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Zusammenfassung:

In dieser Arbeit wird die Hyperfeinstruktur von gebundenen Elektronen in wasser-
stoffartigen Ionen und die Korrekturen derer Energieniveaus durch quantenelek-
trodynamische (QED) Effekte betrachtet. Korrekturen zur Wellenfunktion sowie
zum magnetischen Potential werden für leptonische und hadronische Vakuumpo-
larisation (VP) bestimmt. Die hadronische VP wird dabei semi-empirisch be-
trachtet. Eine numerische Methode für die Bestimmung der Verschiebung der
Energieniveaus wird vorgestellt und die Ergebnisse werden mit Literaturwerten
sowie mit bekannten Näherungsformeln verglichen. Unsicherheiten aufgrund des
Kernradius werden angegeben und diskutiert. Es werden Punkt-, Kugel- und
Fermi-Modelle für den Kern betrachtet und die Abweichung der Ergebnisse wird
diskutiert.

Abstract:

In this thesis, the hyperfine structure of bound electrons in hydrogen-like ions is
considered with corrections to the energy levels due to quantum electrodynamics
(QED). Corrections to the wave function as well as the magnetic potential are
determined for leptonic and hadronic vacuum polarisation (VP). Hadronic VP is
treated with a semi-empirical approach. A numerical method to determine the
energy shift is presented and the results are compared to values found in literature,
as well as to known approximations. Uncertainties due to the nuclear radius are
given and discussed. Point-like, spherical and Fermi distributed nuclear models
are considered and the differences of the results are discussed.
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Chapter 1 – Introduction

1 Introduction

In 1926, Erwin Schrödinger introduced his equation, allowing a quantum mechanical
description of probability waves. He derived the equation from the non-relativistic
energy-momentum relation Ekin = 1

2
mv2. Therefore, the energy in his equation was

proportional to the momentum squared. However, even at the time it was known
that, relativistically, the energy squared was actually proportional to the momentum
squared

E2 = m2p2 +m2c4, (1.1)

which stood in direct disagreement with his equation. Two years later, in 1928,
Paul Dirac then introduced the Dirac equation, accounting for relativistic effects by
forcing linearity in all space-time coordinates [1]√

p2c2 +m2c4
!
= α · p c+ βmc2. (1.2)

When considering the movement of an electron bound to a nucleus, especially as the
nucleus increases in charge, and thus, size, relativistic effects are extremely relevant
to consider and calculations have to be carried out accordingly.

These first formulations of a quantum theory evolved, finally resulting in the the-
ory of quantum electrodynamics (QED). Nowadays, due to its almost unparalleled
predictive accuracy, it is considered to be one of the most successful theories [2].

Introducing strong external fields, such as the one created by a heavy atomic
nucleus, allows us to further test its validity in more extreme conditions. At the
same time, high-precision experiments used to measure fundamental constants and
to test them against theoretical values grow more accurate, giving rise to the need
to calculate correction terms that have previously been considered negligible [3].

One of the best known atomic properties to be determined to very high accuracy
in such a way is the g-factor. It describes the coupling of a particle with a mag-
netic moment to an external magnetic field. Following Dirac’s relativistic theory,
the value for the g-factor of a free electron was predicted to be 2. However, mea-
surements in Ref. [4] showed that this was, in fact, not the case. The theoretical
value only coincided with the findings when introducing corrections resulting from
QED, granting the theory its popularity.

Contrary to the free electron, we can also consider bound electrons in strong
nuclear fields. Here, the results also depend on the nucleus used, introducing an
additional variable, and thus, more possibilities to test the theory. The simplest
atomic model to consider is a hydrogen-like ion, where all electrons but one are
stripped from the atom. Further, we can distinguish the nuclear model, with the
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Chapter 1 – Introduction

simplest approach being a point-like nucleus with no dimensions. When considering
finite nuclear size (fns), we usually regard either a spherical model or the more
accurate, but also computationally more demanding, Fermi distribution.

Another phenomenon not as commonly talked about is the hyperfine structure.
It arises from atoms with nuclear spin and, therefore, generating a spherically sym-
metric magnetic field. The bound electron now interacts with that field instead of
a homogeneous external magnetic field, which leads to a different shift in energy.
Compared to the energy shift when considering the g-factor, fewer corrections to
this shift, usually denoted by parameters ε, have been determined. However, given
its comparatively smaller influence, it is of great interest since it, in turn, might also
be more sensitive to effects previously disregarded, such as the nuclear model and,
therefore, allows for more detailed tests of QED.

In this thesis, we will look at vacuum polarisation (VP), a specific QED correction,
and how it changes the hyperfine splitting on an energy level of a bound electron.

The structure of this thesis is as follows. In chapter 2, a general description of
bound electrons is given. We outline solutions to the Dirac equation for point-like,
spherical and Fermi distributed nuclei. We also discuss how to perturbatively treat
QED corrections as well as hyperfine structure to change the results obtained from
the Dirac equation. In chapter 3, we discuss the calculations concerning vacuum
polarisation corrections in more detail. We determine how the photon propagator is
changed by this effect and how this leads to a perturbation of the Coulomb potential,
also called the Uehling potential. We then outline how the specific expressions for
the Uehling potential can be determined for leptonic and hadronic VP. For leptonic
VP, we follow the analytical approach given in Ref. [5] and for hadronic VP, we follow
the semi-empirical treatment discussed in Ref. [6] for both point-like and extended
nuclei. In chapter 4, we discuss the numerical methods used to determine our results
for extended nuclei. We introduce the concept of Bézier curves and B-splines, as
well as a finite basis set, to describe the solutions to the Dirac equation. We then
present how to implement B-splines to solve the radial Dirac equation. In chapter 5,
we introduce the convention used to describe QED effects when considering hyperfine
structure and discuss how the two effects can interact with each other. Finally, we
present our results, compare them to values cited in literature, as well as previously
known approximations, and give a brief outlook for future work.

In this thesis, we use natural units with the reduced Planck constant ℏ, the vacuum
speed of light c and the vacuum permittivity ε0 set to unity (ℏ = c = ε0 = 1). In
our final calculations we further set the mass of the electron to unity me = 1. The
charge of the electron is defined by e < 0 and the fine-structure constant is given by
α = e2/(4π) in this system of units1.

The inner product of two four-vectors aµ and bµ, using Einstein’s summation
convention, is given by aµbµ = a0b0 − a · b.

1We use the most recent values from 2018 given by CODATA [7] (https://physics.nist.gov/
cuu/Constants/index.html)
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Chapter 2 – Description of bound electrons

2 Description of bound electrons

In general, a good approximation to determine the energy level of a bound electron
can be achieved by solving the stationary Schrödinger equation in the Coulomb
potential of the nucleus(

p

2me

− Zα

r

)
ψnlm(r) = Enψnlm(r), (2.1)

where me denotes the mass of the electron, p the momentum operator, α = e2/4π ≈
1/137 the fine-structure constant defined through the electron charge e and Z the
nuclear charge number such that −Ze is the charge of the nucleus. ψnlm are the
resulting wave functions and En the energy eigenvalues given by

En = −me

2

(
Zα

n

)2

. (2.2)

with the principal quantum number n. This, however, only describes non-relativistic
electrons, which becomes increasingly more inaccurate with higher nuclear charge
numbers Z. This can be seen by roughly estimating the velocity of the electron.
Adapting a classical picture, the most likely radius to find the electron orbiting the
nucleus is at r0 = a0/Z with the Bohr radius [8]

a0 =
1

meα
. (2.3)

Comparing centripetal forces and the attracting potential, we obtain that

mev
2
0

r0
=

Ze2

4πr20
, (2.4)

and thus

v0 = Zα. (2.5)

This value approaches one, meaning that, in particular for highly charged ions, we
need to consider relativistic effects. We, therefore, need to use the stationary Dirac
equation.
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Chapter 2 – Description of bound electrons

2.1 Relativistic description of bound electrons

Following Ref. [1], the stationary Dirac equation in a spherically symmetric potential
V (r) such as the Coulomb potential is given by

(α · p+meβ + V (r))ψ(r) = Eψ(r), (2.6)

where c denotes the speed of light, ψ(r), again, the resulting wave function and E
the energy eigenvalue. α and β are 4× 4 matrices in the form

αi =

(
0 σi
σi 0

)
β =

(
1 0
0 −1

)
(2.7)

with σi being the Pauli matrices.
To solve the Dirac equation, we can separate the radial and angular dependence of
the wave function

ψ(r) =

(
1
r
G(r)Ωκm(Θ, ϕ)

i
r
F (r)Ω−κm(Θ, ϕ)

)
. (2.8)

