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Consistent reductions of higher-dimensional (matter-coupled) gravity theories on spheres have been
constructed and classified in an important paper by Cvetič, Lü, and Pope. We close a gap in the
classification and study the case when the resulting lower-dimensional theory is two dimensional. We
construct the consistent reduction of Einstein-Maxwell-dilaton gravity on a d-sphere Sd to two-dimensional
dilaton-gravity coupled to a gauged sigma model with target space SLðdþ 1Þ=SOðdþ 1Þ. The truncation
contains solutions of type AdS2 × Σd where the internal space Σd is a deformed sphere. In particular, the
construction includes the consistent truncation around the near-horizon geometry of the boosted Kerr
string. In turn, we find that an AdS2 × Sd background with the round Sd within a consistent truncation
requires d > 3 and an additional cosmological term in the higher-dimensional theory.
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I. INTRODUCTION

Consistent truncations of higher-dimensional gravity
theories have a long history nourished by the emergence
of extra dimensions in supergravity and string theory.
Explicitly, this is the question if a gravitational theory
can be truncated to a finite set of fields whose dynamics is
described by a lower-dimensional action, such that any
solution of the lower-dimensional theory can be uplifted to
a solution of the original, higher-dimensional theory. In
terms of the infinite towers of Kaluza-Klein fluctuations
around a given background, this corresponds to the
truncation to a finite number of such fluctuations which
is consistent at the full nonlinear level. In general, nonlinear
products of the fields that are being retained will act as
sources for the truncated fields, thereby rendering the
truncation inconsistent. Consistent truncations are not
low energy effective field theories since retained fields
may have masses comparable to the truncated fields. Yet,
they provide very powerful tools for the construction of
higher-dimensional exact solutions as well as for the
applicability of supergravity techniques for holographic
dualities.

Unlike for toroidal reductions which retain precisely the
singlets under the Uð1Þd isometry of the torus Td such that
consistency follows from a simple group-theoretic argu-
ment, the question becomes much more involved for
nontrivial internal spaces. In an important paper, Cvetič,
Lü, and Pope have classified and explicitly constructed the
consistent reductions of (matter-coupled) gravity theories
on spheres Sd [1] that retain all the Yang-Mills (YM) fields
of SOðdþ 1Þ, gauging the full isometry group of the
sphere. A strong necessary condition for the existence of
such a consistent truncation can be found from the toroidal
reduction of the relevant higher-dimensional theory. Its
global symmetry group Gmust accommodate an SOðdþ1Þ
subgroup such that gauging of the latter describes the
theory obtained from reduction on the sphere. In general,
this requires some symmetry enhancement that only occurs
for particular matter content and couplings of the higher-
dimensional theory. For example, a straightforward count-
ing argument along these lines [1] shows that the reduction
of D-dimensional gravity coupled to a single d-form field
strength FðdÞ on the sphere Sd can only be consistent for

ðD; dÞ∈ fð11; 7Þ; ð11; 4Þ; ð10; 5Þg: ð1:1Þ

These are precisely the reductions, realized for D ¼ 11

supergravity on S7 [2–5], D ¼ 11 supergravity on S4 [6],
and IIB supergravity on S5 [7], respectively. They describe
consistent truncations around AdSD−d × Sd backgrounds to
the maximal supergravity multiplet and as such have played
important roles in the AdS=CFT dualities.
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Further possibilities for such consistent sphere
reductions exist when the higher-dimensional theory
carries an additional dilaton field, i.e. is described by a
D-dimensional Lagrangian

LD ¼ R̂ ⋆̂ 1 −
1

2
⋆̂dϕ̂ ∧ dϕ̂ −

1

2
e−aϕ̂⋆̂F̂ðdÞ ∧ F̂ðdÞ; ð1:2Þ

with a particular value for the constant a ¼ aðD; dÞ. As
shown in [1], the symmetry enhancement required for the
existence of a consistent reduction on Sd arises for the four
families of theories with

ðD; dÞ∈ fðD; 2Þ; ðD; 3Þ; ðD;D − 3Þ; ðD;D − 2Þg; ð1:3Þ

where the latter two are the Hodge duals of the first two.
Furthermore, in [1] the consistent reductions on S2, S3, SD−3

corresponding to the first three families of (1.3) were
explicitly constructed. The last case of (1.3), i.e. reduction
of the theory (1.2) on a sphere SD−2 has been left aside,
mostly because the resulting theory is a two-dimensional
gravity theory in which many of the generic structures
degenerate. For instance, the theory enjoys an additional
global Weyl symmetry and cannot be cast into the canonical
Einstein frame. Furthermore, reductions on TðD−2Þ lead to
ungauged gravity theories in two dimensions, which come
with an infinite-dimensional symmetry enhancement, gen-
eralizing the affine Geroch group, originally discovered in
the dimensional reduction of four-dimensional general
relativity [8].
In this paper, we complete the classification of [1]

and explicitly construct the consistent truncation of the
theory (1.2) on a sphere SD−2. The resulting theories are
two-dimensional dilaton gravity theories which may carry
AdS2 vacua that uplift to higher-dimensional AdS2 × Sd

backgrounds. As such they may provide important tools to
describe fluctuations around the near-horizon geometry of
(near-)extremal black holes. This is especially relevant
for the study of such black holes in the context of AdS2
holography, see for instance [9–14].
We present the full nonlinear reduction Ansatz for the

fields of (1.2) on a sphere SD−2. The matter sector of the
resulting two-dimensional theories is a gauged sigma
model with target space SLðdþ 1Þ=SOðdþ 1Þ and a scalar
potential. The gauge fields appear with a two-dimensional
YM term. Consistency of the truncation requires that the
constant a in (1.2) must take a particular value. As it turns
out, for this value the D-dimensional theory itself can be
obtained by circle reduction of pure gravity in (Dþ 1)
dimensions. Accordingly, we also work out the uplift of
the two-dimensional theory to (Dþ 1) dimensions. For
D ¼ 10, our result coincides with the pure gravity sector
of the Ansatz constructed in [15,16], that describes the
consistent truncation of eleven-dimensional supergravity
on S8 × S1 using affine exceptional field theory [17–19].

