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Abstract
Given the importance of soil for the global carbon cycle, it is essential to understand 
not	only	how	much	carbon	soil	stores	but	also	how	long	this	carbon	persists.	Previous	
studies have shown that the amount and age of soil carbon are strongly affected by 
the interaction of climate, vegetation, and mineralogy. However, these findings are 
primarily	based	on	studies	from	temperate	regions	and	from	fine-	scale	studies,	leav-
ing	 large	knowledge	gaps	 for	 soils	 from	understudied	 regions	 such	as	 sub-	Saharan	
Africa.	In	addition,	there	is	a	lack	of	data	to	validate	modeled	soil	C	dynamics	at	broad	
scales.	Here,	we	present	insights	into	organic	carbon	cycling,	based	on	a	new	broad-	
scale	radiocarbon	and	mineral	dataset	for	sub-	Saharan	Africa.	We	found	that	in	mod-
erately weathered soils in seasonal climate zones with poorly crystalline and reactive 
clay	 minerals,	 organic	 carbon	 persists	 longer	 on	 average	 (topsoil:	 201 ± 130 years;	
subsoil:	 645 ± 385 years)	 than	 in	 highly	 weathered	 soils	 in	 humid	 regions	 (topsoil:	
140 ± 46 years;	subsoil:	454 ± 247 years)	with	 less	reactive	minerals.	Soils	 in	arid	cli-
mate	 zones	 (topsoil:	 396 ± 339 years;	 subsoil:	 963 ± 669 years)	 store	organic	 carbon	
for periods more similar to those in seasonal climate zones, likely reflecting climatic 
constraints on weathering, carbon inputs and microbial decomposition. These insights 
into	the	timescales	of	organic	carbon	persistence	in	soils	of	sub-	Saharan	Africa	sug-
gest	that	a	process-	oriented	grouping	of	soils	based	on	pedo-	climatic	conditions	may	
be useful to improve predictions of soil responses to climate change at broader scales.
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1  |  INTRODUC TION

Sub-	Saharan	 Africa	 faces	 major	 environmental	 and	 societal	 chal-
lenges:	Population	 is	projected	to	grow	from	1.2	billion	today	to	3.4	
billion	by	2100	(United	Nations,	2022),	which	 is	expected	to	 lead	to	
further	increases	in	deforestation	and	expansion	of	cropland	(Hansen	
et al., 2013).	Predicting	associated	changes	in	soil	organic	carbon	(SOC)	
dynamics requires an understanding of the factors that control not 
only how much SOC is stored, but also for how long it is stored in soils, 
that is, the timescales of SOC persistence. There are many studies 
linking SOC content to vegetation, climate, and edaphic parameters, 
particularly	 soil	mineralogy	 (Luo	 et	 al.,	2021; Rasmussen, Heckman, 
et al., 2018;	 von	Fromm	et	 al.,	2021; Yu et al., 2021),	 but	 there	 are	
fewer	data	on	SOC	age	(here	used	as	an	indicator	for	SOC	persistence)	
at	broad	spatial	scales	(Chen	et	al.,	2021; Heckman et al., 2021).	The	
available	SOC	data	for	sub-	Saharan	Africa	suggest	that	about	24	Pg	C	
is	stored	in	the	top	five	centimeters	of	soil	(Hengl	et	al.,	2015);	more	
than twice the current annual global fossil CO2	emissions	(ca.	10	Pg	C;	
Friedlingstein	et	al.,	2022).	On	average,	this	SOC	is	estimated	to	persist	
in soil for a period of a few centuries, which is up to an order of mag-
nitude	shorter	than	SOC	in	other	geographic	areas	(Shi	et	al.,	2020).

Radiocarbon	measurements	 (Δ14C)	 can	 be	 used	 to	 estimate	 the	
average	 time	 (years	 to	millennia)	 since	 the	C	 in	 soils	was	 fixed	 from	
the	 atmosphere,	 including	 the	 time	 spent	 in	plants	 (here	defined	 as	
mean SOC age; Trumbore, 2009).	Global	meta-	analyses	of	soil	radio-
carbon measurements have shown that the youngest mean SOC age 
(ca.	200–300 years)	is	usually	found	in	warm	and	wet	climates	where	
both	 productivity	 and	microbial	 activity	 are	 typically	 high	 (Mathieu	
et al., 2015; Shi et al., 2020).	Soils	with	younger	mean	SOC	ages	ex-
change C more quickly with the atmosphere and are presumably more 
responsive to change, making the SOC less persistent. However, this 
assumption ignores the possibility that with climate change, environ-
ments	with	more	persistent	SOC	(with	older	mean	SOC	age)	may	ex-
perience conditions where formerly persistent SOC becomes available 
to microbes and can be rapidly degraded; accelerating the C exchange 
between soil and atmosphere. Current global analyses of SOC dynam-
ics typically suffer from a lack of data outside temperate regions, and 
this	 is	 especially	 true	 for	 deeply	weathered	 soils	 from	 (sub-	)tropical	
regions.	Further,	they	tend	to	use	general	predictors	that	do	not	pro-
vide detailed insights into the underlying mechanisms driving differ-
ences	in	SOC	content	and	age	(Mathieu	et	al.,	2015; Shi et al., 2020).	
Mineralogy is particularly known to affect SOC persistence, through 
its influence on soil structure and the provision of reactive mineral sur-
faces	with	different	capacities	for	SOC	sorption	(Schmidt	et	al.,	2011; 
Six,	Feller,	et	al.,	2002;	Wattel-	Koekkoek	et	al.,	2003).	In	this	context,	
fine-	scale	studies	using	carefully	defined	gradients	have	shown	that	
SOC age increases with the amount of poorly crystalline minerals 
(Masiello	 et	 al.,	2004; Rasmussen, Throckmorton, et al., 2018; Torn 
et al., 1997).	These	minerals	are	composed	of	Al	and	Fe	oxyhydrox-
ides and are characterized by large specific surface areas with a high 
proportion	of	reactive	sites	(Parfitt	&	Childs,	1988).	For	the	same	rea-
son, soils with 2:1 clay minerals, such as smectite and vermiculite, are 
also known to yield older SOC compared to soils dominated by 1:1 

clay	minerals,	such	as	kaolinite	(Khomo	et	al.,	2017;	Wattel-	Koekkoek	
et al., 2003)	and	can	promote	soil	aggregation	and	occlusion	of	SOC	
(Six	et	al.,	2000; Tisdall & Oades, 1982).	However,	Wattel-	Koekkoek	
and	Buurman	(2004)	observed	no	significant	difference	between	the	
mean	SOC	age	of	kaolinite-	bound	and	smectite-	bound	organic	matter	
in	soils	from	northern	Mozambique.	Additionally,	cultivation	can	alter	
the	timescales	of	SOC	persistence	(Six,	Feller,	et	al.,	2002),	due	to	de-
creased	C	inputs	and	increased	C	decomposition	(Harrison	et	al.,	1993).	
While these studies have greatly improved our understanding of how 
the drivers of SOC persistence operate individually, it is necessary to 
increase the spatial scale of examination to reveal how they interact 
across	contrasting	geo-	ecological	environments.	Similarly,	the	biogeo-
chemical properties of tropical and subtropical soils relevant for SOC 
persistence can differ strongly from those of temperate soils due to 
differences in the pedogenetic development history. Thus, the present 
and future persistence of SOC in tropical and subtropical landscapes is 
subject to large uncertainties.

Here,	we	use	a	broad-	scale	approach	to	investigate	drivers	and	
factors	that	influence	SOC	persistence	across	sub-	Saharan	Africa.	
We present a comprehensive soil radiocarbon and mineral data-
set,	consisting	of	510	new	radiocarbon	measurements	(Figure 1a; 
Figure A1)	 from	 topsoils	 (0–20 cm)	 and	 subsoils	 (20–50 cm),	 each	
with accompanying climatic, mineralogical and land use informa-
tion.	 Soil	 landscapes	within	 sub-	Saharan	Africa	 are	extremely	di-
verse and have developed over varying amounts of time across 
contrasting	parent	materials	and	geo-	climatic	conditions.	The	data	
presented here are representative of these diverse landscapes in 
terms of the range of key climate and soil characteristics they cover, 
although	parts	of	the	inner	tropics	are	missing	(Figure 1; Figures A1 
and A2).	In	addition,	the	dataset	fills	a	major	gap	of	soil	radiocarbon	
measurements	 for	sub-	Saharan	Africa	by	more	 than	doubling	 the	
sampling	density	(Figure 1b).	The	dataset	also	increases	the	amount	
of	data	available	outside	of	forested	ecosystems,	which	are	over-	
represented	 in	most	 radiocarbon	 studies	 (Lawrence	et	 al.,	2020).	
Our	analysis	 spans	all	main	Köppen-	Geiger	climate	zones	 (except	
deserts; Table S1)	and	soil	types	(Table S2)	 in	sub-	Saharan	Africa,	
and	 includes	 disturbed	 (cultivated	 or	 eroded)	 and	 non-	disturbed	
sites, enabling a unique comparison of SOC age and storage across 
and	within	a	large	variety	of	agro-	ecological	environments.

