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Pulsar timing arrays (PTAs) have recently found evidence for a nanohertz-frequency stochastic
gravitational-wave background (SGWB). Constraining its spectral characteristics will reveal its ori-
gins. In order to achieve this, we must understand how data and modeling conditions in each pulsar
influence the precision and accuracy of SGWB spectral recovery. These goals typically require many
Bayesian analyses on real data sets and large-scale simulations that are slow and computationally
taxing. To combat this, we have developed several new rapid approaches that instead operate on
intermediate SGWB analysis products. These techniques refit SGWB spectral models to previously-
computed Bayesian posterior estimates of the timing power spectra. We test our new techniques
on simulated PTA data sets and the NANOGrav 12.5-year data set, where in the latter our refit
posterior achieves a Hellinger distance—bounded between 0 for identical distributions and 1 for zero
overlap—from the current full production-level pipeline that is ≲ 0.1. Our techniques are ∼ 102–104

times faster than the production-level likelihood, and scale much more favorably (sub-linearly) as
a PTA is expanded with new pulsars or observations. Our techniques also allow us to demonstrate
conclusively that SGWB spectral characterization in PTA data sets is driven by the longest-timed
pulsars and the best-measured power spectral densities, which is not necessarily the case for SGWB
detection that is predicated on correlating many pulsars. Indeed, the common-process spectral prop-
erties found in the NANOGrav 12.5-year data set are given by analyzing only the ∼ 14 longest-timed
pulsars out of the full 45 pulsar array, and we find that the “shallowing” of the common-process
power-law model occurs when gravitational-wave frequencies higher than ∼ 50 nanohertz are in-
cluded. The implementation of our techniques is openly available as a software suite to allow fast
and flexible PTA SGWB spectral characterization and model selection.

I. INTRODUCTION

Pulsar Timing Array (PTA) experiments [1] across
the world have now reported compelling evidence for a
nanohertz-frequency stochastic gravitational wave back-
ground (SGWB) [2–5]. This new insight into the
gravitational-wave (GW) spectrum was achieved by mea-
suring small deviations between the expected and ob-
served radio-pulse times-of-arrival (TOAs) from a set
of Galactic millisecond pulsars, wherein the distinc-
tive imprint of an SGWB is inferred through a quasi-
quadrupolar correlation signature imparted between pul-
sars in the PTA. This Hellings & Downs correlation pat-
tern [6] has now been inferred with varying levels of sig-
nificance by most regional PTA collaborations, with the
promise of higher significance and enhanced scientific re-
turns when these are synthesized into an updated Inter-
national Pulsar Timing Array data set [7].

While PTA detection statistics are centered around the
cross-correlation of distinct pulsars, it is an interesting
consequence of the PTA data model that spectral char-
acterization of the SGWB is dominated by pulsar auto-
correlations [8, 9]. In fact, multiple PTA collaborations
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saw the first hints of the SGWB through emerging com-
mon spectral behavior in many pulsars, which was mod-
eled as a common uncorrelated red noise (CURN) signal
[10–12]. Even now, with evidence of GW-induced cross-
correlations, SGWB spectral characteristics derived from
a CURN data model provide an excellent approximation
to a full Hellings & Downs–correlated model (HD), yet at
a fraction of the computational cost. Adequately mod-
eled, the shape of the inferred SGWB spectrum encodes
information about the emitting source, e.g., the dynam-
ics and demographics of a black-hole binary population,
or the details of early-Universe processes. Assuming that
the source is a population of circular supermassive black-
hole binaries (SMBHBs) evolving via GW radiation re-
action, the SGWB’s characteristic strain hc as a function
of frequency follows a power-law, hc(f) = A (f/fyr)

α
,

where α = −2/3 [13]. The amplitude A is the charac-
teristic strain referenced to a frequency of fyr = 1/year,
and determined by the demographics of the binary pop-
ulation, e.g., the number density of emitting systems per
redshift, primary mass, and mass ratio [e.g., 14, and ref-
erences therein].

While measuring this amplitude parameter A can pro-
vide interesting constraints on the SMBHB population,
the inward migratory dynamics of supermassive black
holes after a galaxy merger are likely much more com-
plicated [15, and references therein]. Binary orbital ec-
centricity and interactions of binaries with gas and stars
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(particularly at wider orbital separations) will attenuate
the expected SGWB characteristic strain at lower fre-
quencies [14, 16]. This causes a deviation from a power-
law [17] and as such, the SGWB may carry information
about the dynamical interactions of the SMBHB pop-
ulation within the final parsec of orbital evolution [18].
Even finiteness of the emitting population under the most
simplified conditions above may cause spectral deviations
from f−2/3 [19–21], rendering fixed-α studies of limited
utility for astrophysical inference.

