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Upper limits and confidence intervals are a convenient way to present experimental results. With
modern experiments producing more and more data, it is often necessary to reduce the volume of
the results. A common approach is to take a maximum over a set of upper limits, which yields
an upper limit valid for the entire set. This, however, can be very inefficient. In this paper we
introduce functional upper limits and confidence intervals that allow to summarize results much
more efficiently. An application to upper limits in all-sky continuous gravitational wave searches is
worked out, with a method of deriving upper limits using linear programming.

INTRODUCTION

Many modern experiments and surveys produce large
amounts of data, whose dimensionality keeps increasing.
One way to reduce the storage requirements is to employ
data compression. However, lossless compression is often
only moderately effective, while lossy compression can
make upper limits (and confidence intervals in general)
invalid.

What is needed is way to perform lossy compression
while retaining the validity of upper limits and confidence
intervals. This is clearly possible by computing maxima
and minima of upper and lower bounds, however this can
result in overly inefficient limits.

A better way is to generalize the single value produced
by taking a maximum or minimum to a function given
by a formula with a few coefficients. The coefficients
are optimized to minimize error, while the function is
required to always be conservative with regard to the
limit or confidence interval being approximated.

In the following section we give a formal definition of
a functional upper limit, and then describe in detail con-
struction and performance of functional upper limits pro-
duced for the atlas of continuous gravitational waves.

FUNCTIONAL COMPRESSION

Suppose our search has computed upper limits UL =
UL(z) as a function of variable z € X.

To compress the data, we pick a set of functions
(0L}
is to find parameter ¢ such that the compressed form is
always at or above original upper limit data:

. Then the goal of a compression algorithm

Va € X : UL (2;¢) > UL () (1)
while minimizing error

max (UL (z;6) — UL(x)) — min (2)
zeX

The choice of error function is somewhat arbitrary. It is
often a good idea to pick an error function that makes the

optimization problem easy to compute. The compression
of lower limits is done in the same way, by simply invert-
ing the sign. Confidence intervals can be compressed by
treating lower and upper bounds separately.

__There is an efficient way to compute optimal function
UL. To begin, suppose we pick a set of constant func-
tions {c:c € R}. Then the compression algorithm can
compute

UL = max UL (x) (3)

This clearly satisfies the validity constraint given by Eqn.
and is easy to compute. However, the error equals to
the range of upper limit values.

We can improve the performance by introducing more
coefficients:

C-

UL(z) = h < (4)
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where h is an increasing monotonic invertible function
and f and g are some suitable functions of x.

Then the problem of finding optimal coefficients ¢ can
be framed as a linear programming problem:

{ Wt (UL(x)) g(x) < & f(x)

max (512~ 4= (UL(2))) — min (5)

as long as we are willing to modify the error function
(eqn. [2)) to compute the error in h~1 (UL).

Theoretically, this data compression can be very ef-
fective because we replace a large vector of values
(UL(z) : z € X) with much smaller number of coeffi-
cients ¢. And since coefficients ¢ can be found with a
linear programming algorithm, it is feasible to apply this
technique to large volumes of data, with functional upper
limits computed repeatedly for different inputs UL(x).

We will now describe how functional upper limits are
applied to construct an atlas of continuous gravitational
waves.



ALL-SKY SEARCHES FOR CONTINUOUS
GRAVITATIONAL WAVES

All-sky searches for continuous gravitational waves
produce vast amounts of data [IH9]. These searches are
looking for unknown gravitational wave sources by sweep-
ing large parameter spaces. Of course, most of the pa-
rameter space does not contain signals loud enough to be
detected. In this case, the search places an upper limit
on possible signal strength.

Reporting these upper limits can be problematic be-
cause of large number of dimensions - a relatively sim-
ple search will have two dimensions for the sky, one for
frequency and two for polarization. Allowing additional
parameters, such as frequency derivative or binary evo-
lution of the source, increases dimensionality further.

The technique used in the past to compress the data
was to maximize upper limits over a subset of parameter
space. For example, a maximum can be computed over
polarization and a small range of frequencies.