We focus on the relationship between SOC age and various 
soil	 and	 environmental	 properties	 (such	 as	 oxalate-	extractable	
metals,	crystalline	minerals	 (1:1	and	2:1	clay	minerals,	pedogenic	
oxides),	 clay	 content,	 SOC	 content,	 climate	 zones,	 cultivation,	
erosion	 and	 gross	 primary	 productivity)	 in	 order	 to	 disentangle	
their different roles and importance in the SOC cycle. We con-
centrate on these variables because they can be represented by 
data available at broader scales, and their key role as important 
controls on SOC persistence has been previously demonstrated 
(i.e.,	Chen	et	al.,	2021; Heckman et al., 2021;	Khomo	et	al.,	2017; 
Shi et al., 2020; Torn et al., 1997).	We	conclude	our	analyses	with	
a discussion of regions where interactions between future climate 
and mineral SOC stabilization may alter the response of soils to 
climate change.
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2  |  METHODS

2.1  |  Sampling design

A	total	of	18,257	soil	samples	were	collected	from	60	sentinel	sites	
(100 km2)	 and	 from	 two	depth	 intervals	 (topsoil	 0–20 cm	and	 sub-
soil	 20–50 cm)	 between	 2010	 and	 2012	 as	 part	 of	 the	Africa	 Soil	
Information	Service	(AfSIS)	project	(Vågen	et	al.,	2016).	At	each	sam-
pling	location	(1000 m2),	samples	from	four	sub-	plots	(100 m2)	were	
combined into one sample. The sentinel sites are stratified across all 
major	Köppen-	Geiger	climate	zones	that	are	present	in	sub-	Saharan	
Africa	(Figure 1a; Figure A1).	The	objective	of	the	stratified	random	
sampling design was to cover all major climate zones to avoid sample 
bias	towards	specific	land	covers	(Lawrence	et	al.,	2020)	or	soil	types	
(Kögel-	Knabner	&	Amelung,	2021).	 This	 sampling	 approach	allows	
us	 to	 test	whether	 findings	 based	 on	 a	 pre-	defined	 transect	with	
specific	soil	types	(e.g.,	along	a	climate	gradient	for	temperate	forest	
soils)	are	comparable	to	results	at	a	broader	scale	following	a	com-
pletely randomized sampling design.

For	each	plot,	 cultivated	 land,	or	being	prepared	 for	cultivation	 if	
sampling in the dry season, with annual or perennial crops and erosion 
(i.e.,	sheet,	rill	or	gully/mass)	were	reported	in	the	field.	As	a	reference	
dataset, 2002 samples were selected for laboratory measurements 
(Vågen	et	al.,	2021;	von	Fromm	et	al.,	2021).	The	reference	dataset	was	
chosen	 to	maximize	 the	variation	 in	 the	measured	mid-	infrared	spec-
tral	 data	 (Terhoeven-	Urselmans	 et	 al.,	 2010).	 The	 selection	 strategy	
resulted	in	unequally	distributed	samples	across	51	of	the	60	sentinel	
sites,	yet	captured	the	variation	in	the	original	dataset	(Tables S1 and S2; 
Figures S2–S4).	For	more	details	about	the	original	sampling	design	and	
field	survey,	(see	Vågen	et	al.,	2013;	von	Fromm	et	al.,	2021; Winowiecki, 
Vågen,	Huising,	2016;	Winowiecki,	Vågen,	Massawe	et	al.,	2016).

For	 this	 study,	we	 selected	 only	 samples	with	 complete	 and	
reliable	data	(no	missing	or	negative	values	for	any	of	the	explana-
tory	variables),	with	inorganic	C < 0.1	wt-	%,	and	for	which	archived	
profile	samples	(both	topsoil	and	subsoil)	were	available.	This	re-
duced the number of samples to 514 out of the 2002 reference 
soil	 samples	 (von	Fromm	et	al.,	2023).	The	selected	soil	 samples	
are	 from	 30	 sites	 from	 14	 countries	 across	 sub-	Saharan	 Africa	
(Figure S1).	We	 excluded	 all	 samples	 containing	 inorganic	 C	 be-
cause the removal of carbonates in these soils can leave residues 
of occluded inorganic C that provide more information on the dy-
namics of the inorganic C pools as opposed to organic C pools. 
Excluding	 samples	with	 inorganic	 C ≥ 0.1	wt-	%	 removed	 approx-
imately	 18%	 of	 the	 available	 samples.	 However,	 only	 6%	 of	 the	
samples	had	inorganic	C ≥ 1	wt-	%,	which	is	consistent	with	the	land	
area	 of	 sub-	Saharan	 Africa	 (4–5%)	 dominated	 by	 carbonate-	rich	
soil	 types	 (Table S2).	 For	 a	more	detailed	discussion	 about	 sam-
pling density and data representativeness, see the supplementary 
material.

2.2  |  Global data products

To investigate the effect of climate on the mean SOC age, we ex-
tracted	 the	 current	 (1980–2016)	 and	 future	 (2071–2100)	Köppen-	
Geiger	 climate	 zones	 at	 1 km	 resolution	 from	 Beck	 et	 al.	 (2018)	
for	each	soil	profile	(n = 255;	Table 1 and Figure S1).	The	predicted	
climate zones are derived from an ensemble of 32 climate model 
projections	 based	on	 the	RCP8.5	 scenario	 (see	Beck	 et	 al.,	2018).	
Gridded global data products usually come with large uncertain-
ties,	yet	the	Köppen-	Geiger	climate	zones	are	a	good	approximation	
and	 integration	 of	 several	 climate	 parameters	 across	 sub-	Saharan	

F I G U R E  1 (a)	Global	map	with	all	bulk	Δ14C	soil	samples	(black	circles)	from	the	International	Soil	Radiocarbon	Database	(ISRaD	
2.4.7.2023-	02-	01;	ntotal = 6823;	nstudies = 290)	and	all	Δ

14C	soil	samples	(red	triangles)	from	this	study	(AfSIS;	ntotal = 510);	(b)	Number	of	
Δ14C samples per km2 × 10−6	for	seven	major	land	regions	(Europe,	North	America,	Oceania,	South	America,	Asia,	sub-	Saharan	Africa	(SSA),	
Antarctica).	Gray	bars	are	based	on	data	from	ISRaD,	red	bar	is	based	on	data	from	this	study;	(c)	violin	plots	for	gross	primary	productivity	
(GPP),	mean	annual	precipitation	(MAP),	pH	and	mean	annual	temperature	(MAT)	for	sub-	Saharan	Africa	(SSA;	yellow)	and	this	study	(AfSIS;	
red).	Horizontal	lines	indicate	25th and 75th quantiles, respectively. Map lines delineate study areas and do not necessarily depict accepted 
national boundaries.

(a)

(b)

(c)
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Africa.	We	used	this	grouping	to	examine	differences	between	and	
within climate zones, as it is unlikely that a single soil property will 
explain SOC persistence across a wide range of climatic conditions 
(Rasmussen,	Heckman,	et	al.,	2018;	von	Fromm	et	al.,	2021).	In	ad-
dition	to	the	Köppen-	Geiger	climate	zones,	we	extracted	mean	an-
nual	precipitation	(MAP)	and	mean	annual	temperature	 (MAT;	Fick	
& Hijmans, 2017),	 and	 potential	 evapotranspiration	 (PET;	 Zomer	
et al., 2022).

Based on the absence/presence of a dry season within each 
main	 Köppen-	Geiger	 climate	 zone,	 we	 grouped	 the	 data	 into	 five	
groups:	 arid	 (nProfile = 40),	 temperate	 (seasonal;	 nProfile = 59),	 tem-
perate	 (humid;	nProfile = 77);	 tropical	 (seasonal;	nProfile = 48);	 tropical	
(humid;	nProfile = 31;	Table 1).	The	newly	formed	climate	groups	con-
tain data from at least eight different sites each, except for the tem-
perate	 (humid)	 and	 tropical	 (humid)	 climate	 groups,	which	 contain	
data from one and two different sites, respectively. However, the 
variation within these two climate groups are still well represented 
by our data, given the number of samples and the fact that a wide 
range of soil parameters were still represented within the gridded 
areas	within	each	site	(Figures S2–S4).

Gross	 primary	 productivity	 (GPP)	was	 used	 as	 a	 rough	 proxy	
for	plant	C	inputs.	Data	was	derived	from	the	FLUXCOM	network	
(Jung	 et	 al.,	 2020)	 at	 a	 resolution	 of	 0.0833°	 for	 each	 soil	 pro-
file	 (n = 255).	 FLUXCOM	 uses	machine	 learning	 to	merge	 carbon	
flux	measurements	 from	 FLUXNET	 eddy	 covariance	 towers	with	
Moderate	Resolution	Imaging	Spectroradiometer	(MODIS)	satellite	
data	(Jung	et	al.,	2020).	We	averaged	monthly	values	for	the	years	
2001 to 2012.