The angular dependency is given by the spherical spinors, defined as

Ωκm(Θ, ϕ) =
∑
m′,ms

Cj,m
l,m′;s,ms

Y m′

l (Θ, ϕ)χms , χ 1
2
=

(
1
0

)
, χ− 1

2
=

(
0
1

)
(2.9)

with the Clebsch-Gordan coefficients Cj,m
l,m′;s,ms

, the magnetic quantum number m,
the orbital quantum number l, the spin quantum number s, the total angular mo-
mentum quantum number j and a newly defined quantum number
κ = (j + 1

2
)(−1)j+l+ 1

2 .
To solve the radial dependence, we can combine Eq. (2.6) and Eq. (2.8) and deter-
mine a system of coupled differential equations

dG

dr
= −κ

r
G(r) + (E +me − V (r))F (r) (2.10)

dF

dr
=
κ

r
F (r)− (E −me − V (r))G(r). (2.11)

2.1.1 Solution for point-like nuclei

For point-like nuclei, the potential V (r) is simply the Coulomb potential like in Eq.
(2.1)

V (r) = −Zα
r
. (2.12)
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Chapter 2 – Description of bound electrons

Introducing λ =
√
m2

e − E2 and ρ = 2λr, we can solve Eq. (2.10) and Eq. (2.11)
by writing G(r) and F (r) as(

G(ρ)
F (ρ)

)
=
√
me − E2 e

1
2
ρ (ϕ1 ± ϕ2) (2.13)

and assuming ϕ1,2 to be a power series of the form

ϕ1 = ργ
∞∑
i=1

αiρ
i ϕ2 = ργ

∞∑
i=1

βiρ
i, (2.14)

where

γ =
√
κ2 − (Zα)2 (2.15)

and αi and βi are recursively defined coefficients. Inserting this into Eq. (2.10) and
Eq. (2.11) results in the expression

n− |κ|+ γ =
ZαE√
m2

e − E2
(2.16)

and by solving for E we get the Sommerfeld formula describing the eigenenergies

ESom = me

1 +
(Zα)2(

n− |κ|+
√
κ2 − (Zα)2

)2


1
2

. (2.17)

Since the wave function has to be normalised, we can determine the coefficients α0

and β0 by solving ∫ ∞

0

dr
(
F (r)2 +G(r)2

)
= 1. (2.18)

This results in the wave functions(
G(r)
F (r)

)
= r

±(2λ)3/2

Γ(2γ + 1)

√
(me ± E)Γ(2γ + n− |κ|+ 1)

4me
Zαme

λ

(
Zαme

λ
− κ
)
(n− |κ|)

ργ−1e−λr

×
((

Zαme

λ
− κ

)
1F1(−n+ |κ|, 2γ + 1; ρ)

∓(n− |κ|)1F1(1− n+ |κ|, 2γ + 1; ρ)

) (2.19)
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Chapter 2 – Description of bound electrons

with 1F1 being the hypergeometric functions defined as

1F1(a, c;x) = 1 +
a

c
x+

a(a+ 1)

c(c+ 1)

x2

2!
· · ·

=
∞∑

m=0

a(a+ 1) · · · (a+m− 1)

c(c+ 1) · · · (c+m− 1)

xm

m!
.

(2.20)

2.1.2 Solution for extended nuclei

There are different ways to model a finite-sized nucleus. We can achieve a simple
and relatively accurate model to solve the Dirac equation for extended nuclei by
assuming the charge distribution ρ(r) of a homogeneously charged sphere

ρsphere(r) =
3Ze

4πr30
Θ(r0 − r) (2.21)

with the effective radius of the nucleus r0 =
√

5
3
r2rms and the root mean square

charge radius given by

r2rms = ⟨r2⟩ =
∫
d3r r2ρ(r)∫
d3r ρ(r)

. (2.22)

This results in a potential of

V (r)sphere =


−Zα
2r0

(
3− r2

r20

)
r ≤ r0

−Zα
2r0

r > r0.
(2.23)

Following Ref. [9], we can insert this potential into Eq. (2.10) and Eq. (2.11), which
leads to two solutions for the radial wave functions. For r ≤ r0, we can again assume
a power series of the form (

G(r)
F (r)

)
= rs

∞∑
i=1

(ai ± bi)r
i. (2.24)

This results in (
G(r)
F (r)

)
= N1r

|κ|
∞∑
i=1

(
ai ± (−1)i+1 κ

|κ|
ai

)
ri (2.25)
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Chapter 2 – Description of bound electrons

with a free parameter N1 and recursively defined coefficients ai

a0 = 1 (2.26)

ai =
ai−1

(
E + 3Zα

2r0
−me(−1)i κ

|κ|

)
− Zα

2r30
ai−3

κ+ (−1)i+1 κ
|κ|(i+ |κ|)

. (2.27)

For r > r0, we can use a similar approach as in Eq. (2.13)(
G(ρ)
F (ρ)

)
=
√
me − E2 ρ

1
2 (ϕ1 ± ϕ2), (2.28)

again using ρ = 2λr. This leads to(
G(ρ)
F (ρ)

)
=

N2

κ+ meZα
λ

ρ−
1
2

√
me ± E ×

((
κ+

meZα

λ

)
Wq,γ(ρ)±Wq+1,γ(ρ)

)
(2.29)

with another free parameter N2 and the Whittaker functions defined as

Wq,γ(ρ) = e−
ρ
2ργ+

1
2

Γ(−2γ)

Γ(1
2
− γ − q)

1F1(γ − q +
1

2
, 1 + 2γ; ρ)

+
Γ(2γ)

Γ(γ − q + 1
2
)
ρ−2γ

1F1(−γ − q +
1

2
, 1− 2γ; ρ).

(2.30)

A more realistic representation of the nucleus can be achieved through the Fermi
distribution with the two-parameter form given by

ρFermi(r) = Ze
N

1 + e(r−c)/a
. (2.31)

The parameters c and a denote the half-density radius and skin thickness, respec-
tively. The latter is related to t = 4 ln 3a, which is the radial distance over which
the charge density falls from 90% to 10% of its value at r = 0. For most nuclei, the
value t ≈ 2.3fm is a good approximation [10].
The half-density radius can be described to a good approximation as

c2 =
5

3
r2rms −

7

3
a2π2. (2.32)
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Chapter 2 – Description of bound electrons

The exact value of c can then be determined by finding the root of∫∞
0
dr r4ρFermi(r)∫∞

0
dr r2ρFermi(r)

− r2rms (2.33)

near Eq. (2.32). Furthermore N denotes a normalisation constant approximately
given by

N =
3

4πc3

(
1 +

π2a2

c2

)−1

(2.34)

and can be determined exactly from the normalisation of the charge distribution.
The resulting potential was determined in Ref. [11] and is given by

V (r)Fermi = −Zα
r

[
−
(a
c

)3
S3

(
− c

a

)
+ 6

(a
c

)3
S3

(
r − c

a

)
+
r

c

[
3

2
+
π2

2

(a
c

)2
− 3

(a
c

)2
S2

(
r − c

a

)
− 1

2

(r
c

)2] ]
.

(2.35)

for x ≤ c and

V (r)Fermi = −Zα
r

− 3Zα

Kr

(a
c

)2 [r
c
S2

(
c− r

a

)
+

2a

c
S3

(
c− r

a

)]
(2.36)

for x > c with

K = 1 +
π2a2

c2
− 6

(a
c

)3
S3

(
− c

a

)
(2.37)

Si(r) =
∞∑
n=1

(−1)nenr

ni
. (2.38)

The wave functions are then determined numerically following the method described
in chapter 4.

2.2 Corrections to the energy level from QED

There are QED effects impacting the energy level in Eq. (2.17). At one-loop correc-
tions, the electron can interact with itself by emitting a virtual photon and reabsorb-
ing it. It also interacts with the nucleus by creating and annihilating particle and
anti-particle pairs. Figure 2.1 shows the two Feynman diagrams of this interaction.

In this thesis, we will focus on the second phenomenon, which is called vacuum
polarisation. To do so, we will look at the interaction between nucleus and elec-
tron nonperturbatively and instead assume a classical static external field, similar

8



Chapter 2 – Description of bound electrons

(a) Self energy (b) Vacuum polarisation

Figure 2.1: QED corrections to a bound electron, where the double line represents
the interaction with the nucleus at all orders and the wave line a virtual
photon

to solving the stationary Schrödinger or Dirac equation. We can do so by including
the interaction term

Lext(x) = eψ̄γµAµψ (2.39)

directly into the QED Lagrangian [2]

LQED+ext = −1

4
FµνF

µν + ψ̄(iγµ∂µ −me − eγµAµ)ψ − eAµψ̄γ
µψ. (2.40)

Here, Aµ is the classical external vector field representing the effects of the nucleus,
whilst Aµ is the quantum field operator of the photon. F µν = ∂µAν − ∂νAµ is the
electromagnetic field operator and γµ are the Dirac matrices defined as

γ0 = β γi = βαi. (2.41)

It can be shown that this is equivalent to describing the interaction between nucleus
and electron in the QED picture as an exchange of virtual photons, when assuming
that the nucleus is infinitely heavy. A more detailed explanation can be found in
Ref. [12].

