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Stackelberg Pricing is Hard to Approximate within- ¢

Parinya Chalermsook Bundit Laekhanukit Danupon Nanongkai

Abstract

Stackelberg Pricing Games is a two-level combinatorialipg problem studied in the Economics,
Operation Research, and Computer Science communitieshidmpaper, we consider the decade-old
shortest path version of this problem which is the first andtstudied problem in this family.

The game is played on a graph (representing a network) ¢musis fixed cosiedges angbricable
orvariable costdges. The fixed cost edges already have some fixed pricegesyiing the competitor’s
prices). Our task is to choose prices for the variable coptgdAfter that, a client will buy the cheapest
path from a node to a nodet, using any combination of fixed cost and variable cost edgles.goal is
to maximize the revenue on variable cost edges.

In this paper, we show that the problem is hard to approximéten 2 — ¢, improving the previous
APX-hardness result by Joret [to appeaN@twork$. Our technique combines the existing ideas with a
new insight into the price structure and its relation to thediness of the instances.

1 Introduction

A newly startup company has just acquired some links in a oitwl he company wants to sell these links
to a particular client, who will buy a cheapest path from aenedo a nodet. However, this company is
not alone in the market: there are other companies alreatlyeirmarket owning some links with some
fixed prices. The goal of this new company is to price its litkksnaximize its profit, having the complete
knowledge of the network and knowing that the client will ibg cheapest-¢ path (which may consist of
links from many companies). Of course, if they price a link togh, the client will switch to other links
and if they price a link too low then they unnecessarily rexiieir profit.

This problem is called th&tackelberg Shortest Path Gaf®&Ack SP) and can be defined formally as

follows. We are given a directed graph= (V, E), a source vertex and a sink vertex. The setZ of edges

is partitioned into two setst;, the set ofixed cost edgesindZ,, the set opricableor variable cosiedges.
Each edge in E; already has some prigge). Our task is to set a price(e) to each variable cost edge
Once we set the price, the client will buy a shortest path fsam (i.e., a path? such thaty ", p(e) is
minimized). Our goal is to maximize the profit; i.e., maxieiz, . pp p(e) whereP is the path bought
by the client. Throughout, we let denote the number of variable cost edges. It is usually asguhat if
there are many shortest paths, the client will buy the onentlaimizes our profit.

Due to its connection to road network tolling and bilevel graaimming, there is an enormous effort
in understanding the problem by means of bilevel progrargniigd, [12,[ 14 19, 21, 20, 18] 4], finding
polynomial-time solvable cases |24,/ 29 [27,10,]3, disg the problem by heuristic$ [16, 15], and
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approximating the solutior [26] 6, 23,128]. In this paper, fagus on approximability of this problem. In
this realm, SACKSP is the first and the most studied problem in the growinglfaaiione-follower (i.e.,

one client) Stackelberg network pricing gamies [26, 6/ 23228,[9/5].

The Stackelberg pricing problems belong to the class ofglager two-level optimization problems
which is a subclass of the bilevel linear programming. Thasiblems have a rather strange structure,
and this makes the standard approximation techniques suafrear programming seemingly inapplicable.
For example, a natural LP formulation for&KSP (and also another version calletaSKMST) has an
integrality gap of2(log m). Moreover, by using the most (and probably the only) natupgler bound for
OPT, one cannot obtain approximation factor better th¥iog m) [26], so the line of attacks considered
in [26] and [6] cannot be pushed any further.

Proving the hardness of this problem seems to have an eduglbbstacle. In fact, the progress on the
hardness side for the family of Stackelberg pricing proldstops at small constant hardnesBX-hardness
in [23,[8] and onlyNP-hardness in[2]). Moreover, a reduction from Unique Cogerproblem([111], which
proved useful for many pricing problems (includinga8k SP with multiple followers) apparently does not
apply here. In particular, for ck SP, onlyNP-hardness, stroniP-hardness, andPX-hardness (with
a constant as small ds001) are shown[[24], 26, 23]. In fact, even for approximating teeegal bilevel
program, only the constant ratio can be ruled but[17, 22].

We believe that an improvement to upper or lower bound of ttoblpm might shed some light on
approximating a larger subclass of bilevel programs, perigenerating a new set of techniques for attacking
the whole family of Stackelberg problems. (The problem setmequire a new technique due to its bizarre
behavior.)

Our result and techniques In this paper, we give the first result beyond a very small zorihardness:

Theorem 1.1. For anye > 0, itis NP-hard to approximat&TAck SPto within a factor of2 — e.

