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Stackelberg Pricing is Hard to Approximate within2− ǫ

Parinya Chalermsook∗ Bundit Laekhanukit† Danupon Nanongkai‡

Abstract

Stackelberg Pricing Games is a two-level combinatorial pricing problem studied in the Economics,
Operation Research, and Computer Science communities. In this paper, we consider the decade-old
shortest path version of this problem which is the first and most studied problem in this family.

The game is played on a graph (representing a network) consisting of fixed costedges andpricable
or variable costedges. The fixed cost edges already have some fixed price (representing the competitor’s
prices). Our task is to choose prices for the variable cost edges. After that, a client will buy the cheapest
path from a nodes to a nodet, using any combination of fixed cost and variable cost edges.The goal is
to maximize the revenue on variable cost edges.

In this paper, we show that the problem is hard to approximatewithin 2− ǫ, improving the previous
APX-hardness result by Joret [to appear inNetworks]. Our technique combines the existing ideas with a
new insight into the price structure and its relation to the hardness of the instances.

1 Introduction

A newly startup company has just acquired some links in a network. The company wants to sell these links
to a particular client, who will buy a cheapest path from a node s to a nodet. However, this company is
not alone in the market: there are other companies already inthe market owning some links with some
fixed prices. The goal of this new company is to price its linksto maximize its profit, having the complete
knowledge of the network and knowing that the client will buythe cheapests-t path (which may consist of
links from many companies). Of course, if they price a link too high, the client will switch to other links
and if they price a link too low then they unnecessarily reduce their profit.

This problem is called theStackelberg Shortest Path Game(STACKSP) and can be defined formally as
follows. We are given a directed graphG = (V,E), a source vertexs and a sink vertext. The setE of edges
is partitioned into two sets:Ef , the set offixed cost edges, andEv, the set ofpricableor variable costedges.
Each edgee in Ef already has some pricep(e). Our task is to set a pricep(e) to each variable cost edgee.
Once we set the price, the client will buy a shortest path froms to t (i.e., a pathP such that

∑

e∈P p(e) is
minimized). Our goal is to maximize the profit; i.e., maximize

∑

e∈P∩Ev
p(e) whereP is the path bought

by the client. Throughout, we letm denote the number of variable cost edges. It is usually assumed that if
there are many shortest paths, the client will buy the one that maximizes our profit.

Due to its connection to road network tolling and bilevel programming, there is an enormous effort
in understanding the problem by means of bilevel programming [24, 12, 14, 19, 21, 20, 13, 4], finding
polynomial-time solvable cases [24, 29, 18, 27, 10, 3, 6], solving the problem by heuristics [16, 15], and
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approximating the solution [26, 6, 23, 28]. In this paper, wefocus on approximability of this problem. In
this realm, STACKSP is the first and the most studied problem in the growing family of one-follower (i.e.,
one client) Stackelberg network pricing games [26, 6, 23, 28, 2, 8, 9, 5].

The Stackelberg pricing problems belong to the class of two-player two-level optimization problems
which is a subclass of the bilevel linear programming. Theseproblems have a rather strange structure,
and this makes the standard approximation techniques such as linear programming seemingly inapplicable.
For example, a natural LP formulation for STACKSP (and also another version called STACKMST) has an
integrality gap ofΩ(logm). Moreover, by using the most (and probably the only) naturalupper bound for
OPT, one cannot obtain approximation factor better thanO(logm) [26], so the line of attacks considered
in [26] and [6] cannot be pushed any further.

Proving the hardness of this problem seems to have an equallybig obstacle. In fact, the progress on the
hardness side for the family of Stackelberg pricing problems stops at small constant hardness (APX-hardness
in [23, 8] and onlyNP-hardness in [2]). Moreover, a reduction from Unique Coverage problem [11], which
proved useful for many pricing problems (including STACKSP with multiple followers) apparently does not
apply here. In particular, for STACKSP, onlyNP-hardness, strongNP-hardness, andAPX-hardness (with
a constant as small as1.001) are shown [24, 26, 23]. In fact, even for approximating the general bilevel
program, only the constant ratio can be ruled out [17, 22].

We believe that an improvement to upper or lower bound of the problem might shed some light on
approximating a larger subclass of bilevel programs, perhaps generating a new set of techniques for attacking
the whole family of Stackelberg problems. (The problem seems to require a new technique due to its bizarre
behavior.)

Our result and techniques In this paper, we give the first result beyond a very small constant hardness:

Theorem 1.1. For anyǫ > 0, it is NP-hard to approximateSTACKSPto within a factor of2− ǫ.

The key insight in obtaining this result comes from exploring the structure of the edge prices which
was not exploited in the previous inapproximability results [24, 26, 23]: The previous results encode the
constraints in the constraint satisfaction problems (Max 3SAT in their cases) using certain gadgets and
glue these gadgets together in a uniform way (i.e., using thesame edge price throughout). However, we
study the influence of non-uniform prices to the hardness of the resulting instances. In particular, we study
how the prices of the fixed cost edges affect the hardness of the gadgets and found an optimal price which
strikes a balance between being too high (which could hugelyreduce the revenue but is easy to avoid) and
too low (which is likely to be used but do not affect the revenue much). This observation, armed with a
stronger constraint satisfaction problem (i.e., Raz verifier forMax 3SAT(5) ) and a right parameter of price,
leads to a(2 − ǫ)-hardness of approximation. The techniques above are strong enough that the hardness
result is obtained with only a slight modification of the gadgets. However, due to the non-uniformity of
the prices, a more sophisticated analysis is required. In particular, our analysis relies on a technique called
Path Decompositionwhich breaks the shortest path in the optimal solution into subpaths with manageable
structure. We will be able to get deeper into the intuition after we describe the hardness construction in the
next section.