We can then neglect all terms involving the quantum field operator Aµ and solve
the resulting Dirac equation, taking the interaction with the nucleus into account in
a nonperturbative manner. This approach is called QED in the Furry picture and
is further discussed in Ref. [13].

Qualitatively, vacuum polarisation can, therefore, be understood as an external
potential U acting on the bound electron. At first order perturbation theory, a shift
of the energy level can then be understood by U acting on the wave functions ψa,
given by

∆E(1) = ⟨ψa|U |ψa⟩. (2.42)

At higher-order perturbative effects, we will encounter infinite sums over all inter-
mediate wave functions.

9



Chapter 2 – Description of bound electrons

At second order, for example, the energy of a bound electron perturbed by an
external potential U is given by

∆E(2) =
∑

n
n ̸=a

⟨ψa|U |ψn⟩⟨ψn|U |ψa⟩
En − Ea

, (2.43)

where ψn represents all intermediate states.1 These can be both discrete and contin-
uous, making it either a sum or a normalised integral over the continuous quantum
states. In chapter 4, we will briefly outline a possibility to solve these expressions.

2.3 Corrections to the energy level for hyperfine
splitting

The Dirac equation only accounts for the binding of the electron to the nucleus. If
there are additional external fields, the energy level in Eq. (2.17) is modified. For
an external homogeneous magnetic field, this effect is already well known [10]. In
this thesis, we will focus on a spherically symmetric field leading to the so called
hyperfine splitting.

This phenomenon occurs due to a magnetic moment generated by the spin of the
nucleus µI interacting with the magnetic field caused by the rotating electron BJ

2.
The interaction Hamiltonian is given by

Hint = −µI ·BJ . (2.44)

We use J = L + S to describe the total angular momentum of the electron as
the sum of the orbital angular momentum and spin and I to describe the spin of
the nucleus. The magnetic moment of the nucleus is determined by its angular
momentum I

µI = gJµN
I

ℏ
(2.45)

with the nuclear magneton µN , defined by the elementary charge e and the proton
rest mass mp

µN =
e

2mp

(2.46)

and the g-factor of the nucleus gI , which, due to the complex nature of the nucleus,
has no accurate theoretical representation.

1In chapter 5, we will consider this expression further by looking at vacuum polarisation correc-
tions to the hyperfine splitting.

2The reversed view, where the magnetic moment of the electron interacts with the magnetic field
caused by the rotating nucleus, would be equally correct, however it’s less common.

10



Chapter 2 – Description of bound electrons

Using the magnetic potential of a point-like magnetic dipole

A(r) =
µI × r

4πr3
, (2.47)

in order to describe the interaction Hamiltonian as

Hint = e α ·A (2.48)

we then arrive at the energy shift resulting from this interaction for an electron
bound in a state |ψ⟩ as stated in Ref. [14]

∆E =⟨ψ|e α ·A|ψ⟩ (2.49)

=
e

4π
gIµN

4κ

4κ2 − 1
(F (F + 1)− I(I + 1)− j(j + 1))

×
∫ ∞

0

1

r2
Fnκ(r)Gnκ(r)dr

(2.50)

with F = |I − j|, ..., I + j.
This integral can be evaluated for point-like nuclei, resulting in the following expres-
sion

∆E = αgI
me

mp

(F (F + 1)− I(I + 1)− j(j + 1))

2j(j + 1)
mec

2 (Zα)3

n3(2l + 1)
A(Zα) (2.51)

with the “relativistic factor”

A(Zα) = n3(2l + 1)
κ(2κ(γ + n− |κ|)−N

N4γ(4γ2 − 1)
(2.52)

further defined in Ref. [15]. γ is given in Eq. (2.15) and

N =
√

(n− |κ|)2 + 2(n− |κ|)γ + κ2. (2.53)

This does not, however, account either for corrections from quantum field theory or
for nuclear properties resulting from finite nuclear size when calculating the energy
shift. For ground-state electrons in hydrogen-like ions, this can be parameterised as

∆E(1s) = ∆E
(1s)
D

(
1− δ(1s)

) (
1− ε(1s)

)
+∆E

(1s)
QED, (2.54)

where δ accounts for the finite size of the nuclear charge distribution and ε for the
finite size of the magnetisation distribution, also called the Bohr-Weisskopf correc-
tion. For hydrogen-like ions, these corrections have already been determined in
Ref. [10].

∆E
(1s)
D is the relativistic Dirac value of hyperfine splitting for point-like nuclei

and ∆E
(1s)
QFT encompasses the possible corrections from quantum field theory. In the

11



Chapter 2 – Description of bound electrons

following, we will focus specifically on leptonic and hadronic vacuum polarisation
included in the last term.
Inserting the parametrisation into Eq. (2.51) results in the following representation3

∆E =αgI
me

mp

F (F + 1)− I(I + 1)− j(j + 1)

2j(j + 1)
mec

2

× (Zα)3

n3(2l + 1)

(
A(Zα)(1− δ)(1− ε) +

α

π
εQFT

)
,

(2.55)

where the convention εQFT is used to denote QFT corrections. It can be determined
by comparing Eq. (2.50) and Eq. (2.55).

3Additionally, there would be a factor M accounting for finite nuclear mass if following the
parametrisation given in Ref. [10]. It will, however, cancel out at a later time.
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Chapter 3 – Vacuum polarisation

3 Vacuum polarisation

As mentioned before, in QED, one of the effects contributing to a shift in energy
is vacuum polarisation. It arises from the virtual photon exchanged between two
interacting particles decaying into an electron-positron pair that annihilates back
into a photon1.

(a) Free photon propagator (b) 1st order correction

Figure 3.1: Feynman diagram of a correction to the photon propagator due to vac-
uum polarisation

3.1 Modified photon propagator

Following Ref. [5], the free photon propagator in Feynman gauge is described with

iDµν(k) =
−4πgµν
k2 + iϵ

(3.1)

with the four-momentum k and the Minkowski metric tensor gµν = diag(1,−1,−1,−1).
Including the vacuum polarisation loop as shown in figure 3.1, we can write the mod-
ified photon propagator using the Feynman rules

iD′
µν(k) = iDµν(k) + iDµλ(k)

iΠλσ(k)

4π
iDσν(k) (3.2)

1This process is not restricted to just electron-positron pairs but can also happen for any particle
and antiparticle, as will be discussed later.
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with the vacuum polarisation tensor Πλσ(k)

i

4π
Πλσ(k) = −e2

∫
d4q

(2π)4
Tr
(
γλ

1

̸q −ml + iϵ
γσ

1

̸q− ̸k −ml + iϵ

)
, (3.3)

where ml denotes the mass of the particle in the loop and Tr the trace of the matrix
resulting from the additional gamma matrices in the Feynman slash notation given
by

̸q = γµqµ (3.4)

This can also be written in the simplified form

Πλσ(k) = (k2gλσ − kλkσ)Π(k2) (3.5)

with the divergent vacuum polarisation function Π(k2). After regularisation and
charge renormalisation, the divergent part is isolated and we are left with the regular
part ΠR(k2).
The modified photon propagator can then be written as

D′
µν(k) = −4πgµν

k2
− 4π

k2

(
gµν −

kµkν
k2

)
ΠR(k2). (3.6)

3.2 Uehling potential

In order to determine the energy shift, we now want to look at how the Coulomb
potential is influenced. The resulting perturbation determines the Uehling potential,
which is the shift in potential energy.
The electrostatic scalar potential of the nucleus is given by the convolution of the
modified photon propagator D′

µν(x) and current jµ(x)

A′
µ(x) =

∫
d4x

(2π)4
D′

µν(k)j
ν(k)e−ikx. (3.7)

Because of the continuity equation kνjν = 0, the term containing kµkν in Eq. (3.6)
drops out. Furthermore, the nucleus is assumed to be infinitely heavy, allowing us
to write the current as

jµ(x) = −Zeρ(x)δµ0 (3.8)

with the nuclear charge density ρ(x). Using Fourier transform we can write it in
momentum space as

jµ(k) = −2πZe δ(k0)ρ̃(k)δµ0. (3.9)
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Assuming a point-like nucleus given by ρ̃(q) = 1, we can now write the modified
Coulomb potential as

A′
0(x) = −Ze

∫
d3x

(2π)3
4π

k2
ρ̃(q)

(
1 + ΠR(−k2)

)
e−ikx

= −Ze
(

1

|x|
+

∫
d3x

(2π)3
4π

k2
ΠR(−k2)e−ikx

)
,

(3.10)

where the second term is the perturbation arising from vacuum polarisation. For an
arbitrary spherical charge distribution, the shift in potential energy, which is simply
the perturbated part of the potential multiplied with the elementary charge e, can
be written as

δV (x) =

∫
d3k

(2π)3
eik·x

(
−4πe

k2

)
ρ̃(k)ΠR(−k2). (3.11)

