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Abstract
Given the importance of soil for the global carbon cycle, it is essential to understand 
not only how much carbon soil stores but also how long this carbon persists. Previous 
studies have shown that the amount and age of soil carbon are strongly affected by 
the interaction of climate, vegetation, and mineralogy. However, these findings are 
primarily based on studies from temperate regions and from fine-scale studies, leav-
ing large knowledge gaps for soils from understudied regions such as sub-Saharan 
Africa. In addition, there is a lack of data to validate modeled soil C dynamics at broad 
scales. Here, we present insights into organic carbon cycling, based on a new broad-
scale radiocarbon and mineral dataset for sub-Saharan Africa. We found that in mod-
erately weathered soils in seasonal climate zones with poorly crystalline and reactive 
clay minerals, organic carbon persists longer on average (topsoil: 201 ± 130 years; 
subsoil: 645 ± 385 years) than in highly weathered soils in humid regions (topsoil: 
140 ± 46 years; subsoil: 454 ± 247 years) with less reactive minerals. Soils in arid cli-
mate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years) store organic carbon 
for periods more similar to those in seasonal climate zones, likely reflecting climatic 
constraints on weathering, carbon inputs and microbial decomposition. These insights 
into the timescales of organic carbon persistence in soils of sub-Saharan Africa sug-
gest that a process-oriented grouping of soils based on pedo-climatic conditions may 
be useful to improve predictions of soil responses to climate change at broader scales.
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1  |  INTRODUC TION

Sub-Saharan Africa faces major environmental and societal chal-
lenges: Population is projected to grow from 1.2 billion today to 3.4 
billion by 2100 (United Nations, 2022), which is expected to lead to 
further increases in deforestation and expansion of cropland (Hansen 
et al., 2013). Predicting associated changes in soil organic carbon (SOC) 
dynamics requires an understanding of the factors that control not 
only how much SOC is stored, but also for how long it is stored in soils, 
that is, the timescales of SOC persistence. There are many studies 
linking SOC content to vegetation, climate, and edaphic parameters, 
particularly soil mineralogy (Luo et  al., 2021; Rasmussen, Heckman, 
et  al.,  2018; von Fromm et  al., 2021; Yu et  al.,  2021), but there are 
fewer data on SOC age (here used as an indicator for SOC persistence) 
at broad spatial scales (Chen et al., 2021; Heckman et al., 2021). The 
available SOC data for sub-Saharan Africa suggest that about 24 Pg C 
is stored in the top five centimeters of soil (Hengl et al., 2015); more 
than twice the current annual global fossil CO2 emissions (ca. 10 Pg C; 
Friedlingstein et al., 2022). On average, this SOC is estimated to persist 
in soil for a period of a few centuries, which is up to an order of mag-
nitude shorter than SOC in other geographic areas (Shi et al., 2020).

Radiocarbon measurements (Δ14C) can be used to estimate the 
average time (years to millennia) since the C in soils was fixed from 
the atmosphere, including the time spent in plants (here defined as 
mean SOC age; Trumbore, 2009). Global meta-analyses of soil radio-
carbon measurements have shown that the youngest mean SOC age 
(ca. 200–300 years) is usually found in warm and wet climates where 
both productivity and microbial activity are typically high (Mathieu 
et al., 2015; Shi et al., 2020). Soils with younger mean SOC ages ex-
change C more quickly with the atmosphere and are presumably more 
responsive to change, making the SOC less persistent. However, this 
assumption ignores the possibility that with climate change, environ-
ments with more persistent SOC (with older mean SOC age) may ex-
perience conditions where formerly persistent SOC becomes available 
to microbes and can be rapidly degraded; accelerating the C exchange 
between soil and atmosphere. Current global analyses of SOC dynam-
ics typically suffer from a lack of data outside temperate regions, and 
this is especially true for deeply weathered soils from (sub-)tropical 
regions. Further, they tend to use general predictors that do not pro-
vide detailed insights into the underlying mechanisms driving differ-
ences in SOC content and age (Mathieu et al., 2015; Shi et al., 2020). 
Mineralogy is particularly known to affect SOC persistence, through 
its influence on soil structure and the provision of reactive mineral sur-
faces with different capacities for SOC sorption (Schmidt et al., 2011; 
Six, Feller, et al., 2002; Wattel-Koekkoek et al., 2003). In this context, 
fine-scale studies using carefully defined gradients have shown that 
SOC age increases with the amount of poorly crystalline minerals 
(Masiello et  al., 2004; Rasmussen, Throckmorton, et  al.,  2018; Torn 
et al., 1997). These minerals are composed of Al and Fe oxyhydrox-
ides and are characterized by large specific surface areas with a high 
proportion of reactive sites (Parfitt & Childs, 1988). For the same rea-
son, soils with 2:1 clay minerals, such as smectite and vermiculite, are 
also known to yield older SOC compared to soils dominated by 1:1 

clay minerals, such as kaolinite (Khomo et al., 2017; Wattel-Koekkoek 
et al., 2003) and can promote soil aggregation and occlusion of SOC 
(Six et al., 2000; Tisdall & Oades, 1982). However, Wattel-Koekkoek 
and Buurman (2004) observed no significant difference between the 
mean SOC age of kaolinite-bound and smectite-bound organic matter 
in soils from northern Mozambique. Additionally, cultivation can alter 
the timescales of SOC persistence (Six, Feller, et al., 2002), due to de-
creased C inputs and increased C decomposition (Harrison et al., 1993). 
While these studies have greatly improved our understanding of how 
the drivers of SOC persistence operate individually, it is necessary to 
increase the spatial scale of examination to reveal how they interact 
across contrasting geo-ecological environments. Similarly, the biogeo-
chemical properties of tropical and subtropical soils relevant for SOC 
persistence can differ strongly from those of temperate soils due to 
differences in the pedogenetic development history. Thus, the present 
and future persistence of SOC in tropical and subtropical landscapes is 
subject to large uncertainties.

Here, we use a broad-scale approach to investigate drivers and 
factors that influence SOC persistence across sub-Saharan Africa. 
We present a comprehensive soil radiocarbon and mineral data-
set, consisting of 510 new radiocarbon measurements (Figure 1a; 
Figure A1) from topsoils (0–20 cm) and subsoils (20–50 cm), each 
with accompanying climatic, mineralogical and land use informa-
tion. Soil landscapes within sub-Saharan Africa are extremely di-
verse and have developed over varying amounts of time across 
contrasting parent materials and geo-climatic conditions. The data 
presented here are representative of these diverse landscapes in 
terms of the range of key climate and soil characteristics they cover, 
although parts of the inner tropics are missing (Figure 1; Figures A1 
and A2). In addition, the dataset fills a major gap of soil radiocarbon 
measurements for sub-Saharan Africa by more than doubling the 
sampling density (Figure 1b). The dataset also increases the amount 
of data available outside of forested ecosystems, which are over-
represented in most radiocarbon studies (Lawrence et  al., 2020). 
Our analysis spans all main Köppen-Geiger climate zones (except 
deserts; Table S1) and soil types (Table S2) in sub-Saharan Africa, 
and includes disturbed (cultivated or eroded) and non-disturbed 
sites, enabling a unique comparison of SOC age and storage across 
and within a large variety of agro-ecological environments.

