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Language is a universal human ability, acquired readily by young children, who
otherwise struggle with many basics of survival. And yet, language ability is variable
across individuals. Naturalistic and experimental observations suggest that children’s
linguistic skills vary with factors like socioeconomic status and children’s gender.
But which factors really influence children’s day-to-day language use? Here, we
leverage speech technology in a big-data approach to report on a unique cross-cultural
and diverse data set: >2,500 d-long, child-centered audio-recordings of 1,001 2- to
48-mo-olds from 12 countries spanning six continents across urban, farmer-forager,
and subsistence-farming contexts. As expected, age and language-relevant clinical risks
and diagnoses predicted how much speech (and speech-like vocalization) children
produced. Critically, so too did adult talk in children’s environments: Children who
heard more talk from adults produced more speech. In contrast to previous conclusions
based on more limited sampling methods and a different set of language proxies,
socioeconomic status (operationalized as maternal education) was not significantly
associated with children’s productions over the first 4 y of life, and neither were
gender or multilingualism. These findings from large-scale naturalistic data advance
our understanding of which factors are robust predictors of variability in the speech
behaviors of young learners in a wide range of everyday contexts.

human diversity | language | socioeconomic status | speech | infancy

Typically developing children readily progress from coos to complex sentences within just
a few years, leading some to hypothesize that the universal language abilities of humans
develop uniformly, with only incidental effects of individual- or group-level variation (1).
And yet, studies using a variety of proxies for language development find some evidence
of such variation in early language skills, with differences reported between girls and boys
(2) as well as those raised in socioeconomically privileged compared to disadvantaged
households (3, 4).

However interesting, these studies tend to rely on Western-centric samples and
methods and may not reflect everyday language use in children. Moreover, prior
work often stops after only considering individual predictors in a binary way (i.e., do
they significantly impact language development or not), while failing to ask the more
informative question of how large their relative impact is (5), especially in freely occurring,
everyday speech behavior.

Recent research on mice and whales shows the promise of machine learning for
examining everyday animal behavior (6, 7). We leverage advances in wearables and
machine-learning-based speech technology to catalyze a similar breakthrough in language
development research. Our dataset is composed of >40,000 h of audio from >2,500 d in
the lives of 1,001 2- to 48-mo-olds from six continents and diverse cultural contexts
(Fig. 1). Within this dataset, we focused on the amount of speech or speech-like
vocalization young children produce in their everyday life. Critically, these automatically
extractable “quantity” measures correlate robustly with gold-standard “quality” measures
of children’s language skills and knowledge, like vocabulary estimates (SI Appendix,
section 1D for relevant evidence) (4).

We query and compare the effects of two types of factors. First, there are
factors with undeniable effects on early language production, namely, child age and
language-relevant clinical risks and diagnoses. Second, there are individual- and family-
level factors that are reported to correlate with variability in early language skills:
socioeconomic status (SES; operationalized here as maternal education; SI Appendix,
section 2B), gender, language input quantity, and multilingual background. Be-
cause small and homogeneous samples make universal claims more questionable,
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Fig. 1. Geographical location, primary language, number of children (NCHILD), number of recordings (NREC), and data citation for each corpus.

a key contribution of this work is its benchmarking of the
level of stability and variability of everyday language use in a
heterogeneous, richly diverse participant sample.*

Measuring Diverse, Real-life Language Use. Language skills and
knowledge are not directly observable. As a result, all studies use a
proxy when estimating them in individual children. These proxies
have variable validity and predictive power relative to other
measures, both concurrently and predictively, and likely vary in
the extent to which they reflect children’s everyday language be-
havior. For instance, parental report measures are indirect and—
especially for receptive knowledge—can be difficult for caretakers
to estimate (9), even in relatively homogeneous Western-centric
contexts.

Here, we adopt a very different approach. We employed
the LENA™system, which captures what children hear and say
across an entire day through small wearable recorders (10);
this ecologically valid sampling method reduces observer effects
relative to, e.g., shorter video recordings (11). The LENA™system
uses standardized algorithms that estimate who is speaking
when, alongside automated counts of adult and child linguistic
vocalizations (4) (see definition and validation in SI Appendix,
sections 1C–1E). The resulting LENA™measures correlate with
and predict other measures of language skills in children with
and without clinical risks or diagnoses, as revealed by manual
transcriptions, clinical instruments, and parent questionnaires

*While these data collectively span living circumstances, geography, and family structure,
some data donors were concerned that highlighting differences when minoritized
communities are involved poses ethical challenges, in terms of honorable representation
and potential harm. Individual data stewards are actively engaging in richer descriptions
of included samples (SI Appendix, section 5), which may enable future work on meaningful
population-level differences (e.g., ref. 8).

(12, 13). We use LENA™’s validated, automated estimates to
derive our measures of everyday language use: adult talk and child
speech (see detailed motivation in SI Appendix, section 3B). We
define child speech as the quantity of children’s speech-related
vocalizations (e.g., protophones (14), babbles, syllables, words,
or sentences, but not laughing or crying) per hour, and adult talk
as the number of near and clear vocalizations per hour attributed
to adults (both as detected by LENA™’s algorithm; see Methods).
Assuaging concerns that these measures are merely capturing
chattiness or repetition, both have a ≥ 0.7 correlation with
measures of lexical diversity and language “quality”: Our child
speech measure correlates with vocabulary in an independent
sample, and the adult talk measure correlates with the number of
word types from manual transcription in a subset of the data (SI
Appendix, section 1D).

Capitalizing on this standardized and deidentified numeric
output, we solicited LENA™datasets that researchers had pre-
viously collected to study mono- and multilingual children
(i.e. those learning >1 language) in urban, farmer-forager, and
subsistence-farming contexts worldwide (Fig. 1). This resulted in
a dataset reflecting the state of current knowledge in ecologically
valid speech samples from children’s daily lives (SI Appendix,
section 3A; see Methods for more sample details).