Solving the angular integral and redefining |x| → r and |k| → q, we are left with
[5, 16]

δV (r) = −2e

π

∫ ∞

0

dq
sin qr

qr
ρ̃(q)ΠR(−q2). (3.12)

3.3 Leptonic vacuum polarisation

The polarisation function has to be considered for both leptonic and hadronic vac-
uum polarisation. The first case can be determined analytically and is given by
[5]

ΠR
lep(−q2) =

2α

π

∫ 1

0

dβ β(1− β) ln

[
1 + β(1− β)

q2

m2
lep

]
(3.13)

with mlep being the mass of the virtual lepton in the loop.
Following Ref. [2], we can express the Uehling potential in Eq. (3.12) by expanding
the integration contour into the imaginary part. Further, if β(1−β)q2/m2

lep > 1 the
logarithm has a branch cut starting at q2 = 4m2

lep since β(1 − β) is 1/4 at most.
This results in

δV (r) = −2α

πr

∫ ∞

2m

dq
e−qr

q
ρ̃(q)Im[ΠR(−q2 ± iε)] (3.14)

with the imaginary part of the vacuum polarisation given by

Im[ΠR(−q2 ± iε)] =
α

3

√
1−

4m2
lep

q2

(
1 +

2m2
lep

q2

)
(3.15)
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since Im[ln(−x± iε)] = ±π.

3.4 Hadronic vacuum polarisation

For hadronic vacuum polarisation, a perturbative quantum chromodynamic ap-
proach fails due to the strong interaction having to be taken into account. Ef-
fectively, this means that multiple hadron pairs are already created at first order,
making it very difficult to determine the polarisation function. Another possibility
to calculate it nevertheless is a semi-empirical approach using experimental data
from e−e+ → hadrons collisions.

Following the approach in Ref. [17], we express the real part of the polarisation
function with its imaginary part. We can do this using the Kramers-Kronig relations,
which can be derived from Cauchy’s integral formula and result in

Re[ΠR
had(−q2)] =

q2

π
P

∫ +∞

−∞
dq′2

Im[ΠR
had(−q′2)]

q′2(q′2 − q2 − iε)
(3.16)

with the principal value integral P
∫ +∞
−∞ .

We can then link this to the measurable total cross section σe−e+→hadrons using the
optical theorem [18]. It can be derived from the unitary property of the scattering
matrix and roughly states that the amplitude for an initial state to turn into any
other state is proportional to the imaginary part of the process where the final state
is equal to the initial state.
In our case, this can be written as

σe−e+→hadrons(q) =
4πα

q2
Im[ΠR

had(−q2)]. (3.17)

In Ref. [19] data from multiple experiments at different energy regions of centre-of-
mass collisions was used to construct an approximate parametrisation of the polar-
isation function

Re[ΠR
had(−q2)] = Ai +Bi ln

(
1 + Ci|q2|

)
(3.18)

with the constants Ai, Bi, Ci defined for different regions of q2. For our evaluation,
we will be using an updated version of these constants, given in table 3.1.
The resulting Uehling potential is given by

δVfns(r) =− 2e

π

7∑
i=1

[∫ ki

ki−1

dq
sin qr

qr
ρ̃(q)[Ai +Bi ln

(
1 + Ci|q2|

)
]

]
. (3.19)

As stated in Ref. [6], using only the parameters of the first momentum region up
to infinity is accurate enough up to Z = 96 at least. For a point-like nucleus, the
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Table 3.1: Values for the parametrisation of the hadronic vacuum polarisation func-
tion with the mass of the Z boson mZ [20]
Region Range (GeV) Ai Bi Ci (GeV−2)
k0 − k1 0.0-0.7 0.0 0.0023092 3.9925370
k1 − k2 0.7-2.0 0.0 0.0023333 4.2191779
k2 − k3 2.0-4.0 0.0 0.0024402 3.2496684
k3 − k4 4.0-10.0 0.0 0.0027340 2.0995092
k4 − k5 10.0-mZ 0.0010485 0.0029431 1.0
k5 − k6 mZ-104 0.0012234 0.0029237 1.0
k6 − k7 104-105 0.0016894 0.0028984 1.0

Uehling potential then simplifies to

δV approx
point (r) = −2Zα

π

∫ ∞

0

dq
sin qr

qr
[B1 ln

(
1 + C1|q2|

)
]

=
2Zα

r
B1E1

(
r√
C1

) (3.20)

with the exponential integral

En(x) =

∫ ∞

1

dt
e−xt

tn
. (3.21)

For an extended nucleus the Uehling potential can be calculated by convoluting the
point-like Uehling potential with the charge distribution ρ(r) [6]

δV approx
fns (r) =

1

Zα

∫
d3x ρ(x)δV approx

point (r − x). (3.22)

Inserting the approximated potential into Eq. (3.20) and a spherically symmetric
charge distribution results in

δV approx
fns (r) = −4πeB1

√
C1

r

∫ ∞

0

dx xρ(x)D−
2 (r, x) (3.23)

with

D±
n (r, x) = En

(
|r − x|√
C1

)
± En

(
|r + x|√
C1

)
. (3.24)

Depending on the nuclear model, we can now insert Eq. (2.21) or (2.31) into ρ(x).
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4 Numerical methods

In order to perform numerical calculations, we need a way to parameterise the
wave functions through smooth and continuous curves. However, that becomes
increasingly more difficult the more intricately a curve is shaped. In the following
section, we will briefly discuss a method widely used to parameterise all kinds of
curves.

4.1 From Bézier curves to B-splines

The basis for this explanation are Bézier curves. They are generated by connecting
two points P0 and P1 with a straight line. On this line, another point A is defined,
whose position is parameterised with a value t = [0, 1]. For t = 0, A is at P0, for
t = 1 at P1 and for t = 0.5 in the middle of both points. Mathematically, this can
be written as

A = (1− t)P0 + tP1. (4.1)

If we add another point P2 and connect it to P1, we can again parameterise a point
B with the same value for t. A and B can now be connected, as well ,with another
point P, following the same parameterisation. The path this point takes when letting
t go from 0 to 1 is a smooth curve no matter where the control points P0, P1, P2 are
located. This path is called a quadratic Bézier curve and can be written in terms of
each point

A = (1− t)P0 + tP1

B = (1− t)P1 + tP2

(4.2)

P (t) = (1− t)A+ tB = P0(t
2 − 2t+ 1) + P1(−2t2 + 2t) + P2t

2. (4.3)

In this representation, the points P0 to P2 can be interpreted as vectors from an
arbitrary origin point which are then added together, whilst the polynomials de-
termine how much weight these points carry for each sector of the curve. Each of
these weights added together always add up to 1 at any given t-value. At t = 0,
the first weight is one and as t increases, the values shift across the points until the
last weight is one. In practice, there is usually another control point P3 added. By
repeating the process of connecting two points next to each other until there is only
one left, we then get the cubic Bézier curve. Using matrix notation and following
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(a) Quadratic Bézier curve (b) Cubic Bézier curve

Figure 4.1: Bézier curves (green) with their control points (black). The red dots
and the red lines connecting them demonstrate how the curve is param-
eterised at t = 0.4.

Eq. (4.3) we can write the polynomial as

P (t) =
(
1 t t2 t3

)
1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1



P0

P1

P2

P3

 . (4.4)

For more complicated curves, we can simply add more control points, however that
method quickly becomes unstable, or at least very expensive to calculate. Further-
more, the resulting curve does not pass through most points, making it difficult to
parameterise. Additionally, there is no local control since changing just one point
has an impact on the entire curve.
To solve that problem, we can simply add multiple cubic Bézier curves to each
other, forming the Bézier splines. The resulting curve can be controlled locally since
changing one control point only affects the corresponding Bézier curve. It is easier to
parameterise since it passes through every third control point and the calculations
do not get more expensive by adding more points because only one cubic Bézier
curve is sampled. The weights can also be attached to each other, resulting in the
basis function of the spline. This basis function, and thus the curve itself, is C0

continuous, however it already fails at C1 continuity. For each order of continuity
we have to introduce a constraint to the control points, which again leads to a loss
of local control.

We, therefore, need to modify the matrix in Eq. (4.4) such that the four weights
attached to each other result in a C2 continuous basis function. Taking into account
that all weights added together still have to equal one, this results in 16 boundary

19



Chapter 4 – Numerical methods

conditions. This allows us to solve for the 16 unknowns in the matrix, resulting in

P (t) =
(
1 t t2 t3

) 1
6


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1



P0

P1

P2

P3

 . (4.5)

The resulting spline is called a B-spline (Basis-spline). An example can be seen in
figure 4.2, where one control point was changed in order to illustrate its local effect
on the adjacent curve segments. We can see that, in general, the spline does not go
through the control points any more, but it is still C2 continuous and there is local
control.