We construct a number of solutions of the two-
dimensional theories, mostly restricting to solutions with
constant scalars and dilaton. We find multiparameter fam-
ilies of such solutions living in the truncation of the two-
dimensional theory to singlets under the Uð1Þ½dþ1

2
� Cartan

subgroup of SOðdþ 1Þ. They naturally generalize the
solutions found in [20] for the case of S8. Interestingly,
we find that all such solutions necessarily break SOðdþ 1Þ,
implying that the corresponding higher-dimensional
AdS2 × Sd backgrounds all involve deformations of the
round Sd sphere. Notably, these solutions include theD ¼ 5
near horizon geometry of the boosted Kerr string [21,22].
Embedding of an AdS2 × Sd background with the round

Sd on the other hand requires the addition of a cosmological
term,

LD;m ¼ −
1

2
m2ebϕ̂⋆̂1; ð1:4Þ

to the D-dimensional theory (1.2), with the constant b
tuned to a particular value. Still, this turns out to be possible
only for D > 5. In contrast, the D ¼ 4 and D ¼ 5 theories
admit dS2 × S2 and Mink2 × S3 backgrounds, respectively,
within their consistent truncations.
The rest of this paper is organized as follows. In Sec. II. we

start by reviewing the results of [1] on consistent S2 and S3

reductions fromD dimensions.We describe how to properly
extrapolate the constructions to D ¼ 4 and D ¼ 5, respec-
tively, such that the resulting theories are two dimensional.
In Sec. IIIwegeneralize the structure to arbitrary dimensions
and construct the consistent truncation of the theory (1.2) on
a sphere SD−2. We describe the further uplift to pure gravity
in (Dþ 1) dimensions and the inclusion of a cosmological
term (1.4). In Sec. IV, we study solutions of the two-
dimensional theories and their uplift to D dimensions. We
closewith some conclusions in Sec. Vwherewe also discuss
the symmetries underlying the presented constructions.

II. CONSISTENT S2 AND S3 REDUCTIONS

A. Review of previous results

We start by reviewing the results of [1] on consistent
Sd reductions from D dimensions for d ¼ 2, 3. The D-
dimensional theories are of the type (1.2), i.e. an Einstein-
Maxwell dilaton system for d ¼ 2, and the bosonic string
with Kalb-Ramond field and a dilaton for d ¼ 3.
Let us first describe the S2 case: starting from the

Einstein-Maxwell dilaton system1

LD ¼ R̂ ⋆̂ 1 −
1

2
⋆̂dϕ̂ ∧ dϕ̂ −

1

2
e−

ffiffiffiffiffiffiffiffi
2ðD−1Þ
D−2

p
ϕ̂⋆̂F̂ð2Þ ∧ F̂ð2Þ;

ð2:1Þ

1Following [1], we use Hodge star conventions ⋆̂α ∧ β ¼
hα; βiω̂D ¼ hα; βi⋆̂1.
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in D dimensions, the consistent reduction Ansatz on an internal S2 is given by

dŝ2D ¼ Y
1

D−2

�
Δ 1

D−2ds2D−2 þ g−2Δ−D−3
D−2T−1

ij DμiDμj
�
;

F̂ð2Þ ¼
1

2
ϵijk

�
g−1UΔ−2μiDμj ∧ Dμk − 2g−1Δ−2Dμi ∧ DTjlTkmμ

lμm − Δ−1Fij
ð2ÞTklμ

l
�
;

e
ffiffiffiffiffiffiffiffi
2ðD−2Þ
D−1

p
ϕ̂ ¼ Δ−1Y

D−3
D−1: ð2:2Þ

Here, the μi are the embedding coordinates of the S2

sphere

μiμi ¼ 1; i ¼ 1; 2; 3; ð2:3Þ

the symmetric and positive definite matrix Tij carries the
lower-dimensional scalar fields, and

Δ≡Tijμ
iμj; Y≡ detTij; U≡ 2TikTjkμ

iμj −ΔTii:

ð2:4Þ

The inverse sphere radius g appears as a coupling constant
for the SOð3Þ covariant derivatives

Dμi¼dμiþgAij
ð1Þμ

j; DTij¼dTijþgAik
ð1ÞTkjþgAjk

ð1ÞTik;

ð2:5Þ

with the associated Yang-Mills field strength given by

Fij
ð2Þ ¼ dAij

ð1Þ þ gAik
ð1Þ ∧ Akj

ð1Þ: ð2:6Þ

It has been shown in [1] that plugging the reduction Ansatz
(2.2) into the field equations obtained from (2.1), all the
dependence on the sphere coordinates consistently factors
out and the equations reduce to (D − 2)-dimensional
field equations which are obtained from variation of the
(D − 2)-dimensional Lagrangian

LD−2 ¼ R⋆1 −
D − 4

3ðD − 1ÞY
−2⋆dY ∧ dY −

1

4
T̃−1
ij ⋆DT̃jk ∧ T̃−1

klDT̃li

−
1

4
Y−2=3T̃−1

ik T̃
−1
jl⋆F

ij
ð2Þ ∧ Fkl

ð2Þ −
1

2
g2Y2=3

�
2T̃ijT̃ij − ðT̃iiÞ2

�
⋆1; ð2:7Þ

where the matrix Tij is parametrized as Tij ¼ Y1=3T̃ij such
that det T̃ij ¼ 1. The computation of the D-dimensional
field equations also exploits the explicit form of the Hodge
dual of F̂ð2Þ from (2.2) which is found to be given by

e−
ffiffiffiffiffiffiffiffi
2ðD−1Þ
D−2

p
ϕ̂⋆̂F̂ð2Þ ¼ −gUωD−2 þ g−1T−1

ij ⋆DTjk ∧ ðμkDμiÞ

−
1

2
g−2T−1

ik T
−1
jl⋆F

ij
ð2Þ ∧ Dμk ∧ Dμl:

ð2:8Þ
Throughout, ⋆̂ refers to the Hodge star in D dimensions,
while⋆ refers to the Hodge star in (D − 2) dimensions. The
volume form of the (D − 2) dimensional metric is denoted
by ωD−2.
Consistent truncations on S3 are constructed in an

analogous way. Starting from the Lagrangian of the bosonic
string

LD¼ R̂⋆̂1−
1

2
⋆̂dϕ̂∧dϕ̂−

1

2
e−

ffiffiffiffiffi
8

D−2

p
ϕ̂⋆̂F̂ð3Þ∧ F̂ð3Þ; ð2:9Þ

in D dimensions, the consistent reduction Ansatz on an
internal S3 is given by [1]

dŝ2D ¼ Y
1

D−2

�
Δ 2

D−2ds2D−3 þ g−2Δ−D−4
D−2T−1

ij DμiDμj
�
;

F̂ð3Þ ¼ Fð3Þ þ
1

6
ϵi1i2i3i4

�
g−2UΔ−2Dμi1 ∧Dμi2 ∧Dμi3μi4

− 3g−2Δ−2Dμi1 ∧Dμi2 ∧DTi3jTi4kμ
jμk

− 3g−1Δ−1Fi1i2
ð2Þ ∧Dμi3Ti4jμ

j
�
;

e
ffiffiffiffiffi
D−2
2

p
ϕ̂ ¼ Δ−1Y

D−4
4 : ð2:10Þ

Here, the μi are the embedding coordinates of the S3 sphere

μiμi ¼ 1; i ¼ 1;…; 4; ð2:11Þ

while the quantitiesΔ,Y, andU and the covariant derivatives
are defined as in (2.4) and (2.5) above. On top of the SOð4Þ
field strength (2.6), the lower-dimensional theory carries
a two-form gauge potential Bð2Þ whose field strength is
defined as

Fð3Þ ¼ dBð2Þ þ
1

8
ϵijklA

ij
ð1Þ ∧ Fkl

ð2Þ: ð2:12Þ
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It has been shown in [1] that plugging the reduction Ansatz (2.10) into the field equations obtained from (2.9), all the
dependence on the sphere coordinates consistently factors out and the equations reduce to (D − 3)-dimensional field
equations which are obtained from variation of the (D − 3)-dimensional Lagrangian