We focus on the relationship between SOC age and various 
soil and environmental properties (such as oxalate-extractable 
metals, crystalline minerals (1:1 and 2:1 clay minerals, pedogenic 
oxides), clay content, SOC content, climate zones, cultivation, 
erosion and gross primary productivity) in order to disentangle 
their different roles and importance in the SOC cycle. We con-
centrate on these variables because they can be represented by 
data available at broader scales, and their key role as important 
controls on SOC persistence has been previously demonstrated 
(i.e., Chen et al., 2021; Heckman et al., 2021; Khomo et al., 2017; 
Shi et al., 2020; Torn et al., 1997). We conclude our analyses with 
a discussion of regions where interactions between future climate 
and mineral SOC stabilization may alter the response of soils to 
climate change.
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2  |  METHODS

2.1  |  Sampling design

A total of 18,257 soil samples were collected from 60 sentinel sites 
(100 km2) and from two depth intervals (topsoil 0–20 cm and sub-
soil 20–50 cm) between 2010 and 2012 as part of the Africa Soil 
Information Service (AfSIS) project (Vågen et al., 2016). At each sam-
pling location (1000 m2), samples from four sub-plots (100 m2) were 
combined into one sample. The sentinel sites are stratified across all 
major Köppen-Geiger climate zones that are present in sub-Saharan 
Africa (Figure 1a; Figure A1). The objective of the stratified random 
sampling design was to cover all major climate zones to avoid sample 
bias towards specific land covers (Lawrence et al., 2020) or soil types 
(Kögel-Knabner & Amelung, 2021). This sampling approach allows 
us to test whether findings based on a pre-defined transect with 
specific soil types (e.g., along a climate gradient for temperate forest 
soils) are comparable to results at a broader scale following a com-
pletely randomized sampling design.

For each plot, cultivated land, or being prepared for cultivation if 
sampling in the dry season, with annual or perennial crops and erosion 
(i.e., sheet, rill or gully/mass) were reported in the field. As a reference 
dataset, 2002 samples were selected for laboratory measurements 
(Vågen et al., 2021; von Fromm et al., 2021). The reference dataset was 
chosen to maximize the variation in the measured mid-infrared spec-
tral data (Terhoeven-Urselmans et  al.,  2010). The selection strategy 
resulted in unequally distributed samples across 51 of the 60 sentinel 
sites, yet captured the variation in the original dataset (Tables S1 and S2; 
Figures S2–S4). For more details about the original sampling design and 
field survey, (see Vågen et al., 2013; von Fromm et al., 2021; Winowiecki, 
Vågen, Huising, 2016; Winowiecki, Vågen, Massawe et al., 2016).

For this study, we selected only samples with complete and 
reliable data (no missing or negative values for any of the explana-
tory variables), with inorganic C < 0.1 wt-%, and for which archived 
profile samples (both topsoil and subsoil) were available. This re-
duced the number of samples to 514 out of the 2002 reference 
soil samples (von Fromm et al., 2023). The selected soil samples 
are from 30 sites from 14 countries across sub-Saharan Africa 
(Figure  S1). We excluded all samples containing inorganic C be-
cause the removal of carbonates in these soils can leave residues 
of occluded inorganic C that provide more information on the dy-
namics of the inorganic C pools as opposed to organic C pools. 
Excluding samples with inorganic C ≥ 0.1 wt-% removed approx-
imately 18% of the available samples. However, only 6% of the 
samples had inorganic C ≥ 1 wt-%, which is consistent with the land 
area of sub-Saharan Africa (4–5%) dominated by carbonate-rich 
soil types (Table  S2). For a more detailed discussion about sam-
pling density and data representativeness, see the supplementary 
material.

2.2  |  Global data products

To investigate the effect of climate on the mean SOC age, we ex-
tracted the current (1980–2016) and future (2071–2100) Köppen-
Geiger climate zones at 1 km resolution from Beck et  al.  (2018) 
for each soil profile (n = 255; Table 1 and Figure S1). The predicted 
climate zones are derived from an ensemble of 32 climate model 
projections based on the RCP8.5 scenario (see Beck et  al., 2018). 
Gridded global data products usually come with large uncertain-
ties, yet the Köppen-Geiger climate zones are a good approximation 
and integration of several climate parameters across sub-Saharan 

F I G U R E  1 (a) Global map with all bulk Δ14C soil samples (black circles) from the International Soil Radiocarbon Database (ISRaD 
2.4.7.2023-02-01; ntotal = 6823; nstudies = 290) and all Δ

14C soil samples (red triangles) from this study (AfSIS; ntotal = 510); (b) Number of 
Δ14C samples per km2 × 10−6 for seven major land regions (Europe, North America, Oceania, South America, Asia, sub-Saharan Africa (SSA), 
Antarctica). Gray bars are based on data from ISRaD, red bar is based on data from this study; (c) violin plots for gross primary productivity 
(GPP), mean annual precipitation (MAP), pH and mean annual temperature (MAT) for sub-Saharan Africa (SSA; yellow) and this study (AfSIS; 
red). Horizontal lines indicate 25th and 75th quantiles, respectively. Map lines delineate study areas and do not necessarily depict accepted 
national boundaries.

(a)

(b)

(c)
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Africa. We used this grouping to examine differences between and 
within climate zones, as it is unlikely that a single soil property will 
explain SOC persistence across a wide range of climatic conditions 
(Rasmussen, Heckman, et al., 2018; von Fromm et al., 2021). In ad-
dition to the Köppen-Geiger climate zones, we extracted mean an-
nual precipitation (MAP) and mean annual temperature (MAT; Fick 
& Hijmans,  2017), and potential evapotranspiration (PET; Zomer 
et al., 2022).

Based on the absence/presence of a dry season within each 
main Köppen-Geiger climate zone, we grouped the data into five 
groups: arid (nProfile = 40), temperate (seasonal; nProfile = 59), tem-
perate (humid; nProfile = 77); tropical (seasonal; nProfile = 48); tropical 
(humid; nProfile = 31; Table 1). The newly formed climate groups con-
tain data from at least eight different sites each, except for the tem-
perate (humid) and tropical (humid) climate groups, which contain 
data from one and two different sites, respectively. However, the 
variation within these two climate groups are still well represented 
by our data, given the number of samples and the fact that a wide 
range of soil parameters were still represented within the gridded 
areas within each site (Figures S2–S4).

Gross primary productivity (GPP) was used as a rough proxy 
for plant C inputs. Data was derived from the FLUXCOM network 
(Jung et  al.,  2020) at a resolution of 0.0833° for each soil pro-
file (n = 255). FLUXCOM uses machine learning to merge carbon 
flux measurements from FLUXNET eddy covariance towers with 
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 
data (Jung et al., 2020). We averaged monthly values for the years 
2001 to 2012.