The dataset includes children from wide-ranging SES back-
grounds, based on maternal education levels spanning from no
formal education to advanced degrees (SI Appendix, section 2B).
This SES proxy was selected not only because it was available
in all 18 corpora (only 3 had alternative SES proxies), but most
importantly because it is the most commonly employed SES
proxy in language acquisition research, as established in meta-
analyses (15, 16). This allows our findings to inform ongoing
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discussions. Theories of how SES relates to children’s language
development have proposed a wide range of pathways in which
maternal education is predictive of children’s language experi-
ences, including the connection between maternal education and
the tendency to employ verbal over physical responsiveness (17),
the diversity in mothers’ vocabulary (18), and the frequency of
verbally rich activities (19). Maternal education also correlates
highly with other SES proxies [e.g., r = 0.86 in a study of children
growing up in 10 European or North American countries, (20)],
suggesting it may also indirectly pick up on other pathways
linking SES to language development, through, e.g., differential
access to resources and nutrition, or exposure to stress perinatally
(21). At the same time, we recognize that comparing a variable
like education across countries, although commonly done (22),
is not straightforward. Therefore, we supplement our preregis-
tered approach with numerous exploratory checks and analyses
examining alternative implementations (SI Appendix, sections 3G
and 3H described further below).

Crucially, by including children aged 2 to 48 mo, we span
a wide range of linguistic skills, allowing us to better capture
the effects of our variables over a broad span of development
within our socioculturally and geographically broad-ranging par-
ticipants. We also include children with a variety of diagnoses of
language delays and disorders, as well as those at high risks for
them (Methods and SI Appendix, section 2A for definitions and
detailed justification). Such children’s language development is
by definition nonnormative. Thus, age and nonnormative status
provide useful yardsticks for considering the significance and
effect size of other child- and family-level factors (SES through
maternal education, child gender, mono- vs. multilingual status,
and how much adults talk to and around the child). That
is, if a factor (e.g., gender) has an effect far smaller than
that of age or nonnormative development, it would suggest
that individual differences within it are relatively limited in
their connection to everyday language use. If the effects are
comparable in size, it would instead suggest that the amount of
speech humans produce in everyday interactions is undergirded
by substantial and structured individual differences, rather than
striking uniformity. Given that effects could vary as a function
of child age, we make sure to include key interaction terms. For
instance, if older children are more sensitive to adults’ talking to
them than younger ones, then we can expect age to interact with
adult talk.

Results
Predicting Children’s Speech Production. We employed a
hypothesis-testing approach: In a two-step preregistration, we
first established exploration and confirmation data subsets (see
Methods and SI Appendix, section 3A for detailed explanation,
and SI Appendix, sections 3D and 3E for the procedure used to
derive preregistered hypotheses and analyses). We then leveraged
the held-out confirmation subset to answer our key question:
How well do specific individual- and family-level factors predict
variation in how much speech young children produce? At stake
in these analyses is whether systematic differences in children’s
lives have measurable links to their language production, and if
so, what the strength of these relationships is both overall, and in
relation to one another (see Table 1 for results†).

†All ßs in tables and text are based on treatment-coded models. See SI Appendix, section
3H for sum-coded models, which give the same pattern of results.

Table 1. Model results predicting child speech
� SE q

Intercept 0.109 0.128 0.681
Child gender (Male) 0.026 0.051 0.852
SES(<H.S.(1)) 0.001 0.111 0.991
SES(H.S.(2)) −0.033 0.115 0.932
SES(B.A.(4)) −0.064 0.079 0.681
SES(>B.A.(5)) −0.002 0.090 0.991
Control −0.085 0.029 0.035 *
Norm −0.220 0.087 0.036 *
Adult talk 0.260 0.037 <0.001 *
Age 0.647 0.024 <0.001 *
Mono 0.045 0.095 0.852
Norm × Adult talk −0.005 0.063 0.991
Norm × Age −0.217 0.051 <0.001 *
Adult Talk × Age 0.125 0.022 <0.001 *
Adult Talk ×Mono 0.092 0.072 0.45
Mono × Age −0.048 0.056 0.681
Norm × Adult talk × Age 0.019 0.043 0.852
Mono × Adult talk × Age 0.137 0.065 0.094

q-values show FDR-corrected P-values.
Note. Betas show deviation from the following baseline levels: Child gender: female; SES:
some university(3); Norm: Norm(ative development); Mono: Mono(lingual). SES = child
SES based on maternal education (<H.S.(1) = less than high school, H.S.(2) = high school,
B.A.(4) = college degree, >B.A.(5) = advanced degree); Control = overlap rate control; Adult
talk = adult vocalization count rate.

As expected, we found that older children produced more
speech than younger ones (ß = 0.647, SE = 0.024). Children
with nonnormative development produced less speech than chil-
dren with normative development (ß = −0.22, SE = 0.087),‡
an effect that strengthened with age (ß = −0.217, SE = 0.051;
see Fig. 2B). This is expected because for some groups in our
nonnormative subset (e.g., those with familial risk of a speech
impairment), older children are more likely to have an actual
diagnosis (as opposed to risk factor) than younger ones (see SI
Appendix, section 2A for details on nonnormative classification).

