(t) =ÛI(t, t0)ρ̂(t0)Û†I (t, t0) =

(
ρIee(t) ρIeg(t)

ρIge(t) ρIgg(t)

)
(A.133)

with
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ρIee(t) =ρee cos2 1

2
A+ ρgg sin2 1

2
A+ i sin

1

2
A cos

1

2
A(e−iφρge − eiφρeg) (A.134)

ρIeg(t) =ρeg cos2 1

2
A+ e−2iφρge sin2 1

2
A+ ie−iφ sin

1

2
A cos

1

2
A(ρgg − ρee) (A.135)

ρIge(t) =ρge cos2 1

2
A+ e2iφρeg sin2 1

2
A+ ieiφ sin

1

2
A cos

1

2
A(ρee − ρgg) (A.136)

ρIgg(t) =ρee sin2 1

2
A+ ρgg cos2 1

2
A+ i sin

1

2
A cos

1

2
A(eiφρeg − e−iφρge) (A.137)

For later use in ch. 5 we also write down the result for the coherence and excited state population
if the two-level system is initially in its ground state

ρee = 0 , ρge = 0 = ρeg , ρgg = 1 (A.138)

such that

ρIee(t) = sin2

(
1

2
A(t)

)
(A.139)

ρIge(t) = − i
2
eiφ sin(A(t)) (A.140)

Note, that the angular rotation covered by the coherence at time t is twice the angle of the popu-
lation at the same time instance. In contrast to the constant-envelope case, however, this does not
imply that local maxima of the coherence can be found exactly at twice the time of corresponding
maxima since the pulse area is the (time-dependent) Rabi frequency integrated over time and thus
subject to temporal changes in the pulse envelope as discussed, e.g. in Sec. 5.5.6.

A.10 Optical Bloch equations of two-level systems
For reference in the main text, here we state the optical Bloch equations for a single two-level atom,
that can be derived from the Liouvillian

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ L[ρ̂] , (A.141)

with

Ĥ = Ĥnuc + Ŵ (t) . (A.142)

Here, the nuclear Hamiltonian is given by

Ĥnuc = ~ω0 |e〉 〈e| , (A.143)

and the interaction part by

Ŵ (t) = −~
2

(
Ω(t)σ̂+ + h.c.

)
. (A.144)

The Linbladian of a two-level system reads

L [ρ̂] =
γ

2

(
2σ̂−ρ̂σ̂+ −

{
σ̂+σ̂−, ρ̂

})
, (A.145)
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By projection onto the ground and excited states |g〉 and |e〉 and defining the excited state popu-
lation ρee = 〈e| ρ̂ |e〉 and the coherence ρge = 〈g| ρ̂ |e〉, the result reads

ρ̇ee = −γρee +
i

2
[Ω(t)ρge − Ω∗(t)ρeg] , (A.146a)

ρ̇ge =
(
iω0 −

γ

2

)
ρge +

iΩ∗(t)

2
(2ρee − 1) , (A.146b)

ρeg = ρ∗ge , ρgg = 1− ρee , (A.146c)

where γ is the total natural linewidth. Note that the same equations of motion govern the dynamics
of effective two-level systems in the low-excitation sector of nuclear resonant scattering, however, with
collectively modified parameters ω0, γ and Ω(t).
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