Beyond SMBHBs, searches are underway for relic sig-
natures of processes in the early Universe [22], e.g., cos-
mic strings [23], primordial gravitational waves [24], and
cosmological phase transitions [25]. While it is thought
that these signals are likely to be an additional, weaker
contribution to the SMBHB signal, current searches can
not yet arbitrate on the dominant contributing source
of the SGWB. Kaiser et al. [26] investigated the sepa-
rability of a SGWB signal into its component sources:
a circular-SMBHB-population signal, and a background
from primordial gravitational waves. Using simulated
data sets developed by Pol et al. [9], they found that they
could begin to distinguish two injected power-law spec-
tra with 45 pulsars and 17 years of data, while after 20
years they could begin to characterize the sub-dominant
power-law GWB signal. However, their sub-dominant in-
jected GWB spectrum had a cosmological energy density
that was still rather strong, comparable to upper limits
on primordial gravitational waves [e.g. 24, 27].

The goal for SGWB spectral characterization is to be
a bridge between pulsar timing data and the physics of
these sources. Our guiding principle is for spectral char-
acterization to be scalable and modular; testing a new
spectral model should not need the analysis to be started
from scratch back at the level of timing residuals, nor
should adding a new pulsar to the PTA require us to ig-
nore that the analysis has already been successfully per-
formed on the other pulsars. With this being said, the
current production-level pipelines do indeed start from
scratch whenever a new model is tested or a pulsar is
added. The current PTA data model is formulated in
the time domain. Uneven observational sampling of the
pulsars, and concerns over the potential for spectral leak-
age from windowing, renders fast searches directly in the
Fourier domain impractical. The computational bottle-
neck of this time-domain Gaussian likelihood is the re-
quired inversion of the data covariance matrix contain-
ing the SGWB signal contributions. Elegant accelera-
tions can be achieved simply by modeling low-frequency
processes (like the SGWB or per-pulsar red noise) with
only a small number of Fourier basis functions [28, 29].
However, even with these accelerations and optimized
sparse linear-algebra routines, Bayesian SGWB parame-
ter estimation with the PTA likelihood via Markov Chain
Monte Carlo (MCMC) sampling can require several days
to weeks of computation. This is the status quo, and
will worsen as more pulsars are added, and further ob-
servations of existing pulsars are incorporated into data

sets.
There is a tremendous need for robust, efficient, and

flexible analysis methods for PTAs that follow our pre-
viously mentioned guiding principles of scalability and
modularity. For example, high-cadence timing cam-
paigns from telescopes such as CHIME [30] generate large
data volumes that will slow current pipelines. More
pressing is that the synthesis of all current regional
PTA data sets will result in a combined IPTA data
set with more than 100 pulsars, which will tax existing
pipelines. Significant acceleration of parameter estima-
tion was achieved by Taylor et al. [31], who modeled the
SGWB as a CURN, which thereby allows the PTA likeli-
hood to be factorized into parallelized per-pulsar analy-
ses [see e.g. 7, 10, 11, 32]. This Factorized Likelihood
(FL) method shows excellent agreement with the full
production-level PTA likelihood. Unfortunately, the FL
method assumes a power-law model with a fixed spectral
index, which limits its usefulness for spectral model se-
lection and source inference. A more general approach
would maintain the likelihood computational speed-up,
parallelization over pulsars, and the intended modularity
of this FL technique while permitting analyses of SGWB
models with arbitrary spectral parameterizations.
In this paper, we introduce the aforementioned gener-

alization of the FL approach, allowing for rapid SGWB
spectral characterization under arbitrary parametrized
models, rather than just a fixed-index power-law. This is
made possible by condensing the pulsar timing data down
to what we call Bayesian periodograms: probability den-
sity reconstructions of the pulsar timing-residual power
spectral density at each frequency. Models are then re-
fit to combinations of these Bayesian periodograms. In
section II, we discuss current analysis methods before in-
troducing our new analysis techniques. We present the
results of our comparison tests between the current and
new methods on simulated and real data in section III,
before sharing our conclusions and goals for further de-
velopments in section IV.

II. METHODS

Here we describe current PTA data-analysis techniques
as they pertain to SGWB spectral characterization, and
discuss expected future limitations as PTA data sets ex-
pand. We then introduce the factorized likelihood (FL)
approach [31], and the concept of refitting spectral mod-
els to Bayesian periodograms of PTA timing residuals.