LD−3 ¼ R⋆1 −
D − 5

16
Y−2⋆dY ∧ dY −

1

4
T̃−1
ij ⋆DT̃jk ∧ T̃−1

klDT̃li −
1

2
Y−1⋆Fð3Þ ∧ Fð3Þ

−
1

4
Y−1=2T̃−1

ik T̃
−1
jl⋆F

ij
ð2Þ ∧ Fkl

ð2Þ −
1

2
g2Y1=2

�
2T̃ijT̃ij − ðT̃iiÞ2

�
⋆1; ð2:13Þ

where the matrix Tij is parametrized as Tij ¼ Y1=4T̃ij such that det T̃ij ¼ 1. The computation of the D-dimensional field

equations also exploits the explicit form of the Hodge dual of F̂ð3Þ from (2.10) which is found to be given by

e−
ffiffiffiffiffi
8

D−2

p
ϕ̂⋆̂F̂ð3Þ ¼

1

6
g−3ϵijklY−1⋆Fð3Þ ∧ μiDμj ∧ Dμk ∧ Dμl − gUωD−3

þ g−1T−1
ij ⋆DTjk ∧ ðμkDμiÞ − 1

2
g−2T−1

ik T
−1
jl⋆F

ij
ð2Þ ∧ Dμk ∧ Dμl: ð2:14Þ

B. Reductions to two dimensions

We have in the previous section reviewed the results
of [1] on the consistent truncations of D-dimensional
theories (1.2) on S2 and S3. Although derived for higher
dimensions, in principle, the entire construction goes
through even in the case when the resulting theory is
two dimensional, i.e. for D ¼ 4 on S2 and D ¼ 5 on S3. In
particular, none of the reduction Ansätze (2.2), (2.10),
diverges at these values for D. However, the resulting
Lagrangians (2.7), (2.13), when evaluated in two dimen-
sions, give rise to equations of motion that kill all of
their dynamical content as a consequence of the two-
dimensional Einstein equations. Consequently, the two-
dimensional case was left apart in [1]. Another indication
that the Lagrangians (2.7), (2.13), do not get along well
with a two-dimensional space-time is the fact that the
reduction of the higher-dimensional Einstein-Hilbert term
in general yields the two-dimensional Einstein-Hilbert term
only up to a dilatonic prefactor. While in generic dimen-
sions this factor can be removed by a Weyl transformation
of the metric, this is no longer the case in two dimensions.
A generic reduction to two dimensions will thus produce
dilaton gravity rather than pure two-dimensional gravity.

In short, while the results of the previous section are still
valid for the truncation to a two-dimensional theory, the
resulting theory does not describe a dynamical subsector of
the higher-dimensional theory. What we show here is how
the situation can be remedied by properly redefining the
fields in the above structures, before extrapolating the
construction to two dimensions.
Consider first the S2 reduction of the theory (2.1).

Starting in general dimension D, we may redefine the
(D − 2)-dimensional fields appearing in the Ansatz (2.2) as

Y ≡ ρ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðD−1ÞðD−3Þ

p
D−4 ; gμν ¼ ρ

2
D−4g̃μν: ð2:15Þ

Even though this rescaling is clearly singular at D ¼ 4, the
resulting Ansatz (2.2) still has a smooth limit D → 4.
Namely, defining

Tij ¼ Y1=3T̃ij; Δ ¼ Y1=3Δ̃; U ¼ Y2=3Ũ; ð2:16Þ

in order to extract the Y dependence of the various
quantities, the Ansatz (2.2) takes the form

dŝ2D ¼ ρ
6ðD−2Þ−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðD−1ÞðD−3Þ

p
3ðD−2ÞðD−4Þ Δ̃ 1

D−2ds̃2D−2 þ g−2ρ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðD−1ÞðD−3Þ

p
3ðD−2Þ Δ̃−D−3

D−2T̃−1
ij DμiDμj;

e
ffiffiffiffiffiffiffiffi
2ðD−2Þ
D−1

p
ϕ̂ ¼ ρ

−2
ffiffiffiffiffi
D−3

pffiffiffiffiffiffiffiffi
3ðD−1Þ

p
Δ̃−1;

F̂ð2Þ ¼
1

2gΔ̃2
ϵijk

�
ŨμiDμj ∧ Dμk − 2Dμi ∧ DT̃jlT̃kmμ

lμm − gΔ̃Fij
ð2ÞT̃klμ

l
�
; ð2:17Þ

where now ds̃2D−2 refers to the new metric g̃μν from (2.15). So far, this is merely a rewriting of the Ansatz (2.2) in different
variables, but upon taking the limit D → 4, we obtain the smooth limit of the D-dimensional metric and dilaton from
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dŝ24 ¼ ρ−1=3Δ̃1=2ds22 þ g−2ρΔ̃−1=2T̃−1
ij DμiDμj;

e
ffiffi
3

p
ϕ̂ ¼ ρ−1Δ̃−3=2; ð2:18Þ

which differs from the naive D → 4 limit of (2.2) by the
nontrivial powers of ρ. Furthermore, the expression for F̂ð2Þ
in (2.17) has no explicit Y or gμν dependence and retains its
form for D → 4. Accordingly, the resulting Lagrangian
(2.7) after rescaling (2.15) also yields a nontrivial smooth
limit to D → 4, given by

L2 ¼ ρR̃ ⋆̃1þ 1

4
ρ⋆̃DT̃−1

ij ∧DT̃ij −
1

4
ρ
7
3T̃−1

ij T̃
−1
kl ⋆̃Fik

ð2Þ ∧Fjl
ð2Þ

−
1

2
g2ρ−

1
3

�
2T̃ijT̃ij − T̃2

ii

�
⋆̃1; ð2:19Þ

again differing from the naive D → 4 limit of (2.7) by the
nontrivial powers of ρ. Again, R̃ and ⋆̃ refer to the new
metric g̃μν from (2.15). We may now forget about the
singular rescaling (2.15), and directly prove that the regular
reductionAnsatz (2.18) defines a consistent truncation of the
four-dimensional Einstein-Maxell dilaton system (2.1) on
S2. We give the details in Sec. III A below, wherewe discuss
the general SD−2 truncation. The resulting two-dimensional
theory is given by the Lagrangian (2.19). For later conven-
ience, we also note that the dual field strength (2.8) for
D ¼ 4 and in terms of the fields (2.15) is found to be

F̂ ð2Þ ≡ e−
ffiffi
3

p
ϕ̂⋆̂F̂ð2Þ

¼ −gρ−1=3Ũω̃ð2Þ þ g−1ρT̃−1
ij ⋆̃DT̃jk ∧ ðμkDμiÞ

−
1

2
g−2ρ7=3T̃−1

ik T̃
−1
jl ⋆̃F

ij
ð2ÞDμk ∧ Dμl: ð2:20Þ

In terms of this dual field strength, the originalD ¼ 4 theory
(2.1) can be equivalently rewritten as