The key insight in obtaining this result comes from explgrihe structure of the edge prices which
was not exploited in the previous inapproximability resUyB4,[26]28]: The previous results encode the
constraints in the constraint satisfaction problemgX 3SAT in their cases) using certain gadgets and
glue these gadgets together in a uniform way (i.e., usingséimee edge price throughout). However, we
study the influence of non-uniform prices to the hardnesb®fé¢sulting instances. In particular, we study
how the prices of the fixed cost edges affect the hardnes®afdatigets and found an optimal price which
strikes a balance between being too high (which could hugpglyce the revenue but is easy to avoid) and
too low (which is likely to be used but do not affect the revemauch). This observation, armed with a
stronger constraint satisfaction problem (i.e., Raz \arfr Max 3SAT(5) ) and a right parameter of price,
leads to a2 — ¢)-hardness of approximation. The techniques above aregsgnaugh that the hardness
result is obtained with only a slight modification of the gatty However, due to the non-uniformity of
the prices, a more sophisticated analysis is required. fitcpkar, our analysis relies on a technique called
Path Decompositiomvhich breaks the shortest path in the optimal solution intgpaths with manageable
structure. We will be able to get deeper into the intuitioreaive describe the hardness construction in the
next section.

Related work

STACKSP is first proposed by L#ke et al.[24] who also derive a bilevel LP formulation of threlgem and
proveNP-hardness. On the algorithmic side, Roch et al. presentri$tedind still the best, approximation



algorithm which attains)(logm) approximation factor. Anothe®(logm) approximation algorithm is
obtained by Briest et al, which has a slightly worse appratiom guarantee (larger constant in front of
log m term) but is simpler and applicable to a much richer classtatk&lberg pricing problems. Even
though the algorithm of Briest et al. does not rely on the gjegroblems’ structures, it remains unclear
whether one can exploit a special structure of each proldemirove the approximation ratio.

Another interesting problem in the family of one-followetaBkelberg network games &tackelberg
Minimum Spanning Trees Garl@TACKMST) in which the client aims to buy the minimum spanning tree
instead of the shortest path. Cardinal et/al. [8] introdini® problem and prove that it &SPX-hard but has
anO(log m) approximation algorithm. Very recently, they considerspecial cases of planar and bounded-
treewidth graphd [9] and prove that even in such graph dassackMST remainsNP-hard. There are
also many other variations in the family of Stackelberg gandepending on what the client wants to buy.
This includes vertex cover [6] 5], shortest path tfée [2§ kmapsack([5].

Among the known approximation algorithms, the most unkose is arO((1+¢) log m)-approximation
algorithm invented by Briest et al.|[6]. This elegant altfum works on a large class of problems, including
STACKSP and $ACKMST and is coupled with a simple analysis. In the same pdpecdse of: clients is
also considered. A®((1 + €)(log m + log k))-approximation algorithm is given, and the problem is shown
to be hard to approximate withi® (log® m + log® k) for some larges. Therefore, the gap is almost closed
in the case of many clients while left wide open wheis small (e.g.k is constant, and particularly when
k=1).

In Economics and Operation Research literatureaC&kSP is also known as a tarification problem.
Many special cases are considered and polynomial-timeidiges are given for this probler [24,129,118,
[27,10/3[ 6]. It is also sometimes called a bilevel pricinghgbem due to its connection to the bilevel linear
program. (See a formulation in, e.d., [24].7A&KSP is also heavily studied from this perspective [24, 12,
[14,[19/21[ 20, 13,14]. Approximating a solution of bilevebgram to within any constant factor is shown
to beNP-hard [22/17]. Unfortunately, these reductions do notmct® the family of Stackelberg games
due to specific structures of the constraints used in thecteduof [22,[17]. For more details, we refer the
readers to [28, 13, 17] and references therein.

Remark Recently Briest and Khannal[7] discover a similar resultimsaising a different approach. They
show that SACKSP is hard to approximate within a factordf- o(1).

Organization Our construction is a reduction from Raz verifier fdiax 3SAT(5) . We first give an
overview of Raz verifier in Sectidi 2. We then describe ouncgidn in Sectiod 3 before we are able to
give more intuition behind the construction and its analy$iis will be done in Sectidd 4. We then show a
formal analysis in Sectidn 5.

2 Raz Verifier

Our reduction uses the Raz verifier tdiax 3SAT(5) with ¢ repetitions. We explain this framework in this
section. The given instance bfax 3SAT(5) is a 3CNF formula withn variables andn /3 clauses where
each clause contains exacBylifferent literals, and each variable appears in exdctljfferent clauses.

Lete be a constant and letbe an instance dflax 3SAT(5) . Theny is called a ¥ES-INSTANCE if there
is an assignment that satisfies all the clauses, and it sdcalNo-INSTANCE if any assignment satisfies at
most(1 — €)-fraction of the clauses. The following is a form of the PCeattem.



Theorem 2.1. There is a constant : 0 < e < 1, such that it is NP-hard to distinguish betwe¥Es-
INSTANCE and NO-INSTANCE of theMax 3SAT(5) problem.

