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In this supplementary material, we present technical details concerning the calculations

presented in the main text, as well as additional results underlining our main findings.

Model calculations

As described in the main text, we employed a real-space 2D model for a honeycomb system

with different A/B sublattice sites. The potential on each site is given by a Gaussian of the

form:

VA,B(r) = −v0,A,Be−r
2/σ2

A,B (1)

where r is the electronic coordinate in 2D, v0,A = 40 eV, v0,B = 1.08v0,A, σA = 1.5 Bohr, and

σB = 1.08σA, such that the sublattice sites differ by 8%. The lattice vectors employed were

of length 2π Bohr, of the form a1 = 2πx̂, a2 = 2π(−x̂/2 +
√

(3)ŷ/2). Each site contributes

one electron to the unit cell, such that there are two electrons in each cell that populate

the same band (the first valence band), with spin-orbit interactions and electron-electron

interactions fully neglected. The field-free Hamiltonian of the model in atomic units in the

real-space representation reads:

h0(r) =
∑
n,m

VA(r− na1 −ma2) +
∑
n,m

VB(r− na1 −ma2 −
a1

3
+

a2

3
)− 1

2
∇2 (2)

where n and m are integers. We employed periodic boundary conditions along the lattice

vectors and diagonalized the Hamiltonian to obtain the ground state Bloch states with a

real-space grid spacing of 0.28 Bohr, and a k-space discretization using a Γ-centered 60× 60

k-grid.

For the time-dependent calculations, we solved the time-dependent Schrödinger equation

(TDSE) while propagating the Bloch state that is initially associated with the valence band
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in the real-space grid representation. The TDSE in atomic units is given by:

i∂t |ψk(t)〉 =

[∑
n,m

VA(r− na1 −ma2)

]
|ψk(t)〉+

+

[∑
n,m

VB(r− na1 −ma2 −
a1

3
+

a2

3
) +

1

2
(−i∇− 1

c
A(t))2

]
|ψk(t)〉 (3)

where we employ the velocity gauge and dipole approximation for the laser-matter interac-

tion, and A(t) is the vector potential of the laser electric field such that −∂tA(t) = cE(t),

with c is the speed of light. The initial state is taken as the ground state and propagation

is performed with a Lanczos expansion method with a time-step of 0.2 a.u. The laser vector

potential employed was taken as:

A(t) = f(t)
cE0

ω
√

1 + ε2
ˆR(θ) · (cos(ωt)x̂ + ε sin(ωt)ŷ) (4)

where E0 is the electric field amplitude, ω is the driving frequency, ε is the field’s ellipticity,

and ˆR(θ) is a rotation matrix in the xy-plane operating on the polarization vector. Overall,

this vector potential describes an elliptically-polarized laser pulse with an ellptical major

axis oriented θ degrees above the x-axis. f(t) in Eq.(4) is a normalized temporal envelope

function taken as a super-sine form1 (see illustration in Fig. S1):

f(t) = sin

(
π
t

Tp

)( |π( t
Tp
− 1

2 )|

σ

)
, (5)

where σ = 0.75, Tp is the duration of the laser pulse which was taken to be Tp = 10T , where

T is a single cycle of the fundamental carrier frequency (the overall full-width-half-max of

the pulse is 5T). The shape of an exemplary linearly-polarized laser pulse is shown in Fig. S1.

Projections of the occupations over the CB after the pulse ends were calculated by pro-
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jecting the time-dependent Bloch state over the ground state band:

gCB(k) = | 〈ψCB,k(t = 0)|ψk(tend)〉 |2 (6)

Note that in this approach each k-point is numerically independent such that the equations

of motion for the different Bloch states are propagated separately. Moreover, due to the

dipole approximation it is assumed that optical transitions can only occur while preserving

the electron’s momentum, i.e. vertically (as discussed in the main text). All of the numerical

calculations were performed with Octopus code.2–4
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Figure S1: Electric field E(t) of a linearly polarized pump pulse with ω = 0.35 eV, maximum
field intensity 0.2 TW/cm2 and a super-sine envelope function as specified in Eq. 5