L4 ¼ R̂⋆̂1 −
1

2
⋆̂dϕ̂ ∧ dϕ̂ −

1

2
e

ffiffi
3

p
ϕ̂⋆̂F̂ ð2Þ ∧ F̂ ð2Þ: ð2:21Þ

Similarly, we can extend the general S3 reduction of the
previous section to the particular case D ¼ 5 in which the
resulting theory becomes two dimensional. Starting from
the S3 reduction of the theory (2.9) in general dimensionD,
we may redefine the (D − 3)-dimensional fields appearing
in the Ansatz (2.2) as

Y ≡ ρ−
4
ffiffiffiffiffi
D−4

p
D−5 ; gμν ¼ ρ

2
D−5g̃μν: ð2:22Þ

This rescaling is singular at D ¼ 5, but the resulting
Ansatz (2.10) still has a smooth limit D → 5. Defining

Tij ¼ Y1=4T̃ij; Δ ¼ Y1=4Δ̃; U ¼ Y1=2Ũ; ð2:23Þ

in order to extract the Y dependence of the various
quantities, the Ansatz (2.10) takes the form

dŝ2D ¼ ρ
D−2−3

ffiffiffiffiffi
D−4

p
ðD−2ÞðD−5Þ Δ̃ 2

D−2ds̃2D−3 þ g−2ρ
2
ffiffiffiffiffi
D−4

p
D−2 Δ̃−D−4

D−2T̃−1
ij DμiDμj;

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−2Þ=2

p
ϕ̂ ¼ ρ−

ffiffiffiffiffiffiffi
D−4

p
Δ̃−1;

F̂ð3Þ ¼ Fð3Þ þ
1

6
ϵi1i2i3i4

�
g−2ŨΔ̃−2Dμi1 ∧ Dμi2 ∧ Dμi3μi4

− 3g−2Δ̃−2Dμi1 ∧ Dμi2 ∧ DT̃i3jT̃i4kμ
jμk − 3g−1Δ̃−1Fi1i2

ð2Þ ∧ Dμi3 T̃i4jμ
j
�
; ð2:24Þ

where now ds̃2D−3 refers to the new metric g̃μν from (2.22).
The limit D → 5 is smooth and yields

dŝ25 ¼ ρ−1=3Δ̃2=3ds22 þ g−2ρ2=3Δ̃−1=3T̃−1
ij DμiDμj;

e
ffiffiffiffiffiffi
8=3

p
ϕ̂ ¼ ρ−4=3Δ̃−4=3; ð2:25Þ

for the D ¼ 5 metric and dilaton, which differs from the
naive D → 5 limit of (2.10) by the nontrivial powers of ρ.
The expression for F̂ð3Þ in (2.24) retains its form forD → 5,
except for the first term Fð3Þ which disappears.

The resulting Lagrangian (2.13) after rescaling (2.22)
also yields a nontrivial smooth limit to D → 5, given by

L2¼ ρR̃⋆̃1þ1

4
ρ⋆̃DT̃−1

ij ∧DT̃ij−
1

4
ρ2T̃−1

ij T̃
−1
kl ⋆̃Fik

ð2Þ ∧Fjl
ð2Þ

−
1

2
g2
�
2T̃ijT̃ij− T̃2

ii

�
⋆̃1; ð2:26Þ

again differing from the naive D → 5 limit of (2.13)
by the nontrivial powers of ρ. Again, we may now directly
prove that the regular reduction Ansatz (2.25) defines a
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consistent truncation of the five-dimensional bosonic string
(2.9) on S3, and we give the details below. The resulting
two-dimensional theory is given by the Lagrangian (2.26).
For later convenience, we also note that the dual field
strength (2.14) forD ¼ 5 and in terms of the fields (2.22) is
found to be

F̂ ð2Þ ≡ e−
ffiffiffiffiffiffi
8=3

p
ϕ̂⋆̂F̂ð3Þ

¼ −gŨω̃2 þ g−1ρT̃−1
ij ⋆̃DT̃jk ∧ ðμkDμiÞ

−
1

2
g−2ρ2T̃−1

ik T̃
−1
jl ⋆̃F

ij
ð2Þ ∧ Dμk ∧ Dμl: ð2:27Þ

In terms of this dual field strength, the original D ¼ 5
theory (2.9) can be equivalently rewritten as

L5 ¼ R̂⋆̂1−
1

2
⋆̂dϕ̂ ∧ dϕ̂−

1

2
e

ffiffiffiffiffiffi
8=3

p
ϕ̂⋆̂F̂ ð2Þ ∧ F̂ ð2Þ: ð2:28Þ

III. CONSISTENT SD − 2 REDUCTION

It is now straightforward to generalize the results of the
last section in order to define the general consistent SD−2

reduction of (1.2), thereby establishing the fourth family of
consistent truncations in (1.3). Our starting point is the
Einstein-Maxwell dilaton system obtained by dualizing2

the d-form field strength F̂ðdÞ into an Abelian two-form

field strength F̂ ð2Þ,

LD ¼ R̂⋆̂1−
1

2
⋆̂dϕ̂ ∧ dϕ̂−

1

2
e

ffiffiffiffiffiffiffiffi
2ðD−1Þ

p ffiffiffiffiffi
D−2

p ϕ̂⋆̂F̂ ð2Þ ∧ F̂ ð2Þ: ð3:1Þ

This is the Lagrangian obtained from the circle reduction of
pure gravity in (Dþ 1) dimensions.

A. Reduction Ansatz and two-dimensional theory

Extrapolating from the previous findings, we can con-
struct a consistent truncation of the D-dimensional theory
(3.1) on the sphere Sd ¼ SD−2 by the following reduction
Ansatz:

dŝ2D ¼ ρ−
2ðd−1Þ
dðdþ1ÞΔ̃d−1

d ds̃22 þ g−2ρ2=dΔ̃−1=dT̃−1
ij DμiDμj;

e
ffiffiffiffiffiffiffiffi
2ðdþ1Þ

d

p
ϕ̂ ¼ ρ−

2ðd−1Þ
d Δ̃−dþ1

d ;

F̂ ð2Þ ¼ −gρd−3
dþ1Ũω̃2 þ

1

g
ρT̃−1

ij ⋆̃DT̃jk ∧ ðμkDμiÞ

−
1

2g2
ρ
dþ5
dþ1T̃−1

ik T̃
−1
jl ⋆̃F

ij
ð2ÞDμk ∧ Dμl: ð3:2Þ

Thematrix T̃ij now is a symmetric positive definite ðdþ 1Þ×
ðdþ 1Þ matrix of unit determinant, and the quantities

Δ̃ ¼ μiT̃ijμ
j; Ũ ≡ 2T̃ikT̃jkμ

iμj − Δ̃T̃ii ð3:3Þ

are defined as above. The inverse sphere radius g appears as
a coupling constant for the SOðdþ 1Þ covariant derivatives
just as in (2.5) above. The corresponding two-dimensional
SOðdþ 1Þ field strength Fμν

ij is given by (2.6).
It is straightforward, although lengthy, to substitute the

Ansatz (3.2) into the D-dimensional equations of motion
obtained from (3.1), and to verify that these consistently
truncate to the field equations of a two-dimensional theory.
We find that these equations can be derived from the
following two-dimensional Lagrangian:

L2¼ρR⋆̃1þ1

4
ρ⋆̃DT̃−1

ij ∧DT̃ij−
1

4
ρ
dþ5
dþ1T̃−1

ij T̃
−1
kl ⋆̃Fik

ð2Þ∧Fjl
ð2Þ

−
1

2
g2ρ

d−3
dþ1

�
2T̃ijT̃ij− T̃2

ii

�
⋆̃1; ð3:4Þ

which in particular matches the above results (2.19)
and (2.26) for S2 and S3, respectively, as well as the
structures found for the S8 case in [16,20,23]. This is a
two-dimensional dilaton gravity coupled to a gauged
SLðdþ 1Þ=SOðdþ 1Þ coset space sigma model with a
potential. The two-dimensional Lagrangian (3.4) can be
equivalently rewritten as

L0
2 ¼ ρR⋆̃1þ 1

4
ρ⋆̃DT̃−1

ij ∧ DT̃ij þ
1

4
gYijF

ij
ð2Þ

−
1

2
g2ρ

d−3
dþ1

�
2T̃ijT̃ij − T̃2

ii

�
⋆̃1

−
1

4
g2ρ−

dþ5
dþ1YijYklT̃ikT̃jl⋆̃1; ð3:5Þ

upon introducing auxiliary scalar fields Yij ¼ Y½ij�. The
latter are related to the T̃ij by the (non-Abelian) duality
equations

DYij ¼ −2ρT̃−1
k½i ⋆̃DT̃j�k; ð3:6Þ

and can be eliminated by virtue of their field equations

Fij
ð2Þ ¼ gρ−

dþ5
dþ1T̃ikT̃jlYkl⋆̃1: ð3:7Þ

In order to prove consistency of the Ansatz (3.2),
it is useful to first work out the Hodge dual of the
D-dimensional two-form field strength F̂ ð2Þ from (3.2) as3

2This is in line with the dual Lagrangians (2.21), (2.28) of
which our construction is the natural generalization.

3The D-dimensional volume form is given by ω̂D ¼
1
d! g

−dρ
2−dþd2

dðdþ1Þ Δ̃d−1
d ω̃2 ∧ Dμi1 ∧ … ∧ Dμidμidþ1ϵi1i2…idþ1

, with the
totally antisymmetric tensor ϵi1i2…idþ1

, and ⋆̃ω̃2 ¼ 1.
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e
ffiffiffiffiffiffiffiffi
2ðD−1Þ
D−2

p
ϕ̂⋆̂F̂ ð2Þ ¼ ϵi1i2…idþ1

�
1

d!
g1−dŨΔ̃−2Dμi1 ∧ … ∧ Dμidμidþ1 −

1

ðd − 1Þ! g
1−dΔ̃−2T̃jidþ1

DT̃ki1 ∧ Dμi2 ∧ … ∧ Dμidμjμk

−
1

2ðd − 2Þ! g
2−dΔ̃−1T̃jidþ1

Fi1i2
ð2Þ ∧ Dμi3 ∧ … ∧ Dμidμj

�
ð3:8Þ

for d ≥ 2.4 After some lengthy algebra, one can then prove
the D-dimensional field equations

d

�
e

ffiffiffiffiffiffiffiffi
2ðD−1Þ

p ffiffiffiffiffi
D−2

p ϕ̂⋆̂F̂ ð2Þ

�
¼ 0; ð3:9Þ

as a consequence of (3.8). For the computation one only
needs to focus on the terms involving one or two derivatives
along the external directions. These contributions can be
shown to cancel out entirely by repeatedly making use of
the Schouten identity

ϵ½i1i2…idþ1
Vj� ¼ 0: ð3:10Þ

Next, by a similar computation one proves the Bianchi
identity

dF̂ ð2Þ ¼ 0; ð3:11Þ

for F̂ ð2Þ from (3.2), which requires the two-dimensional
fields to obey the field equations obtained from (3.4).
Finally,5 we can check the dilaton equations of the D-
dimensional theory (3.1)

−ð−1ÞD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 2Þp ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p d
�
⋆̂dϕ̂

�
¼ e

ffiffiffiffiffiffiffiffi
2ðD−1Þ

p ffiffiffiffiffi
D−2

p ϕ̂⋆̂F̂ ð2Þ ∧ F̂ ð2Þ;

ð3:12Þ

and show that after some lengthy computation and
heavy use of (3.10), again they reduce to particular
combinations of the two-dimensional field equations. A
useful identity in this computation is the expression for the
Hodge dual

⋆̂ðT̃ijμ
iDμjÞ ¼ −

1

ðd − 1Þ! g
2−dρ

d−3
dþ1ϵi1…idþ1

× T̃ilμ
iðΔ̃T̃i1l − T̃i1jT̃klμ

jμkÞμi2
×Dμi3 ∧ … ∧ Dμidþ1 ∧ ω̃2; ð3:13Þ

cf. identity (25) in [1]. We have thus established that the
reduction Ansatz (3.2) indeed represents a consistent
truncation of the theory (3.1) to the two-dimensional
theory (3.4).

B. Uplift to D+ 1

As discussed above, the D-dimensional theory (3.1)
which we have consistently truncated on SD−2, is itself the
S1 reduction of pure gravity in (Dþ 1) dimensions. It is
thus a natural question to study the further uplift of the
reduction Ansatz (3.2) to (Dþ 1) dimensions. This can be
achieved by the standard Kaluza-Klein formula

ds̆2Dþ1 ¼ e−
ffiffiffiffiffiffiffiffi

2
dðdþ1Þ

p
ϕ̂dŝ2D þ e

ffiffiffiffiffi
2d
dþ1

p
ϕ̂ðdzþ Âð1ÞÞ2; ð3:14Þ

where z denotes the additional circle coordinate, and where
we used d ¼ D − 2. The uplift thus requires an explicit
expression for the gauge potential defining the two-form
field strength as

dÂð1Þ ¼ F̂ ð2Þ: ð3:15Þ

Indeed, we can integrate up F̂ ð2Þ from (3.2) to the following
expression:

Âð1Þ ¼
1

2g
Yijμ

iDμj −
1

2g
ρμiμjT̃−1

ki ⋆̃DT̃jk þ
2

gðdþ 1Þ ⋆̃dρ;

ð3:16Þ

whose exterior derivative can be shown to satisfy (3.15)
after using the two-dimensional field equations. This yields
another check on the Bianchi identity (3.11). The uplift of
(3.2) to (Dþ 1) dimensions is then given by combining this
Ansatz with (3.14) into

ds̆2Dþ1 ¼ Δ̃ds̃22 þ g−2ρ
4d

dðdþ1ÞT̃−1
ij DμiDμj

þ ρ−
2ðd−1Þ
dþ1 Δ̃−1

�
dzþ Âð1Þ

�
2
: ð3:17Þ

It represents a consistent truncation of (Dþ 1)-dimensional
Einstein gravity to the two-dimensional theory (3.4).6

In [24], the (Dþ 1)-dimensional uplift of the system
(3.1) was used to provide an elegant explanation for the

4For d ¼ 1, the formula degenerates to e2ϕ̂⋆̂F̂ ð2Þ ¼ ϵi1i2 Δ̃
−2

ðŨDμi1μi2 − T̃ji2DT̃ki1μ
jμkÞ.