Our results further revealed that young children’s speech
production correlated with the amount of adult talk they heard
(ß = 0.26, SE = 0.037). This correlation strengthened with age
(ß = 0.125, SE = 0.022; see Fig. 2A), perhaps because variation
in adult talk rate has less effect on infants [whose early babbles
occur frequently even when infants are alone, (14)]. The effect
of adult talk is a substantial one. Taking the effects of age and
normativity as convenient (but unrelated) gauges for what counts
as a considerable effect, we see that the effect size of adult talk is
about a third of that for age and similar to that for normativity
(adult talk: 0.26; interaction adult talk by age: 0.125; age: 0.647;
nonnormative development: −0.22; interaction nonnormative
by age: −0.217; all effect size betas expressed as SDs).

To provide these results in more intuitive units, we fit
the same model centering variables without scaling. Children
produced 66 more vocalizations per hour with each year of life.
For every 100 adult vocalizations per hour, children produced
27 more vocalizations; this effect grew by 16 vocalizations per
year. Relative to infants with typical development, those with
nonnormative development produced 20 fewer vocalizations per
hour; this difference grew by 8 vocalizations per year.

Surprisingly, and in contrast to previous results using smaller
and less diverse datasets and/or other language proxies, we found

‡The normativity estimate is negative because normative development is the baseline.
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A

B C

Fig. 2. Effects of adult talk, child age, and normative development on children's speech production. Points show each daylong recording; lines show linear
regression with 95% CIs. Child speech is quantified as child linguistic vocalization rate; adult talk as adult vocalization count rate (AVCr). (A) Child speech by age,
split by low/mid/high tertiles of adult talk. Lines depict significant adult talk× age interaction. Color-shape combinations show each unique corpus, numbered to
preserve anonymity. (B) Child speech by age and normative status. Lines depict significant age × normative status interaction. (C) Proportion of vocal behavior
classified as speech, cry, or vegetative, by age. The line type/color indicates monolingual and normative statuses. N.B. Monolingual normative CI (blue) falls fully
within that for multilingual children (pink) for all three types of vocal behavior, highlighting these groups’ equivalent patterns.

that child gender, SES (indexed here by maternal education),
and monolingual status did not explain significant variation in
child speech. As our raw data figures and model outcome results
show, these null effects hold both when considering covariates
(as in our model; Table 1) and when considering these variables
individually (as in Fig. 3; SI Appendix sections 3F–3H). In
our full model controlling for other variables (Table 1), the
largest estimate for main effects or interactions involving child
gender, SES, and monolingual status was about half of that
for normativity, and one-sixth of that for age; none reached
thresholds for statistical significance.

While our models are well powered to estimate associations of
child speech with age, normativity, adult talk, gender, SES (as
measured by maternal education), and monolingual status, this is
predicated upon pooling the data and accounting statistically for
corpus- and child-level variance via random effects, as described
in Methods. This makes it beyond this paper’s scope to analyze
language or population/cultural differences in detail, i.e., in a way
that might allow the consideration of additional, culture-specific
variables (hence their omission in Figs. 2 and 3); see SI Appendix,
section 5 for citations to research on individual datasets, some of
which tackle such differences directly.

Noting that the results above have the strongest inferential
value thanks to being preregistered, we also addressed certain

alternative hypotheses and interpretations that could have ren-
dered our conclusions unjustified through a series of follow-up
analyses. These checked for robustness of our key results with
different operationalizations and statistical implementations of
SES, when considering only children under or over 18 mo, when
considering causal paths, and when incorporating speech from
other children as a predictor; our key results held in all cases (SI
Appendix, section 3H).

We highlight here the results that may run most counter to
many readers’ assumptions, namely, that in this large sample,
SES (indexed by maternal education) does not come out as a
significant predictor of child speech. This conclusion held when
declaring SES as an ordinal and as a continuous variable based on
levels or years of maternal education, when binarizing SES levels
based on individual countries’ average education completion rate
and when declaring a random slope for SES within corpus (which
allows SES effects to vary across corpora).

Some readers may wonder whether there were some corpora for
which SES did matter. If so, the analysis with random SES slopes
by corpus would have indicated this, but it did not (SI Appendix,
section 3H). The relationship between SES and child speech was
weak and inconsistent across corpora (as evident in Fig. 4).

Perhaps most convincingly, results also held when constraining
our analysis to our largest homogeneous subset, the North
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Fig. 3. Factors that do not predict child speech or adult talk. Points = individual recordings, jittered horizontally. Lines = linear fit with 95% confidence intervals.
Error bars = 99% bootstrapped CIs of sample means. Child speech is quantified as child linguistic vocalization rate; adult talk as adult vocalization count rate
(AVCr). A & B: null effects of child gender (A) and socioeconomic status (SES) (B) on child speech. (C) Null three-way effect of normative development × adult
talk × age (N.B.: normative × age and adult talk × age are significant; see Fig. 2). (D) null three-way effect of age × adult talk ×monolingual status. (E and F ) null
effects of child gender (E) and SES (F ) on adult talk. (G and H) null effect of normative development (G) and monolingual status (H) on adult talk.

American subsample (642 daylong recordings from 206 infants
in 7 corpora; SI Appendix, section 3G). We essentially replicated
the full-sample results in this subsample: Adult talk and age
were significant predictors, whereas gender and SES (based on
maternal education) were not. The significant adult talk × age
interaction also replicated. The main effect of normativity did
not, likely because normativity’s interaction with age was larger
than in the full-sample analysis. Finally, we also tested whether
removing the adult talk variable would result in an SES effect,
i.e., testing whether adult talk was absorbing variance that would
otherwise be accounted for by SES. This was not the case:

Removing the adult talk predictor, SES still does not account
for significant variance in child speech in our analysis. A central
contribution of this work is thus the clear lack of evidence we
find for effects of SES (under several operationalizations focused
on maternal education), on how much speech young children
produce in day-to-day life.