Raz verifier forMax 3SAT(5) with /¢ repetitions is a two-provers one-round interactive proatem.
The verifier sends one query to each prover simultaneoudhg fifst prover is asked for an assignment
to the variables in the given clauses while the second prisvasked for an assignment of the variables
that satisfies all the given clauses. The verifier will acabptanswers if and only if both provers return
consistent assignments. The detailed description of theeps-verifier actions is as follows.

e The verifier first chooses clauses, say’y, ...,y independently and uniformly at random (with re-
placement). Next, choose one variable in each of theseaedawsiformly at random. Letq,..., z,
denote the resulting (not necessarily distinct) variables

e The verifier generates a queyconsisting of the indices af', Cs, ..., Cy, and a query;’ consisting of
the indices ofry, xo, . .., z4. The verifier then sendsandq’ to Prover 1 and Prover 2, respectively.

e Prover 1 returns an assignment to all variables associatactlauses”;, Cs, . . ., Cy.

e Prover 2 returns an assignment to variableses, . . ., .

e The verifier reads the assignment received from both pramasaccepts if and only if the assignments
are consistent and satisfy;, Cs, ..., Cy.

Intuitively, for the YES-INSTANCE, both provers can ensure that the verifier always acceptstbgning
the satisfying assignments to the prover. On the other teamdprovers’ strategy fails with high probability
in the case of M-INSTANCE. This is an application of the Parallel Repetition Theorerd @heoreni Z]1
and can be stated formally as follows.

Theorem 2.2( [25,[1]). There exists a universal constamt> 0 (independent of) such that

e If v is a YESINSTANCE, then there is a strategy of the provers that makes the wedfieepts with
probability 1.

e If ¢ is aNoO-INSTANCE, for any provers’ strategy, the verifier will accept with pability at mos2~¢,

In our reduction, we view Raz verifier as the following coasit satisfaction problem. We have two
sets of queriesp; andQs, corresponding to all possible queries sent to Prover 1 aoneP2, respectively.
That is, Q; consists of all possible choices btlauses sent to Prover 1 (hen¢@; | = (5n/3)¢) and Qy
consists of all possible choices 6fariables sent to Prover 2 (hen@,| = n‘). For eachy € Q; U Q,
let A(q) denote the set of all possible answersytaNotice that|A(q)| = 7° if ¢ € Q1 (since there ar@
ways to satisfy each of theclauses given to Prover 1) ahd(q)| = 2¢if ¢ € Q5 (since there are 2 possible
assignment to each of tifevariables given to Prover 2). Denote By and.A, the set of all possible answers
by Prover 1 and Prover 2, respectively.

We denote the set of constraints dy Each constraint i corresponds to a paf, g2) of queries sent
by the verifier. That is, for each random strin@f the verifier, there is a constraifi;, ¢2) € Q1 x Qs in
® whereq; andgs are queries sent to Prover 1 and Prover 2 respectively. Atreamis(q,, ¢2) is satisfied
if and only if the assignments i@ andq, are consistent. For convenience, we will tréagas the set of
all possible random strings, and we denote, for each randiong $, the corresponding queries ky(r)
andq¢,(r) respectively. Note that each query= Q, is associated witB¢ constraints in® and each query
q' € Qs with 5¢ constraints. Moreover, et/ = |®|. We haveM = (5n)*. The goal of this problem is to
find an assignment : 9; — A;, 9, — A, that maximizes the number of satisfied constraint®.in



The following corollary can be directly obtained from Them{Z.2.

Corollary 2.3. If ¢ is a YES-INSTANCE, then there is an assignment @ U Qs such that all constraints
in ® are satisfied. Otherwise, no assignment satisfies morexh&nfraction of the constraints .

3 The Reduction
Lete > 0 be a constant from Theordm L.1. Recall that we want to pf®vec)-hardness of approximation.

Overview Starting with an instance of Max 3SAT(5), we first perform the two-prover protocol with

¢ = Jlog(3/e)/a] rounds, and we enumerate all possible constraing.ifNext we transform® to an
instance of the Stackelberg problem in two steps, as folldwghe first step of the reduction, we order the
constraints inP to get a(d, v)-far sequencésee Section 3l1). In the second step, we convert such segjuen
to an instance of the Stackelberg problem, denote@ Jaysing the construction explained in Secfion 3.2.

3.1 Obtaining (4, ~v)-far sequence

Definition 3.1. ((9, v)-far constraint sequence) Consider a sequence of all pessibstraints-, ..., ry/ in
®. A constraintr; is said to be)-far if for every j : i < j <i+[0M7], q1(r;) # q1(r;) andga(r;) # q2(r;).
The sequencey, ...,y is said to bed, v)-far if at least(1 — v)-fraction of constraints ig-far.

We can obtair{d, v)-far sequence with the right parameter for our purpose ysiolgabilistic arguments.

Theorem 3.2. Forany/ > 1,6 > 1/M andy > (85)54, there is a polynomial-time algorithml that
outputs a(d, y)-far sequence.

Proof. We present a randomized algorithm here. In Appendix, werdienaize it to the desiredl by the
method of conditional expectation. Let, ro, ..., ), be the constraints. Led’ be an algorithm that picks
random a permutation : [M] — [M]. We claim that the sequeneg ), ..., ) is (,7)-far with
probability at least /2.