5Following the tradition set in [1], we shall not explicitly
consider the reduction of theD-dimensional Einstein equations in
this paper. Their consistency has been confirmed in all the explicit
solutions that have been examined. Furthermore, our Ansatz (3.2)
agrees with all previously established special cases for which the
Einstein equations have been explicitly proven [15,16,20].

6Note that for d ¼ 1, (3.17) defines a nontrivial consistent
truncation of four-dimensional Einstein gravity to two dimen-
sions.
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consistent truncation on S2 found in [1]. From the (Dþ 1)-
dimensional point of view, the S2 reduction of (3.1)
corresponds to a standard Scherk-Schwarz reduction [25]
on SUð2Þ. In contrast, here the reduction Ansatz (3.17) does
not provide any immediate insight as to why this reduction
is consistent, rather it appears to represent a nontrivial
truncation of pure gravity by itself. We will come back to
this in the conclusions.

C. Cosmological term

Let us briefly study if the consistent truncation (3.2) is
compatible with the presence of a “cosmological term”

LD;m ¼ −
1

2
m2ebϕ̂⋆̂1; ð3:18Þ

in D dimensions. We find that the previous reduction
Ansatz still gives rise to a consistent truncation, with all
internal coordinates factoring out from the D-dimensional
field equations, if the dilaton power in (3.18) is given by

b2 ¼ 2ðD − 3Þ2
ðD − 1ÞðD − 2Þ : ð3:19Þ

ForD ¼ 4 and D ¼ 5 this indeed coincides with the values
extrapolated from the results of [1]. The effect of the
cosmological term to the two-dimensional theory (3.4) is an
additional term in the scalar potential given by

Lm ¼ −
1

2
m2ρ−

d−3
dþ1⋆̃1; ð3:20Þ

with d ¼ D − 2. It is interesting to note that the
D-dimensional cosmological term (3.18) with dilaton

power (3.19) is not compatible with the further uplift of
the theory to (Dþ 1) dimensions, i.e. it does not arise by the
S1 reduction of a cosmological constant in (Dþ 1) dimen-
sions. This is an indication of the fact that the non-Abelian
SOðdþ 1Þ gaugegroup of the two-dimensional theory is not
embedded into the geometric SLðdþ 1Þ symmetry, arising
in the toroidal reduction of (Dþ 1)-dimensional gravity.We
will come back to this in the conclusions.

IV. SOLUTIONS

In this section, we construct some solutions of the two-
dimensional theory (3.4) and work out their uplift to D
dimensions. In particular, we explore two-dimensional
AdS2 solutions, uplifting to higher-dimensional AdS2 × Σ
geometries.

A. Field equations

In order to construct solutions of the two-dimensional
theory, let us first spell out the field equations derived from
(3.5). In addition to the first-order equations (3.7) and (3.6)
for the field strength and the auxiliary scalars, respectively,
the scalar fields T̃ij satisfy the second order field equations

DμðρT̃−1
kððiD

μT̃jÞÞkÞ ¼ g2ρ−
dþ5
dþ1T̃mlT̃kððiYjÞÞmYkl

þ 2g2ρ
d−3
dþ1

�
2T̃kððiT̃jÞÞk − T̃ððijÞÞT̃kk

�
:

ð4:1Þ

Here, double brackets ðð…ÞÞ refer to traceless symmetri-
zation of indices. Furthermore, the Einstein and dilaton
equations for (3.5) take the form

0 ¼ Rþ 1

4
DμT̃−1

ij D
μT̃ij −

g2

2

d − 3

dþ 1
ρ−

4
dþ1

�
2T̃ijT̃ij − T̃2

ii

�
þ g2

4

dþ 5

dþ 1
ρ−

2ðdþ3Þ
dþ1 YijYklT̃ikT̃jl;

0 ¼ ∇μ∂
μρþ 1

2
g2ρ

d−3
dþ1

�
2T̃ijT̃ij − T̃2

ii

�
þ 1

4
g2ρ−

dþ5
dþ1YijYklT̃ikT̃jl;

0 ¼ ∇μ∂νρ −
1

4
ρDμT̃−1

ij DνT̃ij −
1

2
gμν□ρþ 1

8
ρDμT̃−1

ij D
μT̃ij: ð4:2Þ

In the following, we are going to construct particular
solutions to these equations.

B. SOðd + 1Þ invariant solution
Let us first consider solutions that preserve the entire

SOðdþ 1Þ symmetry of the theory. SOðdþ 1Þ invariance
requires

T̃ij ¼ δij; Yij ¼ 0 ¼ Aμ
ij; ð4:3Þ

such that the only nontrivial fields in the theory are the
dilaton ρ and the two-dimensional metric. With the domain-
wall Ansatz

ds̃2 ¼ −e2AðrÞdt2 þ dr2; ð4:4Þ
the Einstein field equations imply that

AðrÞ ¼ A0 þ logðρ0ðrÞÞ: ð4:5Þ
Upon inserting this into (4.2), all remaining equations
reduce to a single differential equation for the dilaton ρðrÞ

ρ00ðrÞ ¼ 1

4
ðd2 − 1Þg2ρðrÞd−3dþ1: ð4:6Þ

In particular, this shows that SOðdþ 1Þ invariance is not
compatible with a constant dilaton. The general solution of
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Eq. (4.6) carries one integration constant α (apart from the
trivial shift freedom r → rþ c) and can be given implicitly
in terms of hypergeometric functions as

r
αρ

¼ 2F1

�
1

2
;
1

2
þ 1

d − 1
;
3

2
þ 1

d − 1
;

−
1

4
α2g2ðdþ 1Þ2ρ2ðd−1Þ=ðdþ1Þ

�
: ð4:7Þ

In the limit α → ∞, we find the particular solution

ρðrÞ ¼ ðgrÞdþ1
2 ; AðrÞ ¼ A0 þ

1

2
ðd − 1Þ logðrÞ: ð4:8Þ

Using the reduction formulas (3.2) (and setting A0 ¼ 0), we
find the D-dimensional uplift of this solution as

dŝ2D ¼ ðgrÞ−d−1
d

�
−rd−1dt2 þ dr2 þ r2ds2

Sd

�
;

e

ffiffiffiffiffiffiffiffi
2ðD−1Þ

p ffiffiffiffiffi
D−2

p ϕ̂ ¼ ðgrÞ−d2−1
d ;

Fð2Þ ¼ g
d−1
2 ðd − 1Þrd−2dt ∧ dr: ð4:9Þ

For d ¼ 8, this reproduces the half-supersymmetric domain
wall solution of [26,27], corresponding to the ten-
dimensional D0-brane near-horizon geometry.