Reducing polarization data by maximization is far
from optimal because there is a large variation in upper
limits between linearly and circularly polarized sources,
as can be seen in Figure

In this paper we describe how one can report polariza-
tion specific upper limits using only a few dozen numbers
per record. These numbers define a function of coeffi-
cients computed from polarization parameters ¢ and ).
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FIG. 1.  Gravitational wave intrinsic amplitude ho upper

limits at 95% confidence as a function of signal frequency [1].

POLARIZATIONS OF GRAVITATIONAL WAVES

A prototypical source of continuous gravitational
waves is a neutron star with equatorial deformation.
Such rotating source will emit circularly polarized waves
along the rotation axis and linearly polarized wave, per-
pendicular to the rotation axis.

We start by assuming that our signal consists of two
polarizations:

h, A, cos(wt + @) (6)
., = Axsin(wt + ¢)

A generic pulsar signal can be represented as A, =
ho (1 +cos?(1)) /2, Ax = hgcos(t), with hg = Ay +
\/ AL — A% and cos(1) = A/ (A+ +4/A% — A2X>

We will assume that demodulation is performed for a

fixed frame of plus and cross polarizations rotated at an
angle §. In this coordinate system we have:

hy = Ay cos(wt + @) cos(e) — Ay sin(wt + ¢) sin(e)
hy = A, cos(wt + ¢)sin(e) + Ay sin(wt + ¢) cos(e)
(7)
where € = 2(¢ — ). The angle 1) describes polar angle of
the source rotation axis to the line of sight. The angle (5 is
important when performing analysis because the detector
orientation changes with time. For reporting results, we
can simply pick any convenient frame, so for the rest of
the paper we assume 3 = 0.

Continuous wave searches usually do not use high sam-
ple rate data. Rather, a set of short Fourier transforms
(SFTs) is computed, and the search loads only the bins
covering the frequency band of interest. The Fourier
transforms are picked to be short enough so that the
Doppler modulation from Earth motion is negligible. The
signal amplitude in SF'T bin corresponding to frequency
w is then

(Fyhy + Fyhy)e “tdt =

= 1€ (F(Ay cos(e) + iAy sin(e))+ (8)
+Fy (A sin(e) —iAx cos(e)))
= F+w1 + F><w2

where we introduced complex amplitude parameters

wy = 3e'?(A cos(e) +iAx sin(e))
Wy = gei‘i’(fh sin(e) — Ay cos(e)) (9)

The complex amplitude parameters w; and ws are alge-
braically symmetric, and satisfy the following equation
of constant hg:

VIwt + iws| + /wy — iwa| = /ho (10)

the solutions of which form a singular surface enclosing
a non-convex solid. This complicated form is responsible



for differences between worst-case circular upper limits,
population average upper limits, and circularly polarized
upper limits.

The normalized complex parameters are introduced by
setting w; = wi/hy and Wwe = wa/hg, and satisfy the
equation:

V] + ita| + /|y — itbe| = 1 (11)

CONSTRUCTION OF FUNCTIONAL UPPER
LIMITS

The polarization dependence of upper limits is de-
scribed by a function on two-dimensional space z =
(1),

We pick h(v) = /v, thus we measure error in the
square of the upper limit value. The vector ¢ has 14
components ¢1_14. Our upper limits model UL is then a
square root of a rational function of trigonometric func-
tions of ¢ and :

UL2 = (Cl + fppc2 + fchS + fccc4 + fimpcc5 + fngG'i‘
+ 02(;07 + ECCS + fimpcfppCQ + fimpcfpcclo+
+fimpc.fcccll + fpp.fpccm + fccfpccl3+
+fppfcc014) / (fpp + fcc)

(12)
where coeflicients f. = f.(¢, %) are given by the following
formulas:

14cos” ¢
a ol
ayx  =cos’.
Jop =2|ﬁl1|2=i(a+—|—ax + (a4 — ax) cos 4y)
foe  =A4Rew 1w} = 3 ((at — ax)sin4y)
Jec :2|w2|2:%(a++ax — (a —ax)cos4y)
fimpe =2Imu w3 = i (1 + cos? L) cos

(13)
The denominator of equation helps to compress the
range of upper limits, while coefficients ¢;_14 allow suf-
ficient freedom to bring upper limit overestimate under
5% for most data.