When using the spline in calculations it is usually defined through its order K,
which, in our case so far, has been 3 and the number of control points N . We have,
therefore, generated a way to describe the wave functions using only certain control
points.

Figure 4.2: B-spline of order K = 3 with N = 17 control points with one control
point changed for comparison (plot has been created in Matlab [21])

4.2 The Dirac equation in a finite basis set

The radial Dirac equation, given by Eq. (2.6), can be written as

Hϕ = Eϕ, (4.6)

where ϕ is the vector of the radial functions G(r) and F (r) and

H =

(
V +me c

(
κ
r
− d

dr

)
c
(
κ
r
+ d

dr

)
V −me

)
. (4.7)
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Given any vector ϕ, the Dirac equation can then be derived by variation of the
action

S(ϕ) = ⟨ϕ|H|ϕ⟩ − E⟨ϕ|ϕ⟩ (4.8)

if G(r) and F (r) hold proper boundary conditions.
Following Ref. [22], let us consider such a system confined to a spherical cavity of
radius Rcav. This imposes boundary conditions on the wave function at r = 0 and
r = Rcav, making it possible for us to describe it solely discretely.
We can, therefore, approximate ϕ by a finite linear combination of basis vectors ui
satisfying the boundary conditions and coefficients ci given by

ϕ(r) =
2N∑
i=1

ciui(r). (4.9)

We can substitute this into Eq. (4.8) and, since solutions to the Dirac equation are
stationary points of the action, the variation of the action reduces to

dS

dci
= 0, i = 1, 2, ..., 2N. (4.10)

This can be written as

A · c = E B · c (4.11)

with the components of the 2N × 2N matrices A and B

Aij =
⟨ui|H|uj⟩+ ⟨uj|H|ui⟩

2
(4.12)

Bij = ⟨ui|uj⟩. (4.13)

Solving Eq. (4.11) results in eigenvalues Ei and coefficients c(i).1
This means that the radial wave functions can now be approximated numerically by
the vector of coefficients c(i), and corrections to these wave functions can also be
described as corrections to the coefficients.
Eq. (2.43) can now be solved by writing it as

∆E = ⟨ψa|U |δψa⟩ (4.14)

with

|δψa⟩ =
∑

n
En ̸=Ea

⟨ψn|U |ψa⟩
En − Ea

|ψn⟩. (4.15)

1For i = 1, ..., N , the negative continuum is approximated and for i = N + 1, ..., 2N , the positive
continuum and the bound states are approximated.
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Assuming a spherically symmetric potential, only the radial part of this corrected
wave function is influenced since the relativistic angular momentum and magnetic
quantum numbers are preserved. As discussed above, this correction can then be de-
scribed entirely by correcting the coefficients. We are now left only with determining
the basis functions ui(r), which we will achieve through B-splines.

4.3 Calculations using B-splines

In order to calculate the basis vectors ui(r) introduced in Eq. (4.9), we first have to
mathematically describe B-splines using the definitions described in Ref. [22, 23].

First, the values for t now go through [t0, tN+K ] instead of [0, 1] and, to follow
convention, we will rename t→ r.
The equation for the B-spline functions at control point i are denoted recursively
with the function of order one defined as

Bi1(r) =

{
1, ti ≤ r < ti+1

0, otherwise
(4.16)

and the following functions of order K defined as

BiK(r) =
r − ti

ti+K−1 − ti
Bi,K−1(r) +

ti+K − r

ti+K − ti+1

Bi+1,K−1(r). (4.17)

This means that BiK vanishes outside of the intervals ti ≤ r < ti+K , which is why
we have local control over the curve. For our calculations, the knots ti are chosen
such that t1 = ... = tK = 0 and tN+1 = ... = tN+K = Rcav.

Following Ref. [22], the so-called dual kinetic balance (DKB) approach is used,
which allows a description of extended nuclei without the occurrence of spurious
states. It describes a basis set given by

ui(r) =

(
Bi(r)

1
2me

(
d
dr

+ κ
r

)
Bi(r)

)
i = 1, ..., N (4.18)

ui(r) =

(
1

2me

(
d
dr

− κ
r

)
Bi−N(r)

Bi−N(r)

)
i = N + 1, ..., 2N. (4.19)

The resulting radial wave functions, expressed by b-spline basis functions are given
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by

Gnκ(r) =
N−1∑
i=2

[
ci(nκ)Bi(r) +

cN+i(nκ)

2me

(
B′

i(r)−
κ

r
Bi(r)

)]
(4.20)

Fnκ(r) =
N−1∑
i=2

[
ci(nκ)

2me

(
B′

i(r)−
κ

r
Bi(r)

)
+ cN+i(nκ)Bi(r)

]
. (4.21)

Our calculations where then performed by modifying the code introduced in [24].
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5 Second-order corrections

So far, we have regarded hyperfine splitting and vacuum polarisation as two distinct
corrections to the energy level.

At first order, the energy shift resulting from both effects can be denoted as

∆E(1)
nκ = ⟨ψnκ|VUeh|ψnκ⟩+ ⟨ψnκ|Vmag|ψnκ⟩. (5.1)

However, at second order, one has to regard their interaction as well.
There are two different ways the effects can interact which can be seen in figure

5.1, where vacuum polarisation either impacts the wave function or changes the
magnetic potential directly.

(a) Correction to the wave function (b) Correction to the potential

Figure 5.1: Second order corrections to the energy level of a bound electron (rep-
resented by the double line) regarding hyperfine splitting and vacuum
polarisation.1

5.1 Correction to the wave function

In the first case, the wave function directly interacts with both the Uehling potential
and the magnetic potential. At second order, we can, therefore, write the energy

1In this case the circle represents both leptonic and hadronic vacuum polarisation
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shift as

∆E
(2)
1s = 2

∑
n′

n̸=n′

⟨ψnκ|VUeh|ψn′κ⟩⟨ψn′κ|Vmag|ψnκ⟩
Enκ − En′κ

(5.2)

with a factor 2, due to an identical contribution with the potentials interchanged.
Due to the spherically symmetrical nature of the magnetic potential, the integral
over the angular components can be evaluated similarly to Eq. (2.55), therefore
allowing us to write it as

∆E
(2)
1s = 2

∑
n′

n ̸=n′

⟨ψnκ|VUeh|ψn′κ⟩
Enκ − En′κ

(
−2αgI(F (F + 1)− I(I + 1)− j(j + 1))

3mp

)

×
∫ ∞

0

dr
1

r2
(Fn′κ(r)Gnκ(r) +Gn′κFnκ).

(5.3)

Comparing both equations, we are left with

m2
e(Zα)

3α

π
εVP = −

∑
n

n′ ̸=n

⟨ψnκ|VUeh|ψn′κ⟩
Enκ − En′κ

∫ ∞

0

dr
1

r2
(Fn′κ(r)Gnκ(r) +Gn′κFnκ). (5.4)

As stated in Eq. (4.14), we can write the right-hand side of this expression as

−⟨ψnκ|VUeh|δψmag⟩, (5.5)

where we have pulled the sum into the expression δψmag. It describes the magnet-
ically disturbed wave function and for point-like nuclei, following the derivation in
Ref. [25], it can be written as

δψmag =

(
iXmag(r)Ωκm

−Ymag(r)Ωκm

)
. (5.6)

A more detailed explanation as well as an analytic expression for X(r) and Y (r)
can be found in Appendix B. For extended nuclei, the method discussed in chapter
4 is used.
By solving the angular integration, we can describe the correction to the energy shift
as

εwf,pl = −π
α

∫
drVUeh(r) (Gnκ(r)Xmag(r) + Fnκ(r)Ymag(r))

m2
e(Zα)

3
. (5.7)

For extended nuclei, we calculate the correction numerically using B-splines. The
approach is similar, however the perturbated wave function is computed with the

25



Chapter 5 – Second-order corrections

Uehling potential as the perturbation potential U in Eq. (4.15)

∆E(2)
nκ := 2⟨ψnκ|δVmag|δψUeh⟩. (5.8)

The correction to the energy level can then be determined analogously to Eq. (5.7)
with

εwf,fns = −π
α

∫
drVmag(r) (Gnκ(r)XUeh(r) + Fnκ(r)YUeh(r))

m2
e(Zα)

3
. (5.9)

5.2 Correction to the magnetic potential

Now, we regard the correction to the magnetic potential. In momentum space we can
write the modified potential simply as a multiplication of the polarisation functions
determined in Eq. (3.15) and (3.18) and the magnetic potential of the hyperfine
structure

AML(q) = ΠR(−q2)A(q) (5.10)

with the index ML denoting the magnetic loop corrected potential and [10]

A(q) = − i

(2π)3
µI × q

q2
. (5.11)

The resulting potential is then determined by introducing the Fourier transform

AML(r) =

∫
d3q

(2π)3
eiqrΠR(−q2)(−i)µI × q

q2
. (5.12)