A. Current spectral characterization methods

PTA analyses model pulsar timing residuals δ⃗t as the
sum of a deterministic pulsar timing model and stochastic
red and white noise components:

δ⃗t = Mϵ⃗+ Fa⃗+ n⃗. (1)
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The (NTOA ×m)-shaped design matrix M is a matrix of
partial derivatives of the TOAs with respect to m timing-
ephemeris parameters evaluated at an initial fitting solu-
tion, with a vector of linear offsets from the initial fit ϵ⃗.
Red-noise processes, such as the common gravitational
wave signal and red noise intrinsic to each pulsar, are
modeled as a Fourier sum over Nf sampling frequencies
such that, for the i-th timing residual observed at time
ti,

[Fa⃗]i =

Nf∑
k=1

{
as,k sin

(
2πkti
T

)
+ ac,k cos

(
2πkti
T

)}
,

(2)
where T is the timing baseline (typically the to-
tal timespan of the data set being analyzed). As
such, F is a NTOA × 2Nf matrix of sines and
cosines evaluated at observation times, and a⃗ =(
as,1, ac,1, as,2, ac,2, ..., as,Nf

, ac,Nf

)T
is a vector of

Fourier coefficients. We model intrinsic red noise (IRN)
as independent between pulsars, and the SGWB as a
common signal to all pulsars. For a single pulsar p, its
total red noise is the sum, (Fa⃗)p = (Fa⃗)IRN

p +(Fa⃗)SGWB.
Finally, n⃗ is uncorrelated white noise due to radiometer
noise, instrumental effects, and pulsar phase jitter. We
rearrange Equation 1 to model residual, unmodeled noise
as r⃗:

r⃗ = δ⃗t−Mϵ⃗− Fa⃗ = δ⃗t−Tb⃗, (3)

where T = [M F] and b⃗ = [⃗ϵ a⃗]T. Other contributions
to the timing residuals include correlated white noise
between TOAs within the same timing epoch, and ra-
dio frequency-dependent red noise due to time-dependent
variation in dispersion from the interstellar medium[see
e.g. 33, 34].

We place a zero-mean Gaussian prior on b⃗ such that,
for model hyper-parameters η⃗,

p(⃗b|η⃗) =
exp

(
− 1

2 b⃗
TB−1⃗b

)
√
det (2πB)

, (4)

where B ≡ B(η⃗) = ⟨⃗b⃗bT⟩ = diag(∞, ϕ). The ma-
trix ϕ is the Fourier-domain covariance on red-noise pro-
cesses, while the ∞-block effectively converts the Gaus-
sian prior into a improper uniform prior on the timing
model. Given that we will eventually only deal with the
inverse of B, we need not worry about the practicalities
of treating infinities.

The full hierarchical likelihood of the timing residu-
als given the model hyper-parameters and b-coefficients

is given by p(δ⃗t|⃗b, η⃗) = p(δ⃗t|⃗b) × p(⃗b|η⃗). However, we
are only interested in the model hyper-parameters η⃗
that describe the statistical properties of various stochas-
tic processes; thus we marginalize over the Gaussian b-
coefficients to recover a more concise likelihood:

p(δ⃗t|η⃗) =
exp

(
− 1

2 δ⃗t
T
C−1δ⃗t

)
√
det (2πC)

. (5)

Here, C = N+TBTT is the full time-domain covariance
matrix of the data model, with white-noise covariance N,
where

[C](pi),(qj) = [N]p,(ij)δpqδij + [CIRN]p,(ij)δpq

+ Γpq[C
SGWB](ij). (6)

Equation 6 indexes over pulsars (p, q) and TOAs (i, j).
[N]p,(ij) and [CIRN]p,(ij) are the white noise and intrin-
sic red noise covariance matrix components respectively
for pulsar p and i-th TOA, while [CSGWB](ij) is the co-
variance matrix components for the SGWB between the
i-th and j-th TOAs. The expected GW-induced cross-
correlation in timing residuals between pulsars is given
by the overlap reduction function (ORF) coefficient Γpq,
which, for an isotropic SGWB is the aforementioned
Hellings & Downs (HD) curve [6].
All current spectral characterization techniques involve

computing the PTA likelihood in Equation 5 under dif-
ferent models or assumptions [10, 35]. When cross-
correlations between pulsars are modeled (hereafter re-
ferred to as inter-pulsar correlations), inverting C should
scale as O(N3

pN
3
b ). As more TOAs and more pulsars are

added to the array, evaluation of this likelihood will slow
down significantly because of this scaling. The autocorre-
lation blocks in the PTA data covariance matrix contain
white noise, pulsar-intrinsic red noise, and the SGWB,
while the inter-pulsar blocks only feature the SGWB.
However, we now know that spectral characterization of
an SGWB is dominated by PTA autocorrelation informa-
tion [8, 9]. Therefore, for the class of techniques below
where the PTA likelihood is factorized over pulsars, we
assume no inter-pulsar correlations (i.e., a CURN model)
such that Γpq = δpq.
Modeling only the diagonal blocks of the PTA data co-

variance matrix reduces the likelihood evaluation scaling
to O(NpN

3
b ). Physically speaking, this significant accel-

eration arises because the PTA likelihood is factorized as
a product over pulsars:

p({δ⃗t}|η⃗) =
exp

(
− 1

2

∑Np

p=1 δ⃗t
T

pC
−1
pp δ⃗tp

)
√
det (2πC)