To prove the above claim, consider each constrgintet J = {j € [M] : qi(rj) = qi(r;) Or g2(rj) =
g2(r;)}. Notice that.J| < 3° + 5 < 2 5* because there aBé constraints; in ® with ¢;(r;) = q1(r;) and
5¢ constraints; in ® with go(r;) = g2(r;). For each such € J, the probability thatr (i) — ()| < [6M]
is at most26. By applying the Union bound for all suche J, the probability that ;) is not é-far is at
most(40)5° < /2. The expected number of constraints that arejrfar is at mostyM/ /2, so by Markov's
inequality, the sequence (8, v)-far with probability at least /2, and the claim follows. O

3.2 The Construction

Given a ¢, y)-far sequence of constraints, ..., 75, we construct an instance off&cKSP as follows.
For each constraint;, construct a gadge®; containing source;, destinationt;, and a set of intermediate
vertices{u{ vg}aeA(ql(ri))' There are - 7° such intermediate vertices (singé(q: (r;))| = 7%).

i
Recall that, for each answer € A(qi(r;)), there exists a unique consistent answee A(g(r;)).
In other words, for each € A(q;(r;)) there exists a uniqu& € A(ga(r;)) such that(a,a’) satisfies the
constraintr;. From now on, we will user; to denote the function that maps eacte A(q(r;)) to its
consistent answer’ € A(g2(r;)). Therefore, each pair af?, v{ corresponds to a pair of possible answer
(a,m;(a)) that satisfies;;.
Edges in each gadgét; are the following.
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Figure 1: Example of grapl@: constructed fronMax 2SAT (z1 V x2) A (21 V z3) with £ = 1 repetition. Each gadgét; is noted
with the corresponding constraints and each variable edg€'v{ is noted with the corresponding answer from Prover 1. Note
that the corresponding answer from Prover 2 can be idengfsidy. (For example, an edgélo)v§1°) corresponds to assigning
x1 = 1 andzs = 0. Therefore, Prover 2’s corresponding answerufﬁtl)viu) isz1 = 1.) The bigger picture is in Appendix.

e Fixed cost edgesThere is a fixed cost edge of casfrom s; to ¢;. There are also fixed cost edges of
cost0 from s; to each ofu{, and from each of{' to ¢;.

e Variable cost edges:There is a variable cost edge fratfi to v{ for eacha € A(q;(r;)).

Now we link all the gadgets together. First, for allk< i < M, we create a fixed cost edge of cOst
fromt; to s;11. We denote the source of instance- s; and the sink = ¢, (i.e., we want to buy a shortest
path froms to tay).

Next, we add another set of fixed cost edges, callemrtcuts whose job is to put constraints between
pairs of edges that represent inconsistent assignmentniydave shortcuts betwedar gadgets. (Gadget
G, is called afar gadget if its corresponding constraintis a j-far constraint.) Consider any pair of far
constraints;, r; for i < j such that; shares a query with;; i.e., eitherg, (r;) = g1 (r;) or g2(r;) = qa(r;).

If ¢1(ri) = q1(r;), we add a shortcut from;" to u;” for every pair ofa; € A(qi(r;)) anda; € A(qi(r5))
such thaie; # a;. For the case whe(r;) = ¢2(r;), we add a shortcut from" to u?’ for every pair of
a;, a; such thatr;(a;) # m;(a;). We define the cost of this shortcut to be— i) /2.

This completes the hardness construction. It is easy tohsdettte instance size is polynomial (for
completeness, we add the proof in Appendix).

4 Intuition and Overview of the Analysis

Before we move on to the analysis, we explain the intuitiomifie the hardness construction in the previous
section and the analysis in the next section.

NP-hardness First, let us understand what happens when we apply theraatien in Section 3]2 to Raz
verifier's ® without applying AlgorithmA (cf. Sectior31) to get &), v)-far sequence; in other words, the
sequence of constraints is arbitrary.

We use the following example to convey the idea. Considdaa 2SAT instance with three variables
x1, 2,23 and two clauses’ = (z; V x2) andCy = (x1 V x3). (For the sake of simplicity, we consider
an instance oMax 2SAT instead ofMax 3SAT.) The constraints of the Raz verifier with= 1 repetition
arer; = (Cy,x1), ro = (C1,22), 73 = (Ca,x3), andry = (Cy, x1). If we construct the grapty from the
sequence of constraints, 2, r3, 74 according to the construction in Sectlon|3.2 then we willtetgraph
G as in Figuré L.

Consider any pricing and letP be the corresponding shortest path freto t. We classify the shortcuts



whose both endpoints are i into two types, edges that acentainedin P and edges that aieducedby
P, as follows.

Definition 4.1. We say thatP containsan edgee if ¢ is an edge or?, and we say thaP inducese if ¢ is
not an edge o but both end vertices efare onP. We say thatP involvese if P contains or induces.