Related work

STACKSP is first proposed by Labb́e et al. [24] who also derive a bilevel LP formulation of the problem and
proveNP-hardness. On the algorithmic side, Roch et al. present the first, and still the best, approximation
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algorithm which attainsO(logm) approximation factor. AnotherO(logm) approximation algorithm is
obtained by Briest et al, which has a slightly worse approximation guarantee (larger constant in front of
logm term) but is simpler and applicable to a much richer class of Stackelberg pricing problems. Even
though the algorithm of Briest et al. does not rely on the specific problems’ structures, it remains unclear
whether one can exploit a special structure of each problem to improve the approximation ratio.

Another interesting problem in the family of one-follower Stackelberg network games isStackelberg
Minimum Spanning Trees Game(STACKMST) in which the client aims to buy the minimum spanning tree
instead of the shortest path. Cardinal et al. [8] introduce this problem and prove that it isAPX-hard but has
anO(logm) approximation algorithm. Very recently, they consider thespecial cases of planar and bounded-
treewidth graphs [9] and prove that even in such graph classes, STACKMST remainsNP-hard. There are
also many other variations in the family of Stackelberg games, depending on what the client wants to buy.
This includes vertex cover [6, 5], shortest path tree [2], and knapsack [5].

Among the known approximation algorithms, the most universal one is anO((1+ǫ) logm)-approximation
algorithm invented by Briest et al. [6]. This elegant algorithm works on a large class of problems, including
STACKSP and STACKMST and is coupled with a simple analysis. In the same paper, the case ofk clients is
also considered. AnO((1+ ǫ)(logm+log k))-approximation algorithm is given, and the problem is shown
to be hard to approximate withinO(logǫm+ logǫ k) for some largek. Therefore, the gap is almost closed
in the case of many clients while left wide open whenk is small (e.g.k is constant, and particularly when
k = 1).

In Economics and Operation Research literature, STACKSP is also known as a tarification problem.
Many special cases are considered and polynomial-time algorithms are given for this problem [24, 29, 18,
27, 10, 3, 6]. It is also sometimes called a bilevel pricing problem due to its connection to the bilevel linear
program. (See a formulation in, e.g., [24].) STACKSP is also heavily studied from this perspective [24, 12,
14, 19, 21, 20, 13, 4]. Approximating a solution of bilevel program to within any constant factor is shown
to beNP-hard [22, 17]. Unfortunately, these reductions do not extend to the family of Stackelberg games
due to specific structures of the constraints used in the reduction of [22, 17]. For more details, we refer the
readers to [28, 13, 17] and references therein.

Remark Recently Briest and Khanna [7] discover a similar result to ours using a different approach. They
show that STACKSP is hard to approximate within a factor of2− o(1).

Organization Our construction is a reduction from Raz verifier forMax 3SAT(5) . We first give an
overview of Raz verifier in Section 2. We then describe our reduction in Section 3 before we are able to
give more intuition behind the construction and its analysis. This will be done in Section 4. We then show a
formal analysis in Section 5.

2 Raz Verifier

Our reduction uses the Raz verifier forMax 3SAT(5) with ℓ repetitions. We explain this framework in this
section. The given instance ofMax 3SAT(5) is a 3CNF formula withn variables and5n/3 clauses where
each clause contains exactly3 different literals, and each variable appears in exactly5 different clauses.

Let ǫ be a constant and letϕ be an instance ofMax 3SAT(5) . Thenϕ is called a YES-INSTANCE if there
is an assignment that satisfies all the clauses, and it is called a NO-INSTANCE if any assignment satisfies at
most(1− ǫ)-fraction of the clauses. The following is a form of the PCP theorem.
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Theorem 2.1. There is a constantǫ : 0 < ǫ < 1, such that it is NP-hard to distinguish betweenYES-
INSTANCE andNO-INSTANCE of theMax 3SAT(5) problem.

Raz verifier forMax 3SAT(5) with ℓ repetitions is a two-provers one-round interactive proof system.
The verifier sends one query to each prover simultaneously. The first prover is asked for an assignment
to the variables in the given clauses while the second proveris asked for an assignment of the variables
that satisfies all the given clauses. The verifier will acceptthe answers if and only if both provers return
consistent assignments. The detailed description of the provers-verifier actions is as follows.

• The verifier first choosesℓ clauses, sayC1, . . . , Cℓ, independently and uniformly at random (with re-
placement). Next, choose one variable in each of these clauses uniformly at random. Letx1, . . . , xℓ
denote the resulting (not necessarily distinct) variables.

• The verifier generates a queryq consisting of the indices ofC1, C2, . . . , Cℓ and a queryq′ consisting of
the indices ofx1, x2, . . . , xℓ. The verifier then sendsq andq′ to Prover 1 and Prover 2, respectively.

• Prover 1 returns an assignment to all variables associated with clausesC1, C2, . . . , Cℓ.

• Prover 2 returns an assignment to variablesx1, x2, . . . , xℓ.

• The verifier reads the assignment received from both proversand accepts if and only if the assignments
are consistent and satisfyC1, C2, . . . , Cℓ.