=

Np∏
p=1

exp
(
− 1

2 δ⃗t
T

pC
−1
pp δ⃗tp

)
√
2πCpp

=

Np∏
p=1

p(δ⃗tp|η⃗),

(7)

where {δ⃗t} where is the set of timing residuals for all pul-

sars, p(δ⃗tp|η⃗) is the likelihood for a single pulsar p with

a set of timing residuals δ⃗tp, and η⃗ are model hyperpa-
rameters describing variables like spectral-shape param-
eters, etc. However, this factorization is not exploited to
full effect within the production-level enterprise anal-
ysis pipeline [36], which carries this out as a serialized
calculation over pulsars. Parallelizing the computation
over Np processors would theoretically remove the like-
lihood computation’s dependence on the number of pul-
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sars, while being numerically equivalent to an analysis
that uses the production-level PTA likelihood.

B. Factorized likelihood methods

The factorized likelihood (FL) approach makes possi-
ble a class of techniques where Equation 7 is computed in
parallel across pulsars, with re-weighted posterior distri-
butions from each pulsar combined in post-processing to
calculate the likelihood for the array. Evaluation of the
likelihood becomes approximately scale invariant with
Np. Taylor et al. [31] modeled a power-law SGWB strain
spectrum with a fixed spectral index of α = −2/3 to re-
cover posteriors on the SGWB strain amplitude for each
pulsar. The posteriors on the strain amplitude were rep-
resented by histograms, re-weighted by the single-pulsar
parameter priors, then multiplied across pulsars with a
suitable prior for the final posterior calculation.

This fixed-index FL technique (along with variants)
has already been adopted as a new tool in large analy-
sis campaigns from NANOGrav [2, 10], the Parkes Pul-
sar Timing Array [4, 11], and IPTA [7], as well as other
studies [32, 37], to accelerate parameter estimation and
cross-validation. However as discussed earlier in section I,
there are many reasons why the SGWB strain spec-
trum could deviate from this simple fixed-index power-
law model. We therefore require a more flexible and gen-
eralized FL approach that would allow for inference of
physically-motivated SGWB spectral models.

A General Factorized Likelihood (GFL) approach is
possible by fitting spectral models to the free-spectrum,
a minimally-modeled Bayesian spectral characterization
of pulsar timing data [38, 39]. The free-spectrum recovers
the joint posterior of the red-noise power spectrum at all
sampling frequencies, parameterized by the coefficient ρ,
such that

ρ2k :=
⟨a⃗kTa⃗k⟩

T
=

S(fk)

T
, (8)

where k is the Fourier frequency-bin index and S is the
power spectral density of the timing residuals induced
by red processes. Typically, a free-spectrum analysis is
conducted with a uniform prior on log10 ρ, with posteri-
ors jointly recovered at all sampling frequencies. In the
following we assume that there is independence between
sampling frequencies, thus no covariance between them.
Pulsar timing analyses deal with unevenly sampled obser-
vations, so we will assess the strength of this assumption
in our tests.

Refitting spectral models to Bayesian free-spectra can
be done at various levels; one can (i) perform a PTA
Bayesian free-spectrum analysis, followed by refitting on
the frequency-factorized PTA free-spectrum, or (ii) per-
form free-spectral analysis on individual pulsars, which
are then combined into a frequency- and pulsar-factorized
likelihood against which spectral models are fit. The gen-

eral scheme for (i) is as follows. Translating hc into ρ-
space gives

ρ2k =
hc(fk)

2

12π2f3
kT

=
A2

12π2T

(
fk

f1yr−1

)−γ

, (9)

where γ = 3−2α = 13/3 for the idealized SMBHB popu-
lation. We form a likelihood by computing the probabil-
ity that a given model is supported by the free-spectrum
at each frequency:

p({δ⃗t}|η⃗) =
∫

dρ⃗ p({δ⃗t}|ρ⃗) p(ρ⃗|η⃗)

∝
∫

dρ⃗
p(ρ⃗|{δ⃗t})

p(ρ⃗)
× p(ρ⃗|η⃗) (10)

≈
Nf∏
k=1

∫
dρk

p(ρk|{δ⃗t})
p(ρk)