Observe that ifP involves no shortcuts then we can construct a satisfyinggasent fromP. For
example, a pathlugn)vgn)tlsgugn)vén)t233u§10) U§10>t3s4u§10> (10) t4 involves no shortcuts and could be
converted to an assignment = 1, xo = 1 andxs = 0. Conversely, a satisfying assignmentdotan also
be converted to a solution (a price function) with respeatiiich the corresponding shortest path involves
no shortcut edges. Moreover, observe tha? iinvolves no shortcuts then we can get a revenu@/oby
setting price of all variable edges tcand we always get a revenue less thidnotherwise. The following
observation follows:® has a satisfying assignment if and only if there is a solutltat gives a revenue
of M in the corresponding grapl. This observation, along with the reduction frdviax 3SAT, already

lead to theNP-hardness of 7.ck SP. This is in fact the essential idea used in the previoudnieas results

[26,[23].

Beyond NP-hardness To extend the above idea to a constant-hardness, we fulltisene an effect of
the shortcuts on the revenue. In particular, we observdfitiare are many “parts” of the shortest path that
either contain or induce too many shortcuts then the reveanebe essentially at mosf /2. To be more
precise, let us first make the following two observations.

First, observe that i? contains shortcuts, , eo, ..., ex, for somek, with costscy, co, ..., ¢, then we can
collect a revenue of at modt/ — Zle ¢; from P. This is because there is a path of lengthfrom s to
t and, for each, once edge; with fixed costc; is used, the revenue adf decreases by;. For example,
the pathPy = syul"Vo{"™ul? oMty s5ul V000"Vt contains two shortcuts!!ul® and vi0ul!
of cost of1/2 each. Therefore, any solution in which such path is the spmeding shortest path g|ves a
revenue of at most — 1/2 — 1/2 = 3.

Secondly, consider whefl induces a shortcut edgéfrom gadgets; to gadget’; with costc’ and for
some reason, the edges in the gadggtandG ; can have price at mosteach. Then we can collect a revenue
of roughly M — (5 —i)+¢ +2. This is because we cannot collect more tHan2 on the subpath aP from
gadget’; to gadgety;. For example, consider a path = (1 ) ( )tlsgug 2 (11)t233 01) §01)t334u201)v£01)t4
which induces a shortcut (11) (01) of costl. For a pricing thath is the shortest path we can collect a
revenue of at most for the followmg reason. First, we can collect at mbgtom edgeug Y ;11) because
edges;t; would be used otherwise. Similarly, we can collect at mdsom edgeuffl) (o1) . Moreover, we

can collect at most from ug Y (11) andu (Ol)vé Y altogether because the shorton&tlt1 (01 would be used
otherwise.

In summary, the observations above imply that a shortcuat fyadget to gadgetj (either contained or
induced) causes the revenue on the subpath from gagigetgadget=; to be bounded byj —i)/2 + 2.

The role of (4, v)-far sequence Before we proceed to show the consequence of these obsesjatie
would like to eliminate the effect of the the constant “+2"tire bound of the revenue above since it will
be an obstacle in the analysis. In particular, to get theofaatt2 hardness, we would like to say that we
can get a revenue of roughly — 7) /2 and somehow conclude that the graph reduced fraval NSTANCE
gives a revenue of at moat /2. (Recall that we can get a revenueldfin Y ES-INSTANCE.) However, the
constant +2 is a problem when- ¢ is small.



We eliminate the above effect in a straightforward way: aast of including the shortcuts for every
constraint, we consider only the shortcuts with large ¢gst i)/2. The problem is, when we throw
away some constraints, the constraint satisfaction pnoblecomes easier, and we should be able to satisfy
more fraction of the constraints. We do not want this to happ#e want to somehow make sure that by
neglecting a particular set of “bad” constraints, the sowsg parameter does not grow by much. Roughly
speaking, Sectioh 3.1 shows that we can get the desiredriesp@hile the soundness parameter remains
comparatively small. In particular, we lose an additivedaof v in the soundness parameter. (Please refer
to Sectiorl_ 3.11 for more details.)

Getting 2-approximation hardness Now that we can eliminate the effect of the constant +2, |letaes
how we can use the above two observations to conclude therdxamation hardness. Intuitively, the two
observations above imply that if the shortest p&timvolves many shortcuts then the revenue we can collect
on P is essentially at most//2. To prove this intuitive assertion, we argue in the nextieadhat we can
always decomposg into three types of paths — paths that look liRg paths that look like?, and paths that
can be converted to the solution férsuch that the number of satisfied constraints is equal touh#er of
variable cost edges in such paths altogether. This decatigmoseeds to be carefully designed to maintain
the properties of the three types of paths and will be elabdrm Section 5]3.

Using the above decomposition and the fact that paths of thietdio types give a revenue of at most
half of their lengths, we conclude that the revenue is at még2 + ¢ wherec is the number of edges in
the paths of the third type. Using the fact tlais (d,y)-far, we conclude that is at most(y + ¢/3) M
wheree is the constant as in Theorém]1.1. By considering large énau@nd thus, large enougd|) and
choosing an appropriate value ®and~ so thatc < e, we have that the revenue is at mst2 + ¢) M.
This implies the gap of — ¢, and Theorer 111 thus follows. We formalize these ideaseéméxt section.