TDDFT calculations

Time-dependent density functional theory (TDDFT) calculations were performed using the

real-space grid-based code Octopus.2–4 The Kohn Sham (KS) equations were discretized on

a 3D Cartesian grid in the primitive unit cell of monolayer hexagonal boron nitride (hBN),

with the lattice parameter a = 2.52 Å taken as the experimental value. A vacuum spacing of

40 Bohr was included in the simulations above and below the monolayer. Calculations were
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performed using the local density approximation (LDA), and spin degrees of freedom and

spin-orbit coupling were neglected. The frozen core approximation was used for inner core

bands which were treated with norm-conserving pseudopotentials.5 The KS equations were

solved self-consistently with an energy tolerance of < 10−7 Hartree, and the grid spacing

was converged to 0.37 Bohr. We employed a Γ-centred k-grid with 72×72 k-points. Fig. S2

presents the obtained ground state band structure in hBN.

For the TDDFT calculations, the time-dependent KS equations were solved within the

adiabatic approximation, represented in real-space and in the velocity gauge, given in atomic

units by

i∂t
∣∣ψKSn,k (t)

〉
=

[
1

2

(
−i∇− 1

c
A(t)

)2

+ vKS(r, t)

] ∣∣ψKSn,k (t)
〉
, (7)

where
∣∣ψKSn,k (t)

〉
are the KS single-particle wave functions of band n, A(t) is the vector

potential of the laser field (with the same form as used for the model TDSE calculations

described above), and vKS(r, t) the time-dependent KS potential given by

vKS(r, t) = −
∑
I

ZI
|RI − r|

+

∫
d3r′

n(r′, t)

|r− r′|
+ vXC [n(r, t)], (8)

where ZI is the charge of the Ith nuclei and RI is its coordinate, vXC is the XC potential that

is a functional of the time-dependent electron density n(r, t) =
∑

n,k |
∣∣ψKSn,k (t)

〉
|2. Practically,

the Coulomb interaction with the nuclei (first term in Eq.(8)) was replaced by the non-

local pseudopotential that also incorporates the core electrons contributions. The KS wave

functions were propagated with a time-step of ∆t = 0.2 a.u. The initial state was taken

to be the system’s ground state. The propagator was represented by a Lanczos expansion.

Absorbing boundaries with a width of 12 Bohr were employed along the direction of the

non-periodic z-axis.

Band and k-point occupations were calculated by projecting the time-dependent KS

states on the field-free states at t = 0, just as discussed above for the model case, but with

multiple band contributions taken into account.
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As a quantitative measure for the valley asymmetry we define P = (nK−nK′)/(nK+nK′),

where nK (nK′) are the electron occupations obtained by integrating the conduction band

population in the half of the reciprocal unit cell containing K (K ′).

Tight-binding Hamiltonian and Floquet analysis

We employed a two-band tight-binding Hamiltonian with up to 5th order NN contributions

to describe the Gaussian honeycomb model, as well as hBN (following ref.6). In the basis of

creation/annihilation operators on the A/B sublattice sites, the TB Hamiltonian reads:

H(k) =

 t2f2(k) + t5f5(k) t1f1(k) + t3f3(k) + t5f5(k)

t1f
∗
1 (k) + t3f

∗
3 (k) + t5f

∗
5 (k) t2f2(k) + t5f5(k)

+

+ (3t2 − 6t5 + ∆/2)σ0 + ∆σz/2 (9)

where σ0 is the 2-by-2 identity matrix, ti are the hopping amplitudes to the i’th NN site

(set as 1.5289, 0.1416, 0.0777, 0.0177, 0.0124 eV for t1, t2, t3, t4, and t5, respectively for the

Gaussian honeycomb model, and as -2.1429, 0.3376, -0.0630, 0.1825, 0.0928 eV, respectively,

for hBN), and fi(k) are structure factors obtained by Fourier transforming the real-space