Intuitively, for the YES-INSTANCE, both provers can ensure that the verifier always accepts by returning
the satisfying assignments to the prover. On the other hand,any provers’ strategy fails with high probability
in the case of NO-INSTANCE. This is an application of the Parallel Repetition Theorem and Theorem 2.1
and can be stated formally as follows.

Theorem 2.2( [25, 1]). There exists a universal constantα > 0 (independent ofℓ) such that

• If ϕ is a YES-INSTANCE, then there is a strategy of the provers that makes the verifier accepts with
probability 1.

• If ϕ is a NO-INSTANCE, for any provers’ strategy, the verifier will accept with probability at most2−αℓ.

In our reduction, we view Raz verifier as the following constraint satisfaction problem. We have two
sets of queries,Q1 andQ2, corresponding to all possible queries sent to Prover 1 and Prover 2, respectively.
That is,Q1 consists of all possible choices ofℓ clauses sent to Prover 1 (hence,|Q1| = (5n/3)ℓ) andQ2

consists of all possible choices ofℓ variables sent to Prover 2 (hence|Q2| = nℓ). For eachq ∈ Q1 ∪ Q2,
let A(q) denote the set of all possible answers toq. Notice that|A(q)| = 7ℓ if q ∈ Q1 (since there are7
ways to satisfy each of theℓ clauses given to Prover 1) and|A(q)| = 2ℓ if q ∈ Q2 (since there are 2 possible
assignment to each of theℓ variables given to Prover 2). Denote byA1 andA2 the set of all possible answers
by Prover 1 and Prover 2, respectively.

We denote the set of constraints byΦ. Each constraint inΦ corresponds to a pair(q1, q2) of queries sent
by the verifier. That is, for each random stringr of the verifier, there is a constraint(q1, q2) ∈ Q1 × Q2 in
Φ whereq1 andq2 are queries sent to Prover 1 and Prover 2 respectively. A constraint (q1, q2) is satisfied
if and only if the assignments toq1 andq2 are consistent. For convenience, we will treatΦ as the set of
all possible random strings, and we denote, for each random string r, the corresponding queries byq1(r)
andq2(r) respectively. Note that each queryq ∈ Q1 is associated with3ℓ constraints inΦ and each query
q′ ∈ Q2 with 5ℓ constraints. Moreover, letM = |Φ|. We haveM = (5n)ℓ. The goal of this problem is to
find an assignmentf : Q1 → A1,Q2 → A2 that maximizes the number of satisfied constraints inΦ.
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The following corollary can be directly obtained from Theorem 2.2.

Corollary 2.3. If ϕ is a YES-INSTANCE, then there is an assignment toQ1 ∪ Q2 such that all constraints
in Φ are satisfied. Otherwise, no assignment satisfies more than2−αℓ-fraction of the constraints inΦ.

3 The Reduction

Let ǫ > 0 be a constant from Theorem 1.1. Recall that we want to prove(2− ǫ)-hardness of approximation.

Overview Starting with an instanceϕ of Max 3SAT(5), we first perform the two-prover protocol with
ℓ = ⌈log(3/ǫ)/α⌉ rounds, and we enumerate all possible constraints inΦ. Next we transformΦ to an
instance of the Stackelberg problem in two steps, as follows. In the first step of the reduction, we order the
constraints inΦ to get a(δ, γ)-far sequence(see Section 3.1). In the second step, we convert such sequence
to an instance of the Stackelberg problem, denoted byG, using the construction explained in Section 3.2.

3.1 Obtaining (δ, γ)-far sequence

Definition 3.1. ((δ, γ)-far constraint sequence) Consider a sequence of all possible constraintsr1, . . . , rM in
Φ. A constraintri is said to beδ-far if for everyj : i < j ≤ i+ ⌈δM⌉, q1(ri) 6= q1(rj) andq2(ri) 6= q2(rj).
The sequencer1, . . . , rM is said to be(δ, γ)-far if at least(1− γ)-fraction of constraints isδ-far.

We can obtain(δ, γ)-far sequence with the right parameter for our purpose usingprobabilistic arguments.

Theorem 3.2. For any ℓ ≥ 1, δ > 1/M and γ ≥ (8δ)5ℓ, there is a polynomial-time algorithmA that
outputs a(δ, γ)-far sequence.

Proof. We present a randomized algorithm here. In Appendix, we derandomize it to the desiredA by the
method of conditional expectation. Letr1, r2, . . . , rM be the constraints. LetA′ be an algorithm that picks
random a permutationπ : [M ] → [M ]. We claim that the sequencerπ(1), . . . , rπ(M) is (δ, γ)-far with
probability at least1/2.

To prove the above claim, consider each constraintri. Let J = {j ∈ [M ] : q1(rj) = q1(ri) or q2(rj) =
q2(ri)}. Notice that|J | ≤ 3ℓ +5ℓ < 2 · 5ℓ because there are3ℓ constraintsrj in Φ with q1(rj) = q1(ri) and
5ℓ constraintsrj in Φ with q2(rj) = q2(ri). For each suchj ∈ J , the probability that|π(i)−π(j)| ≤ ⌈δM⌉
is at most2δ. By applying the Union bound for all suchj ∈ J , the probability thatrπ(i) is not δ-far is at
most(4δ)5ℓ ≤ γ/2. The expected number of constraints that are notδ-far is at mostγM/2, so by Markov’s
inequality, the sequence is(δ, γ)-far with probability at least1/2, and the claim follows.