Following Ref. [26], we can now use the fact that

i∇se
−iqs|s=0 = q (5.13)

and write the potential as

AML(r) = −iµI ×
(
i∇s

∫
d3q

(2π)3
eiq(r−s)Π

R(−q2)
q2

)∣∣∣∣
s=0

. (5.14)

For leptonic vacuum polarisation, this was determined in Ref. [26] to be

AML,lep(r) = A(r)
2α

3π

∫ ∞

1

dz

√
1− 1

z2

(
1 +

1

2z2

)
1

z
e−2mrz(2mrz + 1). (5.15)
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In case of hadronic vacuum polarisation, we can carry out the angular integration
in Eq. (5.14) resulting in∫

d3q

(2π)3
eiq(r−s)Π

R(q2)

q2
=

1

2π2R

∫ ∞

0

dq
sin qR

q2
ΠR(−q2) (5.16)

with R = |R| = |r − s| and q = |q|. Following Eq. (3.20), we can write Eq. (5.14)
as

AML,had(r) = −iµI ×
(
i∇s

B

2πR

∫ ∞

1

dt
e

R√
C
t

t

)∣∣∣∣
s=0

. (5.17)

This, we can now solve and by renaming R → r we get

AML,had(r) = A(r)2B

(
e
− r√

C + E1

(
r√
C

))
. (5.18)

As we can see from Eq. (5.15) and (5.18), we can simply introduce a factor FML(r)
to account for the magnetic loop

AML(r) =
µI × r

4πr3
FML(r). (5.19)

Since this factor is spherically symmetric the angular integration stays the same and
Eq. (2.50) can be written as

∆EML =
e

4π
gIµN

4κ

4κ2 − 1
(F (F + 1)− I(I + 1)− j(j + 1))

×
∫ ∞

0

dr
1

r2
Gnκ(r)Fnκ(r)FML(r),

(5.20)

resulting in the energy correction of

εpot,fns =
π

α

∫
dr 1

r2
Gnκ(r)Fnκ(r)FML(r)

m2
e(Zα)

3
. (5.21)

This correction was calculated for the bound electron’s wave functions of point-like,
sphere and Fermi distributed nuclei.

5.3 Results
Using the atomic radii listed in appendix A, we can now calculate the values of ε
for corrections to the wave function (wf) and the magnetic potential (mag) in case
of point-like nuclei (pl) and extended nuclei (fns) for the discussed nuclear models
(sphere, fermi). The uncertainty of the given values arises from the uncertainty of
the rms radius of the isotopes. The results can be seen in table 5.3.
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Table 5.1: Electronic vacuum polarisation corrections for 1s states.
Z εwf,pl

el εpot,plel εwf,fns
el,sphere εwf,fns

el,fermi εpot,fns
el,sphere εpot,fns

el,fermi Refs.
1 0.0087703 0.0085579 0.0086376(11) 0.0084255(12)

0.0087691 0.0085578 [10]
0.0087703 0.0085578 [27]

2 0.01781815 0.0170486 0.01736232(63) 0.01659564(62)
0.017817 0.017049 [10]

4 0.0366463 0.0338856 0.0353555(50) 0.0354155(54) 0.0326152(49) 0.0326751(53)
0.036645 0.033886 [10]

5 0.046415 0.042257 0.044833(26) 0.044913(29) 0.040708(26) 0.040787(28)
0.046414 0.042257 [10]
0.0464153 0.0422566 [27]

10 0.0989572 0.0840724 0.0949078(23) 0.0950343(24) 0.0802593(21) 0.0803801(22)
0.098955 0.084072 0.094922 0.080275 [10]
0.0989572 0.0840724 [27]

25 0.3068919 0.2192739 0.2887396(81) 0.2890727(84) 0.2051510(64) 0.2054255(66)
0.3068919 0.2192738 [27]

44 0.794009 0.458597 0.706157(25) 0.707029(26) 0.409936(15) 0.410497(15)
0.7065 0.4102 [10]

63 2.04367 0.91404 1.59915(42) 1.60183(30) 0.74805(18) 0.74932(12)
1.59 0.73 [10]

70 3.04459 1.21160 2.17126(49) 2.17517(46) 0.93193(17) 0.93360(18)
83 7.43667 2.24726 4.03804(52) 4.04772(52) 1.45440(15) 1.45768(15)

4.038 4.05 1.455 1.46 [10]
92 16.9325 3.92182 6.3778(13) 6.3956(14) 2.01655(33) 2.02169(33)

6.377 2.016 [10]

Table 5.2: Muonic vacuum polarisation corrections for 1s states.
Z εwf,pl

mu εpot,plmu εwf,fns
mu,sphere εwf,fns

mu,fermi εpot,fns
mu,sphere εpot,fns

mu,fermi
1 0.00004162 0.000041604 0.00001655(10) 0.000016543(98)
2 0.000083427 0.000083359 0.000021298(28) 0.000021269(28)
4 0.00016827 0.00016786 0.00003060(13) 0.00003413(17) 0.00003049(13) 0.00003402(18)
5 0.00021161 0.00021086 0.00003968(74) 0.00004460(97) 0.00003951(72) 0.00004442(98)
10 0.000444046 0.000438598 0.000067984(43) 0.000073562(54) 0.000067246(43) 0.000072809(54)
25 0.00151814 0.001413614 0.00017115(10) 0.00018059(12) 0.000164787(94) 0.00017410(11)
44 0.00573678 0.00458894 0.00038522(18) 0.00039987(20) 0.00035179(17) 0.00036593(18)
63 0.0283835 0.0174905 0.0009377(20) 0.0009676(14) 0.0007954(17) 0.0008233(13)
70 0.0579742 0.0312626 0.0012740(18) 0.0013098(20) 0.0010441(15) 0.0010769(17)
83 0.2880179 0.1119933 0.0026262(17) 0.0026961(18) 0.0020019(13) 0.0020633(14)
92 1.1990217 0.3390947 0.0043050(36) 0.0044087(38) 0.0030906(26) 0.0031785(28)

Table 5.3: Hadronic vacuum polarisation corrections for 1s states.
Z εwf,pl

had εpot,plhad εwf,fns
had,sphere εwf,fns

had,fermi εpot,fns
had,sphere εpot,fns

had,fermi
1 0.00005931 0.00005930 0.00001385(11) 0.00001384(11)
2 0.000118901 0.000118827 0.000015720(24) 0.000015700(24)
4 0.000239897 0.0002394018 0.000021458(99) 0.00002462(15) 0.000021386(99) 0.00002455(15)
5 0.00030178 0.00030085 0.00002793(56) 0.00003242(84) 0.00002781(57) 0.00003230(84)
10 0.000634961 0.0006276924 0.000046964(32) 0.000051587(43) 0.0000464885(32) 0.000051104(42)
25 0.002215687 0.002066843 0.000116714(70) 0.000123978(84) 0.000112649(69) 0.000119854(82)
44 0.00883423 0.00708513 0.00026054(13) 0.00027125(14) 0.00023910(12) 0.00024956(13)
63 0.0477348 0.0294996 0.0006323(13) 0.0006538(10) 0.0005407(12) 0.00056110(91)
70 0.1017223 0.0550071 0.0008576(13) 0.0008830(14) 0.0007090(11) 0.0007327(12)
83 0.5559891 0.21670903 0.0017666(12) 0.0018158(13) 0.00136180(92) 0.0014062(10)
92 2.5102986 0.7112905 0.0028925(25) 0.0029648(26) 0.0021021(18) 0.0021652(19)
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For point-like nuclei and small charge numbers, we can use approximate formulas
to compare to our results similar to [28]. We do so by first approximating the free
and magnetically perturbated radial wave functions in the lowest order of Zα, as
well as their product

G(r) ≈ r2(meZα)
3
2 e−meZαr,

F (r) ≈ 0,

Xmag(r) ≈ G(r),

G(r)F (r) ≈ −2m3
e(Zα)

4e−2λr.

(5.22)

Inserting these expressions into Eq. (5.7) and Eq. (5.21) results in the same expres-
sion. For leptonic VP, it is given by

εlep,pl
approx =

3

8
πZα

me

mlep

, (5.23)

to which our results for electronic VP coincide within the first digit up until Z = 5
for the corrected wave function and Z = 25 for the corrected magnetic potential.
For muonic VP, it coincides up until Z = 25 in both cases. For hadronic VP, it is
given by

εhad,pl
approx = 8πmeZB

√
C, (5.24)

coinciding within the first digit up until Z = 4.
In table 5.5, the differences between the different nuclear models are listed, illus-

trating that the results are extremely sensitive to the nuclear model used.
It was expected that the solutions for point-like nuclei would differ more with in-
creasing Z. However, for muonic and hadronic vacuum polarisation there is already
a discrepancy in the first digit between point-like and fns solutions. This suggests
that the vacuum polarisation itself might already take place within the nucleus, or
at least be significantly closer to it, than when considering corrections due to a
homogeneous external field. This is further supported when considering table 5.8,
where the values for 2s electrons are listed. Here, the effect, whilst still notable, is
not as prominent anymore since the 2s electrons are further away from the nucleus.
These results, therefore, show that when considering hyperfine effects, it is necessary
to have a better understanding of the nuclear model.