Hamiltonian with the form:

fm(k) =
∑
j

eik·dm,j (10)

where the sum runs over existing j indices that describe various NN vectors for order m

hoppings, and dm,j are the NN hopping vectors of order m. The hopping vectors are given
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by:

d1,1 = (0, 1/
√

3), d1,2 = (−1,−1/
√

3)/2, d1,3 = (1,−1/
√

3)/2

d2,1 = (−1,−
√

3)/2, d2,2 = (1,
√

3)/2, d2,3 = (−1, 0), d2,4 = (1, 0)

d2,5 = (−1,
√

3)/2, d2,6 = (1,−
√

3)/2

d3,1 = (1, 1/
√

3), d3,2 = (−1,−1/
√

3), d3,3 = (0,−2/
√

3)

d4,1 = (−1,−2/
√

3), d4,2 = (1/2, 5/(2
√

3)), d4,3 = (−3/2,−1/(2
√

3))

d4,4 = (3/2,−1/(2
√

3)), d4,5 = (−1/2, 5/(2
√

3)), d4,6 = (1,−2/
√

3)

d5,1 = (−3/2,−
√

3/2), d5,2 = (3/2,
√

3/2), d5,3 = (3/2,−
√

3/2)

d5,4 = (−3/2,
√

3/2), d5,5 = (0,
√

3), d5,6 = (0,−
√

3)

where all NN vectors are given in units of the lattice parameter (2π Bohr for the Gaussian

honeycomb model, and a = 2.52 Å for hBN), and in the basis of Cartesian components in

2D, i.e. (x̂, ŷ). The first term in Eq. (9) represents all hopping processes, where 1st, 3rd, and

4th NN transitions are A-B inter-sublattice hoppings that couple to σ(x/y) Pauli matrices,

while 2nd and 5th NN transitions are A-A and B-B intra-sublattice hoppings that couple

to σ0. The second term in Eq. (9) shifts the Fermi level to the top of the valence band

for convenience purposes, and is otherwise physically irrelevant. The third term opens a

gap of ∆ at the K/K ′ points in the BZ. Note that the choice of hopping amplitudes was

set such that the TB model bands reproduce the first valence and conduction bands from

the Gaussian honeycomb model, or hBN, by a least-squares fitting procedure. For hBN the

least-squares fitting procedure was only employed in the region around the K/K ′ valleys to

avoid fitting the inverted band structure around Γ.

The Floquet analysis with the TB Hamiltonians is performed as discussed in the main

text, where the Fourier decomposition integrals (Eq.(1) in the main text) are performed

numerically for each k-point via Simpson integration with 200 points per cycle, and the

maximal allowed photon channel was 10ω. All parameters were tested for convergence. Fig.
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S3 presents and examplay Floquet band structure obtained for the model system.

Additional results

a) b)

Figure S2: (a) Equilibrium band structure of monolayer hBN, computed within LDA, shown
along high-symmetry lines (red and blue denoting occupied and unoccupied states, respec-
tively). Multiple photons with sub-band-gap frequency ω are needed to excite electrons from
the valence to the conduction bands. (b) Equilibrium band gap of hBN in the kxky plane.
The white lines indicate direct gap energies resonant with multiples of the driving frequency
ω = 0.7 eV.

Here, we present additional results supporting the findings presented in the main text.

A comparison between the equilibrium and the Floquet driven band structure along high

symmetry lines in the BZ is shown in Fig. S3 for exemplary conditions. The shape of the

depicted Floquet driven valence and conduction bands are for a linearly polarized laser in

the x direction, in accordance with Fig. 2 in the main text.

In Fig. S4, we explicitly show that the undressed field-free states do not satisfactorily

describe the induced charge excitation patterns. Fig. S4 depicts exemplary charge excitation

patterns in the model, overlaid with multi-photon resonant lines in the equilibrium (field-

free) band gap. The excitation patterns do not match the resonant lines, in particular for

elliptical (Fig. S4b) and linear (Fig. S4c) driving, the patterns break the expected three-fold

rotational symmetry of the field-free system. This discrepancy can be mended by considering

the light-dressed Floquet band structure instead, as discussed in the main text.