3.2 The Construction

Given a (δ, γ)-far sequence of constraintsr1, . . . , rM , we construct an instance of STACKSP as follows.
For each constraintri, construct a gadgetGi containing sourcesi, destinationti, and a set of intermediate
vertices{uai , v

a
i }a∈A(q1(ri))

. There are2 · 7ℓ such intermediate vertices (since|A(q1(ri))| = 7ℓ).

Recall that, for each answera ∈ A(q1(ri)), there exists a unique consistent answera′ ∈ A(q2(ri)).
In other words, for eacha ∈ A(q1(ri)) there exists a uniquea′ ∈ A(q2(ri)) such that(a, a′) satisfies the
constraintri. From now on, we will useπi to denote the function that maps eacha ∈ A(q1(ri)) to its
consistent answera′ ∈ A(q2(ri)). Therefore, each pair ofuai , v

a
i corresponds to a pair of possible answer

(a, πi(a)) that satisfiesri.

Edges in each gadgetGi are the following.
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Figure 1: Example of graphG constructed fromMax 2SAT (x1∨x2)∧ (x1∨x3) with ℓ = 1 repetition. Each gadgetGi is noted
with the corresponding constraintsri and each variable edgeua

i v
a
i is noted with the corresponding answer from Prover 1. Note

that the corresponding answer from Prover 2 can be identifiedeasily. (For example, an edgeu(10)
1 v

(10)
1 corresponds to assigning

x1 = 1 andx2 = 0. Therefore, Prover 2’s corresponding answer foru
(11)
1 v

(11)
1 is x1 = 1.) The bigger picture is in Appendix.

• Fixed cost edges:There is a fixed cost edge of cost1 from si to ti. There are also fixed cost edges of
cost0 from si to each ofuai , and from each ofvai to ti.

• Variable cost edges:There is a variable cost edge fromuai to vai for eacha ∈ A(q1(ri)).

Now we link all the gadgets together. First, for all1 ≤ i < M , we create a fixed cost edge of cost0
from ti to si+1. We denote the source of instances = s1 and the sinkt = tM (i.e., we want to buy a shortest
path froms1 to tM ).

Next, we add another set of fixed cost edges, calledshortcuts, whose job is to put constraints between
pairs of edges that represent inconsistent assignment. We only have shortcuts betweenfar gadgets. (Gadget
Gi is called afar gadget if its corresponding constraintri is a δ-far constraint.) Consider any pair of far
constraintsri, rj for i < j such thatri shares a query withrj; i.e., eitherq1(ri) = q1(rj) or q2(ri) = q2(rj).
If q1(ri) = q1(rj), we add a shortcut fromvaii to u

aj
j for every pair ofai ∈ A(q1(ri)) andaj ∈ A(q1(rj))

such thatai 6= aj . For the case whenq2(ri) = q2(rj), we add a shortcut fromvaii to u
aj
j for every pair of

ai, aj such thatπi(ai) 6= πj(aj). We define the cost of this shortcut to be(j − i)/2.

This completes the hardness construction. It is easy to see that the instance size is polynomial (for
completeness, we add the proof in Appendix).

4 Intuition and Overview of the Analysis

Before we move on to the analysis, we explain the intuition behind the hardness construction in the previous
section and the analysis in the next section.

NP-hardness First, let us understand what happens when we apply the construction in Section 3.2 to Raz
verifier’sΦ without applying AlgorithmA (cf. Section 3.1) to get a(δ, γ)-far sequence; in other words, the
sequence of constraints is arbitrary.

We use the following example to convey the idea. Consider aMax 2SAT instance with three variables
x1, x2, x3 and two clausesC1 = (x1 ∨ x2) andC2 = (x1 ∨ x3). (For the sake of simplicity, we consider
an instance ofMax 2SAT instead ofMax 3SAT.) The constraints of the Raz verifier withℓ = 1 repetition
arer1 = (C1, x1), r2 = (C1, x2), r3 = (C2, x3), andr4 = (C2, x1). If we construct the graphG from the
sequence of constraintsr1, r2, r3, r4 according to the construction in Section 3.2 then we will getthe graph
G as in Figure 1.

Consider any pricingp and letP be the corresponding shortest path froms to t. We classify the shortcuts
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whose both endpoints are inP into two types, edges that arecontainedin P and edges that areinducedby
P , as follows.

Definition 4.1. We say thatP containsan edgee if e is an edge onP , and we say thatP inducese if e is
not an edge onP but both end vertices ofe are onP . We say thatP involvese if P contains or inducese.

Observe that ifP involves no shortcuts then we can construct a satisfying assignment fromP . For
example, a paths1u

(11)
1 v

(11)
1 t1s2u

(11)
2 v

(11)
2 t2s3u

(10)
3 v

(10)
3 t3s4u

(10)
4 v

(10)
4 t4 involves no shortcuts and could be

converted to an assignmentx1 = 1, x2 = 1 andx3 = 0. Conversely, a satisfying assignment ofΦ can also
be converted to a solution (a price function) with respect towhich the corresponding shortest path involves
no shortcut edges. Moreover, observe that ifP involves no shortcuts then we can get a revenue ofM by
setting price of all variable edges to1 and we always get a revenue less thanM otherwise. The following
observation follows:Φ has a satisfying assignment if and only if there is a solutionthat gives a revenue
of M in the corresponding graphG. This observation, along with the reduction fromMax 3SAT, already
lead to theNP-hardness of STACKSP. This is in fact the essential idea used in the previous hardness results
[26, 23].