2.3  |  Laboratory measurements

A detailed description of all soil analyses conducted on the col-
lected AfSIS reference database is provided by Vågen et al. (2021) 
and von Fromm et  al.  (2021). In brief, soil material was air-dried 
and sieved to a particle size <2 mm in the Soil–Plant Spectroscopy 
Laboratory at the World Agroforestry (ICRAF) in Nairobi, Kenya. 
All measurements used in this study were performed on the 
<2 mm fraction. Soil texture was determined by laser diffraction 
spectroscopy at ICRAF and the clay + fine silt fraction was de-
fined as particles <8 μm. Particles <8 μm include the most relevant 
particle sizes (clay + fine silt) to investigate the effects of mineral 
stabilization on SOC persistence. This approach is supported by 
previous wok (von Fromm et  al.,  2021) which showed that par-
ticles <8 μm resulted in a reproducible fraction across soil types 
based on duplicate measurements, in contrast to using only clay 
particles <2 μm. X-ray powder diffraction (XRPD) analysis was 
also performed at ICRAF and used for determining the amounts 
of crystalline mineral phases, including 2:1 and 1:1 clay miner-
als, pedogenic oxides and other minerals as detailed below. Soil 
organic (and inorganic) C content and oxalate-extractable metals 
(relevant to assess mineral C stabilization potentials) were deter-
mined at Rothamsted Research in Harpenden, UK. For all refer-
ence samples (n = 2002), SOC was calculated from the difference 
between total C and inorganic C. The latter was measured by 
treating the sample with phosphoric acid and heating it to 135°C 
in a closed system. Inorganic C in the sample was converted to 
CO2 and then measured by non-dispersive infrared detection 

TA B L E  1 Grouping of the Köppen-Geiger climate zones based on absence/presence of dry season within each main Köppen-Geiger 
climate zone (capital letter) and summary statistics for extracted climate data at the profile level, including mean annual precipitation (MAP), 
potential evapotranspiration (PET), aridity index (PET/MAP; larger values refer to drier conditions), and mean annual temperature (MAT; 
median: minima-maxima).

New climate zone Köppen-Geiger climate zone MAP [mm] PET [mm] PET/MAP MAT [°C] nProfiles

Arid BWh (Arid, desert, hot) 542 (318–720) 2207 (1752–2937) 3.6 (2.6–7.2) 23 (18–29) 4

BSh (Arid, steppe, hot) 35

BSk (Arid, steppe, cold) 1

Temperate (seasonal) Csb (Temperate, dry summer, 
warm summer)

1424 (776–1630) 1706 (1381–2164) 1.2 (1.0–2.8) 19 (14–22) 14

Cwa (Temperate, dry winter, 
hot summer)

24

Cwb (Temperate, dry winter, 
warm summer)

21

Temperate (humid) Cfa (Temperate, no dry season, 
hot summer)

1725 (985–2054) 1445 (1413–1516) 0.8 (0.7–1.5) 20 (16–22) 76

Cfb (Temperate, no dry season, 
warm summer)

1

Tropical (seasonal) Aw (Tropical, savannah) 1349 (585–2011) 1759 (1389–2395) 1.3 (0.7–3.1) 22 (21–28) 48

Tropical (humid) Af (Tropical, rainforest) 1184 (1156–1329) 1581 (1549–1676) 1.3 (1.2–1.4) 22 (22–23) 12

Am (Tropical monsoon) 19

Abbreviations: MAP, mean annual precipitation; MAT, mean annual temperature; PET, potential evapotranspiration.
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(NDIR). Total C was determined by combustion analysis. Poorly 
crystalline/amorphous minerals were quantified as the oxalate-
extractable concentration of Al and Fe (Mox = Alox + Feox). Oxalate-
extractable metals (Mox) in wt-% were determined by extracting Al 
and Fe with oxalic acid and ammonium oxalate solution. The solu-
tion was shaken for 4 h at 25°C in the dark. Acid-oxalate extrac-
tion dissolves reactive minerals such as ferrihydrite (Fe), allophane 
and imogolite (Al), as well as other amorphous organic Fe and Al 
minerals (Parfitt & Childs, 1988). However, it may also attack non-
target species, including maghemite and magnetite, and therefore 
releasing additional Al and Fe, as well as other organo-metal com-
plexes (Reichenbach et al., 2023; Rennert, 2019). We interpret this 
extraction as a proxy for organo-mineral complex and amorphous 
mineral in general, rather than as a completely selective and fully 
quantitative method.

2.3.1  |  Radiocarbon analysis

Radiocarbon (14C) measurements were all performed in 2020 at the 
accelerator mass spectrometry facility of the Max-Planck Institute 
for Biogeochemistry, Jena, Germany (Steinhof, 2013) and measured 
on a mini carbon dating system (Micadas, IonPlus, Switzerland). 
Sample material was combusted in an elemental analyzer. The re-
sulting CO2 was reduced to graphite under the presence of H2, with 
iron as a catalyst (Steinhof et al., 2017). On-line δ13C measurements 
at the combustion stage revealed that two samples out of the 514 
samples used for this study contained significant amounts of car-
bonates (δ13C = −6.2 and − 4.5‰). The corresponding profiles were 
removed from the final analyses, resulting in a total of 510 soil sam-
ples. Samples with low organic C content (<0.3 wt-%; n = 32) were 
measured using the gas inlet system of the Micadas, resulting in 
lower precision (5.4 ± 0.3‰) compared to those measured as graph-
ite (2.2 ± 0.5‰).

We report 14C data as Δ14C, which is corrected for the decay 
of the oxalic acid standard between 1950 and the measurement 
year 2020. In order to account for mass-dependent fractionation 
effects, the 14C / 12C ratio of all samples is corrected to a common 
δ13C value of −25‰ (Stuiver & Polach, 1977). The measured Δ14C 
values were used to estimate the mean SOC age in each soil sam-
ple. This was done by applying a one-pool model that includes the 
uptake of ‘bomb’ 14C added to the atmosphere by nuclear weapons 
testing between ca. 1950 and 1964. The model provides a rela-
tive measure of C dynamics and assumes that SOC is homogenous 
and at steady-state (Shi et al., 2020; Trumbore, 2009). The calcula-
tions were performed using the R package SoilR (Sierra et al., 2014; 
R code can be found on github) following the approach by Torn 
et al. (2009).

In cases where two mean SOC ages yielded the same Δ14C value 
(i.e., in cases where Δ14C > 0‰), we report only the older mean SOC 
age, as it is more consistent with the fluxes of C into and out of the 
mineral associated and bulk soil fractions (Gaudinski et  al., 2000; 
Shi et al., 2020). While this approach is highly simplified, given that 

measurements of bulk soil represent a mixture of older and younger 
SOC, the estimated mean SOC ages still provide a useful indicator 
for how much time has passed on average since the C was fixed 
from the atmosphere. Under the presented model assumptions, 
mean SOC age is equal to the turnover rate (Khomo et al., 2017; Shi 
et  al.,  2020; Trumbore,  2009). Modeling approaches have shown 
that SOC age distributions have a long tail of old C, suggesting that a 
small fraction of SOC persists in soils much longer compared to the 
majority of SOC; mean SOC ages may thus underestimate the rate 
of response of SOC to changes in vegetation inputs or climate (Sierra 
et al., 2018).