5 Analysis

Now we prove Theoreirin 1.1 using the reduction in Sedfion 3aRé&tate is a constant as in Theordm11..1
and we let? = [log(3/e)/a] (Wherea is as in Theorerh 212), = (¢/10)5~ andy = ¢/3. It follows that
the soundness parameter of the Raz verifier i’ < e/3. (l.e., if ¢ is @ NO-INSTANCE, then at most/3
fraction of constraints il can be satisfied.)

In this section, we show that when the sizegofdenoted byn) is large enough, the reduction gives a
(2 — ¢)-gap between the case whens satisfiable and when it is not. In particular, in secfiaB, Sve show
that if p is satisfiable, then there is a price function that collectssanue of\/. Moreover, in Section 512 we
show that ify is not satisfiable and is large enough, there is no pricing strategy which colleatsvenue
of more than(1/2 + €) M. The value ofn will be specified in Section 5 2.

5.1 YESINSTANCE

Let f: Q1 — A1, Qs — Ay be an assignment that satisfies every constraidt. ifror gadget=; corre-
sponding to the variable;, set pricel to the edge fromu to v for a = f(q:1(r;)). Other variable cost
edges inG; are assigned the price of. We now show that we can collect a revenueléiin this case.

Let P be the shortest path on this graph with respect to the abasiagrr Notice that pathP does not
contain any shortcut since a shortcut only goes between dgesthat represent inconsistent assignments.
(l.e., if there is a shortcut from" to u?’ on P then eithera; is not consistent withu; or 7;(a;) is not
consistent withr;(a;). Specifically, eitheg; (r;) = q1(r;) anda; # a;, or g2(r;) = g2(r;) andm;(a;) #
mj(a;). However, this is impossible sincedi(r;) = ¢1(r;) thena; = a; = f(qi(r;)) and, similarly, if



@2(ri) = q2(r;) thenmi(a;) = m;j(a;) = f(qa2(ri)).)
Since the shortcut is not used, the lengthPois exactly M. Moreover, observe that the path that uses
all variable edges of price 1 also has length This path is a shortest path and gives a total revenué .of

5.2 NO-INSTANCE

We assume for contradiction that there is a pricing functidrich collects a revenue @1 /2 + ¢) M. Letp
be such pricing function and Iét be the corresponding shortest path. Our goal is to consiruassignment
that satisfies more tham//3 constraints inb. This will contradict the soundness paramet& of the Raz
verifier.

Definition 5.1. A subpath) C P is said to be &ource-sink subpathof P if it starts at some source and
ends at some sink; for 7 < j. For any source-sink subpafh, denote bys(Q) andt(Q) the gadget index
to which the source and sink 6f belong respectively.

Now, let@ be any source-sink subpath and dgtandt; be its source and sink, respectively. Let=
{Q1,...,Q} be a set of source-sink subpaths of p@thWe say thatS is asource-sink partition of path

Qif s(Q1) =14, t(Qr) = j, and for allp < k, we havet(Q,) + 1 = s(Qp+1)-
The following theorem is the key idea to proving the result.

Theorem 5.2(Path Decomposition)Letp : E, — R* U {0} be the optimal pricing of the variable edges
and P be the corresponding shortest path in the graph. Then we cahsktsR and R’ such that the
following properties hold.

D1. RUR’is asource-sink partition of.

D2. The total revenue collected from edges on pathR'ins at mostM /2 + O(1/4§). In other words,
Y eeBan(Upers P) P(€) < M/2+ O(1/0).

D3. The price of any variable cost edgeZhis at mostl. Thatis,p(e) < 1foranye € E, N (Jpegr P)-

D4. There is no shortcut between any two variable cost edg®s i

We defer the proof of this theorem to the next section. Mealewie show how the theorem implies
that we can construct an assignment that satisfies morecjf3afiaction of the constraints i, thus a
contradiction to the soundness parameter. First, we censitdy whenn is sufficiently large so that we can
collect at mostM /2 + O(1/6) < M/2 + eM/3 from edges iR’ (from PropertyrDP). Consequently, at
least2e M /3 must be collected from edges

Let £’ be the set of all variable cost edges that lie on some pati& ifrom Property D3, we have
|E'| > 2eM/3. Let F C E' be the set of edges i’ that lie in far gadgets. Recall that we have at most
eM /3 gadgets that are not far (after we run an algoritdrm Theoreni3.R), soF'| > M /3.

We are now ready to describe how we get an assignment thsfiesita large fraction of constraints in
®. For each edge € F, edgee can be written as;"v;" for some gadget. We assign the answerfor
queryq; (r;) andm;(a) for querygs(r;). This assignment satisfies the constrajntThis process satisfies at
leaste M /3 constraints corresponding to the edgeg’iprovided that there is no conflict in assignment.