2.3  |  Laboratory measurements

A	detailed	description	of	 all	 soil	 analyses	 conducted	on	 the	 col-
lected	AfSIS	reference	database	is	provided	by	Vågen	et	al.	(2021)	
and	von	Fromm	et	 al.	 (2021).	 In	brief,	 soil	material	was	 air-	dried	
and sieved to a particle size <2 mm	in	the	Soil–Plant	Spectroscopy	
Laboratory	at	the	World	Agroforestry	(ICRAF)	in	Nairobi,	Kenya.	
All	 measurements	 used	 in	 this	 study	 were	 performed	 on	 the	
<2 mm	fraction.	Soil	 texture	was	determined	by	 laser	diffraction	
spectroscopy	 at	 ICRAF	 and	 the	 clay	+ fine silt fraction was de-
fined as particles <8 μm.	Particles	<8 μm include the most relevant 
particle	sizes	(clay	+	fine	silt)	to	investigate	the	effects	of	mineral	
stabilization on SOC persistence. This approach is supported by 
previous	 wok	 (von	 Fromm	 et	 al.,	 2021)	 which	 showed	 that	 par-
ticles <8 μm resulted in a reproducible fraction across soil types 
based on duplicate measurements, in contrast to using only clay 
particles <2 μm.	 X-	ray	 powder	 diffraction	 (XRPD)	 analysis	 was	
also	performed	at	 ICRAF	and	used	 for	determining	 the	amounts	
of crystalline mineral phases, including 2:1 and 1:1 clay miner-
als, pedogenic oxides and other minerals as detailed below. Soil 
organic	(and	inorganic)	C	content	and	oxalate-	extractable	metals	
(relevant	to	assess	mineral	C	stabilization	potentials)	were	deter-
mined	 at	 Rothamsted	Research	 in	Harpenden,	UK.	 For	 all	 refer-
ence	samples	(n = 2002),	SOC	was	calculated	from	the	difference	
between total C and inorganic C. The latter was measured by 
treating	the	sample	with	phosphoric	acid	and	heating	it	to	135°C	
in a closed system. Inorganic C in the sample was converted to 
CO2	 and	 then	 measured	 by	 non-	dispersive	 infrared	 detection	

TA B L E  1 Grouping	of	the	Köppen-	Geiger	climate	zones	based	on	absence/presence	of	dry	season	within	each	main	Köppen-	Geiger	
climate	zone	(capital	letter)	and	summary	statistics	for	extracted	climate	data	at	the	profile	level,	including	mean	annual	precipitation	(MAP),	
potential	evapotranspiration	(PET),	aridity	index	(PET/MAP;	larger	values	refer	to	drier	conditions),	and	mean	annual	temperature	(MAT;	
median:	minima-	maxima).

New climate zone Köppen- Geiger climate zone MAP [mm] PET [mm] PET/MAP MAT [°C] nProfiles

Arid BWh	(Arid,	desert,	hot) 542	(318–720) 2207	(1752–2937) 3.6	(2.6–7.2) 23	(18–29) 4

BSh	(Arid,	steppe,	hot) 35

BSk	(Arid,	steppe,	cold) 1

Temperate	(seasonal) Csb	(Temperate,	dry	summer,	
warm	summer)

1424	(776–1630) 1706	(1381–2164) 1.2	(1.0–2.8) 19	(14–22) 14

Cwa	(Temperate,	dry	winter,	
hot	summer)

24

Cwb	(Temperate,	dry	winter,	
warm	summer)

21

Temperate	(humid) Cfa	(Temperate,	no	dry	season,	
hot	summer)

1725	(985–2054) 1445	(1413–1516) 0.8	(0.7–1.5) 20	(16–22) 76

Cfb	(Temperate,	no	dry	season,	
warm	summer)

1

Tropical	(seasonal) Aw	(Tropical,	savannah) 1349	(585–2011) 1759	(1389–2395) 1.3	(0.7–3.1) 22	(21–28) 48

Tropical	(humid) Af	(Tropical,	rainforest) 1184	(1156–1329) 1581	(1549–1676) 1.3	(1.2–1.4) 22	(22–23) 12

Am	(Tropical	monsoon) 19

Abbreviations:	MAP,	mean	annual	precipitation;	MAT,	mean	annual	temperature;	PET,	potential	evapotranspiration.
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(NDIR).	 Total	 C	 was	 determined	 by	 combustion	 analysis.	 Poorly	
crystalline/amorphous	 minerals	 were	 quantified	 as	 the	 oxalate-	
extractable	concentration	of	Al	and	Fe	(Mox = Alox + Feox).	Oxalate-	
extractable	metals	(Mox)	in	wt-	%	were	determined	by	extracting	Al	
and	Fe	with	oxalic	acid	and	ammonium	oxalate	solution.	The	solu-
tion	was	shaken	for	4 h	at	25°C	 in	the	dark.	Acid-	oxalate	extrac-
tion	dissolves	reactive	minerals	such	as	ferrihydrite	(Fe),	allophane	
and	imogolite	 (Al),	as	well	as	other	amorphous	organic	Fe	and	Al	
minerals	(Parfitt	&	Childs,	1988).	However,	it	may	also	attack	non-	
target species, including maghemite and magnetite, and therefore 
releasing	additional	Al	and	Fe,	as	well	as	other	organo-	metal	com-
plexes	(Reichenbach	et	al.,	2023; Rennert, 2019).	We	interpret	this	
extraction	as	a	proxy	for	organo-	mineral	complex	and	amorphous	
mineral in general, rather than as a completely selective and fully 
quantitative method.

2.3.1  |  Radiocarbon	analysis

Radiocarbon	(14C)	measurements	were	all	performed	in	2020	at	the	
accelerator	mass	spectrometry	 facility	of	 the	Max-	Planck	 Institute	
for	Biogeochemistry,	Jena,	Germany	(Steinhof,	2013)	and	measured	
on	 a	 mini	 carbon	 dating	 system	 (Micadas,	 IonPlus,	 Switzerland).	
Sample material was combusted in an elemental analyzer. The re-
sulting CO2 was reduced to graphite under the presence of H2, with 
iron	as	a	catalyst	(Steinhof	et	al.,	2017).	On-	line	δ13C measurements 
at the combustion stage revealed that two samples out of the 514 
samples used for this study contained significant amounts of car-
bonates	 (δ13C = −6.2	and − 4.5‰).	The	corresponding	profiles	were	
removed from the final analyses, resulting in a total of 510 soil sam-
ples.	Samples	with	 low	organic	C	content	 (<0.3	wt-	%;	n = 32)	were	
measured using the gas inlet system of the Micadas, resulting in 
lower	precision	(5.4 ± 0.3‰)	compared	to	those	measured	as	graph-
ite	(2.2 ± 0.5‰).

We report 14C data as Δ14C, which is corrected for the decay 
of the oxalic acid standard between 1950 and the measurement 
year	2020.	 In	order	to	account	for	mass-	dependent	fractionation	
effects, the 14C / 12C ratio of all samples is corrected to a common 
δ13C	value	of	−25‰	(Stuiver	&	Polach,	1977).	The	measured	Δ14C 
values were used to estimate the mean SOC age in each soil sam-
ple.	This	was	done	by	applying	a	one-	pool	model	that	includes	the	
uptake of ‘bomb’ 14C added to the atmosphere by nuclear weapons 
testing	 between	 ca.	 1950	 and	 1964.	 The	model	 provides	 a	 rela-
tive measure of C dynamics and assumes that SOC is homogenous 
and	at	steady-	state	(Shi	et	al.,	2020; Trumbore, 2009).	The	calcula-
tions were performed using the R package SoilR	(Sierra	et	al.,	2014; 
R code can be found on github)	 following	 the	 approach	 by	 Torn	
et	al.	(2009).

In cases where two mean SOC ages yielded the same Δ14C value 
(i.e.,	in	cases	where	Δ14C > 0‰),	we	report	only	the	older	mean	SOC	
age, as it is more consistent with the fluxes of C into and out of the 
mineral	 associated	 and	 bulk	 soil	 fractions	 (Gaudinski	 et	 al.,	2000; 
Shi et al., 2020).	While	this	approach	is	highly	simplified,	given	that	

measurements of bulk soil represent a mixture of older and younger 
SOC, the estimated mean SOC ages still provide a useful indicator 
for how much time has passed on average since the C was fixed 
from	 the	 atmosphere.	 Under	 the	 presented	 model	 assumptions,	
mean	SOC	age	is	equal	to	the	turnover	rate	(Khomo	et	al.,	2017; Shi 
et al., 2020; Trumbore, 2009).	 Modeling	 approaches	 have	 shown	
that SOC age distributions have a long tail of old C, suggesting that a 
small fraction of SOC persists in soils much longer compared to the 
majority of SOC; mean SOC ages may thus underestimate the rate 
of	response	of	SOC	to	changes	in	vegetation	inputs	or	climate	(Sierra	
et al., 2018).