2.3.2  |  Crystalline mineral quantification

Concentrations of crystalline minerals were quantified through X-
ray powder diffraction (XRPD). Sample preparation and data col-
lection were carried out using the procedure outlined in Butler 
et al. (2020). Briefly, subsampled and milled soils were loaded onto a 
Bruker D2 PHASER diffractometer equipped with a Cu-Kα radiation 
source and Ni-filter. Quantification of crystalline minerals from the 
XRPD data was achieved using the automated full pattern summa-
tion (afps) function implemented in the powdR package v1.3.0 for R 
(Butler & Hillier, 2021b). The observed diffractograms were modeled 
as the sum of scaled pure patterns provided by open-source libraries 
that are included with powdR (Butler & Hillier, 2021b; Eberl, 2003). 
A total of 108 reference patterns from these open-source libraries 
were supplied to the afps function, which together accounted for all 
major and minor soil components detectable within the AfSIS data-
set. The afps function first selects the appropriate reference pat-
terns from the full set to use for each sample, before scaling them 
by an optimization routine to minimize an objective function that 
summarizes how well the fitted and observed patterns matched (full 
details provided in Butler & Hillier,  2021a, 2021b). The optimized 
scaling coefficients are then combined with Reference Intensity 
Ratios (RIRs), a measure of each phase's diffracting power that are 
also provided within the powdR reference libraries. Mineral quantifi-
cations are expressed in units of weight-% of the crystalline mineral 
component of the sample.

The limits of detection (LOD) for all phases identified from the 
XRPD data were estimated using the RIRs and the method described 
in Butler and Hillier  (2021a). Different phases diffract X-rays with 
different power (reflected in the RIRs) and, hence, have different 
LOD. For example, a strong diffractor such as quartz, with a RIR of 
5.8, would have a smaller LOD than a weak diffractor such as kaolin-
ite (RIR ~ 0.5). The LOD of the internal standard quartz (RIR = 5.8) 
was assumed to be 0.1%, from which the LOD of each other phase 
can be estimated using its RIR:

Based on the above equation, K-feldspar phases (RIR ~ 1), for 
example, have an estimated LOD of 0.6%, and kaolinite phases 
(RIR ~ 0.5) have an estimated LOD of 1.2%.

LOD = 0.1 × (5.8∕RIR)
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6 of 18  |     von FROMM et al.

For quality control, all resulting fits derived from the afps func-
tion were manually inspected. The agreement between the fitted 
and observed patterns was satisfactory for each fit, aligning with 
that found when the same approach was tested on challenging clay-
bearing mixtures from interlaboratory tests (Butler & Hillier, 2021a).

It is important to note that we did not have XRPD data avail-
able for every radiocarbon sample. This is because the XRPD data is 
from a different subset of the AfSIS datasets than the radiocarbon 
samples. In total, we have 318 unique XRPD samples, of which 164 
samples also have radiocarbon values. For the remaining radiocar-
bon samples, we always used an XRPD sample that is from the same 
cluster (1 km2) as the radiocarbon sample. The average distance be-
tween a radiocarbon sample and the corresponding XRPD sample is 
540 m and the maximum distance is 1059 m. Since there are some-
times multiple radiocarbon samples within the same cluster, there 
are some XRPD samples that were used for more than one radio-
carbon sample. We performed a preliminary analysis using only soils 
with exactly paired XRPD and Δ14C data. The results were in accord 
with those obtained by examining the entire dataset.

Finally, to derive common soil mineral groups, we used the fol-
lowing mineral concentrations from the quantitative analysis:

Feldspars = K-feldspar + Plagioclase
Quartz = Quartz
2:1 clay minerals = Smectite (ML and Di) + Illite + Vermiculite
1:1 clay minerals = Kaolinite + Dickite + Halloysite
Pedogenic oxides =​ Goethite ​+​ Ma​ghe​m​ite + Hema​t​ite​ + ​M​a​gne​tit​e 
+ Gibbsite
Other = all other minerals quantified (see Supporting Information 
data)

We used this mineral grouping, because they reflect differ-
ent weathering conditions, chemical and physical characteristics 

relevant for SOC dynamics (Table  2). For example, previous work 
from sub-Saharan Africa has shown that poorly crystalline minerals 
and 2:1 clay minerals are generally associated with older 14C ages, 
while 1:1 clay minerals and pedogenic oxides are associated with 
younger 14C ages (Khomo et al., 2017; Wattel-Koekkoek et al., 2003). 
Feldspars are rock-forming primary minerals that are easily weath-
erable (Wilson, 1975), whereas quartz is an inert primary mineral 
(Polynov et al., 1937).

2.4  |  Statistical analyses

Principal component analysis (PCA) was performed for the two 
depth layers (topsoil: 0–20 cm; subsoil: 20–50 cm) to visualize and 
further explore the relationship between SOC persistence, climate, 
mineralogy, and land degradation (caused by cultivation and/or ero-
sion). Clay + fine silt fraction (<8 μm), 1:1 and 2:1 clay mineral con-
tent, poorly crystalline minerals (Mox), pedogenic oxides, feldspars, 
quartz, and gross primary productivity were used to calculate the 
principal components to capture different controls on SOC persis-
tence. Mean SOC age and content, climate zones, land cover, and 
erosion were used as supplementary variables for the PCA. This was 
done to test how well these variables are described by the other 
variables (Lê et  al.,  2008). One-way anovas were performed to 
test which of the categorical variables best describe the distance 
between individuals. The PCA coordinates of the supplementary 
variables are predicted using only the information provided by the 
performed component analysis on the other variables and all indi-
viduals. All numerical variables were normalized and scaled prior to 
conducting the PCA.

We used linear mixed-effects models as a quantitative tool 
to account for the hierarchical and nested sampling design of the 
AfSIS dataset (clusters within sites and two sampling depths within 

TA B L E  2 Median ± median absolute deviation (in wt-%) of the main mineral groups, including feldspars, poorly crystalline mineral, 2:1 clay 
mineral, 1:1 clay mineral, pedogenic oxides and quartz concentrations across climate zones for topsoils (0–20 cm) and subsoils (20–50 cm), 
respectively.

Climate zones Depth Feldspars
Poorly 
crystalline

2:1 clay 
minerals

1:1 clay 
minerals

Pedogenic 
oxides Quartz

Arid Topsoil 3.5 ± 5.2 0.1 ± 0.1 2.2 ± 3.2 2.5 ± 3.6 2.9 ± 4.3 72.6 ± 30.0

Subsoil 2.7 ± 4.1 0.2 ± 0.1 1.7 ± 2.5 4.7 ± 6.9 3.8 ± 5.6 70.9 ± 30.0

Temperate (seasonal) Topsoil 12.6 ± 13.0 0.6 ± 0.5 6.6 ± 9.8 12.8 ± 15.3 7.9 ± 8.8 23.7 ± 31.4

Subsoil 11.8 ± 10.5 0.5 ± 0.4 8.4 ± 9.2 13.3 ± 13.1 8.8 ± 9.1 18.4 ± 23.4

Tropical (seasonal) Topsoil 13.9 ± 15.6 0.3 ± 0.2 2.0 ± 3.0 7.2 ± 4.6 5.1 ± 3.2 53.7 ± 39.4

Subsoil 14.3 ± 15.7 0.3 ± 0.2 2.6 ± 3.9 11.3 ± 6.6 5.0 ± 2.5 48.9 ± 36.3

Temperate (humid) Topsoil <LOD 0.7 ± 0.2 <LOD 22.7 ± 9.2 24.2 ± 14.5 29.3 ± 16.8

Subsoil <LOD 0.6 ± 0.2 <LOD 22.5 ± 12.0 24.2 ± 14.9 29.7 ± 16.4

Tropical (humid) Topsoil 2.1 ± 0.9 0.5 ± 0.3 2.8 ± 1.6 14.1 ± 8.2 5.1 ± 3.3 57.1 ± 7.8