We argue that there is no such conflict since there is no shidrgiween the edges . l.e., assume
that the above process creates a conflict assignment to e gaeryg. This means that there are two
constraintsr;, 7; € ® for i < j with ¢ = q1(r;) = ¢qi(r;) or ¢ = ¢2(r;) = ¢2(r;) and such query was
assigned different answetis anda; when processing gadgetsind;. Since both-; andr; are far gadgets,
by construction, there must be a shortcut between two esrtit and u;j . This contradicts the fact that
there is no shortcut ifR.



5.3 Proof of Theorem 5.2

Consider any source-sink subpagh Since there is a fixed-cost path of lengtly) — s(Q) + 1 from s,
to (@), the revenue collected af is at most (Q) — s(Q) + 1, which will be denoted byen(Q). We let
rev(Q) be the revenue collected on subpéthi.e. rev(Q) = >~ cong, P(e). First, observe the following
lemma whose proof is simple and is deferred to Appendix.

Lemma5.3. If S = {Q1,...,Qx} is a source-sink partition of), thenZé‘?:1 len(Q;) = len(Q).

We now explain the decomposition of the shortest gatfirom Theoreni 5.2) into several source-sink
subpaths. Each subpath is contained in one of the/safsand7 . In the end, we leR’ in the Theoremh 512
equal to7 U S. The composition consists of two phases. We next describke phase and prove the
properties in Theorein 8.2 along the way.

In the first phase, our goal is to make sure tRatontains only source-sink subpaths that do not contain
any shortcut. Initially, we seR, S, and7 to R = {P}, andS = T = (. We then remove the portion of
pathsP which contains the shortcut edges and add them té sEte ensure that paths are always cut into
source-sink subpaths. In particular, we do the following.

Phase 1: Initially, R = {P} and7 = S = (). While there exists a patR’ € R that contains a shortcut
edge, do the following. Letv’ be any shortcut edge. Let be the last source vertex that appears before
in P’ and lett; be the first sink vertex that appears aftém P’. We note that, j denote the gadget indices
to which the vertices belong. First remof from R. Denote by the source-sink subpath &f from s;

to t;. We breakP’ into three (possibly empty) source-sink subpaths @, and@,; (i) Q; starts ats(Q)
and ends at vertet_1, (ii) @ starts and ends af andt;, respectively, and (i), starts at;,; and ends at
t(Q). We then add) to S and add?);, @, back toR.

Consider the seR’ = S U 7. We show that, after this phase, the output satisfies piepéil,
D2, andD3. After the second phase, propérty D4 will be satisivhile other properties remain to hold.
Observe that properfy D1 holds simply because the way wek lpath P’ guarantees that(Q;) = s(P'),
Q) +1=s(Q),tQ)+1=s(Q,), andt(Q,) = t(P’). The next two lemmas prove properties| D3 and
D2.

Lemma 5.4(PropertyiD3B) After Phase 1p(e) < 1 for any variable edge € F, that belongs to some path
QInR.

Proof. Since pathy) does not contain shortcuts, verticesandt; lie on @ for all s(Q) < ¢ < ¢(Q). Recall
that edge: can be written in the formfv§ for somej anda € A(g1(r;)). If p(e) > 1, we can obtain a path
shorter than? by using the fixed cost edggt; of costl instead ofs;ujv}t;. This contradicts the fact that
P is a shortest path. O

Lemma 5.5(Property(D2) After the first phase, the revenue®i = S U T is at mostM /2 + O(1/4). In
particular, ", s rev(Q) < & (ZQe s len(Q)) +0(1/9).

Proof. We will need the following claim.
Claim 5.6. For each path) € S, we haveev(Q) < (len(Q) + 1)/2.
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Proof. Consider pati) € S from s; to t;. Recall that there is a path of lengin(Q) in G from s; to ¢,
so the total cost of) is at mosten(Q). Itis, therefore, sufficient to prove that the total costraf shortcuts
contained inQ) is at leastlen(Q) — 1)/2. The way we construct paths éguarantees that path must be
of the form

sl—>u :>1) —>u :>v :>v — i

wherei; = 7,7, = j, and edges of the formaﬂ” = fu“z are the variable cost edges, from which we can
collect a revenue. Other edges of the farfn — u“z“ for 1 < x < ¢, are shortcuts. Hence the total cost

of shortcuts can be written as a telescopic spif; (W) =(j—14)/2 = (len(Q) — 1)/2. O

By the claim,Y" s rev(Q) < Yoes (len(Q)/2 + 1/2) < & (ZQe s len(Q)) +18]/2. Itthen suffices
to bound the size of s&t by O(1/d). Notice that each path ifi contains at least one shortcut. Recall that,
by the construction (cf. Sectidn 3.2), each shortcut onlgsgwomuv{ to u;?’ if |7 —4i| > dM. Since the
intervals in the se{[s(Q),t(Q)] : Q € S} are disjoint (by definition of source-sink partition), wendsave

at mostO(1/4) paths inS. O

This completes the description and the proof of Phase 1. N@amyeath inR contains no shortcut.
In phase 2, our goal is to eliminate the shortcuts betweemsgatR. (Note that these shortcuts are not
contained inP.) Roughly speaking, we scan the gadgets from left to right@rce we find such shortcut,
we move the whole path that induces this shortcut to th§ sdthe detail is as follows.