2.3.2  |  Crystalline	mineral	quantification

Concentrations	of	 crystalline	minerals	were	quantified	 through	X-	
ray	 powder	 diffraction	 (XRPD).	 Sample	 preparation	 and	 data	 col-
lection were carried out using the procedure outlined in Butler 
et	al.	(2020).	Briefly,	subsampled	and	milled	soils	were	loaded	onto	a	
Bruker	D2	PHASER	diffractometer	equipped	with	a	Cu-	Kα radiation 
source	and	Ni-	filter.	Quantification	of	crystalline	minerals	from	the	
XRPD	data	was	achieved	using	the	automated	full	pattern	summa-
tion	(afps)	function	implemented	in	the	powdR package v1.3.0 for R 
(Butler	&	Hillier,	2021b).	The	observed	diffractograms	were	modeled	
as	the	sum	of	scaled	pure	patterns	provided	by	open-	source	libraries	
that are included with powdR	(Butler	&	Hillier,	2021b; Eberl, 2003).	
A	total	of	108	reference	patterns	from	these	open-	source	libraries	
were supplied to the afps function, which together accounted for all 
major	and	minor	soil	components	detectable	within	the	AfSIS	data-
set. The afps function first selects the appropriate reference pat-
terns from the full set to use for each sample, before scaling them 
by an optimization routine to minimize an objective function that 
summarizes	how	well	the	fitted	and	observed	patterns	matched	(full	
details provided in Butler & Hillier, 2021a, 2021b).	 The	 optimized	
scaling coefficients are then combined with Reference Intensity 
Ratios	(RIRs),	a	measure	of	each	phase's	diffracting	power	that	are	
also provided within the powdR reference libraries. Mineral quantifi-
cations	are	expressed	in	units	of	weight-	%	of	the	crystalline	mineral	
component of the sample.

The	limits	of	detection	(LOD)	for	all	phases	identified	from	the	
XRPD	data	were	estimated	using	the	RIRs	and	the	method	described	
in	Butler	 and	Hillier	 (2021a).	Different	phases	diffract	X-	rays	with	
different	 power	 (reflected	 in	 the	 RIRs)	 and,	 hence,	 have	 different	
LOD.	For	example,	a	strong	diffractor	such	as	quartz,	with	a	RIR	of	
5.8, would have a smaller LOD than a weak diffractor such as kaolin-
ite	 (RIR ~ 0.5).	 The	 LOD	of	 the	 internal	 standard	 quartz	 (RIR = 5.8)	
was	assumed	to	be	0.1%,	from	which	the	LOD	of	each	other	phase	
can be estimated using its RIR:

Based	 on	 the	 above	 equation,	 K-	feldspar	 phases	 (RIR ~ 1),	 for	
example,	 have	 an	 estimated	 LOD	 of	 0.6%,	 and	 kaolinite	 phases	
(RIR ~ 0.5)	have	an	estimated	LOD	of	1.2%.

LOD = 0.1 × (5.8∕RIR)
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For	quality	control,	all	resulting	fits	derived	from	the	afps func-
tion were manually inspected. The agreement between the fitted 
and observed patterns was satisfactory for each fit, aligning with 
that	found	when	the	same	approach	was	tested	on	challenging	clay-	
bearing	mixtures	from	interlaboratory	tests	(Butler	&	Hillier,	2021a).

It	 is	 important	 to	 note	 that	we	did	 not	 have	XRPD	data	 avail-
able	for	every	radiocarbon	sample.	This	is	because	the	XRPD	data	is	
from	a	different	subset	of	the	AfSIS	datasets	than	the	radiocarbon	
samples.	In	total,	we	have	318	unique	XRPD	samples,	of	which	164	
samples	also	have	radiocarbon	values.	For	the	remaining	radiocar-
bon	samples,	we	always	used	an	XRPD	sample	that	is	from	the	same	
cluster	(1 km2)	as	the	radiocarbon	sample.	The	average	distance	be-
tween	a	radiocarbon	sample	and	the	corresponding	XRPD	sample	is	
540 m	and	the	maximum	distance	is	1059 m.	Since	there	are	some-
times multiple radiocarbon samples within the same cluster, there 
are	some	XRPD	samples	 that	were	used	 for	more	 than	one	 radio-
carbon sample. We performed a preliminary analysis using only soils 
with	exactly	paired	XRPD	and	Δ14C data. The results were in accord 
with those obtained by examining the entire dataset.

Finally,	to	derive	common	soil	mineral	groups,	we	used	the	fol-
lowing mineral concentrations from the quantitative analysis:

Feldspars = K-	feldspar + Plagioclase
Quartz = Quartz
2:1	clay	minerals = Smectite	(ML	and	Di) + Illite	+	Vermiculite
1:1	clay	minerals = Kaolinite + Dickite + Halloysite
Pedogenic	 oxides =  Goethite 	+  Ma	ghe	m	ite + Hema	t	ite	 + 	M	a	gne	tit	e	
+ Gibbsite
Other = all	other	minerals	quantified	(see	Supporting Information 
data)

We used this mineral grouping, because they reflect differ-
ent weathering conditions, chemical and physical characteristics 

relevant	 for	 SOC	 dynamics	 (Table 2).	 For	 example,	 previous	work	
from	sub-	Saharan	Africa	has	shown	that	poorly	crystalline	minerals	
and 2:1 clay minerals are generally associated with older 14C ages, 
while 1:1 clay minerals and pedogenic oxides are associated with 
younger 14C	ages	(Khomo	et	al.,	2017;	Wattel-	Koekkoek	et	al.,	2003).	
Feldspars	are	rock-	forming	primary	minerals	that	are	easily	weath-
erable	 (Wilson,	1975),	whereas	 quartz	 is	 an	 inert	 primary	mineral	
(Polynov	et	al.,	1937).

2.4  |  Statistical analyses

Principal	 component	 analysis	 (PCA)	 was	 performed	 for	 the	 two	
depth	 layers	 (topsoil:	 0–20 cm;	 subsoil:	 20–50 cm)	 to	 visualize	 and	
further explore the relationship between SOC persistence, climate, 
mineralogy,	and	land	degradation	(caused	by	cultivation	and/or	ero-
sion).	Clay	+	fine	silt	fraction	(<8 μm),	1:1	and	2:1	clay	mineral	con-
tent,	poorly	crystalline	minerals	 (Mox),	pedogenic	oxides,	feldspars,	
quartz, and gross primary productivity were used to calculate the 
principal components to capture different controls on SOC persis-
tence. Mean SOC age and content, climate zones, land cover, and 
erosion	were	used	as	supplementary	variables	for	the	PCA.	This	was	
done to test how well these variables are described by the other 
variables	 (Lê	 et	 al.,	 2008).	 One-	way	 anovas	 were	 performed	 to	
test which of the categorical variables best describe the distance 
between	 individuals.	 The	 PCA	 coordinates	 of	 the	 supplementary	
variables are predicted using only the information provided by the 
performed component analysis on the other variables and all indi-
viduals.	All	numerical	variables	were	normalized	and	scaled	prior	to	
conducting	the	PCA.

We	 used	 linear	 mixed-	effects	 models	 as	 a	 quantitative	 tool	
to account for the hierarchical and nested sampling design of the 
AfSIS	dataset	(clusters	within	sites	and	two	sampling	depths	within	

TA B L E  2 Median ± median	absolute	deviation	(in	wt-	%)	of	the	main	mineral	groups,	including	feldspars,	poorly	crystalline	mineral,	2:1	clay	
mineral,	1:1	clay	mineral,	pedogenic	oxides	and	quartz	concentrations	across	climate	zones	for	topsoils	(0–20 cm)	and	subsoils	(20–50 cm),	
respectively.

Climate zones Depth Feldspars
Poorly 
crystalline

2:1 clay 
minerals

1:1 clay 
minerals

Pedogenic 
oxides Quartz

Arid Topsoil 3.5 ± 5.2 0.1 ± 0.1 2.2 ± 3.2 2.5 ± 3.6 2.9 ± 4.3 72.6 ± 30.0

Subsoil 2.7 ± 4.1 0.2 ± 0.1 1.7 ± 2.5 4.7 ± 6.9 3.8 ± 5.6 70.9 ± 30.0

Temperate	(seasonal) Topsoil 12.6 ± 13.0 0.6 ± 0.5 6.6 ± 9.8 12.8 ± 15.3 7.9 ± 8.8 23.7 ± 31.4

Subsoil 11.8 ± 10.5 0.5 ± 0.4 8.4 ± 9.2 13.3 ± 13.1 8.8 ± 9.1 18.4 ± 23.4

Tropical	(seasonal) Topsoil 13.9 ± 15.6 0.3 ± 0.2 2.0 ± 3.0 7.2 ± 4.6 5.1 ± 3.2 53.7 ± 39.4

Subsoil 14.3 ± 15.7 0.3 ± 0.2 2.6 ± 3.9 11.3 ± 6.6 5.0 ± 2.5 48.9 ± 36.3

Temperate	(humid) Topsoil <LOD 0.7 ± 0.2 <LOD 22.7 ± 9.2 24.2 ± 14.5 29.3 ± 16.8

Subsoil <LOD 0.6 ± 0.2 <LOD 22.5 ± 12.0 24.2 ± 14.9 29.7 ± 16.4

Tropical	(humid) Topsoil 2.1 ± 0.9 0.5 ± 0.3 2.8 ± 1.6 14.1 ± 8.2 5.1 ± 3.3 57.1 ± 7.8