Subsoil 2.0 ± 1.0 0.4 ± 0.2 2.8 ± 4.1 14.8 ± 8.6 8.9 ± 6.0 49.7 ± 14.1

Note: All crystalline minerals are derived from the XRPD data and poorly crystalline minerals are the sum of oxalate-extractable metals 
(Mox = Alox + Feox). Together with the remaining minerals (not shown) all the crystalline minerals add up to 100 wt-%.
Abbreviation: LOD, below limit of detection.
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    |  7 of 18von FROMM et al.

each profile; von Fromm et al., 2021). The variance inflation factor 
was used to check for multicollinearity among predictor variables 
with a threshold of <3.0 (Zuur et al., 2010). To meet linear mixed-
effects assumptions and to standardize variation among variables, 
all continuous parameters were transformed and standardized 
to a normal distribution using Box-Cox transformation (Peterson 
& Cavanaugh, 2020). We started from a constant null model with 
siteID/clusterID/plotID as random effects and then extended the 
model stepwise by fitting the following sequence of fixed effects: 
MAP, MAT, depth, cultivation, erosion, GPP, SOC, 2:1 clay miner-
als, Mox, 1:1 clay minerals, pedogenic oxides, clay + fine silt content, 
quartz, and feldspars. The order of fixed effects was predefined 
based on a priori knowledge and their hypothesized importance in 
explaining variation in SOC age across sub-Saharan Africa, start-
ing with large-scale climate variables and ending with fine-scale 
physicochemical soil properties (Burnham & Anderson, 2002). The 
maximum likelihood method and likelihood ratio tests (L.ratio) were 
applied to evaluate model performance and the statistical signif-
icance of the added fixed effects (Tables S4–S6). The variation of 
SOC age explained by each fixed effect was obtained by calculating 
the marginal R2 (excluding the variation explained by the random 
effects) for each model and subtracting the R2 from the previous 
fitted model (Nakagawa & Schielzeth, 2013). To identify differences 
in the controls on SOC age with depth and across climate zones, we 
built multiple models: for all samples; topsoil only; subsoil only; and a 
model for each climate zone (without including depth, MAT and MAP 
as fixed effects and including topsoil and subsoil samples together). 
We did not include depth as a predictor in the climate models be-
cause SOC age is known to be strongly correlated with depth (e.g., 
Shi et  al.,  2020), and the topsoil and subsoil only models showed 
similar controls (Figure S5). For the climate zone models, we were 
primarily interested in identifying similarities and differences in the 
controls of the other explanatory variables.

A random forest model was used to identify nonlinear relation-
ships between SOC age and any explanatory variable, as well as to 
identify differences across pedo-climatic zones. We built a model 
with the same explanatory variables as for the climate zone explicit 
linear-mixed effects models, except we did not include erosion and 
cultivation as predictors. This is because we are mainly interested in 
identifying and understanding differences in physicochemical con-
trols across climate zones. For the validation of the resulting regres-
sion model, we performed a 10-fold cross validation, ensuring that 
soil profiles from the same cluster within a particular site were either 
in the training or testing dataset. Model evaluation was performed 
on the testing dataset, including the calculation of R2 and the mean 
absolute error (MAE). To better interpret the outcome of the ran-
dom forest model, we used partial dependence plots and individual 
conditional expectation plots. The partial dependence plots show 
the marginal effects an explanatory variable has on the predicted 
outcome of the random forest model while holding all the other 
variables constant that have been used to build the random forest 
model (Friedman,  2001). Individual conditional expectation plots 
are similar to partial dependence plots, but instead show one line 

per observation that shows how the prediction of an observation 
changes when the value of an explanatory variable for that obser-
vation changes (Goldstein et al., 2015; Molnar, 2022). Rather than 
plotting a prediction line for each observation, we calculated the 
median of subsets of observations based on their climate zones. This 
allows us to interpret the importance of each explanatory variable 
in these zones, respectively. Vertical lines next to each panel show 
the range of predicted mean SOC age for one explanatory variable, 
while holding all other variables constant. Note that we did not use 
the random forest model to do any upscaling. Instead, we used it to 
better understand the nonlinear behavior between SOC age and the 
explanatory variables and how their relationship may differ across 
climate zones. Predictions outside the data range of the majority of 
samples should be interpreted with caution.

All statistical analyses were performed within the R computing 
environment (version 4.1.1; R Core Team, 2021) including the addi-
tional R packages ggpubr (Kassambara, 2020), tidyverse (Wickham 
et  al.,  2019), tmap (Tennekes,  2018), raster (Hijmans,  2021), 
scales (Wickham & Seidel, 2022), sf (Pebesma, 2018), FactoMineR 
(Lê et  al.,  2008), factoextra (Kassambara & Mundt,  2020), mlr3 
(Lang et  al.,  2019), iml (Molnar et  al.,  2018) and nlme (Pinheiro 
et al., 2020).

3  |  RESULTS

The climate grouping largely reflects different pedo-climatic con-
ditions across sub-Saharan Africa (Tables  1 and 2). At this broad 
scale, the climate zones integrate many soil forming factors and can 
be seen as a conservative grouping of soil profiles that may locally 
be highly diverse, yet are confronted with a similar set of underly-
ing broad scale environmental factors. Arid soils have the highest 
concentration in quartz minerals (Table 2) and are characterized by 
limited chemical weathering due to water-limitation and low plant 
biomass production. Quartz is a mostly inert mineral with negli-
gible contributions to total and extractable soil nutrients (Butler 
et al., 2020; Hardy & Cornu, 2006). In contrast, soils under seasonal 
climate (temperate and tropical) show relatively high concentra-
tion in feldspars and 2:1 clay minerals (Table 2), reflecting their in-
termediate weathering status (Jackson et  al., 1948). Lastly, highly 
weathered soils from humid regions (temperate and tropical) are 
characterized more by 1:1 clay minerals and pedogenic oxides (Feller 
& Beare, 1997; Ojanuga, 1979).

Across sub-Saharan Africa, we found relatively young mean 
SOC ages, which is in contrast to the long development times 
for most of these soils (several hundred thousand years; Jones 
et al., 2013). Averaged over all sampling locations, mean SOC ages 
are 182 ± 62 years (median ± median absolute deviation) in topsoils 
(0–20 cm) and 563 ± 227 years in subsoils (20–50 cm; Figure S6). For 
the topsoil samples, mean SOC age decreases with increasing SOC 
content, with a threshold at about 1 wt-% SOC content. Samples 
with a SOC content >1 wt-% usually do not show mean SOC ages 
below 500 years, whereas samples with a SOC content <1 wt-% can 
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8 of 18  |     von FROMM et al.

have older mean SOC ages (Figure  2a), reflecting faster turnover 
rates at higher SOC content. We found the same overall patterns for 
subsoils (Figure S7b), and will only focus on topsoils in the main part 
of the manuscript (see Figures S5–S8, S11, S12 for more detailed 
analysis of subsoils).

The youngest mean SOC ages are in highly weathered soils in 
humid climate zones (topsoil: 140 ± 46 years; subsoil: 454 ± 247 years; 
Figure 2a), whereas the oldest SOC ages are found in soils of arid 
climate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years). 
Seasonal climate zones show a higher variation in mean SOC age 
(topsoil: 201 ± 130 years; subsoil: 645 ± 385 years) compared to 
humid soils (Figures 2a and 3b).