Another potential concern is that our conclusions hinge on
the use of LENA™’s particular algorithm; they do not. The
findings above successfully replicate in the subset of data for
which data stewards were able to share raw audio (11/18 corpora),
which was analyzed with a wholly different algorithmic approach,
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Fig. 4. Child speech as a function of SES within individual corpora. SES = maternal education levels as in Table 1. White lines = linear fit with 95% CIs in color,
color = corpus. Black lines = 99% CIs of sample means bootstrapped separately from linear fit for each level of SES. These data (as well as our main models and
further analyses in SI 3H/G) do not reveal an SES effect on child speech.

the Voice Type Classifier or VTC (Methods and SI Appendix,
section 3F).§ Yet another worry is that our focus on adult talk
may mask other important contributions to children’s language
experiences, for instance, speech from other children. Testing
this in a supplemental analysis, we confirm that the level of
association found between adult talk and children’s speech was
unaffected by including other children’s talk measured by LENA
as a predictor variable (SI Appendix, section 3H), confirming
that our key conclusions hold when factoring this other source
of input in.

Finally, we also ran a model predicting adult talk (rather than
child speech). The amount of adult talk was not significantly
predicted by SES, child age, gender, and monolingual or norma-
tive status (Table 2, Fig. 3 E–H, and SI Appendix, sections 3G
and 3H). Importantly, these null results replicated in the North
American subset (SI Appendix, section 3G) as well as in every

§VTC too has been robustly validated relative to various gold standard manual measures
(SI Appendix, section 1E)

other alternative analysis we attempted (SI Appendix, section 3H).
Together, these analyses suggest that the relationship we find be-
tween adult talk and child speech in the child speech models is not
attributable to child- or family-level factors affecting adult talk.

Speech and Other Early Vocal Behavior. While our central
query concerned variability within early speech production, we
conducted a further descriptive analysis examining how much of
children’s vocalizations were speech or speech-like, as opposed to
the two other classes of LENA™-identified vocalizations: crying
and vegetative sounds (e.g., burps, hiccups). We examined these
vocalization types as a function of age, monolingual status, and
normative status. As Fig. 2C shows, for children with normative
development, the proportion of vocalizations that were speech
increased from just over half to the vast majority over 2–48
mo. In contrast, the crying proportion fell steeply over the same
period, from nearly half of vocalizations to a small fraction
of them; the proportion of vegetative sounds was low and
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Table 2. Model results predicting adult talk (i.e., adult
vocalization count rate)

� SE q

Intercept −0.100 0.160 0.778
Child gender (Male) 0.174 0.148 0.547
SES(<H.S.(1)) 0.239 0.173 0.547
SES(H.S.(2)) −0.015 0.194 0.939
SES(B.A.(4)) 0.148 0.131 0.547
SES(>B.A.(5)) 0.098 0.150 0.778
Control 0.084 0.055 0.547
Norm 0.013 0.103 0.939
Age −0.030 0.029 0.547
Mono −0.028 0.112 0.939
Gender (Male) × SES(<H.S.(1)) −0.375 0.196 0.547
Gender (Male) × SES(H.S.(2)) −0.263 0.252 0.547
Gender (Male) × SES(B.A.(4)) −0.220 0.176 0.547
Gender (Male) × SES(>B.A.(5)) 0.016 0.201 0.939
Norm × Age −0.076 0.060 0.547
Mono × Age 0.035 0.068 0.804

q-values show FDR-corrected P-values.
Note. None of the variables in our model predicted adult talk. All abbreviations and
baselines are as in Table 1.

constant. Convergent with our speech analyses, monolingual
status did not alter these patterns but normative status did: While
the same overall patterns held for children with nonnormative
development, their decrease in crying and increase in speech
production with age was less steep (Fig. 2C ).

As with more narrowly defined nonnormative populations
[e.g., children with autism spectrum disorder (23)], we find
clear divergences in language trajectories in our normative
vs. nonnormative samples. This is notable because a) our
nonnormative sample is heterogeneous (SI Appendix, section 2A)
and b) as 2- to 48-mo-olds, many children with nonnormative
classifications here were at risk of (but not yet diagnosed with)
language delays or disorders. Automated speech analyses in
naturalistic recordings thus hold promise for future research into
early diagnostics (24, 25).

Discussion
Adult Talk and Child Speech. Children who heard more adult
talk produced dramatically higher rates of speech, and this effect
increased with age. This result feeds into ongoing theoretical
debates regarding the relevance of individual differences (26).
Although we cannot infer causality from our correlational data,
it is useful to consider possible causal paths that could in principle
have led to our results. A correlation between child speech and
adult talk is compatible with at least three explanations: 1)
Children who produce more speech elicit more talk from adults;
2) language-dense environments lead children to produce more
speech; or 3) a third variable causes increases in both adult talk
and child speech.¶

Our model predicting adult talk (Table 2) can be brought to
bear on Explanation 1. If children talking more elicited more
talk from adults, then we would have expected to see that age
and normative status were significant predictors of adult talk.
Instead, we find that neither these (nor any other variables
in our model) predicted the quantity of adult talk (Fig. 3G).
Nonetheless, the precise statistical analyses we carried out do

¶Our analyses suggest that one such potential third variable, differences in activities across
recordings, is not a likely candidate for the correlation between child speech and adult
talk (SI Appendix, section 4).

not allow us to directly rule out any of the explanations, a
combination of which may be jointly true. Establishing a precise
causal chain will require careful consideration of a variety of
proximal and ultimate pathways through which child and adult
behaviors are shaped. As one example, given that most children
here are genetically related to their adult caregivers, we may be
observing covariance in amount of talk and its linguistic correlates
(Explanation 3). Evaluating these alternatives requires evidence
from children raised by unrelated caregivers or from genome-wide
association studies, as genetic and environmental factors remain
challenging to disentangle (27). In this vein, recent work with
adopted 15- to 73-mo-olds provides evidence for input effects
(maternal utterance length and/or lexical diversity) on adopted
children’s vocabulary size (measured via a caretaker checklist)
(28). This study suggests that shared genetics is not the sole
contributor to links between (at least these proxies for) caretaker
input and child language outcomes. Moreover, shared genetics
is just one of the ways in which adult and child behavior may
be independently shaped by an unmeasured confounded variable
(as per Explanation 3). For instance, other third variables related
to dimensions like personality, neighborhood, and childcare
context too may be contributors (29, 30). These explanations
can only be definitively teased apart by future work.