Subsoil 2.0 ± 1.0 0.4 ± 0.2 2.8 ± 4.1 14.8 ± 8.6 8.9 ± 6.0 49.7 ± 14.1

Note:	All	crystalline	minerals	are	derived	from	the	XRPD	data	and	poorly	crystalline	minerals	are	the	sum	of	oxalate-	extractable	metals	
(Mox = Alox + Feox).	Together	with	the	remaining	minerals	(not	shown)	all	the	crystalline	minerals	add	up	to	100	wt-	%.
Abbreviation:	LOD,	below	limit	of	detection.
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each	profile;	von	Fromm	et	al.,	2021).	The	variance	inflation	factor	
was used to check for multicollinearity among predictor variables 
with a threshold of <3.0	(Zuur	et	al.,	2010).	To	meet	 linear	mixed-	
effects assumptions and to standardize variation among variables, 
all continuous parameters were transformed and standardized 
to	 a	 normal	 distribution	 using	 Box-	Cox	 transformation	 (Peterson	
& Cavanaugh, 2020).	We	started	 from	a	constant	null	model	with	
siteID/clusterID/plotID as random effects and then extended the 
model stepwise by fitting the following sequence of fixed effects: 
MAP,	MAT,	 depth,	 cultivation,	 erosion,	 GPP,	 SOC,	 2:1	 clay	miner-
als, Mox, 1:1 clay minerals, pedogenic oxides, clay + fine silt content, 
quartz, and feldspars. The order of fixed effects was predefined 
based on a priori knowledge and their hypothesized importance in 
explaining	 variation	 in	 SOC	 age	 across	 sub-	Saharan	 Africa,	 start-
ing	 with	 large-	scale	 climate	 variables	 and	 ending	 with	 fine-	scale	
physicochemical	soil	properties	 (Burnham	&	Anderson,	2002).	The	
maximum	likelihood	method	and	likelihood	ratio	tests	(L.ratio)	were	
applied to evaluate model performance and the statistical signif-
icance	of	 the	added	 fixed	effects	 (Tables S4–S6).	The	variation	of	
SOC age explained by each fixed effect was obtained by calculating 
the marginal R2	 (excluding	 the	 variation	 explained	 by	 the	 random	
effects)	 for	 each	model	 and	 subtracting	 the	R2 from the previous 
fitted	model	(Nakagawa	&	Schielzeth,	2013).	To	identify	differences	
in the controls on SOC age with depth and across climate zones, we 
built multiple models: for all samples; topsoil only; subsoil only; and a 
model	for	each	climate	zone	(without	including	depth,	MAT	and	MAP	
as	fixed	effects	and	including	topsoil	and	subsoil	samples	together).	
We did not include depth as a predictor in the climate models be-
cause	SOC	age	is	known	to	be	strongly	correlated	with	depth	(e.g.,	
Shi et al., 2020),	 and	 the	 topsoil	 and	 subsoil	 only	models	 showed	
similar	controls	 (Figure S5).	For	 the	climate	zone	models,	we	were	
primarily interested in identifying similarities and differences in the 
controls of the other explanatory variables.

A	random	forest	model	was	used	to	identify	nonlinear	relation-
ships between SOC age and any explanatory variable, as well as to 
identify	 differences	 across	 pedo-	climatic	 zones.	We	built	 a	model	
with the same explanatory variables as for the climate zone explicit 
linear-	mixed	effects	models,	except	we	did	not	include	erosion	and	
cultivation as predictors. This is because we are mainly interested in 
identifying and understanding differences in physicochemical con-
trols	across	climate	zones.	For	the	validation	of	the	resulting	regres-
sion	model,	we	performed	a	10-	fold	cross	validation,	ensuring	that	
soil profiles from the same cluster within a particular site were either 
in the training or testing dataset. Model evaluation was performed 
on the testing dataset, including the calculation of R2 and the mean 
absolute	error	 (MAE).	To	better	 interpret	 the	outcome	of	 the	 ran-
dom forest model, we used partial dependence plots and individual 
conditional expectation plots. The partial dependence plots show 
the marginal effects an explanatory variable has on the predicted 
outcome of the random forest model while holding all the other 
variables constant that have been used to build the random forest 
model	 (Friedman,	 2001).	 Individual	 conditional	 expectation	 plots	
are similar to partial dependence plots, but instead show one line 

per observation that shows how the prediction of an observation 
changes when the value of an explanatory variable for that obser-
vation	changes	 (Goldstein	et	al.,	2015; Molnar, 2022).	Rather	 than	
plotting a prediction line for each observation, we calculated the 
median of subsets of observations based on their climate zones. This 
allows us to interpret the importance of each explanatory variable 
in	these	zones,	respectively.	Vertical	lines	next	to	each	panel	show	
the range of predicted mean SOC age for one explanatory variable, 
while	holding	all	other	variables	constant.	Note	that	we	did	not	use	
the random forest model to do any upscaling. Instead, we used it to 
better understand the nonlinear behavior between SOC age and the 
explanatory variables and how their relationship may differ across 
climate	zones.	Predictions	outside	the	data	range	of	the	majority	of	
samples should be interpreted with caution.

All	statistical	analyses	were	performed	within	the	R	computing	
environment	(version	4.1.1;	R	Core	Team,	2021)	including	the	addi-
tional R packages ggpubr	(Kassambara,	2020),	tidyverse	(Wickham	
et al., 2019),	 tmap	 (Tennekes,	 2018),	 raster	 (Hijmans,	 2021),	
scales	(Wickham	&	Seidel,	2022),	sf	(Pebesma,	2018),	FactoMineR 
(Lê	 et	 al.,	 2008),	 factoextra	 (Kassambara	 &	 Mundt,	 2020),	mlr3 
(Lang	 et	 al.,	 2019),	 iml	 (Molnar	 et	 al.,	 2018)	 and	 nlme	 (Pinheiro	
et al., 2020).

3  |  RESULTS

The	 climate	 grouping	 largely	 reflects	 different	 pedo-	climatic	 con-
ditions	 across	 sub-	Saharan	 Africa	 (Tables 1 and 2).	 At	 this	 broad	
scale, the climate zones integrate many soil forming factors and can 
be seen as a conservative grouping of soil profiles that may locally 
be highly diverse, yet are confronted with a similar set of underly-
ing	broad	 scale	 environmental	 factors.	Arid	 soils	 have	 the	highest	
concentration	in	quartz	minerals	(Table 2)	and	are	characterized	by	
limited	chemical	weathering	due	 to	water-	limitation	and	 low	plant	
biomass	 production.	 Quartz	 is	 a	 mostly	 inert	 mineral	 with	 negli-
gible	 contributions	 to	 total	 and	 extractable	 soil	 nutrients	 (Butler	
et al., 2020; Hardy & Cornu, 2006).	In	contrast,	soils	under	seasonal	
climate	 (temperate	 and	 tropical)	 show	 relatively	 high	 concentra-
tion	in	feldspars	and	2:1	clay	minerals	(Table 2),	reflecting	their	 in-
termediate	weathering	 status	 (Jackson	 et	 al.,	1948).	 Lastly,	 highly	
weathered	 soils	 from	 humid	 regions	 (temperate	 and	 tropical)	 are	
characterized	more	by	1:1	clay	minerals	and	pedogenic	oxides	(Feller	
& Beare, 1997; Ojanuga, 1979).

Across	 sub-	Saharan	 Africa,	 we	 found	 relatively	 young	 mean	
SOC ages, which is in contrast to the long development times 
for	 most	 of	 these	 soils	 (several	 hundred	 thousand	 years;	 Jones	
et al., 2013).	Averaged	over	all	sampling	locations,	mean	SOC	ages	
are	182 ± 62 years	 (median ± median	absolute	deviation)	 in	 topsoils	
(0–20 cm)	and	563 ± 227 years	in	subsoils	(20–50 cm;	Figure S6).	For	
the topsoil samples, mean SOC age decreases with increasing SOC 
content,	with	 a	 threshold	 at	 about	 1	wt-	%	 SOC	 content.	 Samples	
with a SOC content >1	wt-	%	usually	do	not	show	mean	SOC	ages	
below	500 years,	whereas	samples	with	a	SOC	content	<1	wt-	%	can	
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have	 older	 mean	 SOC	 ages	 (Figure 2a),	 reflecting	 faster	 turnover	
rates at higher SOC content. We found the same overall patterns for 
subsoils	(Figure S7b),	and	will	only	focus	on	topsoils	in	the	main	part	
of	 the	manuscript	 (see	 Figures S5–S8, S11, S12 for more detailed 
analysis	of	subsoils).

The youngest mean SOC ages are in highly weathered soils in 
humid	climate	zones	(topsoil:	140 ± 46 years;	subsoil:	454 ± 247 years;	
Figure 2a),	whereas	 the	oldest	SOC	ages	are	 found	 in	soils	of	arid	
climate	 zones	 (topsoil:	 396 ± 339 years;	 subsoil:	 963 ± 669 years).	
Seasonal climate zones show a higher variation in mean SOC age 
(topsoil:	 201 ± 130 years;	 subsoil:	 645 ± 385 years)	 compared	 to	
humid	soils	(Figures 2a and 3b).