The principal component analysis (PCA) for the topsoils shows 
that climate zones significantly correlate with variables that con-
trol both SOC content (dimension 1: R2 = 0.57, p-value <0.001) and 
SOC age (dimension 2: R2 = 0.29, p-value <0.001; Figure 2b). Mean 
SOC age positively correlates with dimension 2 (correlation coef-
ficient = 0.29, p-value <0.001), whereas SOC content positively 
correlates with dimension 1 (correlation coefficient = 0.73; p-value 
<0.001). In the positive direction of dimension 2, concentrations in 
2:1 clay minerals (correlation coefficient = 0.92), feldspars (correla-
tion coefficient = 0.81), and poorly crystalline minerals (correlation 
coefficient = 0.33) are most correlated. In contrast, humid soils are 
characterized by high concentrations of 1:1 clay minerals, pedo-
genic oxides and GPP, which all show a negative correlation with 
mean SOC age and a positive correlation with dimension 1, respec-
tively. The same patterns occur for the subsoil samples (Figure S7b). 
Overall, the PCA confirms that climate grouping at this broad scale 
includes soils with relatively distinct pedo-climatic conditions that 
permit further exploration of the relationship between soil miner-
alogy and mean SOC ages across and within these pedo-climatic 
groups.

The linear-mixed effects model for all samples explains 66% of 
the variation in SOC age across sub-Saharan Africa. Climate variables 
(MAT and MAP) add less than 10% to the total explained variation. 

About half of the variation is explained by depth (32%), followed by 
C inputs (GPP: 8% and SOC content: 3%), and mineral controls (Mox: 
5% and clay + fine silt content: 3%). The linear-mixed effects models 
further show that controls between topsoil and subsoil samples are 
similar, yet climate and GPP are slightly more important in topsoil 
samples, whereas mineral controls are more important in subsoils 
(Figure  S5 and Table  S3). Soils from seasonal climate zones with 
more high-activity clays and poorly crystalline minerals (Table  2) 
have a wider range and include older SOC ages compared to soils 
from humid climate zones (Figure 3b). In particular, Mox and 2:1 clay 
minerals explain the highest variation in SOC age in seasonal climate 
zones (ca. 20%) across all climate zones (Figure 3a). As weathering 
progresses, SOC stabilizing minerals (2:1 clay minerals and poorly 
crystalline minerals) will weather to 1:1 clay minerals and other 
crystalline minerals prevalent in humid climate zones, resulting in 
younger SOC ages. The presence of poorly crystalline minerals in 
humid soils does not explain much of the variation in SOC age (ca. 
4%; Figure  3a). Soils from humid regions are characterized by the 
highest and narrowest GPP values (Figure 3b). However, the varia-
tion in SOC age in humid regions (temperate and tropical) is predom-
inantly explained by SOC content (62%; Figure 3a). Across all climate 
zones, GPP is most important in arid regions (21%; Figure 3a).

The random forest model for all samples explains about 46% of 
the variation in SOC age across sub-Saharan Africa, with a mean ab-
solute error of 263 years (Figure S9). Across all climate zones, higher 
concentrations of 2:1 clay minerals and oxalate-extractable metals 
always result in older predicted SOC ages, whereas 1:1 clay minerals 
have no effect on the predicted SOC ages (Figure 4b,c). For 2:1 clay 
minerals and oxalate-extractable metals, there are some thresholds 
evident, however most of them fall outside the 75th percentile data 
range (as indicated by the boxplots) and should be interpreted with 
caution (Figure 4b,d). Although the clay + fine silt fraction signifi-
cantly explains variation in SOC ages in each climate zone (Figure 3a; 
Table  S3), it only results in older SOC ages at values >75% based 
on the random forest model (Figure 4a). For all mineral predictors, 

F I G U R E  2 (a) Mean soil organic 
carbon (SOC) age and SOC content 
colored by climate zones. Insets show 
violin plots for mean SOC age and SOC 
content. Note that y-axes show different 
scales. (b) Principal component biplot 
for dimension 1 and 2 colored by climate 
zones. Mean SOC age and content (red 
arrows) were not used to derive the 
principal components. Only topsoils 
(0–20 cm) are shown for both plots. 
Subsoils showed similar patterns (see 
Supporting Information, Figure A7). GPP, 
gross primary productivity; PCM, poorly 
crystalline minerals; POX, pedogenic 
oxides.

(a) (b)
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    |  9 of 18von FROMM et al.

except for 1:1 clay minerals, the differences in the predicted SOC 
ages are largest in seasonal and arid climate zones (as indicated by 
the horizontal lines; Figure 4).

In terms of the effects of land degradation on SOC persistence, 
cultivated or eroded soils have on average older mean SOC ages 
and show a greater variability in mean SOC ages compared to non-
disturbed soils (Figure S10). However, neither our PCA analysis nor 
the linear mixed-effects models identified cultivation or erosion as 
important variables at this broad scale (Table S3, Figures S5, S11 and 
S12), except in tropical (seasonal) climates (Figure  3a). This is also 
reflected in the raw data for sites where cultivated/eroded plots are 
in close proximity to non-cultivated/non-eroded plots and do not 
show a clear pattern (Figure S10).

4  |  DISCUSSION

Relationships between mineralogy, climate, vegetation productivity, 
and soil carbon age found at the local scale hold at the continen-
tal scale—something that has not previously been demonstrated for 
the wide variety of soil types found in sub-Saharan Africa. We use 
climate zones to group soils with respect to SOC content and age, 
resulting in distinct pedo-climatic regions across sub-Saharan Africa. 

This approach allows us to sort and structure diverse landscapes ac-
cording to underlying mechanisms that explain SOC persistence at 
broader scales (Figure 5). For example, mean SOC ages from arid and 
humid climate zones are driven by bio-climate factors, including GPP 
and SOC content, whereas reactive minerals are most important 
in explaining variation in mean SOC ages in seasonal climate zones 
(Figures  3 and 4). The composition and complexity of the factors 
operating in the different pedo-climatic regions highlights the need 
to incorporate a process-oriented representation of soils in models 
that aim to represent C cycling at broader scales, rather than trying 
to identify a single soil or climate property that best describes SOC 
persistence (Jungkunst et  al., 2022). Our improved understanding 
also contributes to more process-oriented future projections of soils 
under climate change. In the following section, we will discuss the 
underlying mechanisms for SOC persistence across the identified 
pedo-climatic regions and how these different regions may respond 
to climate change.

4.1  |  Humid climate zones

In more humid climate zones (without a pronounced dry season), 
higher mean annual precipitation and a more even distribution of 

F I G U R E  3 (a) Explained variation of SOC age (based on marginal R2) for each fixed effect, based on sequential fitting of the linear mixed-
effects models for each climate zone, respectively. (b) Mean soil organic carbon (SOC) age (log-scaled) and SOC content (log-scaled), colored 
by gross primary productivity (GPP) and oxalate-extractable metals (Alox + Feox; log-scaled) for topsoil only (0–20 cm). Subsoils show similar 
patterns, see Figure S8.