Insight on Child and Family Factors. Our main models, figures
showing the raw data, and additional analyses (in the North
American subset of the data, as well as using an alternative algo-
rithm, see SI Appendix, section 3F) reveal effects of normativity,
age, and adult talk but not SES (measured here through maternal
education), child gender, or monolingualism. To illustrate the
complexities involved in determining causal links between child
and family factors and child language skills, we again consider
how causal links might manifest, using SES as a central example.

Our findings bear on debates regarding SES-associated aca-
demic achievement differences in Western industrialized societies
(31, 32). Slower language development has often been attributed
to parents from lower-SES backgrounds providing less input
to their children [viewed from a middle-class Western-centric
perspective (32)], leading to calls for behavioral interventions
aiming to increase it. Proponents of such interventions might
highlight our correlation between adult talk and child speech;
critics might instead underscore our finding that SES was not
significant in our main analyses nor in every other reanalysis we
attempted (SI Appendix, sections 3E–3G).

A full understanding of how SES may relate to children’s
language input is complicated for empirical and conceptual
reasons, leaving strong conclusions premature. On the empirical
side, two recent meta-analyses have investigated SES–input
correlations, one focused on LENA™measures (15) and the other
based on human-annotated measures (mostly from short lab
recordings) (16). The former finds evidence consistent with a
publication bias; correcting this bias statistically nearly halves
the association between SES and LENA™’s adult talk measure
(r = 0.19 vs. 0.12). The latter finds a sizeable SES effect
when inspecting infant-directed speech (r = 0.34) and a much
smaller one when analyzing overall input quantities (r = 0.09).
Together, these studies suggest that our best estimate of the
association between overall input quantities and SES is small
(r = 0.1) and may not be detectable even with a sample as
large as ours (where the effect was estimated at |d| = 0.06, or
|r| = 0.03, which did not reach the threshold for significance).
Similarly, descriptive plots of the potential correlation between
our SES proxy and children’s speech (Fig. 4) did not suggest a
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strong or stable relationship across the 18 corpora, leading to our
conclusion that, in the sample as a whole, on average, maternal
education does not predict how much adults and children talk.

On the conceptual side, SES differences in input and language
skills may depend on how language is measured (33). For
instance, we speculate that SES effects may be magnified by
measures like prevalence of low-frequency words and complex
sentence structures common in written text. Such words and
structures may occur more in the input to Western, higher-
SES children because of parenting practices stereotypical in these
groups (34). Moreover, such measures may predict academic
achievement better than others because of the importance literacy
has in Western schooling today. In contrast, SES differences in
input may be minimized by holistic measures of speech quantities.
Indeed, a strength of daylong recordings is that they provide a rel-
atively neutral (rather than Western, high SES-centric) measure,
as they tap into how much children are contributing (via speech)
to their community’s conversational interactions instead of how
many rare words or complex constructions they have been taught.

An exclusive focus on word counts or speech quantities likely
misses certain behaviors. As machine learning advances (35), it
may soon be possible to automatically transcribe conversations
happening in daylong recordings (at least in monolingual high-
resource language contexts). We suspect that analysis of conver-
sational content may reveal SES differences in, e.g., rare word
use or family practices around book-reading even in naturalistic
samples (36). Future work with a high-density longitudinal lens
is also needed to assess the predictive value of global quantitative
measures of speech (like those we employ) relative to more
specialized measures (e.g., book-reading practices) with respect to
culturally relevant outcomes (e.g., academic achievement, prag-
matic competence in multiparty conversation, etc.)

In our view, causal links between parental behavior and chil-
dren’s outcomes can best be illuminated by randomized control
trials. Discovering and leveraging such links to change long-
term language outcomes depends on community partnership-
based approaches that are informed by the role that structural
inequalities play in these outcomes and engage with culturally
informed perspectives (37). The present results should not be
used to deny families access to resources that are linked with
better outcomes for children and their families.

Complicated causal effects are integral to all developmental
processes. While we illustrated this with our SES null results, we
also found no differences in child speech or adult talk as a function
of child gender or multilingual status. Regarding multilingualism,
we could not examine relative input in each language the child
was exposed to. Future machine learning advances will permit
the separate quantification of different languages in daylong
recordings, but this must happen alongside reflection on how
to fairly measure input and outcomes in such heterogeneous
populations (38–40).

Automated Tools and What They Count. A key benefit of our
approach is that we were able to pool and identically process
40,933 h of independently collected data (SI Appendix, section
3A). Moreover, unlike parental surveys, clinical assessments,
lab instruments, or hand-annotated data, current published
evidence suggests that the LENA™algorithm’s results do not vary
systematically by language [though they do vary somewhat across
samples, (12)]. More relevant here, in analyzing the algorithm’s
accuracy as a function of samples grouped by language and
cultural features, we found no significant differences (Methods
and SI Appendix, section 1E).

While children’s language skills grow dramatically over 2–
48 mo, our measure is not an index of comprehension [which
can show quite a different trajectory, 41] but rather of observable
linguistic behavior, focusing exclusively on children’s rate of
linguistic vocalizations (SI Appendix, section 3B). These results
certainly do not deny effects found on proxies of more narrow-
scoped linguistic developments (e.g., vocabulary, processing
efficiency, or syntactic complexity), given that some predictors
that fail to explain variance here may nonetheless be significant
there (3, 42).