The	principal	component	analysis	 (PCA)	 for	 the	topsoils	shows	
that climate zones significantly correlate with variables that con-
trol	both	SOC	content	(dimension	1:	R2 = 0.57,	p-	value	<0.001)	and	
SOC	age	(dimension	2:	R2 = 0.29,	p-	value	<0.001; Figure 2b).	Mean	
SOC	 age	 positively	 correlates	with	 dimension	 2	 (correlation	 coef-
ficient = 0.29,	 p-	value	 <0.001),	 whereas	 SOC	 content	 positively	
correlates	with	dimension	1	 (correlation	coefficient = 0.73;	p-	value	
<0.001).	In	the	positive	direction	of	dimension	2,	concentrations	in	
2:1	clay	minerals	 (correlation	coefficient = 0.92),	 feldspars	 (correla-
tion	coefficient = 0.81),	and	poorly	crystalline	minerals	 (correlation	
coefficient = 0.33)	are	most	correlated.	 In	contrast,	humid	soils	are	
characterized by high concentrations of 1:1 clay minerals, pedo-
genic	 oxides	 and	GPP,	which	 all	 show	 a	 negative	 correlation	with	
mean SOC age and a positive correlation with dimension 1, respec-
tively.	The	same	patterns	occur	for	the	subsoil	samples	(Figure S7b).	
Overall,	the	PCA	confirms	that	climate	grouping	at	this	broad	scale	
includes	 soils	with	 relatively	distinct	pedo-	climatic	 conditions	 that	
permit further exploration of the relationship between soil miner-
alogy	 and	mean	 SOC	 ages	 across	 and	 within	 these	 pedo-	climatic	
groups.

The	linear-	mixed	effects	model	for	all	samples	explains	66%	of	
the	variation	in	SOC	age	across	sub-	Saharan	Africa.	Climate	variables	
(MAT	and	MAP)	add	less	than	10%	to	the	total	explained	variation.	

About	half	of	the	variation	is	explained	by	depth	(32%),	followed	by	
C	inputs	(GPP:	8%	and	SOC	content:	3%),	and	mineral	controls	(Mox: 
5%	and	clay	+	fine	silt	content:	3%).	The	linear-	mixed	effects	models	
further show that controls between topsoil and subsoil samples are 
similar,	 yet	 climate	and	GPP	are	 slightly	more	 important	 in	 topsoil	
samples, whereas mineral controls are more important in subsoils 
(Figure S5 and Table S3).	 Soils	 from	 seasonal	 climate	 zones	 with	
more	 high-	activity	 clays	 and	 poorly	 crystalline	 minerals	 (Table 2)	
have a wider range and include older SOC ages compared to soils 
from	humid	climate	zones	(Figure 3b).	In	particular,	Mox and 2:1 clay 
minerals explain the highest variation in SOC age in seasonal climate 
zones	(ca.	20%)	across	all	climate	zones	(Figure 3a).	As	weathering	
progresses,	 SOC	 stabilizing	minerals	 (2:1	 clay	minerals	 and	 poorly	
crystalline	 minerals)	 will	 weather	 to	 1:1	 clay	 minerals	 and	 other	
crystalline minerals prevalent in humid climate zones, resulting in 
younger SOC ages. The presence of poorly crystalline minerals in 
humid	soils	does	not	explain	much	of	the	variation	in	SOC	age	(ca.	
4%;	 Figure 3a).	 Soils	 from	humid	 regions	 are	 characterized	by	 the	
highest	and	narrowest	GPP	values	(Figure 3b).	However,	the	varia-
tion	in	SOC	age	in	humid	regions	(temperate	and	tropical)	is	predom-
inantly	explained	by	SOC	content	(62%;	Figure 3a).	Across	all	climate	
zones,	GPP	is	most	important	in	arid	regions	(21%;	Figure 3a).

The	random	forest	model	for	all	samples	explains	about	46%	of	
the	variation	in	SOC	age	across	sub-	Saharan	Africa,	with	a	mean	ab-
solute	error	of	263 years	(Figure S9).	Across	all	climate	zones,	higher	
concentrations	of	2:1	clay	minerals	and	oxalate-	extractable	metals	
always result in older predicted SOC ages, whereas 1:1 clay minerals 
have	no	effect	on	the	predicted	SOC	ages	(Figure 4b,c).	For	2:1	clay	
minerals	and	oxalate-	extractable	metals,	there	are	some	thresholds	
evident, however most of them fall outside the 75th percentile data 
range	(as	indicated	by	the	boxplots)	and	should	be	interpreted	with	
caution	 (Figure 4b,d).	Although	 the	clay	+ fine silt fraction signifi-
cantly	explains	variation	in	SOC	ages	in	each	climate	zone	(Figure 3a; 
Table S3),	 it	 only	 results	 in	 older	 SOC	ages	 at	 values	>75%	based	
on	the	random	forest	model	(Figure 4a).	For	all	mineral	predictors,	

F I G U R E  2 (a)	Mean	soil	organic	
carbon	(SOC)	age	and	SOC	content	
colored by climate zones. Insets show 
violin plots for mean SOC age and SOC 
content.	Note	that	y-	axes	show	different	
scales.	(b)	Principal	component	biplot	
for dimension 1 and 2 colored by climate 
zones.	Mean	SOC	age	and	content	(red	
arrows)	were	not	used	to	derive	the	
principal components. Only topsoils 
(0–20 cm)	are	shown	for	both	plots.	
Subsoils	showed	similar	patterns	(see	
Supporting Information, Figure A7).	GPP,	
gross	primary	productivity;	PCM,	poorly	
crystalline	minerals;	POX,	pedogenic	
oxides.

(a) (b)
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    |  9 of 18von FROMM et al.

except for 1:1 clay minerals, the differences in the predicted SOC 
ages	are	largest	in	seasonal	and	arid	climate	zones	(as	indicated	by	
the horizontal lines; Figure 4).

In terms of the effects of land degradation on SOC persistence, 
cultivated or eroded soils have on average older mean SOC ages 
and	show	a	greater	variability	in	mean	SOC	ages	compared	to	non-	
disturbed	soils	(Figure S10).	However,	neither	our	PCA	analysis	nor	
the	linear	mixed-	effects	models	identified	cultivation	or	erosion	as	
important	variables	at	this	broad	scale	(Table S3, Figures S5, S11 and 
S12),	 except	 in	 tropical	 (seasonal)	 climates	 (Figure 3a).	 This	 is	 also	
reflected in the raw data for sites where cultivated/eroded plots are 
in	 close	 proximity	 to	 non-	cultivated/non-	eroded	 plots	 and	 do	 not	
show	a	clear	pattern	(Figure S10).

4  |  DISCUSSION

Relationships between mineralogy, climate, vegetation productivity, 
and soil carbon age found at the local scale hold at the continen-
tal scale—something that has not previously been demonstrated for 
the	wide	variety	of	soil	types	found	in	sub-	Saharan	Africa.	We	use	
climate zones to group soils with respect to SOC content and age, 
resulting	in	distinct	pedo-	climatic	regions	across	sub-	Saharan	Africa.	

This approach allows us to sort and structure diverse landscapes ac-
cording to underlying mechanisms that explain SOC persistence at 
broader	scales	(Figure 5).	For	example,	mean	SOC	ages	from	arid	and	
humid	climate	zones	are	driven	by	bio-	climate	factors,	including	GPP	
and SOC content, whereas reactive minerals are most important 
in explaining variation in mean SOC ages in seasonal climate zones 
(Figures 3 and 4).	 The	 composition	 and	 complexity	 of	 the	 factors	
operating	in	the	different	pedo-	climatic	regions	highlights	the	need	
to	incorporate	a	process-	oriented	representation	of	soils	in	models	
that aim to represent C cycling at broader scales, rather than trying 
to identify a single soil or climate property that best describes SOC 
persistence	 (Jungkunst	 et	 al.,	2022).	Our	 improved	 understanding	
also	contributes	to	more	process-	oriented	future	projections	of	soils	
under climate change. In the following section, we will discuss the 
underlying mechanisms for SOC persistence across the identified 
pedo-	climatic	regions	and	how	these	different	regions	may	respond	
to climate change.

4.1  |  Humid climate zones

In	 more	 humid	 climate	 zones	 (without	 a	 pronounced	 dry	 season),	
higher mean annual precipitation and a more even distribution of 

F I G U R E  3 (a)	Explained	variation	of	SOC	age	(based	on	marginal	R2)	for	each	fixed	effect,	based	on	sequential	fitting	of	the	linear	mixed-	
effects	models	for	each	climate	zone,	respectively.	(b)	Mean	soil	organic	carbon	(SOC)	age	(log-	scaled)	and	SOC	content	(log-	scaled),	colored	
by	gross	primary	productivity	(GPP)	and	oxalate-	extractable	metals	(Alox + Feox;	log-	scaled)	for	topsoil	only	(0–20 cm).	Subsoils	show	similar	
patterns, see Figure S8.