C. AdS2 solutions with constant scalars and dilaton

Here, wewill search for solutions in which all scalars and
the dilaton are constant, such that the two-dimensional
metric becomes AdS2. In order to keep things simple, we
restrict our discussion to the Cartan truncation, i.e. the
further consistent truncation of (3.5) to singlets under the
Cartan Uð1Þ½dþ1

2
� subgroup of the SOðdþ 1Þ gauge group.

This truncation keeps only ½dþ1
2
� vector fields and ½d

2
� scalar

fields among the T̃ij, together with the dilaton ρ and the
two-dimensional metric. By construction, all the retained
fields are neutral under the remaining Uð1Þ½dþ1

2
� gauge

group. It is technically useful to distinguish the cases of
even and odd d, although the form of the resulting solutions
is very similar.

1. d = 2k + 1

Let us parametrize the Uð1Þkþ1 singlets within the scalar
matrix T̃ij as

T̃ij ¼ h
− 2
dþ1

0 δijh½iþ1
2
�; i; j ¼ 1;…; dþ 1;

hkþ1 ≡ 1; h0 ≡
Yk
a¼1

ha; ð4:10Þ

in terms of k scalars ha > 0, a ¼ 1;…; k, such that
det T̃ij ¼ 1. Accordingly, we parametrize the matrix Yij as

Y ¼ ðY ⊗ εÞ; Y αβ ≡ δαβyα; ε≡
�

0 1

−1 0

�
;

α ¼ 1;…; kþ 1: ð4:11Þ

in terms of kþ 1 scalars yα, and similarly for the field
strengths F μν

ij. Plugging all this into the field equa-
tions (4.1) and (4.2) shows that all fields can be determined
as a function of the free parameters ha and ρ as

Fα
ð2Þ ¼−2gρ− 4

dþ1ω̃2h
3=2
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−hαþ

Xk
a¼1

ha

vuut ; α¼1;…;kþ1;

R¼−8ρ− 4
dþ1h

− 4
dþ1

0

�Xk
a¼1

haþ
X
a<b

hahb

�
<0: ð4:12Þ

In particular, the two-dimensional metric is AdS2.

2. d = 2k

Similar to (4.10), in this case we parametrize the Uð1Þk
singlets within the scalar matrix T̃ij as

T̃ij ¼ h
− 2
dþ1

0 δijh½iþ1
2
�; i; j ¼ 1;…; dþ 1;

hkþ1 ≡ 1; h0 ≡
Yk
a¼1

ha; ð4:13Þ

in terms of k scalars ha > 0, such that det T̃ij ¼ 1.
Accordingly, we parametrize the matrix Yij as

Y¼
�
Y ⊗ ε

0

�
; Y ab≡δabya; ε≡

�
0 1

−1 0

�
; ð4:14Þ

in terms of k scalars ya. Plugging all this into the field
equations (4.1) and (4.2) yields the condition

Xk
a¼1

ha ¼
1

2
: ð4:15Þ

All other fields can then be determined as a function of the
remaining free parameters ha and ρ as

Fa
ð2Þ ¼ −2ρ− 4

dþ1ω̃2h
− 4
dþ1

0 h3=2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ha

p
;

R ¼ −ρ− 4
dþ1h

− 4
dþ1

0

�
1þ 8

X
a<b

hahb

�
< 0: ð4:16Þ

Again, the two-dimensional metric is AdS2. For d ¼ 8, this
reproduces the solutions of [20].
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3. d = 2

Using the reduction formulas (3.2), we can construct the
D-dimensional uplift of the above solutions. They describe
D-dimensional AdS2 × Σd backgrounds where Σd is a
deformed Sd sphere preserving only Uð1Þ½dþ1

2
�⊂SOðdþ1Þ

of the isometries of the round sphere. Rather than going
through the general case, let us illustrate the uplift for
the d ¼ 2 case, i.e. uplift the solution (4.16) to D ¼ 4
dimensions.
For d ¼ 2, the condition (4.15) implies that h1 ¼ 1

2
, and

the only free parameter in (4.16) is the constant dilaton ρ,
which we may absorb into a rescaling of the fields. After
setting g ¼ l−1 and some further rescaling of fields, the
four-dimensional solution takes the form

dŝ24¼Δ1=2
0 ds2AdS2 þl2Δ−1=2

0

�
2DμaDμaþdμ3dμ3

�
;

F̂ ð2Þ ¼
1

l
sin2θω̃2þ

ffiffiffi
2

p

l
Δ1=2

0 cosθ⋆̂ω̃2; e
ffiffi
3

p
ϕ̂¼2Δ−3=2

0 ;

ð4:17Þ

with Δ0 ¼ ð1þ cos2 θÞ, and we have parametrized
μ ¼ fsin θ cosϕ; sin θ sinϕ; cos θg. The metric and volume
form of AdS2 are denoted by ds2AdS2 and ω̃2, respectively,
with AdS radius l. Moreover, we have introduced

Dμa¼dμaþAϵabμb; a¼1;2; dA¼l−2ω̃2: ð4:18Þ

Using (3.17), we may further uplift this solution to a
solution of pure gravity in five dimensions, given by the
metric

ds̆25 ¼ Δ0ds2AdS2 þ l2
�
2DμaDμa þ dμ3dμ3

�
þ Δ−1

0

�
dzþ

ffiffiffi
2

p
lϵabμaDμb

�
2: ð4:19Þ

Using an explicit parametrization of the AdS2 metric in
coordinates fv; rg, as well as for the one-form A, the metric
(4.19) takes the form

1

l2
ds̆25 ¼

1þ cos2θ
l2

�
2dvdr −

r2

l2
dv2

�
þ ð1þ cos2θÞdθ þ γijðdxi þ kidvÞðdxj þ kjdvÞ;

ð4:20Þ

where we have defined

xi¼fϕ;zg; ki¼−
1

l2
fr;0g;

γijdxidxj¼
4sin2θ

1þcos2θ

�
dϕþ 1

2
ffiffiffi
2

p
l
dz

�
2

þ 2

l2
dz2: ð4:21Þ

The metric (4.20), (4.21) has isometry group
SOð2; 1Þ × Uð1Þ2, with the first factor realized on AdS2
and the two Abelian factors realized by shifts of the
periodic coordinates ϕ and z. Up to redefinition of ϕ
and z, this precisely reproduces the near horizon of the
boosted Kerr string, cf. [21,22,28,29]. The two-
dimensional theory (3.5) for d ¼ 2 thus captures a con-
sistent truncation around this near-horizon geometry.