(a) (b)
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10 of 18  |     von FROMM et al.

rainfall allows for a longer growing season and results in higher GPP 
(Figure  3b), greater soil C inputs and more rapid decomposition of 
SOC. However, since these soils have relatively high concentration 
in 1:1 clay minerals with limited capacity to stabilize SOC, higher C 
input will not necessarily lead to higher SOC concentrations (Table 2; 
Figures 2b and 5; Khomo et al., 2017; Six, Feller, et al., 2002; Wattel-
Koekkoek et al., 2003). The potential of deeply weathered soils that 
dominate these regions is often limited in its capacity to stabilize C 
inputs (Georgiou et al., 2022; Reichenbach et al., 2023), while micro-
bial decomposition is high (Cusack et  al., 2009). Our findings thus 
support the idea that some of the geochemically older tropical soils 
in humid climate zones may be closer to SOC ‘saturation’ (Six, Conant, 
et al., 2002). Therefore, deeply weathered tropical soils likely have 
a low potential for long-term sequestration of SOC, even if C inputs 
increased in the future (Reichenbach et al., 2023; Sayer et al., 2019).

Interestingly, the presence of poorly crystalline minerals does 
not necessarily result in older SOC ages in soils under humid climates 
compared to seasonal climates (Table  S3 and Figure  3). Although 
many studies have reported a positive relationship between oxalate-
extractable metals and SOC persistence (Chen et al., 2021; Masiello 
et al., 2004; Rasmussen, Throckmorton, et al., 2018; Torn et al., 1997), 
others have found no consistent pattern (Hall et al., 2018; Heckman 

et al., 2021). While tropical soils are often rich in pedogenic oxides 
(e.g., gibbsite and goethite) especially at advanced weathering stages, 
most of it is also locked away in stable Fe/Al concretions that do not 
readily interact with new C inputs as is known for temperate soils 
during aggregate formation (Martinez & Souza, 2020). However, for 
those mineral surfaces that come in contact with the soil solution, it 
is known that Fe-bearing minerals are sensitive to moisture changes 
and therefore constantly adsorb and release SOC from their mineral 
surfaces (Chen et  al., 2020; Thompson et  al.,  2011). Similarly, the 
stability of sorption strength of minerals can be affected by local 
changes in pH near the rhizosphere (Keiluweit et al., 2015). As a re-
sult, cyclic fluctuations in moisture, acidity and O2 levels affect the 
solubility of Fe and can release sorbed organic matter for decompo-
sition by microbes (Hall & Silver, 2013; Song et al., 2022). Therefore, 
these fluctuations with frequent rainfall, together with continuous 
high plant C inputs and decomposition, are likely to keep SOC ages 
young and overall highly dynamic in soils of humid climate zones 
across sub-Saharan Africa. In addition, it could also be that poorly 
crystalline minerals reflect greater intensity of mineral weathering 
by organic acids and are therefore driven by higher C inputs in these 
soils (Hall & Thompson, 2022). Ultimately, at this large scale, we can-
not disentangle these mechanisms entirely.

F I G U R E  4 Individual conditional expectation plots derived from the random forest model grouped by climate zones. Boxplots above each 
panel show the raw data distribution for each explanatory variable, and vertical lines next to each panel show the range of the predicted 
mean soil organic carbon (SOC) ages for each climate zone over the range of one explanatory variable, while holding the other variables 
constant. Figure shows results for (a) clay + fine silt content, (b) 2:1 clay minerals, (c) 1:1 clay minerals, and (d) oxalate-extractable metals.
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4.2  |  Seasonal climate zones

In seasonal climate zones, the direct importance of climate for SOC 
age tends to be smaller, as indicated by the larger distance between 
individual observations in the PCA compared to the other climate 
zones (Figure  2b) and the on average smaller importance of SOC 
content and GPP (Figure  3a). Interestingly, variation in GPP is not 
directly related to younger SOC ages and only partly to higher SOC 
content (Figure  3b). Thus, soils in seasonal climate zones might 
be less responsive to alteration in GPP caused by future climatic 
changes, than their counterparts in arid and humid climate zones.

Soils in seasonal climates are characterized by higher concentra-
tions of high-activity clays (2:1 clays) and poorly crystalline minerals, 
which provide excellent conditions for C sorption, resulting in older 
SOC ages compared to soils from humid climate zones (Figures 3 and 
4). The observed older SOC ages with the presence of reactive min-
erals is in agreement with the understanding that organo-mineral 
interactions associated with poorly crystalline minerals and/or 2:1 
clay minerals create physico-chemical barriers that restrict microor-
ganisms from decomposing organic molecules (Khomo et al., 2017; 
Six, Feller, et  al., 2002; Wattel-Koekkoek et  al., 2003), leading to 
high amounts of mineral protected SOC. Thus, as the variation in 
climate (limiting or promoting weathering and plant C input) and 

mineral properties (derived from parent material and the stage of 
soil development) are the most diverse, soils in seasonal climate 
zones have the widest range of SOC content and age combination 
of all sub-Saharan Africa regions studied (Figures 2a, 3 and 4). Our 
findings that mineral reactivity is as important as C input in repre-
senting SOC persistence, and more important than the amount of 
clay + fine silt fraction in these regions (Figures 3 and 4) also have 
implications for global-scale approaches. Most global-scale studies 
attempt to model C cycling often without precise data to represent 
the soil mineral phase (Shi et al., 2020; Tifafi et al., 2018). However, 
describing the reactive inorganic component of soil as a single nu-
meric value based on particle size alone overlooks the intricate influ-
ence of multiple reactive components that can exist within this size 
range (Butler et al., 2020; Feller & Beare, 1997; Hassink, 1997; Six, 
Conant, et al., 2002).

4.3  |  Arid climate zones

Arid soils have the oldest SOC ages even though reactive minerals 
are less abundant than in seasonal climates (Figures 3 and 4). We ex-
plain this finding by the strong climatic barriers that exist in this zone 
for biological processes due to low moisture availability for most of 

F I G U R E  5 Schematic figure of bio-climate and mineral controls on soil organic carbon stabilization across sub-Saharan Africa. Feldspars: 
K-feldspars and Plagioclase; High-activity clays: 2:1 clay minerals such as smectite and vermiculite; poorly crystalline minerals: oxalate-
extractable metals (Alox + Feox); low-activity clays: 1:1 clay minerals (kaolinite) and pedogenic oxides (e.g., Goethite, Gibbsite and Hematite). 
The figure was created with biore​nder.​com.
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these soils (Table 1). This results in both low plant C inputs (low GPP; 
Figures 2b and 3b) and limited microbial C decomposition. However, 
Quéro et al. (2022) showed for plowed Arenosols that the remaining 
SOC was of microbial origin and stabilized within organo-mineral as-
sociations. Similarly, Khomo et al. (2017) found for arid soils in South 
Africa that some SOC was associated with Fe(oxhydr)oxides. In arid 
soils, these minerals can be very stable (i.e., not much fluctuation 
in oxide stability) and thus they could stabilize SOC for longer time 
than in humid soils with fluctuating redox potential (Bhattacharyya 
et al., 2018). This is reflected in our linear mixed-effects model for arid 
samples and the random forest model, where a higher concentration 
in poorly crystalline minerals results in older SOC ages (Table  S3; 
Figure 4d), although the explained variation is only 4% (based on the 
linear mixed-effects model; Figure 3a). Photo-oxidation of fresh and 
young SOC may also contribute to overall older mean SOC ages in 
these arid regions (Austin & Vivanco, 2006), as may the deposition of 
aeolian dust and the presence of charcoal, both of which can contain 
relatively old C (Cusack et al., 2012; Eglinton et al., 2002). In sum-
mary, old SOC ages in the arid zone appear to be more a function of 
constraints on weathering, C inputs, and C mineralization (Figure 3). 
Small increases in precipitation may promote C stabilization of in-
puts if reactive minerals are already present (for example, formed in 
a wetter past climate; Figure 4b,c).