× p(ρk|η⃗)

where p(ρk) is the prior probability of ρk in the free-

spectrum analysis, p(ρk|{δ⃗t}) is the marginal posterior
probability density of ρk that is sampled using MCMC
techniques, and p(ρk|η⃗) is the probability of ρk under a
parametrized spectral model, such as Equation 9. In all
cases considered here, the spectral model maps precisely
to a value of ρ at each frequency, in which case the inte-
gral in Equation 10 is trivial. However, the more general
form shown allows for models that have intrinsic spread,
e.g., where there is an expected form of the spectrum due
to a population of SMBHBs, and population finiteness in-
duces departures in a given realization [14, 15]. We note
that in (i), the PTA free-spectrum need not necessarily
use only autocorrelation information in the PTA likeli-

hood; p(ρk|{δ⃗t}) is not yet factorized over pulsars, hence
an inter-pulsar–correlated free-spectral analysis may be
performed that accounts for HD correlations, and this
would still allow a frequency-factorized refitting analysis
to be subsequently performed.
Finally, (ii), the extension to factorize the likelihood

over pulsars simply requires that the right-hand side of
Equation 10 is modified to have an additional product
over pulsars. However, by doing so, we must explicitly
make the usual FL assumption of conditioning spectral
characterization on the PTA autocorrelation information
under a CURN model:

p({δ⃗t}|η⃗) ∝∼
Np∏
p=1

Nf∏
k=1

∫
dρk

p(ρk|δ⃗tp)
p(ρk)

× p(ρk|η⃗). (11)

To compute probabilities of a spectral model with a given
set of hyper-parameters η⃗ under the free-spectral likeli-

hoods p({δ⃗t}|ρk), we use optimized density estimation
with MCMC samples. There are already a number of
examples in the literature of fitting SGWB spectra to a
free-spectrum of a PTA [e.g., 40–42]. It is favored over
analyzing the full likelihood because it is fast, since the
data structures that we are fitting to are no longer the
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timing residuals themselves, but a compressed data rep-
resentation in terms of a red process at each GW fre-
quency. Other timing-residual contributions from the
timing model, uncorrelated and correlated white noise,
and interstellar-medium effects, are marginalized over.

The simplest density estimation technique is to bin our
free-spectrum MCMC samples as histograms, just like in
the FL method. This recreates the probability densities
of the free-spectra posteriors within bins of log10 ρ. To
faithfully reconstruct the original distribution, an appro-
priate choice of bin width must be made. If the width of
the bins is too large, the histogram will be oversmoothed,
perhaps removing important fluctuations in the actual
distribution. In contrast, if the bin width is too nar-
row, the histogram will undersmooth the data, creating
a density reconstruction that captures all of the fluctua-
tions in the data that are a result of statistical sampling
randomness and not due to the underlying distribution.
There are several standard rules-of-thumb for finding the
optimal bin width for a histogram given some data, such
as by using Scott’s Normal Reference Rule [43] or the
Freedman-Diaconis Rule [44], which are tuned for an un-
derlying normal distribution. Unfortunately, histograms
do not result in a continuous distribution from which
probability densities can be extracted, causing some loss
of data in-between bins, particularly if the bin width is
wide.

An alternative method is to use Kernel Density Esti-
mators (KDEs) [45, 46]. A KDE recreates a distribution
by replacing each sample with a normalized, symmetric,
strictly positive, real-valued function called a kernel (also
known as a window function). If samples (x1, x2, . . . , xN )
are extracted from an unknown distribution f , the den-

sity estimate f̂ of a KDE is given by

f̂(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
, (12)

where K is the kernel function, and h is the bandwidth
of the KDE. As with histograms, an appropriate band-
width must be chosen to avoid creating an under- or
over-smoothed estimator. The kernel function itself is
also a choice to be decided. In this paper, we use an
Epanechnikov kernel [47], and select bandwidths using
the Sheather-Jones Plug-in Selector [48]. Further details
on these choices, and KDEs in general, are given in Ap-
pendix A.

Some free-spectrum posteriors may be poorly con-
strained and show non-negligible support for log10 ρ down
to their lower prior boundary. The corresponding likeli-
hood would effectively be constant if the boundary were
lowered to −∞. To ensure accurate KDE reconstruction
at the boundary, we mirror the data about the bound-
ary to create the KDE, and then cut off the KDE at the
boundary. Any proposed spectral model in our refitting
scheme that goes below the boundary is given the same
probability as spectra at the boundary.

C. Refit pipelines

We refit parametrized spectral models against these
optimized KDE representations of PTA and pulsar free-
spectra using MCMC techniques. A typical algorithm
is as follows: (1) an iteration of the MCMC proposes a
set of parameters for the spectral model, from which we
calculate our log10 ρ coefficients at all GW sampling fre-
quencies; (2) we then find the probability of these model
log10 ρ values under the free-spectrum likelihoods at each
frequency—and, if applicable, for each pulsar—given our
KDEs1, and take their product to compute the total
likelihood. The employed Metropolis-Hastings algorithm
will then reject or accept those parameters accordingly.
We repeat this until the MCMC has sufficiently sampled
the parameter space of the spectral model and converged
to the target posterior.
In this paper, we explore two possible types of refits:

(i) PTA free-spectrum refit: This involves refitting spec-
tral models against the PTA free-spectrum, which re-
quires an initial analysis using the full PTA likelihood
as a one-time cost. The PTA free-spectrum analysis
describes each each pulsar with a timing model, white
noise, and power-law intrinsic red noise, with a free-
spectrum common process across the entire array. Note
that the model of inter-pulsar correlations for this com-
mon process can be CURN (uncorrelated), HD (SGWB-
correlated), or other, since this refit technique involves
only a factorization over frequencies. While we can re-
fit SGWB spectral models to different numbers of fre-
quencies with the PTA free-spectrum, we cannot refit
using different combinations of pulsars without recom-
puting the PTA free-spectrum.