In Figs. (S5) and (S6), we show further results for various driving frequencies and power.
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Figure S3: Comparison between the equilibrium electronic bands and the Floquet driven
bands in the model along high symmetry lines. The depicted Floquet driven bands are
calculated for a laser linearly polarized in x-direction with ω = 0.35 eV and 0.2 TW/cm2,
similarly to Fig. 2 in the main text.

a) b) c)

Figure S4: Charge excitation patterns in the model after an intense (0.2 TW/cm2) pump
pulse with (a) circular polarization, (b) elliptical polarization with ε = 0.6, and (c) linear
polarization in x-direction. In all panels, the driving frequency is 0.35 eV, the overlaid
yellow lines represent multi-photon resonant energies in the equilibrium band structure. In
all panels, the charge excitation patterns do not satisfactorily match the resonance lines, for
(b) elliptical and (c) linear driving the patterns break the three-fold rotation symmetry of
the equilibrium band gap.
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b)

c) d)

a)

Figure S5: Conduction band excitation patterns in the model after an intense (0.2 TW/cm2)
elliptically polarized (ε = 0.6) pump pulse with frequencies (a) 0.68 eV, (b) 0.51 eV, (c)
0.40 eV, and (d) 0.34 eV. In all cases, the charge excitation patterns almost perfectly match
the Floquet multi-photon resonant lines in the Brillouin zone, indicated by the white lines.
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a) e)

d) f)b)

c)

Figure S6: Conduction band charge excitation patterns in the model for three different laser
driving powers: (a-b) 0.2 TW/cm2, (c-d) 0.4 TW/cm2, and (e-f) 0.7 TW/cm2. The panels
in the first row are for an elliptically polarized pump pulse (ε = 0.6), while the second row
depicts results for circular polarization, the driving frequency is 0.35 eV in all panels. For
circularly polarized pump pulses (second row), the valley polarization is clearly visible.
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Fig. (S5) displays conduction band charge excitation patterns in the model induced by an

elliptically polarized pump pulse with various driving frequencies ω. For all investigated

ω, the charge patterns nicely match the Floquet multi-photon resonant lines in the BZ.

Fig. (S6) depicts the charge excitation patterns in the model induced by elliptically as well

as circularly polarized pump pulses with different driving powers. These additional results

further support the validity of the interpretation that the induced charge patterns directly

map transitions between the Floquet driven bands.

We further verified that our results do not significantly depend on the duration of the

pump pulse. Fig. S7a) shows that the characteristic ring pattern appears already after a

short 3-cycle elliptically-polarized pump pulse. The pattern consequently becomes more

defined with increasing number of pump cycles, see Fig. S7b-c).

We next explore the dependence of the results on the TB model parameters. While the

employed TB model describes very well the equilibrium electronic bands, the Bloch states

are not perfectly described, and their phases can be inaccurate. These phases can be crucial

for multi-photon transitions in certain regimes. In Fig. S8 we show how sensitive the Floquet

bands are to the TB model—by changing the number of nearest-neighbour interactions from

two (see Fig. S8a) to five (see Fig. S8b), the resonant lines substantially move, inducing

potential missmatches between the Floquet resonant lines and the numerically-exact occu-

pation patterns. Such issues can in principle be avoided by utilizing other forms for the

Floquet Hamiltonian, or other forms of models. However, we would like to emphasize that

the mismatches are anyways relatively small and only reflect the position of the resonant

lines, while the general structure and shape of the pattern remains in very good agreement

with the shape of the Floquet-TB bands (as illustrated in Fig. S8(c) that shows a denser

contour plot of the Floquet k-dependent pseudo-energy gap.