The coefficients ¢;_14 can be found using the following
linear optimization problem:

UL? (fpp + fcc) <c+ fppc2 + fchS + fecCat
+fimp065 + 51766 + f02607 + 1?(:68_'_
+fimpcfpp09 + fimpcfpcclo + fimpcfcccll+
+fppfpc012 + fccfpccl?) + fppfcccl4

UL? (fpp + fcc) >c+ fppCZ + fchS + feeCat
+fimpc05 + fgpcﬁ + 52007 + 13008—’_
+fimpcfppc9 + fimpcfpcclo + fimpcfcccll+
+fppfp0012 + fccfpccl3 + fppfcccl4+
+uw

u — min

(14)
here UL, f. and w are functions of ¢ and 9, typically taken
from precomputed grid. After optimization, a correction

can be applied that compensates for grid spacing and
assures that upper limits UL are valid for any ¢ and .

There are many existing linear programming algo-
rithms capable of solving model for example various
simplex algorithms and interior point methods. As the
model has few variables, it appears particularly simple.

One implementation quirk that makes things interest-
ing is that practical implementations of these algorithms
often encounter difficulties on some subset of inputs. For
example, simplex algorithms can loop and/or fail to con-
verge due to ill-conditioned matrices that define the prob-
lem.

In many situations, this is not a big problem as the
input data can be slightly perturbed. However, the all-
sky searches such as Falcon [I] need to find coefficients
c1_14 for billions of models, which input data, UL, is
derived from noise.

This practically guarantees that a weak point of any
particular linear optimization algorithm will be encoun-
tered during the analysis. The solution we have chosen
is to try different optimization algorithms one after an-
other with a time limit within which they are expected to
converge. Finally, if none of these succeed we settle for a
solution of [[4] that is valid, but not necessarily optimal.

APPLICATION EXAMPLE

To test our technique, we implemented it as part of
a Falcon search and then carried out a search on data
with software injections. The 31574 injections were uni-
formly distributed in the sky, with frequency derivatives
from 0 to —5x107° Hz/s, and polarizations distributed
assuming random source orientations.

Figure [2| shows how upper limits established by Falcon
pipeline compare with injection strength. To be correct,
the upper limit has to be above the y = x line marked in
red.

The left plot shows conventional worst-case upper
limit. We see a fairly wide spread above the red line,
which happens because some injections are circularly po-
larized and deliver a lot more power.

The right plot shows polarization specific upper limit.
To produce it, the Falcon pipeline first compressed the
data to produce a functional upper limit, and then that
function was evaluated for + and v that were used to make
the injection. We see that polarization specific upper
limits have a far smaller spread for loud injections as
they are more accurate.

For very weak injections the injected signals are dom-
inated by detector noise. Here, polarization specific up-
per limits show their main benefit as they can rigorously
establish far lower upper limits for elliptically polarized
signals. Indeed, the spread of blue points extends far
below 10~2°.
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Polarization specific upper limit
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Upper limit versus injected strain for a set of software injections [1]. The left graph shows worst case upper limit,

while the right plot shows polarization specific upper limit computed using ¢ and 1 used to inject signals.
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FIG. 3. Estimate of relative upper limit error versus SNR, of
software injection. For injections with small SNR the worst
case error is around 5%, for stronger injections it can be much
larger.

Figure [3] shows how relative error in the upper limit
depends on the injection strength. The functional model
has been optimized for the noise dominated case. There
we overestimate upper limits by 5% or less. As injection

SNR grows, our model becomes less efficient. This is not
a big problem because for SNRs that large the Falcon
pipeline can easily recover astrophysical signals.

CONCLUSIONS

We have described a new method that allows to es-
tablish upper limits and confidence intervals as a func-
tion, rather than a single number. This method has been
successfully used to compress Falcon atlas of continuous
gravitational waves, where for the first time, we were able
to provide upper limits for all polarizations. The func-
tional upper limits are established by linear optimiza-
tion that, in rare cases, presents difficulties for conven-
tional linear optimization codes. It would be interesting
to explore whether a more efficient optimizer can be con-
structed to solve the model of the form [I4l
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