English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A heat-inducible expression system for external control of gene expression in plastids

MPS-Authors
/persons/resource/persons97077

Bock,  R.       
Organelle Biology and Biotechnology, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Xu, W., Li, S., Bock, R., & Zhang, J. (2024). A heat-inducible expression system for external control of gene expression in plastids. Plant Biotechnology Journal, 22(4), 960-969. doi:10.1111/pbi.14238.


Cite as: https://hdl.handle.net/21.11116/0000-000E-0661-E
Abstract
Summary Inducible expression systems can overcome the trade-off between high-level transgene expression and its pleiotropic effects on plant growth. In addition, they can facilitate the expression of biochemical pathways that produce toxic metabolites. Although a few inducible expression systems for the control of transgene expression in plastids have been developed, they all depend on chemical inducers and/or nuclear transgenes. Here we report a temperature-inducible expression system for plastids that is based on the bacteriophage ? leftward and rightward promoters (pL/pR) and the temperature-sensitive repressor cI857. We show that the expression of green fluorescent protein (GFP) in plastids can be efficiently repressed by cI857 under normal growth conditions, and becomes induced over time upon exposure to elevated temperatures in a light-dependent process. We further demonstrate that by introducing into plastids an expression system based on the bacteriophage T7 RNA polymerase, the temperature-dependent accumulation of GFP increased further and was ~24 times higher than expression driven by the pL/pR promoter alone, reaching ~0.48% of the total soluble protein. In conclusion, our heat-inducible expression system provides a new tool for the external control of plastid (trans) gene expression that is cost-effective and does not depend on chemical inducers.