The same holds for our measure of adult talk, which is
quantitative and holistic; additional research is needed to distin-
guish child-directed from child-available speech, with the latter
including all speech the child hears. Although some research
suggests child-directed speech shows tighter correlations with
children’s vocabulary than child-available speech does (43, 44),
the importance of the latter has not been as fully studied for other
types of language knowledge (45). Notably, this paper specifically
documents a significant link between adult-produced child-
available speech and everyday child speech behavior. Therefore,
it would be relevant to further investigate the strength of the
predictive value of overall adult talk (which was a significant
predictor here) versus child-directed talk, in a similarly large
and diverse sample as the present one. Unfortunately, automated
tools for separating child-directed from overheard speech are
not yet sufficiently accurate to make this possible (46). Future
work could also develop promising approaches for considering
other sources of speech (e.g., other children) given their relevance
as a function of family structure (47). These approaches were
not possible here due to both technical algorithmic constraints
and family structure information not being available in our
data subsets. Another fruitful future direction could consider
conversational dynamics, studying both children’s tendency to
vocalize around adults and the complexity of such vocalizations.
Recent work (that is critically reliant on human annotation of
social intent) raises particularly interesting ideas in this domain
(14, 48). Relatedly, novel exploratory analyses describing the
acoustics of children’s vocalizations (49) hold promise for
driving future hypothesis-testing work building on the present
results.

Whatever measures are employed in the future as proxies of
child language production and input, we strongly encourage
researchers to consider psychometric properties and ecological
validity. The current approach demonstrates measure validity
that is comparable to that of other standard infant instruments
(SI Appendix, sections 1D and 1E). As context, measures used
as proxies for infant language and cognitive knowledge are
inherently noisier than the best batteries used to assess highly
educated adults in Western-centric settings. Notably, even there,
reliabilities can fall well below r = 1.#

Moreover, standardized tests face ecological validity threats,
particularly when applied cross-culturally. If our goal is to
measure and understand the human mind, we need imple-
mentable, culturally sensitive, and appropriate ways of measuring
human behavior on a large scale. To our knowledge, there
are no such measures whose reliability has been examined,
driving us to conduct extensive quantification of the reliability
of the metrics we employed here (SI Appendix, sections 1D
and 1E). We found that our measures show levels of reliability
that are consistent with those already in use for research

#For instance, prior work finds test–retest reliabilities as low as r = 0.6 for certain sections
of the widely used Wechsler Adult Intelligence Scale among North American English-
speaking adults (50).
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and clinical purposes in infant populations. For example, the
MacArthur-Bates Communicative Development Inventory (a
parental report instrument used largely as a proxy for vocabulary
size) has been the basis for cross-linguistic, demographic, and
clinical research (9, 51–53) and reports a median correlation
between itself and laboratory measures of 0.61 (54). Our median
accuracy comparing automated and manual annotation for each
of our algorithms (LENA™and VTC) is 0.74, squarely in line
with field standards (SI Appendix, section 1E). Indeed, converging
evidence across these two wholly separate algorithms regarding
overall accuracy of our measure serves to increase confidence in
the validity of our results.

In sum, rather than eliciting knowledge or caregiver-child
interaction in a constrained lab setting, or using checklists in
contexts where they make little sense socioculturally, we measure
everyday language use en masse. Our measure of early speech
production is global, since we simply measure more versus
less speech or speech-like production on the part of adults
and children as they go about their daily life. And yet, these
measures have important advantages, which led us to select them
as proxies here, including comparable reliability to other measures
of language development commonly used in both research
and applied settings (Methods and SI Appendix, sections 1D
and 1E); reported correlations between them and finer-grained,
“qualitative” measures of language development (SI Appendix,
section 1D), and convergent validity with respect to standardized
language tests (13). Most importantly, our speech measure
merits consideration as one of many possible proxies of language
development thanks to its cross-cultural adaptability, observer-
free sampling volume, and sheer ecological validity. Indeed, our
results raise the possibility that more ecologically valid lexical,
phonetic, or grammatical measures will also reveal stability across
factors like SES (55), gender, and multilingualism. Exploring
these factors, however, awaits machine-learning developments
that can extract such fine-grained linguistic measures from the
raw audio collected with child-worn devices.

Conclusion
Our analysis of speech behavior in daily life around the world
evinces scientific progress on two fronts. First, by revealing
substantial variation in young children’s speech, we provide
evidence against a monolithic picture of language development.
Instead, this work reveals individual variation as fundamental
to our understanding of this species-wide ability. Second, by
tapping into natural speech interactions at unprecedented scale
and diversity, we are able to move beyond prior work by
simultaneously considering the interlocking factors that affect
speech production over early development. Our results reveal not
only the expected correlations with age and clinical factors but
also substantial associations with adult talk. All other factors paled
in comparison with these three, the null effect of our SES proxy
being of particular noteworthiness. These findings open exciting
avenues for both theoretical research and potential applications,
including the prospect of behavioral interventions to harness
adult talk in the context of speech and language diagnoses.
Small-scale experimental and observational research has been
fundamental to our understanding of language, development,
and the human mind. Machine learning (like that in speech
technology) promises to extend our scientific reach by exploding
the range of everyday interactions we are able to capture and
analyze. Just as recent technological innovations have opened
new vistas in understanding the vocalizations of mice and whales
(6, 7), so too does speech technology have the potential to

reveal how everyday human communication gives rise to language
learning in children around the world.

Methods

All code used to generate our analysis and the manuscript is available at
https://osf.io/9v2m5/?view_only=50df17fcf0844145ae692c35b78c6b08.