Beyond NP-hardness To extend the above idea to a constant-hardness, we further observe an effect of
the shortcuts on the revenue. In particular, we observe thatif there are many “parts” of the shortest path that
either contain or induce too many shortcuts then the revenuecan be essentially at mostM/2. To be more
precise, let us first make the following two observations.

First, observe that ifP contains shortcutse1, e2, ..., ek, for somek, with costsc1, c2, ..., ck then we can
collect a revenue of at mostM −

∑k
i=1 ci from P . This is because there is a path of lengthM from s to

t and, for eachi, once edgeei with fixed costci is used, the revenue onP decreases byci. For example,
the pathP1 = s1u

(11)
1 v

(11)
1 u

(10)
2 v

(10)
2 t2s3u

(10)
3 v

(10)
3 u

(11)
4 v

(11)
4 t4 contains two shortcutsv111 u102 andv103 u114

of cost of1/2 each. Therefore, any solution in which such path is the corresponding shortest path gives a
revenue of at most4− 1/2− 1/2 = 3.

Secondly, consider whenP induces a shortcut edgee′ from gadgetGi to gadgetGj with costc′ and, for
some reason, the edges in the gadgetsGi andGj can have price at most1 each. Then we can collect a revenue
of roughlyM−(j− i)+c′+2. This is because we cannot collect more thanc′+2 on the subpath ofP from

gadgetGi to gadgetGj . For example, consider a pathP2 = s1u
(11)
1 v

(11)
1 t1s2u

(11)
2 v

(11)
2 t2s3u

(01)
3 v

(01)
3 t3s4u

(01)
4 v

(01)
4 t4

which induces a shortcutv(11)1 u
(01)
4 of cost1. For a pricing thatP2 is the shortest path, we can collect a

revenue of at most3 for the following reason. First, we can collect at most1 from edgeu(11)1 v
(11)
1 because

edges1t1 would be used otherwise. Similarly, we can collect at most1 from edgeu(01)4 v
(01)
4 . Moreover, we

can collect at most1 from u
(11)
2 v

(11)
2 andu(01)3 v

(01)
3 altogether because the shortcutv

(11)
1 u

(01)
4 would be used

otherwise.

In summary, the observations above imply that a shortcut from gadgeti to gadgetj (either contained or
induced) causes the revenue on the subpath from gadgetGi to gadgetGj to be bounded by(j − i)/2 + 2.

The role of (δ, γ)-far sequence Before we proceed to show the consequence of these observations, we
would like to eliminate the effect of the the constant “+2” inthe bound of the revenue above since it will
be an obstacle in the analysis. In particular, to get the factor of 2 hardness, we would like to say that we
can get a revenue of roughly(j − i)/2 and somehow conclude that the graph reduced from NO-INSTANCE

gives a revenue of at mostM/2. (Recall that we can get a revenue ofM in YES-INSTANCE.) However, the
constant +2 is a problem whenj − i is small.
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We eliminate the above effect in a straightforward way: instead of including the shortcuts for every
constraint, we consider only the shortcuts with large cost(j − i)/2. The problem is, when we throw
away some constraints, the constraint satisfaction problem becomes easier, and we should be able to satisfy
more fraction of the constraints. We do not want this to happen. We want to somehow make sure that by
neglecting a particular set of “bad” constraints, the soundness parameter does not grow by much. Roughly
speaking, Section 3.1 shows that we can get the desired properties while the soundness parameter remains
comparatively small. In particular, we lose an additive factor of γ in the soundness parameter. (Please refer
to Section 3.1 for more details.)

Getting 2-approximation hardness Now that we can eliminate the effect of the constant +2, let ussee
how we can use the above two observations to conclude the 2-approximation hardness. Intuitively, the two
observations above imply that if the shortest pathP involves many shortcuts then the revenue we can collect
onP is essentially at mostM/2. To prove this intuitive assertion, we argue in the next section that we can
always decomposeP into three types of paths – paths that look likeP1, paths that look likeP2 and paths that
can be converted to the solution forΦ such that the number of satisfied constraints is equal to the number of
variable cost edges in such paths altogether. This decomposition needs to be carefully designed to maintain
the properties of the three types of paths and will be elaborated in Section 5.3.

Using the above decomposition and the fact that paths of the first two types give a revenue of at most
half of their lengths, we conclude that the revenue is at mostM/2 + c wherec is the number of edges in
the paths of the third type. Using the fact thatΦ is (δ, γ)-far, we conclude thatc is at most(γ + ǫ/3)M
whereǫ is the constant as in Theorem 1.1. By considering large enough n (and thus, large enough|Φ|) and
choosing an appropriate value ofδ andγ so thatc ≤ ǫM , we have that the revenue is at most(1/2 + ǫ)M .
This implies the gap of2− ǫ, and Theorem 1.1 thus follows. We formalize these ideas in the next section.

5 Analysis

Now we prove Theorem 1.1 using the reduction in Section 3. Recall thatǫ is a constant as in Theorem 1.1
and we letℓ = ⌈log(3/ǫ)/α⌉ (whereα is as in Theorem 2.2),δ = (ǫ/10)5−ℓ andγ = ǫ/3. It follows that
the soundness parameter of the Raz verifier is2−αℓ ≤ ǫ/3. (I.e., if ϕ is a NO-INSTANCE, then at mostǫ/3
fraction of constraints inΦ can be satisfied.)