Phase 2: Initially, we haveR andS from Phase 1, and™ = (). We proceed in iterations starting from
iteration1. The description of iterationis as follows:

e We first check if source; belongs to some path iR. If not, we proceed to iteration+ 1.

e If s; does belong to any patfj in R, we do the following. We check if there is a shortcut (thatas n
contained inY) leaving from some vertex;" on () to some vertexL;.”j on some patl)’ € R. Note that
@ and@’ may be the same. Lét’ C P be the source-sink subpath fromto ¢;. We first remove from
R andS, all pathsR” such tha)” N P’ # (). LetQ, be the source-sink subpath@fwith s(Q;) = s(Q)
andt(Q;) = s(P’) — 1. Also, we letQ, be the source-sink subpath @f with s(Q,.) = t(P’) + 1 and
t(Qr) = t(Q'). We addP’ to 7, and add)); and@, back toR.

We now check the properties. Propdrty]l D1 holds simply besaimseach iteration, we remove only
subpaths of what we will add (i.e., we may add paths”’ and@’ to R and7 and remove only subpaths
of QU P’ U Q). Since paths irR only get chopped off, Lemnia 3.4 still holds, and so does ptpfig3.
Propertie$ DB and D2 follow from the following Lemmas whoseqis are in Appendix.

Lemma 5.7(Property. D#) After Phase 2, there is no shortcut between any two subpatRs i
Lemma 5.8(PropertyDP) > rev(Q) < 3 (ZQGT len(Q)) + 0(1/96).
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APPENDIX
A Derandomization of Algorithm A’ in Theorem[3.2

Now we derandomized’ to get a deterministic algorithmi by the method of conditional expectation.
Let Y denote the number of constraints that are &#dr with respect to a random permutatian For

a fixed permutationt’, let £(n’, I) be the event that agrees withr’ on setI (i.e., 7'(i) = = () for all

i € I). Notice that, we can efficiently compuke[Y | £(«’, I)] for any 7’ andI where the expectation is
over random permutation. Therefore, fori = 1,2, ..., we deterministically pick the value of (i) that
maximizes the value & [Y | £(', {1,...,i — 1})].

B Construction Size

We first calculate the size of each gadggt There areO(7¢) vertices and)(7¢) edges for each gadget.
Next, we count the number of shortcuts. For each pair of caingsr; andr;, there are at mog?(7%) short-
cuts between their intermediate vertices. Since ther¢sarg gadgets, the graph size is at maxn)°©).

Sincel = [%W , the construction size i9(n)°/¢) which is polynomial i if € is a constant.

C Omitted Proofs from Section[3

C.1 Proof of Lemmal5.3

D51 len(@)) = 3751 (HQ) — s(Q)) +1) = 1(Qk) — s(Q1) +1 = 4(Q) + 1~ 5(Q) = len(Q) where the
second equality is becaus@);)+1 = s(Q;41) forall j < k and the third equality is becaus&);,) = t(Q)

ands(Q1) = s(Q).
C.2 Proof of LemmalG.7

Notice that once a shortcut leaving gadgistfound, the whole part of gadgéts removed completely from
R. Therefore, after iteration there is no shortcut leaving the vertex#ihn G; to other vertices lying on
some path irR. (In fact, the vertex inP N G; is not in any path ik anymore.)

C.3 Proof of Lemmal5.8

Similarly to Claim[5.6, we can also bound the revenue on pathiisas summarized in the following claim
whose proof can be found in Appendix.

Claim C.1. For each pathy) € 7, we haverev(Q) < 1 len(Q) + 2
Proof. Consider patt®) < 7 from s; to ¢;. PathQ) can be written in the form:
si—uft > o = u S o ot

Note that we do not assume any structure of the path frfinto u;” . Also, recall that edges; v} and
ujj ’U;»lj were inR after Phase 1 and movedfoin Phase 2. Moreover, there is a shortcut edge fofirto
uy’ (which is not inQ).

Now, letQ’ be the subpath a from v} tou’, ande;, ¢; be the edges;"v{"* andu;’v}’, respectively.
Then@ = s;e;Q’e;t;. The revenue collected af) comes from edges i)’ ande; ande;. Since bothe;
ande; belonged to some paths R after Phase 1, we hayge;) + p(e;) < 2 (cf. Lemma5.4). Patid)’
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can collect revenue of at mogt — ¢) /2 due to the fact that there is a shortcut edgm;j of cost(j —i)/2.
Overall, the revenue o is at most(j — i)/2 + 2 < 1 len(Q) + 2. O

Since every patli) € 7 induces some shortcut edges (i.e., there is a shortcut edgedn some pairs

of vertices inQ), the length of such path is at least/. Therefore|7| < O(1/§). We apply Claini-C1 for
every path if/ and sum them up. This immediately gives the lemma.
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