(ii) Generalized Factorized Likelihood (GFL) Lite: In
preparation for our goal of a complete generalization
of the factorized likelihood technique, we introduce and
study an intermediate analysis approach here called GFL
Lite. Each pulsar is analyzed independently in parallel,
with a model composed of a timing model, white noise,
power-law intrinsic red noise, and a free-spectrum that
acts as a proxy for the common process in each pul-
sar. Given the implicit factorization of the PTA likeli-
hood over pulsars, GFL Lite assumes CURN as an inter-
pulsar correlation model. We then refit a common spec-
tral model to the free-spectra of an ensemble of all (or

1 KDE objects are memory intensive, and extracting the prob-
ability density function of a point from every KDE object at
each MCMC iteration would slow down computation. However,
KDEs are continuous, therefore before conducting the MCMC,
we extract an array of probabilities along a grid of log10 ρ that is
intentionally finer than the KDE bandwidth. This allows us to
implement numpy vectorization techniques to accelerate the com-
putation of the likelihood. When a set of log10 ρ is calculated,
we look up its probability within the pre-calculated KDE density
array across frequencies (and pulsars, where relevant).
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a subset of) pulsars to recreate the PTA common pro-
cess. This method allows us to fit a common signal to
different combinations of pulsars and frequencies quickly.
However, the per-pulsar intrinsic red noise model cannot
be refit. This method is labeled as ‘Lite’ because the full
GFL technique will also be capable of refitting per-pulsar
intrinsic red noise models. Plans and prospects for full
GFL are discussed in section IV.

D. Pipeline profiling

In addition to these techniques being modular and
flexible, we are also motivated by the prospects of sig-
nificantly accelerating spectral characterization of the
SGWB with PTA data, especially where many repeated
studies and simulations are required. As discussed in
section IIA, the full PTA likelihood with a CURN model
should scale ∝ Np because of the required inversion of a
block-diagonal PTA data covariance matrix, and should
scale as ∝ N3

p for the full likelihood with an HD model
because of the additional off-diagonal structure of the
data covariance matrix.

Before carrying out a suite of simulations to compare
the accuracy of our refit parameter estimation with the
full PTA likelihood, we profiled our analyses on a simu-
lated Np-pulsar PTA data set that contains an injected
SGWB signal (as detailed later in section IIIA). The
timing profiles are shown in Figure 1. For a simulated 45-
pulsar data set, the mean likelihood evaluation time for
the CURN full likelihood was 0.012 seconds, and 0.24 sec-
onds for the HD full likelihood. The CURN full likelihood
scales as expected with the number of pulsars. However
the HD full likelihood scales ∝ N2

p , rather than the ex-

pected ∝ N3
p . As explained in Johnson et al. [49], this is

due to the use of sparse matrix algebra. The exact scal-
ing depends on details such as memory transfer, sparse
matrix representation transforms, parallel computation
across CPU cores, and matrix layout, all of which dif-
fer depending on the exact PTA analysis that is per-
formed. But empirically, this typically results in a ∝ N2

p

dependence. The 45-pulsar PTA free-spectrum refit like-
lihood takes 53 microseconds while the GFL Lite likeli-
hood takes 88 microseconds. These are 226 and 136 times
faster than the CURN full likelihood respectively. The
GFL Lite likelihood evaluation is sub-linear as the num-
ber of pulsars increases. The PTA free-spectrum is the
fastest; however, a new free-spectrum must be produced
if we wish to change the number of pulsars in the array.

III. RESULTS

We present the results of our analyses of 100 simulated
PTA data sets that contain injected SGWB signals, com-
paring the performance of the full PTA likelihood to our
refit techniques. In each analysis, we model intrinsic red
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FIG. 1. The likelihood evaluation time as a function of the
number of pulsars on a simulated data set, ran on an AMD
EPYC 7702 64-core processor. The CURN (red) and HD-
correlated (purple) full PTA likelihoods scale ∝ Np and ∝ N2

p

respectively. GFL Lite (orange) is scale-independent with the
number of pulsars. The PTA free-spectrum refit (dashed blue)
is the most rapid method, being 102 − 104× faster than the
CURN and HD-correlated full PTA likelihoods.