In this section, we show that when the size ofϕ (denoted byn) is large enough, the reduction gives a
(2− ǫ)-gap between the case whenϕ is satisfiable and when it is not. In particular, in section 5.1, we show
that ifϕ is satisfiable, then there is a price function that collects arevenue ofM . Moreover, in Section 5.2 we
show that ifϕ is not satisfiable andn is large enough, there is no pricing strategy which collectsa revenue
of more than(1/2 + ǫ)M . The value ofn will be specified in Section 5.2.

5.1 YES-INSTANCE

Let f : Q1 → A1,Q2 → A2 be an assignment that satisfies every constraint inΦ. For gadgetGi corre-
sponding to the variableri, set price1 to the edge fromuai to vai for a = f(q1(ri)). Other variable cost
edges inGi are assigned the price of∞. We now show that we can collect a revenue ofM in this case.

Let P be the shortest path on this graph with respect to the above pricing. Notice that pathP does not
contain any shortcut since a shortcut only goes between two edges that represent inconsistent assignments.
(I.e., if there is a shortcut fromvaii to u

aj
j on P then eitherai is not consistent withaj or πi(ai) is not

consistent withπj(aj). Specifically, eitherq1(ri) = q1(rj) andai 6= aj , or q2(ri) = q2(rj) andπi(ai) 6=
πj(aj). However, this is impossible since ifq1(ri) = q1(rj) thenai = aj = f(q1(ri)) and, similarly, if
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q2(ri) = q2(rj) thenπi(ai) = πj(aj) = f(q2(ri)).)

Since the shortcut is not used, the length ofP is exactlyM . Moreover, observe that the path that uses
all variable edges of price 1 also has lengthM . This path is a shortest path and gives a total revenue ofM .

5.2 NO-INSTANCE

We assume for contradiction that there is a pricing functionwhich collects a revenue of(1/2 + ǫ)M . Let p
be such pricing function and letP be the corresponding shortest path. Our goal is to constructan assignment
that satisfies more thanǫM/3 constraints inΦ. This will contradict the soundness parameterǫ/3 of the Raz
verifier.

Definition 5.1. A subpathQ ⊆ P is said to be asource-sink subpathof P if it starts at some sourcesi and
ends at some sinktj for i ≤ j. For any source-sink subpathQ, denote bys(Q) andt(Q) the gadget index
to which the source and sink ofQ belong respectively.

Now, letQ be any source-sink subpath and letsi andtj be its source and sink, respectively. LetS =
{Q1, . . . , Qk} be a set of source-sink subpaths of pathQ. We say thatS is asource-sink partition of path
Q if s(Q1) = i, t(Qk) = j, and for allp < k, we havet(Qp) + 1 = s(Qp+1).

The following theorem is the key idea to proving the result.

Theorem 5.2(Path Decomposition). Let p : Ev → R+ ∪ {0} be the optimal pricing of the variable edges
and P be the corresponding shortest path in the graph. Then we can find setsR and R′ such that the
following properties hold.

D1. R ∪R′ is a source-sink partition ofP .
D2. The total revenue collected from edges on paths inR′ is at mostM/2 + O(1/δ). In other words,

∑

e∈Ev∩(
S

P∈R′ P ) p(e) ≤ M/2 +O(1/δ).

D3. The price of any variable cost edge inR is at most1. That is,p(e) ≤ 1 for anye ∈ Ev ∩ (
⋃

P∈R P ).
D4. There is no shortcut between any two variable cost edges in R.

We defer the proof of this theorem to the next section. Meanwhile we show how the theorem implies
that we can construct an assignment that satisfies more thanǫ/3 fraction of the constraints inΦ, thus a
contradiction to the soundness parameter. First, we consider only whenn is sufficiently large so that we can
collect at mostM/2 + O(1/δ) < M/2 + ǫM/3 from edges inR′ (from Property D2). Consequently, at
least2ǫM/3 must be collected from edges inR.

Let E′ be the set of all variable cost edges that lie on some paths inR. From Property D3, we have
|E′| ≥ 2ǫM/3. Let F ⊆ E′ be the set of edges inE′ that lie in far gadgets. Recall that we have at most
ǫM/3 gadgets that are not far (after we run an algorithmA in Theorem 3.2), so|F | ≥ ǫM/3.

We are now ready to describe how we get an assignment that satisfies a large fraction of constraints in
Φ. For each edgee ∈ F , edgee can be written asuaii vaii for some gadgeti. We assign the answera for
queryq1(ri) andπi(a) for queryq2(ri). This assignment satisfies the constraintri. This process satisfies at
leastǫM/3 constraints corresponding to the edges inF provided that there is no conflict in assignment.