In Fig. S9, we show limiting parameter regimes for our interpretation of the observed

charge patterns as Floquet multi-photon resonant lines. For weak power and high frequency

driving, as shown in Fig. S9a), the Floquet bands converge to the field-free bands, and all
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of the interesting observed effects simply vanish, since expressions for Fermi’s golden rule

coincide with those for the non-driven system (the Floquet picture can be considered a

generalization of the standard approach). On the other hand, in the limit of extreme driving

(see Fig. S9b), the Floquet picture becomes much more complicated due to the involvement

of multiple bands, and multiple band replicas, in the dynamics, which interfere. Indeed,

Fig. S9b) shows that as the pump becomes very intense, the agreement between the Floquet

resonant multi-photon lines and the numerical results diminishes (although remarkably, the

general structure of the occupation pattern still resembles the Floquet bands, see Fig. S9b-c).

a) b) c)

Figure S7: Conduction band excitation patterns in the model for different duration of the
pump pulse: (a) 3 cycles, (b) 5 cycles, and (c) 8 cycles. In all panels, the pump pulse is ellip-
tically polarized (ε = 0.6) with a driving frequency 0.35 eV and driving power 0.2 TW/cm2.

a) b) c)

Figure S8: Dependence of the Floquet band structure on the number of nearest neighbor
interactions included in the tight-binding Hamiltonian, for a circularly polarized pump pulse
with 0.35 eV, 0.2 TW/cm2 (a) two nearest-neighbor, and (b) five nearest-neighbor interac-
tions, respectively. (c) Same as (b), but multi-photon resonant lines shown for 0.175 eV.

S13



a) b) c)

Figure S9: Limiting parameter regimes for the Floquet picture. (a) Conduction band exci-
tation pattern in the model for circularly polarized high-frequency driving with 0.8 GW/cm2

and 2.06 eV, where the Floquet bands converge to the field-free bands. (b) Under extreme
driving with 1 TW/cm2 and 0.35 eV, the agreement between the Floquet picture and the
observed charge excitation patterns breaks down. Nevertheless, some general features can
still be recognized. (c) Same as (b), but multi-photon lines shown for 0.15 eV.

References

(1) Neufeld, O.; Cohen, O. Background-Free Measurement of Ring Currents by Symmetry-

Breaking High-Harmonic Spectroscopy. Phys. Rev. Lett. 2019, 123, 103202.

(2) Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C. A.; Andrade, X.; Lorenzen, F.; Marques, M.

A. L.; Gross, E. K. U.; Rubio, A. Octopus: a tool for the application of time-dependent

density functional theory. physica status solidi (b) 2006, 243, 2465–2488.

(3) Andrade, X.; Strubbe, D.; De Giovannini, U.; Larsen, A. H.; Oliveira, M. J. T.; Alberdi-

Rodriguez, J.; Varas, A.; Theophilou, I.; Helbig, N.; Verstraete, M. J. et al. Real-space

grids and the Octopus code as tools for the development of new simulation approaches

for electronic systems. Phys. Chem. Chem. Phys. 2015, 17, 31371–31396.

(4) Tancogne-Dejean, N.; Oliveira, M. J. T.; Andrade, X.; Appel, H.; Borca, C. H.; Le Bre-

ton, G.; Buchholz, F.; Castro, A.; Corni, S.; Correa, A. A. et al. Octopus, a com-

putational framework for exploring light-driven phenomena and quantum dynamics in

extended and finite systems. The Journal of Chemical Physics 2020, 152, 124119.

S14



(5) Hartwigsen, C.; Gœdecker, S.; Hutter, J. Relativistic separable dual-space Gaussian

pseudopotentials from H to Rn. Physical Review B 1998, 58, 3641.

(6) Wang, Y.; Huang, C.; Li, D.; Li, P.; Yu, J.; Zhang, Y.; Xu, J. Tight-binding model

for electronic structure of hexagonal boron phosphide monolayer and bilayer. Journal of

Physics: Condensed Matter 2019, 31, 285501.

S15