(a) (b)
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rainfall	allows	for	a	longer	growing	season	and	results	in	higher	GPP	
(Figure 3b),	 greater	 soil	C	 inputs	 and	more	 rapid	decomposition	of	
SOC. However, since these soils have relatively high concentration 
in 1:1 clay minerals with limited capacity to stabilize SOC, higher C 
input	will	not	necessarily	lead	to	higher	SOC	concentrations	(Table 2; 
Figures 2b and 5;	Khomo	et	al.,	2017;	Six,	Feller,	et	al.,	2002;	Wattel-	
Koekkoek	et	al.,	2003).	The	potential	of	deeply	weathered	soils	that	
dominate these regions is often limited in its capacity to stabilize C 
inputs	(Georgiou	et	al.,	2022; Reichenbach et al., 2023),	while	micro-
bial	 decomposition	 is	 high	 (Cusack	 et	 al.,	2009).	Our	 findings	 thus	
support the idea that some of the geochemically older tropical soils 
in	humid	climate	zones	may	be	closer	to	SOC	‘saturation’	(Six,	Conant,	
et al., 2002).	Therefore,	deeply	weathered	 tropical	 soils	 likely	have	
a	low	potential	for	long-	term	sequestration	of	SOC,	even	if	C	inputs	
increased	in	the	future	(Reichenbach	et	al.,	2023; Sayer et al., 2019).

Interestingly, the presence of poorly crystalline minerals does 
not necessarily result in older SOC ages in soils under humid climates 
compared	 to	 seasonal	 climates	 (Table S3 and Figure 3).	 Although	
many	studies	have	reported	a	positive	relationship	between	oxalate-	
extractable	metals	and	SOC	persistence	(Chen	et	al.,	2021; Masiello 
et al., 2004; Rasmussen, Throckmorton, et al., 2018; Torn et al., 1997),	
others	have	found	no	consistent	pattern	(Hall	et	al.,	2018; Heckman 

et al., 2021).	While	tropical	soils	are	often	rich	in	pedogenic	oxides	
(e.g.,	gibbsite	and	goethite)	especially	at	advanced	weathering	stages,	
most	of	it	is	also	locked	away	in	stable	Fe/Al	concretions	that	do	not	
readily interact with new C inputs as is known for temperate soils 
during	aggregate	formation	(Martinez	&	Souza,	2020).	However,	for	
those mineral surfaces that come in contact with the soil solution, it 
is	known	that	Fe-	bearing	minerals	are	sensitive	to	moisture	changes	
and therefore constantly adsorb and release SOC from their mineral 
surfaces	 (Chen	 et	 al.,	2020; Thompson et al., 2011).	 Similarly,	 the	
stability of sorption strength of minerals can be affected by local 
changes	in	pH	near	the	rhizosphere	(Keiluweit	et	al.,	2015).	As	a	re-
sult, cyclic fluctuations in moisture, acidity and O2 levels affect the 
solubility	of	Fe	and	can	release	sorbed	organic	matter	for	decompo-
sition	by	microbes	(Hall	&	Silver,	2013; Song et al., 2022).	Therefore,	
these fluctuations with frequent rainfall, together with continuous 
high plant C inputs and decomposition, are likely to keep SOC ages 
young and overall highly dynamic in soils of humid climate zones 
across	sub-	Saharan	Africa.	 In	addition,	 it	could	also	be	that	poorly	
crystalline minerals reflect greater intensity of mineral weathering 
by organic acids and are therefore driven by higher C inputs in these 
soils	(Hall	&	Thompson,	2022).	Ultimately,	at	this	large	scale,	we	can-
not disentangle these mechanisms entirely.

F I G U R E  4 Individual	conditional	expectation	plots	derived	from	the	random	forest	model	grouped	by	climate	zones.	Boxplots	above	each	
panel show the raw data distribution for each explanatory variable, and vertical lines next to each panel show the range of the predicted 
mean	soil	organic	carbon	(SOC)	ages	for	each	climate	zone	over	the	range	of	one	explanatory	variable,	while	holding	the	other	variables	
constant.	Figure	shows	results	for	(a)	clay + fine	silt	content,	(b)	2:1	clay	minerals,	(c)	1:1	clay	minerals,	and	(d)	oxalate-	extractable	metals.
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4.2  |  Seasonal climate zones

In seasonal climate zones, the direct importance of climate for SOC 
age tends to be smaller, as indicated by the larger distance between 
individual	observations	 in	 the	PCA	compared	 to	 the	other	climate	
zones	 (Figure 2b)	 and	 the	 on	 average	 smaller	 importance	 of	 SOC	
content	 and	GPP	 (Figure 3a).	 Interestingly,	 variation	 in	GPP	 is	not	
directly related to younger SOC ages and only partly to higher SOC 
content	 (Figure 3b).	 Thus,	 soils	 in	 seasonal	 climate	 zones	 might	
be	 less	 responsive	 to	 alteration	 in	 GPP	 caused	 by	 future	 climatic	
changes, than their counterparts in arid and humid climate zones.

Soils in seasonal climates are characterized by higher concentra-
tions	of	high-	activity	clays	(2:1	clays)	and	poorly	crystalline	minerals,	
which provide excellent conditions for C sorption, resulting in older 
SOC	ages	compared	to	soils	from	humid	climate	zones	(Figures 3 and 
4).	The	observed	older	SOC	ages	with	the	presence	of	reactive	min-
erals	 is	 in	 agreement	with	 the	 understanding	 that	 organo-	mineral	
interactions associated with poorly crystalline minerals and/or 2:1 
clay	minerals	create	physico-	chemical	barriers	that	restrict	microor-
ganisms	from	decomposing	organic	molecules	(Khomo	et	al.,	2017; 
Six,	 Feller,	 et	 al.,	2002;	Wattel-	Koekkoek	 et	 al.,	2003),	 leading	 to	
high amounts of mineral protected SOC. Thus, as the variation in 
climate	 (limiting	 or	 promoting	 weathering	 and	 plant	 C	 input)	 and	

mineral	 properties	 (derived	 from	parent	material	 and	 the	 stage	of	
soil	 development)	 are	 the	 most	 diverse,	 soils	 in	 seasonal	 climate	
zones have the widest range of SOC content and age combination 
of	all	sub-	Saharan	Africa	regions	studied	(Figures 2a, 3 and 4).	Our	
findings that mineral reactivity is as important as C input in repre-
senting SOC persistence, and more important than the amount of 
clay +	fine	silt	fraction	in	these	regions	(Figures 3 and 4)	also	have	
implications	for	global-	scale	approaches.	Most	global-	scale	studies	
attempt to model C cycling often without precise data to represent 
the	soil	mineral	phase	(Shi	et	al.,	2020; Tifafi et al., 2018).	However,	
describing the reactive inorganic component of soil as a single nu-
meric value based on particle size alone overlooks the intricate influ-
ence of multiple reactive components that can exist within this size 
range	(Butler	et	al.,	2020;	Feller	&	Beare,	1997; Hassink, 1997; Six, 
Conant, et al., 2002).

4.3  |  Arid climate zones

Arid	soils	have	the	oldest	SOC	ages	even	though	reactive	minerals	
are	less	abundant	than	in	seasonal	climates	(Figures 3 and 4).	We	ex-
plain this finding by the strong climatic barriers that exist in this zone 
for biological processes due to low moisture availability for most of 

F I G U R E  5 Schematic	figure	of	bio-	climate	and	mineral	controls	on	soil	organic	carbon	stabilization	across	sub-	Saharan	Africa.	Feldspars:	
K-	feldspars	and	Plagioclase;	High-	activity	clays:	2:1	clay	minerals	such	as	smectite	and	vermiculite;	poorly	crystalline	minerals:	oxalate-	
extractable	metals	(Alox + Feox);	low-	activity	clays:	1:1	clay	minerals	(kaolinite)	and	pedogenic	oxides	(e.g.,	Goethite,	Gibbsite	and	Hematite).	
The figure was created with biore nder. com.
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these	soils	(Table 1).	This	results	in	both	low	plant	C	inputs	(low	GPP;	
Figures 2b and 3b)	and	limited	microbial	C	decomposition.	However,	
Quéro	et	al.	(2022)	showed	for	plowed	Arenosols	that	the	remaining	
SOC	was	of	microbial	origin	and	stabilized	within	organo-	mineral	as-
sociations.	Similarly,	Khomo	et	al.	(2017)	found	for	arid	soils	in	South	
Africa	that	some	SOC	was	associated	with	Fe(oxhydr)oxides.	In	arid	
soils,	 these	minerals	 can	be	very	 stable	 (i.e.,	 not	much	 fluctuation	
in	oxide	stability)	and	thus	they	could	stabilize	SOC	for	longer	time	
than	in	humid	soils	with	fluctuating	redox	potential	(Bhattacharyya	
et al., 2018).	This	is	reflected	in	our	linear	mixed-	effects	model	for	arid	
samples and the random forest model, where a higher concentration 
in	 poorly	 crystalline	minerals	 results	 in	 older	 SOC	ages	 (Table S3; 
Figure 4d),	although	the	explained	variation	is	only	4%	(based	on	the	
linear	mixed-	effects	model;	Figure 3a).	Photo-	oxidation	of	fresh	and	
young SOC may also contribute to overall older mean SOC ages in 
these	arid	regions	(Austin	&	Vivanco,	2006),	as	may	the	deposition	of	
aeolian dust and the presence of charcoal, both of which can contain 
relatively	old	C	(Cusack	et	al.,	2012; Eglinton et al., 2002).	 In	sum-
mary, old SOC ages in the arid zone appear to be more a function of 
constraints	on	weathering,	C	inputs,	and	C	mineralization	(Figure 3).	
Small increases in precipitation may promote C stabilization of in-
puts	if	reactive	minerals	are	already	present	(for	example,	formed	in	
a wetter past climate; Figure 4b,c).