We argue that there is no such conflict since there is no shortcut between the edges inF . I.e., assume
that the above process creates a conflict assignment to the same queryq. This means that there are two
constraintsri, rj ∈ Φ for i < j with q = q1(ri) = q1(rj) or q = q2(ri) = q2(rj) and such queryq was
assigned different answersai andaj when processing gadgetsi andj. Since bothri andrj are far gadgets,
by construction, there must be a shortcut between two verticesvaii andu

aj
j . This contradicts the fact that

there is no shortcut inR.
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5.3 Proof of Theorem 5.2

Consider any source-sink subpathQ. Since there is a fixed-cost path of lengtht(Q)− s(Q) + 1 from ss(Q)

to tt(Q), the revenue collected onQ is at mostt(Q) − s(Q) + 1, which will be denoted bylen(Q). We let
rev(Q) be the revenue collected on subpathQ, i.e. rev(Q) =

∑

e∈Q∩Ev
p(e). First, observe the following

lemma whose proof is simple and is deferred to Appendix.

Lemma 5.3. If S = {Q1, . . . , Qk} is a source-sink partition ofQ, then
∑k

j=1 len(Qj) = len(Q).

We now explain the decomposition of the shortest pathP (from Theorem 5.2) into several source-sink
subpaths. Each subpath is contained in one of the setsR, S andT . In the end, we letR′ in the Theorem 5.2
equal toT ∪ S. The composition consists of two phases. We next describe each phase and prove the
properties in Theorem 5.2 along the way.

In the first phase, our goal is to make sure thatR contains only source-sink subpaths that do not contain
any shortcut. Initially, we setR, S, andT to R = {P}, andS = T = ∅. We then remove the portion of
pathsP which contains the shortcut edges and add them to setS. We ensure that paths are always cut into
source-sink subpaths. In particular, we do the following.

Phase 1: Initially, R = {P} andT = S = ∅. While there exists a pathP ′ ∈ R that contains a shortcut
edge, do the following. Letvv′ be any shortcut edge. Letsi be the last source vertex that appears beforev
in P ′ and lettj be the first sink vertex that appears afterv′ in P ′. We note thati, j denote the gadget indices
to which the vertices belong. First removeP ′ from R. Denote byQ the source-sink subpath ofP ′ from si
to tj . We breakP ′ into three (possibly empty) source-sink subpathsQl, Q, andQr; (i) Ql starts ats(Q)
and ends at vertexti−1, (ii) Q starts and ends atsi andtj, respectively, and (iii)Qr starts attj+1 and ends at
t(Q). We then addQ to S and addQl, Qr back toR.

Consider the setR′ = S ∪ T . We show that, after this phase, the output satisfies properties D1,
D2, and D3. After the second phase, property D4 will be satisfied while other properties remain to hold.
Observe that property D1 holds simply because the way we break pathP ′ guarantees thats(Ql) = s(P ′),
t(Ql) + 1 = s(Q), t(Q) + 1 = s(Qr), andt(Qr) = t(P ′). The next two lemmas prove properties D3 and
D2.

Lemma 5.4(Property D3). After Phase 1,p(e) ≤ 1 for any variable edgee ∈ Ev that belongs to some path
Q in R.

Proof. Since pathQ does not contain shortcuts, verticessi andti lie onQ for all s(Q) ≤ i ≤ t(Q). Recall
that edgee can be written in the formuaj v

a
j for somej anda ∈ A(q1(ri)). If p(e) > 1, we can obtain a path

shorter thanP by using the fixed cost edgesjtj of cost1 instead ofsjuajv
a
j tj . This contradicts the fact that

P is a shortest path.

Lemma 5.5(Property D2). After the first phase, the revenue inR′ = S ∪ T is at mostM/2 +O(1/δ). In

particular,
∑

Q∈S rev(Q) ≤ 1
2

(

∑

Q∈S len(Q)
)

+O(1/δ).

Proof. We will need the following claim.

Claim 5.6. For each pathQ ∈ S, we haverev(Q) ≤ (len(Q) + 1)/2.
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Proof. Consider pathQ ∈ S from si to tj. Recall that there is a path of lengthlen(Q) in G from si to tj,
so the total cost ofQ is at mostlen(Q). It is, therefore, sufficient to prove that the total cost of the shortcuts
contained inQ is at least(len(Q)− 1)/2. The way we construct paths inS guarantees that pathQ must be
of the form

si → ua1i1 ⇒ va1i1 → ua2i2 ⇒ va2i2 → . . . ⇒ v
aq
iq

→ tj

wherei1 = i, iq = j, and edges of the formuaxix ⇒ vaxix are the variable cost edges, from which we can
collect a revenue. Other edges of the formvaxix → u

ax+1

ix+1
, for 1 ≤ x < q, are shortcuts. Hence the total cost

of shortcuts can be written as a telescopic sum,
∑q−1

x=1

(

ix+1−ix
2

)

= (j − i)/2 = (len(Q)− 1)/2.

By the claim,
∑

Q∈S rev(Q) ≤
∑

Q∈S (len(Q)/2 + 1/2) ≤ 1
2

(

∑

Q∈S len(Q)
)

+|S|/2. It then suffices

to bound the size of setS by O(1/δ). Notice that each path inS contains at least one shortcut. Recall that,
by the construction (cf. Section 3.2), each shortcut only goes fromvai to ua

′

j if |j − i| ≥ δM . Since the
intervals in the set{[s(Q), t(Q)] : Q ∈ S} are disjoint (by definition of source-sink partition), we can have
at mostO(1/δ) paths inS.

This completes the description and the proof of Phase 1. Now every path inR contains no shortcut.
In phase 2, our goal is to eliminate the shortcuts between paths inR. (Note that these shortcuts are not
contained inP .) Roughly speaking, we scan the gadgets from left to right and once we find such shortcut,
we move the whole path that induces this shortcut to the setT . The detail is as follows.