Data Discovery and Integration. We took steps to counter a prevalent bias
for normative North American data (see SI Appendix, section 3A for corpus
constitution procedure). Included data were independently collected by 18
stewards (56–77); see SI Appendix, section 5 for the list of publications based
on individual datasets. We note that while our corpora covered a much greater
variety of participants than prior work, it would not be appropriate to interpret
our samples as comprehensively representative of the country or language
community from which they are drawn.

Socioeconomic status and normative development were streamlined for
cross-corpus consistency (SI Appendix, sections 2A, 2B, and 3A, and Fig. S3A.1).
For socioeconomic status, we use maternal education, a reliable proxy for SES
in previous research on language development (18, 78). Maternal education
was available across all datasets and could be converted into a 5-point maternal
education scale with levels corresponding to less than high school degree, high
school degree or equivalent, some college/vocational/associate degree–level
training, university/college degree, and advanced degree (SI Appendix, section
2B and Table S2B.1).

For nonnormative development, data stewards had tagged a wide variety of
infant or familial characteristics as potentially nonnormative. We confirmed that
the classification was backed up by extant literature (SI Appendix, section 2A).
Infants ultimately classified as having nonnormative development in the present
sample include those who met one or more of the following criteria: preterm
birth (<37 wk); diagnosed speech or language delay; global developmental
delay; low birth weight (<2,500 g when specified); hearing loss, hearing aids,
or cochlear implants; familial risk of autism spectrum disorder, specific language
impairment, and/or dyslexia; and other relevant genetic syndromes. Notably, our
child vocalization rate measure is not a standardized normed clinical evaluation,
and thus nonnormative status may not necessarily translate to behavior that
falls >1 SDs below the norm in these naturalistic recordings.

Analysis Details. We first randomly partitioned the data within each corpus
such that 35% of monolingual, normative children were placed in an exploration
set (N children = 264; N recordings = 850), and all others in a confirmation
set (N children = 737; N recordings = 2,025) (SI Appendix, section 3A). The
exploration set was used to study the psychometric properties of potential
language input and output variables (SI Appendix, section 3B), resulting in the
selection of the output variable referred to as child speech above, and CVCr
(Child Vocalization Count rate) in analysis and supplementary files (SI Appendix,
section 3B and Table S3B.1); and the input variable referred to as adult talk
above, and AVCr (Adult Vocalization Count rate) in analysis and supplementary
files (SI Appendix, section 3B and Table S3B.2). Note that this includes both
child-directed and child-available speech.

In addition, we used the exploration set to check the robustness of results
to variation in random effect structure and explored diverse model structures
using mixed models in R’s lme4 package (79), checking whether the addition of
effects or interactions explained additional variance (SI Appendix, section 3C).
This led us to a) include overlap rate as a covariate (see SI Appendix, Fig. S3C.1)
to control for the fact that in noisy environments, more child speech and adult
talk within the same recordings may be labeled as “overlap” by LENA (and thus
not attributed to either speaker type) and b) to not include random slopes for any
of the predictors. Regarding the latter choice, our exploration of random effect
structure revealed that models including random slopes for any of the predictors
(notably including gender and SES) as a function of corpus led to nonconvergent
models. While such nonconvergence could be due to various reasons, the most
likely explanation is that the model is overparametrized (80), i.e., variance cannot
be reliably attributed to predictors within each corpus (see SI Appendix, section
3H for additional checks, including one including random slopes for SES, and SI
Appendix, section 2B for discussion of alternatives to our SES implementation).
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Evaluation against human annotations. To assess the validity of our child
speech and adult talk measures, we evaluated them against human annotations
(see SI Appendix, sections 1D and 1E for further information). The median
correlation of human to algorithm performance for the algorithms is >0.7,
i.e., comparable reliability to established developmental clinical and research
instruments (81–83). As far as we know, the present multicultural validation
exceeds those from prior research instruments. For example, the Ages and
Stages Questionnaire (84) is a standard instrument used at well-child visits in
the United States. It is also recommended by the World Bank as one of the
most popular tools to measure child development, used in at least 20 countries
(85). And yet, a recent systematic review (83) reports only six reliability analyses
(averaging, e.g., 0.7 for internal consistency at 24 mo). Relative to this, our
validation effort containing estimates for 14/18 corpora and finding strong
validity is notable. Finally, one may wonder whether the LENA™algorithm
performs less well for languages and cultures that diverge from its training
set, which was English-learning children growing up in an urban/suburban US
setting. Although we observe considerable corpus variation, this variation is
not attributable to whether children were learning English or growing up in an
urban setting, as assessed by Welch’s t-tests, for either our child speech measure
(CVCr; English versus non-English medians 0.785 vs. 0.71, t(6.04) = −0.5,
P = 0.637; urban versus rural medians 0.77 vs. 0.71, t(8.11) = −0.46,
P = 0.661), or for our adult talk measure (AVCr; English versus non-English
medians 0.75 vs. 0.74, t(7.91) = 0.42, P = 0.686; urban versus rural
medians 0.75 vs. 0.74, t(3.07) = −0.23, P = 0.835). Instead, our results
suggest that corpus variation more likely reflects how the human annotation
was done rather than how well the algorithm worked, since the corpora with
lower reliabilities were also those in which the human annotation was more
coarse-grained (SI Appendix, section 1E).

Additional algorithm. To make sure that key conclusions were robust to
methodological details, we reanalyzed the subset of the data for which data
stewards shared audio with a newer, open-source alternative to LENA™: the Voice
Type Classifier (VTC) (86). Like the LENA™algorithm, VTC returns an estimation of
child and adult vocalization counts. A total of 1,065 audio files from 11 corpora
were available for this reanalysis (SI Appendix, section 3F).