It is also interesting to consider 2s states, given in table 5.8, since they can be a
first approximation for lithium-like systems, where there are two electrons occupying
the 1s state and one electron in the 2s state. The 1s electrons shield the effect of the
nucleus to some extent, allowing us to treat the external electron in a lithium-like
system with nuclear charge number Z like a 2s electron in a hydrogen-like system
with nuclear charge Z−2. When calculating these 2s states, we have to account for
a factor of 8 due to Eq. (2.55) being proportional to 1/n3.

However, as seen with the effect different nuclear models had on the results, this
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Table 5.4: Dependence on the nuclear model for corrected wave function.
Z ∆εpl−sphere

el ∆εpl−sphere
mu ∆εpl−sphere

had ∆εfermi-sphere
el ∆εfermi-sphere

mu ∆εfermi-sphere
had

1 0.0001327(11) 0.00002507(10) 0.00004546(11)
2 0.00045583(63) 0.000062129(28) 0.000103181(24)
4 0.0012908(50) 0.00013767(13) 0.000218439(99) 0.000060(10) 0.0000035(34) 0.00000320(25)
5 0.001582(26) 0.00017193(74) 0.00027385(56) 0.000080(55) 0.0000049(17) 0.0000046(14)
10 0.0040494(23) 0.000376062(43) 0.000587997(32) 0.0001275(47) 0.000005587(97) 0.000004629(75)
25 0.0181523(81) 0.00134699(10) 0.002098973(70) 0.000333(17) 0.00000944(22) 0.00000727(15)
44 0.087852(25) 0.00535156(18) 0.00857369(13) 0.000872(51) 0.00001465(38) 0.00001071(27)
63 0.44452(42) 0.0274458(20) 0.0471025(13) 0.00268(72) 0.0000299(34) 0.0000215(23)
70 0.87333(49) 0.0567002(18) 0.1008647(13) 0.00391(95) 0.0000358(38) 0.0000254(27)
83 3.39863(52) 0.2853917(17) 0.5542225(12) 0.0097(10) 0.0000699(35) 0.0000492(25)
92 10.5547(13) 1.1947167(36) 2.5074061(26) 0.0178(27) 0.0001037(74) 0.0000723(51)

Table 5.5: Dependence on the nuclear model for corrected potential.
Z ∆εpl−sphere

el ∆εpl−sphere
mu ∆εpl−sphere

had ∆εfermi-sphere
el ∆εfermi-sphere

mu ∆εfermi-sphere
had

1 0.0001324(12) 0.000025061(98) 0.00004546(11)
2 0.00045296(62) 0.000062091(28) 0.000103127(24)
4 0.0012704(49) 0.00013737(13) 0.0002180161(99) 0.000060(23) 0.00000353(31) 0.00000315(63)
5 0.001549(26) 0.00017135(72) 0.00027304(57) 0.000079(83) 0.0000049(27) 0.0000045(26)
10 0.0038131(21) 0.000371352(43) 0.0005812039(32) 0.0001208(43) 0.000005563(97) 0.000004616(90)
25 0.0141229(64) 0.001248827(94) 0.001954194(69) 0.000275(13) 0.00000932(20) 0.00000721(15)
44 0.048661(15) 0.00423715(17) 0.00684603(12) 0.000561(30) 0.00001414(35) 0.00001046(15)
63 0.16599(18) 0.0166951(17) 0.0289589(12) 0.00127(30) 0.0000279(30) 0.0000204(21)
70 0.27967(17) 0.0302185(15) 0.0542981(11) 0.00167(35) 0.0000328(32) 0.0000237(23)
83 0.79286(15) 0.1099914(13) 0.21534723(92) 0.00328(30) 0.0000614(27) 0.0000444(19)
92 1.90527(33) 0.3360041(26) 0.7091884(18) 0.00514(66) 0.0000879(54) 0.0000631(37)

simplification might as well be very inaccurate. Similarly to the g-factor, we would
also need to consider interactions between the 1s and 2s electrons and all possible
combinations in which the Uehling potential might interact in such a case. Fur-
thermore, we would also have to consider all the possibilities in which the magnetic
potential interacts with the 1s electrons. In case of the g-factor, these terms cancel
each other out because the absolute value of the energy shift for the spin up and spin
down electron is the same. However, for hyperfine splitting, that is not the case,
leading to five additional Feynman diagrams that have to be considered arising from
the different places the Uehling potential can interact.

30



Chapter 5 – Second-order corrections

Table 5.6: Electronic vacuum polarisation corrections for 2s states.
Z εwf,pl

el εpot,plel εwf,fns
el,sphere εwf,fns

el,fermi εpot,fns
el,sphere εpot,fns

el,fermi
1 0.0087480 0.00856350 0.0086153(11) 0.0084312(11)
2 0.01773110 0.01707253 0.01727519(63) 0.01661945(62)
4 0.0363164 0.0339916 0.0350248(50) 0.0350848(54) 0.0327203(49) 0.0327802(27)
5 0.045914 0.042430 0.044330(26) 0.044101(28) 0.040880(56) 0.040959(28)
10 0.0972437 0.0849339 0.0931777(23) 0.0933049(24) 0.0811029(21) 0.0812243(23)
25 0.3024963 0.2282650 0.2838533(83) 0.2841949(86) 0.2137208(66) 0.2140035(68)
44 0.824157 0.508624 0.728278(28) 0.729229(28) 0.455278(16) 0.455892(17)
63 2.35860 1.11359 1.82183(51) 1.82506(35) 0.91259(21) 0.91413(15)
70 3.70526 1.54155 2.59865(58) 2.60361(59) 1.18673(21) 1.18884(21)
83 10.18887 3.14582 5.39983(73) 5.41345(75) 2.03183(21) 2.03643(22)
92 25.5485 5.94539 9.3306(20) 9.3579(21) 3.03565(49) 3.04347(50)

Table 5.7: Muonic vacuum polarisation corrections for 2s states.
Z εwf,pl

mu εpot,plmu εwf,fns
mu,sphere εwf,fns

mu,fermi εpot,fns
mu,sphere εpot,fns

mu,fermi
1 0.000041619 0.000041606 0.000016552(96) 0.000016440(81)
2 0.000083440 0.000083375 0.000021300(28) 0.000021273(28)
4 0.00016839 0.00016799 0.00003062(13) 0.00003415(18) 0.00003051(13) 0.00003404(17)
5 0.00021185 0.00021111 0.00003972(72) 0.00004464(97) 0.00003956(72) 0.0000445(10)
10 0.000446079 0.000440673 0.000068249(44) 0.000073853(55) 0.000067575(43) 0.000073164(54)
25 0.00156307 0.001455928 0.00017587(10) 0.00018558(12) 0.000169803(98) 0.00017940(12)
44 0.00628753 0.00503132 0.00042069(20) 0.00043675(22) 0.00038607(18) 0.00040158(20)
63 0.0343610 0.0211769 0.0011307(24) 0.0011669(18) 0.0009641(21) 0.0009979(43)
70 0.0735303 0.0396513 0.0016097(23) 0.0016551(25) 0.0013255(19) 0.0013671(21)
83 0.4044851 0.1572363 0.0036796(24) 0.0037776(25) 0.0028103(18) 0.0028964(20)
92 1.8299643 0.5173064 0.0065634(55) 0.0067213(59) 0.0047049(40) 0.0048385(43)

Table 5.8: Hadronic vacuum polarisation corrections for 2s states.
Z εwf,pl

had εpot,plhad εwf,fns
had,sphere εwf,fns

had,fermi εpot,fns
had,sphere εpot,fns

had,fermi
1 0.00005931 0.00005930 0.00001385(11) 0.00001384(11)
2 0.000118921 0.000118850 0.000015721(25) 0.000015704(25)
4 0.00024007 0.00023958 0.00002147(10) 0.00002464(15) 0.00002140(10) 0.00002457(15)
5 0.00030213 0.00030120 0.00002795(57) 0.00003245(83) 0.00002785(57) 0.00003234(84)
10 0.000637911 0.000630653 0.000047148(32) 0.000051793(43) 0.000046716(32) 0.000051353(42)
25 0.002281580 0.002128635 0.000119937(72) 0.000127417(86) 0.000116077(70) 0.000123497(85)
44 0.00968381 0.00776779 0.00028454(14) 0.00029629(15) 0.00026240(13) 0.00027386(14)
63 0.0577908 0.0357159 0.0007625(17) 0.0007885(12) 0.0006554(15) 0.0006801(11)
70 0.1290163 0.0697652 0.0010836(16) 0.0011158(17) 0.0009001(14) 0.0009302(15)
83 0.7807174 0.3042536 0.0024752(16) 0.0025442(17) 0.0019118(13) 0.0019740(14)
92 3.8305248 1.0851223 0.0044098(38) 0.0045200(40) 0.0032003(28) 0.0032962(30)
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6 Summary and Outlook

In this thesis, we investigate QED effects on the bound electron in the presence
of hyperfine splitting. In particular, we have calculate the effect of leptonic and
hadronic vacuum polarisation on the energy level of a 1s and 2s electron bound to
a nucleus generating a magnetic field.