D. ðAÞdS2 × Sd solutions of higher dimensional theory
with cosmological term

We have seen in Sec. III C that the consistent truncation
supports the presence of a cosmological term (3.18) in D
dimensions, which changes the scalar potential of the two-
dimensional theory. We may thus for this case reexamine
the existence of SOðdþ 1Þ invariant solutions (4.3).
Evaluating the new scalar potential in the presence of
(3.20), we find that the theory admits a solution with
constant dilaton ρ ¼ ρ0, provided the coefficient of the
cosmological term is given by

m2 ¼ g2ρ
2ðd−3Þ
dþ1

0 ðd2 − 1Þ: ð4:22Þ
In this case, the two-dimensional curvature scalar is
determined from (4.2) as

R ¼ −g2ðd − 1Þðd − 3Þρ−
4

dþ1

0 : ð4:23Þ
For d ≥ 4, i.e. D ≥ 6, we thus find a geometry AdS2 × Sd

with the round sphere Sd, if the D-dimensional theory
carries a cosmological term with positive m2. In contrast,
for d ¼ 2, the consistent truncation supports a dS2 × S2

solution. For d ¼ 3 (i.e. a reduction from D ¼ 5 dimen-
sions on S3), the theory admits a solution of type
Mink2 × S3, living within the consistent truncation.

V. CONCLUSIONS

In this paper, we have completed the classification of [1]
and worked out the consistent truncation of D-dimensional
Kaluza-Klein gravity (3.1) on an SD−2 sphere to two
dimensions. We have given the two-dimensional
Lagrangian and explicitly constructed several families of
solutions as well as their uplift to D dimensions. In
particular, we have identified within the consistent trunca-
tions several solutions with AdS2 geometry that uplift to
different AdS2 × Σ geometries, and notably the near-
horizon geometry of the boosted Kerr string.
This construction realizes the fourth and last of the

families listed in (1.3), identified in [1] as potentially
consistent sphere truncations. As discussed in the
Introduction, the existence of these truncations requires
the embedding of the sphere isometry group into the global
symmetry group of the toroidally compactified theory.
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Generically, the toroidal reduction of (1.2) on Td admits
an R × GLðdÞ global symmetry7; however, this symmetry
is enhanced at particular values of a, which is realized for
the four families of (1.3). While this symmetry enhance-
ment is only a necessary condition for consistency of the
sphere truncations, their existence can be proven by explicit
computation as has been done in [1] and the present paper.
With hindsight though, as has become apparent in recent
years, all the consistent sphere truncations corresponding
to (1.1) and (1.3) owe their existence to some underlying
symmetry structure in Riemannian, generalized, and excep-
tional geometry.
For the S2 reductions, i.e. the first family of (1.3),

it was shown in [24] that the consistent truncation of [1]
becomes more transparent after further uplift of the
D-dimensional theory (1.2) to pure gravity in (Dþ 1)
dimensions [for a given as in (2.1)]. In terms of this
higher-dimensional theory, the truncation amounts to a
standard Scherk-Schwarz reduction [25] on the group
manifold SUð2Þ. In particular, this explains the symmetry
enhancement

R × GLð2Þ ↪ GLð3Þ ð5:1Þ
of the toroidal reduction of (1.2). The SOð3Þ isometry
group of the sphere reduction is then naturally embedded
into the enlarged symmetry group. For the S3 reductions,
i.e. the second family of (1.3), the consistent truncation
requires the symmetry enhancement [30]

R × GLð3Þ ↪ R × Oð3; 3Þ ð5:2Þ

of the toroidal reduction of (1.2) [for a given as in (2.9)],
such that the SOð4Þ isometry group of the sphere can be
embedded into the enlarged symmetry group. The existence
of the consistent truncation can be attributed to the
generalized parallelizability of this background within
the double field theory formulation of (1.2) [31–33].
For the third family of (1.3), i.e. the truncation on
SD−3 ¼ Sd, the further symmetry enhancement after toroi-
dal reduction to three dimensions [34–36]

R × GLðdÞ ↪ R × Oðd; dÞ ↪ Oðdþ 1; dþ 1Þ ð5:3Þ

allows one to embedd the SOðdþ 1Þ isometry group of the
sphere into the enlarged symmetry group. This consistent
truncation then has a natural explanation in the framework
of the enhanced double field theory of [37].
In the same spirit, the existence of the consistent

truncation on SD−2 constructed in this paper allows for a

natural explanation in the framework of the affine excep-
tional field theory of [17–19], as discussed in detail in
[15,16,38]. Its starting point is the symmetry enhancement
after toroidal reduction of (1.2) to two dimensions [for a
given as in (3.1)] according to [8,39–41]

R × GLðdÞ ↪ GLðdþ 1Þ ↪ R ⋉ dSLðdþ 1Þ; ð5:4Þ

where dSLðdþ 1Þ denotes the affine extension of
SLðdþ 1Þ. We have observed in Sec. III C that the addition
of a cosmological term is compatible with the consistent
truncation but obstructs the uplift of (1.2) to Dþ 1
dimensions. This is a manifestation of the fact that the
SOðdþ 1Þ isometry group of the sphere is not embedded
into the intermediate GLðdþ 1Þ. This was already noticed
in [15,16], to which we refer for more details.
An immediate application of consistent truncations is the

construction of higher-dimensional solutions. By construc-
tion, any solution of the lower-dimensional theory uplifts
into a solution of the higher-dimensional theory. In par-
ticular, solutions with constant scalar fields, that take a
simple form in the lower-dimensional theory, may give rise
to higher-dimensional backgrounds with complicated inter-
nal geometry, which has been exploited in many instances
in the past. As an illustration, we have constructed a few
solutions of the two-dimensional theory (3.4) together with
their higher-dimensional uplift, but it would certainly be
very interesting to generalize this to a more systematic and
exhaustive construction of solutions. Within the Cartan
truncation, it should be straightforward to work out the
general rotating brane solutions as in [20,42,43] and study
their thermodynamic properties using Sen’s entropy func-
tion formalism [44]. Going beyond the Cartan truncation of
the scalar sector will require one to deal with nontrivial
non-Abelian gauge fields and may lead to entirely new
classes of higher-dimensional solutions.
As another application of consistent truncations, these

provide valuable tools in the context of holography, since
they allow one to perform supergravity calculations directly
within the lower-dimensional theory. For example, this
offers an immediate path to the computation of conformal
dimensions and correlation functions of the operators dual
to the fields of the consistent truncation. We have shown
that the two-dimensional Lagrangian (3.4) carries a sol-
ution that uplifts to the near-horizon geometry of the
boosted Kerr string (4.20). It will be very interesting to
systematically analyze within this theory the perturbations
around this background in the context of the Kerr/CFT
correspondence [45]; see e.g. [46] for a related study. More
recently, it has been shown that consistent truncations
together with the underlying exceptional geometry may
even allow one to access the full Kaluza-Klein spectrum,
i.e. the infinite towers of fluctuations, around a given
background [47,48]. It would be highly interesting to
develop similar technology around the backgrounds

7GLðdÞ is the standard geometric symmetry of toroidal
reductions. The R factor refers to the scaling symmetry of the
p-forms and the shift of the dilaton, which is already present inD
dimensions.
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considered here, and beyond, with potential applica-
tions to compactifications of maximal supergravity; see
e.g. [49–52]. We hope to come back to this in the future.
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