4.4  |  Anthropogenic factors

Our data show that anthropogenic disturbances are detectable 
in	 mean	 SOC	 age	 at	 broader	 scales	 (Figure 3a),	 yet	 the	 direction	
and	 magnitude	 remain	 uncertain	 (Table S3 and Figure A10).	 For	
eroded soils, the older mean SOC ages are likely due to the removal 
of	 younger	 SOC	 from	 the	 topsoil	 layer	 (Berhe	 et	 al.,	 2008;	 Paul	
et al., 1997),	whereas	 for	 cultivated	 soils,	 lower	C	 inputs	 of	 fresh	
(young)	C	could	result	in	older	mean	SOC	ages	(Harrison	et	al.,	1993; 
Wang et al., 1999).	 However,	 when	 comparing	 eroded/cultivated	
vs.	non-	eroded/non-	cultivated	soils	from	the	same	site,	they	show	
different responses with respect to SOC ages, which could be for 
various	reasons.	For	example,	it	has	been	shown	that	different	man-
agement	practices	can	have	varying	effects	on	SOC	dynamics	(Six,	
Feller,	et	al.,	2002; Winowiecki et al., 2016).	In	addition,	cultivation	
is typically performed on fertile soils, that are, as identified above, 
associated	 with	 a	 particular	 climate	 and	 mineralogy	 (Figure 3a).	
Furthermore,	 cultivation	may	also	 increase	 the	 risk	of	erosion	 if	 it	
takes place in regions that are topographically and climatically prone 
to	promote	 soil	 redistribution	 (Lal,	1985).	All	 of	 this	 suggests	 that	
the effect of cultivation and erosion on SOC persistence can only 
be studied to a limited extent at a broader scale, since their effects 
are	highly	 context	dependent	at	 local	 scales	 (Holmes	et	 al.,	2004, 
2005).	Furthermore,	the	effects	of	anthropogenic	disturbances	may	
be detectable only in the top few centimeters and only for certain 
soil	fractions,	such	as	plant-	derived	and	fast	cycling	SOC	(Heckman	
et al., 2022; Reichenbach et al., 2023; Rocci et al., 2021).	 In	 sum-
mary, conclusions about the role of land management practices on 

SOC persistence and the exact drivers of the observed differences 
between natural and degraded soils cannot be drawn from this data-
set.	At	this	broad	scale,	the	drivers	of	degraded	soils	are	likely	to	be	
superseded by the effects of the underlying climate and mineralogy 
on soil C cycling and redistribution.

4.5  |  Future scenarios of SOC persistence

Climate	change	is	projected	to	have	significant	effects	on	the	African	
continent,	although	predictions	have	a	high	level	of	uncertainty	(Lee	
et al., 2021).	Based	on	CMIP6	projections	for	the	end	of	this	century	
(RCP8.5,	 4°C	 warming,	 baseline	 1986–2005),	 sub-	Saharan	 Africa	
will	become	warmer	(+3	to	4°C)	and	about	66%	of	the	land	area	will	
become wetter, yet with more intense droughts and heavy rainfall 
events	 (Gutiérrez	 et	 al.,	2021; Iturbide et al., 2021).	 Seasonal	 cli-
mate zones will be subject to the most pronounced climatic changes 
across	sub-	Saharan	Africa	(areas	indicated	in	gray;	Figure 6a; Beck 
et al., 2018;	Gutiérrez	 et	 al.,	2021; Iturbide et al., 2021).	Many	of	
these	 regions	will	 become	 either	more	 arid	 (yellow	 area)	 or	more	
humid	(purple	and	green	area;	Figure 6a).	For	the	predicted	changes	
for each climate zone, we used the future climate zones projected 
by	 Beck	 et	 al.	 (2018)	 based	 on	 an	 ensemble	 of	 32	 climate	model	
(RCP8.5).	 Each	 climate	 zone	 is	 defined	 according	 to	 the	 Köppen-	
Geiger classification system, based on threshold values and sea-
sonality	of	monthly	air	 temperature	and	precipitation.	All	of	 these	
projected climate changes will have profound impacts on vegetation 
and soils.

Our results highlight the need to consider the diversity of cur-
rent	pedo-	climatic	conditions	when	considering	the	response	of	soil	
C	 cycling	 to	 future	 changes.	 For	 example,	 the	 soils	 from	 seasonal	
climates forecast to change most also store the most SOC relative 
to	 their	 area	 under	 current	 climate	 conditions	 (Figure 6b),	 with	
older	soil	ages	and	high	C	stabilization	potential	 (Figures 3 and 4).	
These	 well-	developed	 soils	 with	 abundant	 reactive	 minerals	 may	
have the potential to stabilize more C if plant productivity increases 
(Figure 6c).	The	same	soils	may	be	less	responsive	to	declining	plant	
productivity if soil minerals can efficiently retain SOC via mineral 
adsorption	(Torn	et	al.,	1997; Figure 6c).	In	contrast,	soil	C	stocks	in	
predominantly old, deeply weathered soils with younger SOC ages 
(Figure 5)	might	not	react	to	climatic	changes	if	biomass	productivity	
continues to exceed the limited capacity of these soils to stabilize C 
by	minerals	(Reichenbach	et	al.,	2023; Torn et al., 1997).	However,	
these soils may be very sensitive to decreases in biomass productiv-
ity	and	thus	plant	C	inputs	under	drier	climate	conditions	(Figure 6c; 
Feller,	1993; Good & Caylor, 2011).	This	is	because	soils	of	the	humid	
(sub)tropics	 are	 already	 dominated	 by	 less	 reactive	 1:1	 clays	 and	
other	end-	member	minerals	that	have	lost	their	ability	to	effectively	
stabilize	SOC	by	minerals	(Figures 3 and 4).	Finally,	over	much	longer	
time periods, climate will impact soil weathering and C stabilization 
potential.	For	example,	soils	that	have	been	constrained	by	climate	in	
their development to date, such as soils in arid climate zones where 
lack of water limits chemical weathering and soil stability through 
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vegetation cover, may develop a more reactive mineral soil phase 
which would allow them to adsorb more C over longer time peri-
ods	 (Georgiou	 et	 al.,	2022).	 These	 various	 responses	will	 proceed	
at different timescales, and future research is needed to connect 
current	 pedo-	climatic	 conditions	 with	 future	 soil	 development	 to	
understand projected changes to the soil C cycle over decadal and 
centennial timescales.

5  |  CONCLUSIONS

We show that patterns of SOC persistence are related to common 
soil	development	 stages,	which	can	be	grouped	 into	main	pedo-	
climatic	 zones	 at	 the	 continental	 scale	 for	 sub-	Saharan	 Africa	
(Figure 5).	 Across	 the	 diverse	 soil	 landscapes	 of	 sub-	Saharan	
Africa,	 our	 results	 highlight	 the	 varying	 importance	 of	 climate,	
mineralogy and vegetation as controlling factors for SOC dynam-
ics.	This	is	particularly	important	as	(i)	some	soils	currently	have	a	
high potential to stabilize SOC by minerals under the prevailing cli-
matic conditions but will receive either less or more plant C inputs 
in	 the	 future;	 (ii)	 soils	 react	more	slowly	 to	climatic	change	 than	
vegetation	and	(iii)	the	potential	of	soils	to	stabilize	SOC	on	min-
eral	surfaces	can	change	drastically	as	weathering	progresses.	At	
this large scale, anthropogenic alterations of soils through land use 

proved less important for understanding patterns of SOC persis-
tence	than	the	underlying	pedo-	climatic	conditions.	Furthermore,	
the	 results	 of	 the	 linear-	mixed	 effects	 and	 random	 forest	mod-
els show that we cannot explain all the variation in SOC persis-
tence	 across	 sub-	Saharan	Africa.	 The	unexplained	 variation	may	
be linked to differences in soil microbiology and soil hydrology for 
which we did not have data.

Pedo-	climatic	grouping	of	soils	can	be	used	to	inform	upscal-
ing	efforts	to	understand	broad-	scale	controls	on	SOC	stocks	and	
timescales of soil C dynamics. It provides a basis for predicting 
responses of SOC to change. We acknowledge that these predic-
tions	remain	uncertain.	Nevertheless,	our	results	advance	our	un-
derstanding of the very complex soil system at larger scales and 
call	 for	 a	more	process-	oriented	grouping	 and	 representation	of	
soils in models and upscaling efforts. Besides a better description 
of climate change effects on vegetation and microbial activity, a 
pedogenetically informed understanding of the current and future 
potential of soil C mineral stabilization is crucial for more accurate 
predictions of the responses of tropical and subtropical soils to 
climate change.
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