Phase 2: Initially, we haveR andS from Phase 1, andT = ∅. We proceed in iterations starting from
iteration1. The description of iterationi is as follows:

• We first check if sourcesi belongs to some path inR. If not, we proceed to iterationi+ 1.

• If si does belong to any pathQ in R, we do the following. We check if there is a shortcut (that is not
contained inQ) leaving from some vertexvaii onQ to some vertexu

aj
j on some pathQ′ ∈ R. Note that

Q andQ′ may be the same. LetP ′ ⊆ P be the source-sink subpath fromsi to tj. We first remove from
R andS, all pathsQ′′ such thatQ′′∩P ′ 6= ∅. LetQl be the source-sink subpath ofQ with s(Ql) = s(Q)
andt(Ql) = s(P ′)− 1. Also, we letQr be the source-sink subpath ofQ′ with s(Qr) = t(P ′) + 1 and
t(Qr) = t(Q′). We addP ′ to T , and addQl andQr back toR.

We now check the properties. Property D1 holds simply because, in each iteration, we remove only
subpaths of what we will add (i.e., we may add pathsQ, P ′ andQ′ to R andT and remove only subpaths
of Q ∪ P ′ ∪ Q′). Since paths inR only get chopped off, Lemma 5.4 still holds, and so does property D3.
Properties D4 and D2 follow from the following Lemmas whose proofs are in Appendix.

Lemma 5.7(Property D4). After Phase 2, there is no shortcut between any two subpaths inR.

Lemma 5.8(Property D2).
∑

Q∈T rev(Q) ≤ 1
2

(

∑

Q∈T len(Q)
)

+O(1/δ).
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APPENDIX

A Derandomization of Algorithm A′ in Theorem 3.2

Now we derandomizeA′ to get a deterministic algorithmA by the method of conditional expectation.
Let Y denote the number of constraints that are notδ-far with respect to a random permutationπ. For
a fixed permutationπ′, let E(π′, I) be the event thatπ agrees withπ′ on setI (i.e., π′(i) = π(i) for all
i ∈ I). Notice that, we can efficiently computeE [Y | E(π′, I)] for anyπ′ andI where the expectation is
over random permutationπ. Therefore, fori = 1, 2, ..., we deterministically pick the value ofπ′(i) that
maximizes the value ofE [Y | E(π′, {1, . . . , i− 1})].

B Construction Size

We first calculate the size of each gadgetGi. There areO(7ℓ) vertices andO(7ℓ) edges for each gadget.
Next, we count the number of shortcuts. For each pair of constraintsri andrj, there are at mostO(72ℓ) short-
cuts between their intermediate vertices. Since there are(5n)ℓ gadgets, the graph size is at mostO(n)O(ℓ).

Sinceℓ =
⌈

log(3/ǫ)
α

⌉

, the construction size isO(n)O(1/ǫ) which is polynomial inn if ǫ is a constant.

C Omitted Proofs from Section 5

C.1 Proof of Lemma 5.3
∑k

j=1 len(Qj) =
∑k

j=1(t(Qj)− s(Qj)+1) = t(Qk)− s(Q1)+1 = t(Q)+1− s(Q) = len(Q) where the
second equality is becauset(Qj)+1 = s(Qj+1) for all j ≤ k and the third equality is becauset(Qk) = t(Q)
ands(Q1) = s(Q).

C.2 Proof of Lemma 5.7

Notice that once a shortcut leaving gadgeti is found, the whole part of gadgeti is removed completely from
R. Therefore, after iterationi, there is no shortcut leaving the vertex inP ∩ Gi to other vertices lying on
some path inR. (In fact, the vertex inP ∩Gi is not in any path inR anymore.)

C.3 Proof of Lemma 5.8

Similarly to Claim 5.6, we can also bound the revenue on pathsin T as summarized in the following claim
whose proof can be found in Appendix.

Claim C.1. For each pathQ ∈ T , we haverev(Q) ≤ 1
2 len(Q) + 2

Proof. Consider pathQ ∈ T from si to tj. PathQ can be written in the form:

si → uaii ⇒ vaii → . . . → u
aj
j ⇒ v

aj
j → tj.

Note that we do not assume any structure of the path fromvaii to u
aj
j . Also, recall that edgesuaii vaii and

u
aj
j v

aj
j were inR after Phase 1 and moved toT in Phase 2. Moreover, there is a shortcut edge fromvaii to

u
aj
j (which is not inQ).

Now, letQ′ be the subpath ofQ from vaii to u
aj
j , andei, ej be the edgesuaii vaii andu

aj
j v

aj
j , respectively.

ThenQ = sieiQ
′ejtj. The revenue collected onQ comes from edges inQ′ andei andej . Since bothei

andej belonged to some paths inR after Phase 1, we havep(ei) + p(ej) ≤ 2 (cf. Lemma 5.4). PathQ′

13



can collect revenue of at most(j − i)/2 due to the fact that there is a shortcut edgevaii u
aj
j of cost(j − i)/2.

Overall, the revenue onQ is at most(j − i)/2 + 2 < 1
2 len(Q) + 2.

Since every pathQ ∈ T induces some shortcut edges (i.e., there is a shortcut edge between some pairs
of vertices inQ), the length of such path is at leastδM . Therefore,|T | ≤ O(1/δ). We apply Claim C.1 for
every path inT and sum them up. This immediately gives the lemma.
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