In chapters 2 and 3, we present the theoretical framework necessary for this thesis.
In chapter 2, we introduce the Dirac equation and discuss how a finite nucleus influ-
ences the resulting wave functions. We discuss how QED effects need to be treated
in the framework of a bound electron and introduce the perturbative expressions
used to determine our results. We explain the effect of hyperfine splitting and intro-
duce the convention used to parameterise the shift in energy when considering the
previously mentioned QED corrections. In chapter 3, we explain both leptonic and
hadronic vacuum polarisation in more detail and introduce the Uehling potential as
the perturbative potential acting on the energy level. For hadronic VP, we intro-
duce a semi-empirical approach, allowing us to get an expression of the polarisation
tensor without the difficulties a QCD approach would entail.

In chapter 4, we introduce the numerical methods used to calculate the QED
corrections. We motivate the use of splines due to their computational simplicity
and easy way to be implemented and controled. In particular, we consider the use of
B-splines over splines such as the Bézier spline by showing that they meet the criteria
necessary to describe the radial wave functions since they are C2 continuous. Using a
finite basis set approach to the Dirac equation, we link B-splines to the perturbative
expressions that are used to determine our results.

In chapter 5, we distinguish between the two possibilities in which the magnetic
potential and the Uehling potential could act on the wave function at second order
and derive the specific expressions for the convention introduced in chapter 2. This
results in

εwf,fns = −π
α

∫
drVUeh(r) (Gnκ(r)Xmag(r) + Fnκ(r)Ymag(r))

m2
e(Zα)

3
, (6.1)

εwf,pl = −π
α

∫
drVUeh(r) (Gnκ(r)Xmag(r) + Fnκ(r)Ymag(r))

m2
e(Zα)

3
(6.2)

for the correction to the wave function and

εpot,fns =
π

α

∫
dr 1

r2
Gnκ(r)Fnκ(r)FML(r)

m2
e(Zα)

3
(6.3)
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for the correction to the magnetic potential.
These expressions are evaluated using the numerical methods discussed in chapter 4
for multiple nuclei. The results coincide well within literature values, as well as with
the approximate formulas for small, point-like nuclei. They show that the effect of
both leptonic and hadronic VP is greater than the uncertainty of the radius, making
them relevant for future measurements. However, as mentioned before, the nuclear
model considerably changes the results. It is, therefore, necessary to understand
the nucleus better in order to be able to perform high-precision experiments for
hyperfine splitting. In turn, this also means that we might be able to further our
understanding of the nucleus by studying hyperfine structure. Assuming the nucleus
to follow the Fermi model, it might, at some point, be possible to use experimental
data of the energy shift to determine more accurate descriptions for the nuclear
parameters.

Following this work, there are many future calculations that can be done. Firstly,
in addition to the calculations for 2s electrons, one can also consider the interactions
that would take place in lithium- and boron-like ions. It would be interesting to
consider how the nuclear model impacts the energy level of the 2s electron in that
case. These results could also be used to determine the fine-structure constant when
compared to hydrogen-like ions. Furthermore, it might be possible to find a new
expression for the Uehing potential of hadronic VP using only QCD. Repeating these
calculations with the new Uehling potential might lead to different results, which
would indicate an interesting discrepancy.

33



Chapter A – List of isotopes used

A List of isotopes used

Table A.1: Isotopes and their radii [29]
Nuclear charge Z Mass number A Rrms(fm) ∆R(fm)

1 1 0.8783 0.0086
2 4 1.6755 0.0028
4 9 2.5190 0.0120
5 10 2.4277 0.0499
10 20 3.0055 0.0021
25 55 3.7057 0.0022
44 104 4.5098 0.0020
63 145 4.9663 0.0091
70 176 5.3215 0.0062
83 209 5.5211 0.0026
92 238 5.8571 0.0033
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Chapter B – Virial relations for the Dirac equation

B Virial relations for the Dirac
equation

A different way to write the magnetically perturbated wave function in Eq. (5.5) is
to write it as ∑

n′
n ̸=n′

|ψn′κ⟩⟨ψn′κ|σ1/r2|ψnκ⟩
Enκ − En′κ

. (B.1)

Following Ref. [25], we want to evaluate this expression using the virial theorem.
For a non-relativistic particle moving in a central field V (r), the theorem relates the
average value of the kinetic energy ⟨T ⟩ to the field with the equation

⟨T ⟩ = 1

2
⟨rdV
dr

⟩. (B.2)

For a relativistic particle moving in a central field V (r), the theorem states

E = ⟨mβ⟩+ ⟨rdV
dr

⟩+ ⟨V ⟩ (B.3)

where E denotes the bound state energy. In case of the Coulomb field, this is
simplified to

E = ⟨mβ⟩. (B.4)

Using the notation introduced in Eq. (B.1), we can write the Hamiltonian as

Hκ = −iσ2
d

dr
+
κ

r
σ1 +mσ3 + V 1. (B.5)

With the eigenvalues Enκ and taking into account the self-adjointness of Hκ, we can
write the equations

⟨n′κ|(HκQ−QHκ|nκ⟩ = (En′κ − Enκ)⟨n′κ|Q|nκ⟩ (B.6)
⟨n′κ|(HκQ+QHκ|nκ⟩ = (En′κ + Enκ)⟨n′κ|Q|nκ⟩ (B.7)

with Q = rs, iσ2r
s, σ3r

s, σ1r
s and an integer s.

We can apply these equations to average values of physical quantities, i.e. using the
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Hellmann-Feynman theorem

∂Enκ

∂κ
= ⟨ψnκ|

∂Hκ

∂κ
|ψnκ⟩ = ⟨ψnκ|

σ1
r
|ψnκ⟩. (B.8)

After some calculations, we then arrive at the expressions

Xmag =
1

a2 + b

(
a

r
F (r) +

2aκ

r
F (r) +

b

r
G(r)− b

κ
F (r)(ESom +m)

−a
3κm

4N3γ
G(r)

)
−
a
(
2ESom − m

κ

)
a2 + b

G̃(r)

(B.9)

Ymag =
1

a2 + b

(
a

r
G(r)− 2aκ

r
G(r)− b

r
F (r)− b

κ
G(r)(−ESom +m)

−a
3κm

4N3γ
F (r)

)
−
a
(
2ESom − m

κ

)
a2 + b

F̃ (r)

(B.10)

(B.11)

with γ as defined in Eq. (2.15), the unperturbated energy for point-like nuclei ESom

defined in Eq. (2.17) and

N =
√

(γ + n− |κ|)2 + (Zα)2, a = 2Zα, b = 1− 4κ2. (B.12)

Following are formulas in case of point-like nuclei for the expression [25]

∂

∂κ
|nκ⟩ =

(
G̃ns(r)

F̃ns(r)

)
(B.13)

for 1s states

G̃1s(r) =
k√
1− γ

e−
t
2
tγ
(
ψ(2γ + 1)

γ
+ γ + 1− 1

2γ
− t

2
− ln t

γ

)
(B.14)

F̃1s(r) =− k√
1 + γ

e−
t
2
tγ
(
ψ(2γ + 1)

γ
+ γ + 1 +

1

2γ
− t

2
− ln t

γ

)
(B.15)

with the derivative ψ(x) = d
dx

ln Γ(x), the gamma-function Γ(x) and

t =
2αZmr

N
, k =

(2αZ)
2
3m

1
2

2
√

2Γ(2γ + 1)
(B.16)
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and for 2s states

G̃2s(r) = k′e−
t
2
tγ

√
2 +N

N2 − 2

[
t2

2(N − 1)

−
(
2N4 − 4N3 + 5N2 − 3N + 2

2N(N − 1)2
+

2ψ(2γ + 1)

N − 1

)
t

+
N4 − 2N3 +N − 2

2(N − 1)
+ 2Nψ(2γ + 1) +

2

N − 1
t ln t− 2N ln t

] (B.17)

F̃2s(r) =− k′e−
t
2
tγ

√
2−N

N2 − 2

[
t2

2(N − 1)

−
(
2N4 − 2N3 +N2 + 3N − 2

2N(N − 1)2
+

2ψ(2γ + 1)

N − 1

)
t

+
N5 + 5N2 − 8N − 4

2N(N − 1)
+ 2(N + 2)ψ(2γ + 1)

+
2

N − 1
t ln t− 2(N + 2) ln t

]
(B.18)
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N

) 1
2
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