noise as a 10 frequency power-law in each pulsar in addi-
tion to a 10 frequency power-law common process, unless
otherwise specified. These frequencies are linearly spaced
from 1/T to 10/T , where T is the total observing time of
the array. We assess the ability of the PTA free-spectrum
refit and GFL Lite techniques to recover SGWB param-
eter posteriors that are comparable to the full likelihood,
and investigate tolerance factors.
To quantify the difference between the posteriors re-

covered by our techniques compared to the full likeli-
hood, we use the Hellinger distance [50], a measure of
the similarity between two probability distributions. The
Hellinger distance is bounded 0 ≤ H ≤ 1, where H = 0
implies that distributions are identical, while H = 1 im-
plies that they do not have any overlap and are com-
pletely different distributions. For our refit techniques to
be robust and accurate, we seek Hellinger distances to be
low with respect to results from using the full likelihood.
See Appendix B for more details and guiding values for
interpretation. We compare Hellinger distances between
the 2D posteriors, as well as the 1D marginalized poste-
riors for each parameter in a power-law spectral model
for the SGWB signal, γ and log10 A, as defined in Equa-
tion 9.

A. Simulations

Our simulated data set creation follows Pol et al. [9].
The pulsar data sets are based on the observational
timestamps and TOA uncertainties from the 45 pulsars
of the NANOGrav 12.5 year data set [10]. We extended
the timespan of the data set by drawing new TOAs and
uncertainties from the distributions of the final year of



7

0 2 4 6 8
γ

−16

−15

−14
lo

g 1
0

A
Injected characteristics

γ = 13/3
Rosado et al. 2015

FIG. 2. The blue regions are the 68, 95, and 99% credible
regions of the distribution of SGWB spectral characteristics
from the 234, 000 SMBHB population realizations of Rosado
et al. [51]. We randomly selected 100 SGWB realizations from
this distribution (red markers). The dashed black line des-
ignates γ = 13/3, the realization-averaged expected SGWB
spectral index from a population of SMBHBs.

each pulsar’s observations to form a 15 year data set.
However, we kept the number of pulsars fixed, rather
than adding new ones over time. We injected intrinsic
red noise in each pulsar at linearly-spaced frequencies of
1/T to 10/T , where T = 15 years. The injected spec-
tral characteristics of a pulsar’s intrinsic red noise were
based on measured values taken from a CURN search in
the NANOGrav 12.5 year data set.

Finally, 100 SGWB signal realizations were injected
into 100 copies of our simulated PTA data set. We
randomly drew SGWB spectra from a bank of 234, 000
that had been fit to SMBHB population realizations
[51] (see also [52]). Figure 2 shows the total distribu-
tion of SGWB spectral characteristics in blue, and the
spectral characteristics injected into our simulations in
red. Typical PTA analyses use priors of γ ∈ [0, 7] and
log10 A ∈ [−18,−12]. Following this convention, we also
ensured that the randomly-drawn SGWB spectral char-
acteristics satisfied these prior constraints. Unless oth-
erwise stated, all models search for a CURN process to
ensure the most fair comparison between the full PTA
likelihood and the refitting techniques.

B. Parameter Estimation Fidelity

We choose one of our simulations as a case study of our
refitting techniques. The chosen simulation has spectral
characteristics comparable to the CURN detected in the
NANOGrav 12.5 year data set, and has one of the small-
est Hellinger distances between the uncorrelated full-
likelihood power-law analysis and the PTA free-spectrum
refit. As a first exploration, given that each GFL-Lite
per-pulsar free-spectrum has already been marginalized
over intrinsic red noise parameters, the combined prod-
uct of those likelihood distributions across pulsars should

be consistent with the PTA free-spectrum. This is shown
in the left panel of Figure 3, where there is broad consis-
tency between the techniques.

The comparison of power-law–model posterior distri-
butions for our case-study simulation is shown in the
right panel of Figure 3, where credible regions correspond
to 68% and 95% levels for the spatially-uncorrelated full-
likelihood, the PTA free-spectrum refit, and the GFL Lite
analysis. Both refit methods perform well, recovering
posteriors consistent with the full production-level PTA
likelihood, with both achieving 2D Hellinger distances of
0.10. The 1D-marginalized posteriors on log10 A and γ
have distances with respect to the full PTA likelihood of
0.06 and 0.07 for the PTA free-spectrum, and 0.09 and
0.05 for GFL Lite. In this case, the PTA free-spectrum
refit and GFL Lite performances are on par. We see
a similar consistency when comparing the Hellinger dis-
tances of all 100 data set realizations. The distributions
of Hellinger distances for the 2D and 1D marginalized
posteriors are shown in Figure 4, from which we quote the
median, 16th percentile, and 84th percentile values. The
2D Hellinger distances between the PTA free-spectrum
refit and the full likelihood are 0.260.400.17, while GFL Lite
has 2D Hellinger distances of 0.270.400.20. We conclude that
the PTA free-spectrum refit and GFL Lite analysis are
consistent with each other.