4.4  |  Anthropogenic factors

Our data show that anthropogenic disturbances are detectable 
in mean SOC age at broader scales (Figure  3a), yet the direction 
and magnitude remain uncertain (Table  S3 and Figure  A10). For 
eroded soils, the older mean SOC ages are likely due to the removal 
of younger SOC from the topsoil layer (Berhe et  al.,  2008; Paul 
et  al.,  1997), whereas for cultivated soils, lower C inputs of fresh 
(young) C could result in older mean SOC ages (Harrison et al., 1993; 
Wang et  al.,  1999). However, when comparing eroded/cultivated 
vs. non-eroded/non-cultivated soils from the same site, they show 
different responses with respect to SOC ages, which could be for 
various reasons. For example, it has been shown that different man-
agement practices can have varying effects on SOC dynamics (Six, 
Feller, et al., 2002; Winowiecki et al., 2016). In addition, cultivation 
is typically performed on fertile soils, that are, as identified above, 
associated with a particular climate and mineralogy (Figure  3a). 
Furthermore, cultivation may also increase the risk of erosion if it 
takes place in regions that are topographically and climatically prone 
to promote soil redistribution (Lal, 1985). All of this suggests that 
the effect of cultivation and erosion on SOC persistence can only 
be studied to a limited extent at a broader scale, since their effects 
are highly context dependent at local scales (Holmes et  al., 2004, 
2005). Furthermore, the effects of anthropogenic disturbances may 
be detectable only in the top few centimeters and only for certain 
soil fractions, such as plant-derived and fast cycling SOC (Heckman 
et  al.,  2022; Reichenbach et  al.,  2023; Rocci et  al.,  2021). In sum-
mary, conclusions about the role of land management practices on 

SOC persistence and the exact drivers of the observed differences 
between natural and degraded soils cannot be drawn from this data-
set. At this broad scale, the drivers of degraded soils are likely to be 
superseded by the effects of the underlying climate and mineralogy 
on soil C cycling and redistribution.

4.5  |  Future scenarios of SOC persistence

Climate change is projected to have significant effects on the African 
continent, although predictions have a high level of uncertainty (Lee 
et al., 2021). Based on CMIP6 projections for the end of this century 
(RCP8.5, 4°C warming, baseline 1986–2005), sub-Saharan Africa 
will become warmer (+3 to 4°C) and about 66% of the land area will 
become wetter, yet with more intense droughts and heavy rainfall 
events (Gutiérrez et  al., 2021; Iturbide et  al.,  2021). Seasonal cli-
mate zones will be subject to the most pronounced climatic changes 
across sub-Saharan Africa (areas indicated in gray; Figure 6a; Beck 
et  al.,  2018; Gutiérrez et  al., 2021; Iturbide et  al.,  2021). Many of 
these regions will become either more arid (yellow area) or more 
humid (purple and green area; Figure 6a). For the predicted changes 
for each climate zone, we used the future climate zones projected 
by Beck et  al.  (2018) based on an ensemble of 32 climate model 
(RCP8.5). Each climate zone is defined according to the Köppen-
Geiger classification system, based on threshold values and sea-
sonality of monthly air temperature and precipitation. All of these 
projected climate changes will have profound impacts on vegetation 
and soils.

Our results highlight the need to consider the diversity of cur-
rent pedo-climatic conditions when considering the response of soil 
C cycling to future changes. For example, the soils from seasonal 
climates forecast to change most also store the most SOC relative 
to their area under current climate conditions (Figure  6b), with 
older soil ages and high C stabilization potential (Figures 3 and 4). 
These well-developed soils with abundant reactive minerals may 
have the potential to stabilize more C if plant productivity increases 
(Figure 6c). The same soils may be less responsive to declining plant 
productivity if soil minerals can efficiently retain SOC via mineral 
adsorption (Torn et al., 1997; Figure 6c). In contrast, soil C stocks in 
predominantly old, deeply weathered soils with younger SOC ages 
(Figure 5) might not react to climatic changes if biomass productivity 
continues to exceed the limited capacity of these soils to stabilize C 
by minerals (Reichenbach et al., 2023; Torn et al., 1997). However, 
these soils may be very sensitive to decreases in biomass productiv-
ity and thus plant C inputs under drier climate conditions (Figure 6c; 
Feller, 1993; Good & Caylor, 2011). This is because soils of the humid 
(sub)tropics are already dominated by less reactive 1:1 clays and 
other end-member minerals that have lost their ability to effectively 
stabilize SOC by minerals (Figures 3 and 4). Finally, over much longer 
time periods, climate will impact soil weathering and C stabilization 
potential. For example, soils that have been constrained by climate in 
their development to date, such as soils in arid climate zones where 
lack of water limits chemical weathering and soil stability through 
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vegetation cover, may develop a more reactive mineral soil phase 
which would allow them to adsorb more C over longer time peri-
ods (Georgiou et  al., 2022). These various responses will proceed 
at different timescales, and future research is needed to connect 
current pedo-climatic conditions with future soil development to 
understand projected changes to the soil C cycle over decadal and 
centennial timescales.

5  |  CONCLUSIONS

We show that patterns of SOC persistence are related to common 
soil development stages, which can be grouped into main pedo-
climatic zones at the continental scale for sub-Saharan Africa 
(Figure  5). Across the diverse soil landscapes of sub-Saharan 
Africa, our results highlight the varying importance of climate, 
mineralogy and vegetation as controlling factors for SOC dynam-
ics. This is particularly important as (i) some soils currently have a 
high potential to stabilize SOC by minerals under the prevailing cli-
matic conditions but will receive either less or more plant C inputs 
in the future; (ii) soils react more slowly to climatic change than 
vegetation and (iii) the potential of soils to stabilize SOC on min-
eral surfaces can change drastically as weathering progresses. At 
this large scale, anthropogenic alterations of soils through land use 

proved less important for understanding patterns of SOC persis-
tence than the underlying pedo-climatic conditions. Furthermore, 
the results of the linear-mixed effects and random forest mod-
els show that we cannot explain all the variation in SOC persis-
tence across sub-Saharan Africa. The unexplained variation may 
be linked to differences in soil microbiology and soil hydrology for 
which we did not have data.

Pedo-climatic grouping of soils can be used to inform upscal-
ing efforts to understand broad-scale controls on SOC stocks and 
timescales of soil C dynamics. It provides a basis for predicting 
responses of SOC to change. We acknowledge that these predic-
tions remain uncertain. Nevertheless, our results advance our un-
derstanding of the very complex soil system at larger scales and 
call for a more process-oriented grouping and representation of 
soils in models and upscaling efforts. Besides a better description 
of climate change effects on vegetation and microbial activity, a 
pedogenetically informed understanding of the current and future 
potential of soil C mineral stabilization is crucial for more accurate 
predictions of the responses of tropical and subtropical soils to 
climate change.
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