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Abstract: An ideal vision model accounts for behavior and neurophysiology in both 
naturalistic conditions and designed lab experiments. Unlike psychological theories, 
artificial neural networks (ANNs) actually perform visual tasks and generate testable 
predictions for arbitrary inputs. These advantages enable ANNs to engage the entire 
spectrum of the evidence. Failures of particular models drive progress in a vibrant ANN 
research program of human vision. 

Bowers and colleagues discuss the limited connection between the psychological literature on human vision 

and recent work combining ANNs and benchmark-based statistical evaluation. They are correct that the 

psychological literature has described behavioral signatures of human vision that ANNs should but do not 

currently explain. A model of human vision should ideally explain all available neural and behavioral data, 

including the unprecedentedly rich data from naturalistic benchmarks as well as data from experiments 

designed to address specific psychological hypotheses. None of the current models (ANNs, handcrafted 

computational models, and abstractly described psychological theories) meet this challenge. 

Importantly, however, the failure of current ANNs to explain all available data does not amount to a 

refutation of neural network models in general. Falsifying the entire, highly expressive class of ANN 

models is impossible. ANNs are universal approximators of dynamical systems (Funahashi & Nakamura, 

1993; Schäfer & Zimmermann, 2007) and hence can implement any potential computational mechanism. 

Future ANNs may contain different computational mechanisms that have not yet been explored. ANNs 

therefore are best understood not as a monolithic falsifiable theory but as a computational language in 

which particular falsifiable hypotheses can be expressed. Bowers and colleagues’ long list of cited studies 

presenting shortcomings of particular models neither demonstrates the failure of the ANN modeling 

framework in general nor a lack of openness of the field to falsifications of ANN models. Instead, their list 

of citations rather impressively illustrates the opposite: that the emerging ANN research program (referred 

to as "neuroconnectionism" in Doerig et al., 2022) is progressive in the sense of Lakatos: it generates a rich 

variety of falsifiable hypotheses (expressed in the language of ANNs) and advances through model 

comparison (ibid.). Each shortcoming drives improvement. For example, the discovery of texture bias in 

ANNs (Geirhos et al., 2019) has led to a variety of alternative training methods that make ANNs rely more 
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strongly on larger-scale structure in images (e.g., Geirhos et al., 2019; Hermann et al., 2020; Nuriel et al., 

2020). Similarly, the discovery of adversarial susceptibility of ANNs (Szegedy et al., 2013) has motivated 

much research on perceptual robustness (e.g., Madry et al., 2019; Cohen et al., 2019; Guo et al., 2022). 

Bowers and colleagues create a false dichotomy between benchmark studies (e.g., Schrimpf et al., 2018; 

Cichy et al., 2019; Nonaka et al., 2021; Kriegeskorte et al., 2008) and controlled psychological experiments. 

Both approaches test model-based predictions of empirical data. Traditional psychological experiments are 

designed to test verbally defined theories, minimizing confounders of the independent variables of 

theoretical interest. In contrast, the numerous experimental conditions included in natural image behavioral 

and neural benchmarks are high-dimensional, complex, and ecologically relevant. Controlled experiments 

pose specific questions. They promise to give us theoretically important bits of information but are biased 

by theoretical assumptions and risk missing the computational challenge of task performance under realistic 

conditions (Newell, 1973; Olshausen & Field, 2005). Observational studies and experiments with large 

numbers of natural images pose more general questions. They promise evaluation of many models with 

comprehensive data under more naturalistic conditions, but risk inconclusive results because they are not 

designed to adjudicate among alternative computational mechanisms (Rust & Movshon, 2005). Between 

these extremes lies a rich space of neural and behavioral empirical tests for models of vision. The 

community should seek models that can account for data across this spectrum, not just one end of it. 

Despite their widely discussed shortcomings (e.g., Serre, 2019; Lindsay, 2021; Peters et al., 2021), ANNs 

are sometimes referred to as the "current best" models of human vision. This characterization is justified 

on both a priori and empirical grounds. A priori, ANNs are superior to verbally defined cognitive theories 

in that they are image-computable, i.e., they are fully computationally specified and take images as input. 

These properties enable ANNs to make quantitative predictions about a broad range of empirical 

phenomena, rendering ANNs more amenable to falsification. Being fully computationally specified enables 

them to make quantitative predictions of neural and behavioral responses (an advantage shared with other 

cognitive computational models). Taking images as inputs enables ANNs to make predictions about neural 

and behavioral responses to arbitrary visual stimuli. A model that explains only a particular psychological 

phenomenon is a priori inferior, ceteris paribus, to a model that predicts data across a wide range of 

conditions and dependent measures. The discrepancies between human vision and current ANNs are “bugs” 

of particular models, but the fact that we can discover these bugs is a feature of image-computable ANNs, 

fueling empirical progress. Since ANNs are image-computable, they enable severe tests of their predictions 

(superstimuli, adversarial examples, metamers; Bashivan et al., 2019; Walker et al., 2019; Dujmović, 2020; 

Feather et al., 2019) and powerful model comparisons (controversial stimuli; Golan et al., 2020). 

The empirical reason why ANNs can be called the "current best" models of human vision is that they offer 

unprecedented mechanistic explanations of the human capacity to make sense of complex, naturalistic 

inputs. Most basically, ANNs are currently the only models that can recognize objects, parse scenes, or 

identify faces at performance levels similar to human performance. Furthermore, they offer image-specific 

predictions of errors (e.g., Rajalingham et al., 2018; Geirhos et al., 2021) and reaction times (e.g., Spoerer 

et al., 2017). Their predictions are far from perfect but better than those of alternative models. Finally, the 

intermediate representations of ANNs currently best match the neural representations that underlie human 

visual capacities (e.g., Güçlü & van Gerven, 2015; Dwivedi et al., 2021). 

In sum, ANNs provide a language that enables us to express and test falsifiable computational models that 

have extraordinary power and can generalize to a broad range of empirical phenomena. Lakatos (1978) 

noted that all theories “are born refuted and die refuted” and stressed the importance of comparing 

competing theories in the light of the evidence. Our studies, then, should compare many models and report 

both their failures and their relative successes. It is through creation and comparison of many models that 

our field will progress. 
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