The VTC algorithm employs a completely different approach than the
proprietary algorithm developed by LENA™, including the use of neural networks
running directly from the audio (rather than from MFCC features). VTC allows
multiple talker classes to be activated at the same time, whereas in the
LENA™algorithm, overlap between talkers (or between a talker and noise) is
tagged as “Overlap,” which is not counted toward children’s input or output. VTC
also differs from LENA™in its training set. While LENA™was trained entirely on
data from North American, monolingual English-learning, urban children, VTC
was developed using the combination of various corpora of children residing in
urban or rural settings and learning one or more of several languages (including
the tonal language Minn, French, Ju|’hoan, Tsimane, English, and several others,

in rough order of quantity of data). Further information on accuracy is provided in
SIAppendix, section 1E; both algorithms render similar accuracy when compared
to human annotation as noted above.

Models. We used linear mixed regressions (Gaussian family) and established
model structure from the exploration data (SI Appendix, section 3C). Hypotheses
were derived from exploratory models and systematic reviews of the literature on
monolingualismandnormativity (SIAppendix, section3D).Themodelpredicting
the rate of children’s linguistic vocalizations (i.e., child speech) was the following:
child_gender + SES+ child_normative ∗ AVCr ∗ age+ child_monolingual ∗
AVCr ∗ age+overlap+(1+overlap+AVCr|corpus)+(1|corpus : child_id).
The model predicting the rate of adult linguistic vocalizations (i.e., adult
talk) was the following: child_gender + SES + child_normative ∗ age +
child_monolingual ∗ age + overlap + (1 + overlap|corpus) + (1|corpus :
child_id). Full model details and a link to model diagnostics are provided in SI
Appendix, section 3E. We report estimates (standardized, which serve as effect
sizes), standard errors of the estimates, and q-values (FDR-corrected P-values);
see Tables 1 and 2.

Participants. Table 3 lists participant characteristics noting both 1) the
exploration/confirmation split (SI Appendix, section 3A) and 2) that some
children provided multiple recordings. We excluded 2/850 recordings from
1/264 children from the exploration set and 8/2,025 recordings from 5/737
children in the confirmation set from our models because data regarding their
maternal education was missing. For child gender, there were slightly more boys
than girls. This was in part because corpora with children with nonnormative
development also include children with normative development matched in
gender, leading to an overrepresentation of boys since more boys than girls
have nonnormative development. See Table 3 and Fig. 5 for specific numbers
and visualized distributions.

Language background. The languages represented in these data covered
many languages and language families. Using classifications from Glottolog
(87), we report that our 18 corpora feature 10 primary languages (Dutch,
English, Finnish, French, Spanish, Swedish, Tsimane, Vietnamese, Wolof, and
Yélî Dnye) from 5 distinct language families and one isolate (Atlantic-Congo,
Austroasiatic, Indo-European, Mosetén-Chimané, Uralic, and Yélî isolate); see
Fig. 1. Based on corpus metadata provided by each data steward, the recorded
children were also exposed to an additional 33 languages (Arabic, ASL, Berber,
Cantonese, Croatian, Danish, Farsi, Frisian, German, Greek, Hindi, Hungarian,
Indonesian, Italian, Japanese, Khmer, Korean, Macedonian, Malay, Malayalam,
Mandarin, Norwegian, Papiamento, Polish, Portuguese, Romanian, Russian,
Sahaptin, Slovenian, Solomon-Islands Pidgin, Thai, Turkish, and Yoruba), which
add 11 further language families (Afro-Asiatic, Austroasiatic, Austronesian, Deaf
Sign Languages—LSFic, Dravidian, Japonic, Koreanic, Sahaptian, Sino-Tibetan,

Table 3. Number of children and recordings by demographic variables, split by exploration and confirmation
subsets

Exploration subset Confirmation subset

Variables Levels Children Recs. Children Recs.

Gender Boys 156 516 398 1,016
Girls 107 332 334 1,001

Normativity Normative 263 848 550 1,731
Nonnormative 0 0 182 286

Lingualism Monolingual 263 848 662 1,847
Multilingual 0 0 70 170

SES <H.S.(1) 94 120 202 265
H.S.(2) 10 26 60 159
S.U.(3) 27 116 115 309
B.A.(4) 86 355 241 786
>B.A.(5) 46 231 114 498

Total N 263 848 732 2,017

Note. Children = # of children; Recs. = # of daylong recordings. In SES, <H.S. = children whose mothers have (the equivalent of) less than a high school degree; H.S. = high school degree;
S.U. = some university; B.A. = bachelor’s degree; >B.A. = more than a bachelor’s degree. Multilingual children, children with nonnormative development, and 65% of all other children
were reserved for the confirmation subset. N.B. the six children with missing data for maternal education are omitted from this table.
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Fig. 5. Sample demographics. Number of daylong recordings (Top row) and children (Bottom row) in the full dataset across demographic variables. For
socioeconomic status (SES), <H.S. = less than high school degree, H.S. = high school degree, S.U. = some university, B.A. = bachelor's degree, >B.A. = advanced
degree. For child gender, F = female, M = male. For monolingual status (monoling.), Y = monolingual, N = not monolingual. For normative development (norm.),
Y = normative, N = nonnormative.

Tai-Kadai, and Turkic) and bolster data from three language families already
represented by the primary languages (Atlantic-Congo, Indo-European, and
Uralic).

Data, Materials, and Software Availability. Anonymized (tabular) data and
all relevant code have been deposited with the Open Science Foundation (https:
//osf.io/9v2m5/?view_only=50df17fcf0844145ae692c35b78c6b08) (88). The
raw audio recordings are not able to be shared given the consent process
participants underwent, but all derived tabular data are fully shared.
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