To better understand the origin of discrepancies be-
tween our refit methods and the full likelihood, we in-
vestigate the magnitude of inter-frequency correlations
in the Bayesian free-spectrum posteriors, using Pearson’s
correlation coefficient [53]. If inter-frequency correlations
are weak, the correlation matrix of the posterior samples
should be mostly diagonal in structure. Pearson’s corre-
lation coefficient quantifies how ‘diagonal’ a correlation
matrix is, with a coefficient of 1 indicating a perfectly di-
agonal matrix (i.e., no inter-frequency correlations), and
lower values indicating off-diagonal structure (i.e., inter-
frequency correlations). In the limit that there are no
inter-frequency correlations, Pearson’s correlation coeffi-
cient becomes unity, and our approximation becomes an
identity. The median, 16th, and 84th percentile values of
this coefficient across all 100 realizations of the PTA free-
spectra is 0.920.980.86, suggesting weak correlations between
GW frequencies. We also compute the coefficient for all
45 per-pulsar free-spectra from the GFL Lite pipeline
across all 100 simulation realizations, giving 0.99 1.0

0.91; per-
pulsar free-spectra appear to be uncorrelated across fre-
quencies. Hence our assumption throughout of indepen-
dence between frequencies is justified, and suggests that
information being lost from our refit pipelines is through
the compounding of small inaccuracies in our density es-
timators.

Finally, we test the efficacy of Bayesian recovery be-
tween our proposed methods and the full likelihood with
p–p plots, as shown in Figure 5. If we were to draw our
injected spectral characteristics from the same priors as
employed in our Bayesian analysis, then we would expect
to recover our injections within the p%-credible region for
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FIG. 3. Left panel: A comparison of the free-spectrum from a full PTA likelihood analysis (blue) with a product of the per-
pulsar free-spectra from the GFL Lite pipeline (green) on a simulated data set. The two violins are nearly identical and follow
the injected SGWB power-law (grey line). Right panel: Posteriors of a 10 frequency power-law analysis with the full likelihood
(orange), PTA free-spectrum refit (blue), and GFL Lite methods (green), for the simulated data set shown in the left panel.
Credible regions enclose 68% and 95% of the posterior. The injected SGWB spectral characteristics are shown as the dashed
grey lines, with log10 A = −14.7 and γ = 4.17. The PTA free-spectrum refit and GFL Lite posteriors match well to the full
likelihood.

FIG. 4. Hellinger distances between the posteriors of the full likelihood and for each refitting technique for all 100 SGWB data
set realizations. Both methods have a similar distribution of Hellinger distances, thereby demonstrating similar performance
when compared to the full PTA likelihood analysis.

p% of our simulations. However in our analyses—even
with the full likelihood—we see bias, causing deviation
from the diagonal p–p plot, since we drew our injected
characteristics from the SMBHB populations of Rosado
et al. [51], and other analysis approximations. Instead,
we compare the relative efficacy of our refit methods to
the full likelihood analysis by taking the difference in p–p
recovery between the full likelihood and our refit meth-
ods. A perfect comparison would give zero difference
for all p. The PTA free-spectrum refit has the small-
est differences from the full likelihood, showing devia-
tions around zero mostly within a 1σ confidence interval,
where σ =

√
p(1− p)/100 is the binomial standard error

for a sample of 100 realizations [54]. GFL Lite shows
more deviation from the full likelihood than the PTA
free-spectrum refit, but these remain typically within a
1σ confidence interval on log10 A, and within 2σ for the

spectral index.

For more context, we compare Figure 5 to a gallery
of toy univariate distribution comparisons in Figure 13.
For the PTA free-spectrum refit, the p-p plot for log10 A
is similar to the center top panel of Figure 13, which
suggests this method may underestimate log10 A relative
to the full PTA likelihood. Meanwhile, the spectral in-
dex recovery appears similar to the left middle panel,
suggesting that the width of the recovered γ posterior
is narrower than the full PTA likelihood. By contrast,
the p-p plot for log10 A and γ for GFL Lite appear sim-
ilar to the right middle panel and top center panel of
Figure 13 respectively, suggesting a typically wider re-
covered log10 A posterior, and a slightly underestimated
γ recovery. These are again likely due to compound-
ing of small inaccuracies in our density estimators over
many frequencies (and pulsars). However, overall these



9

0.0 0.5 1.0
p

−0.1

0.0

0.1

P
(θ
<

p)
−

P
(θ
<

p)
fu

ll
log10 A
free spectrum refit
GFL Lite

0.0 0.5 1.0
p

spectral index γ

FIG. 5. The difference in p–p plots between the full likelihood
and the PTA free-spectrum refit or GFL Lite. Equivalent
recovery would show zero for all p% credible regions. The
PTA free-spectrum refit is centered close to zero and mostly
within the 1σ confidence region, where grey curves show 1σ,
2σ, 3σ regions. GFL Lite is also close to zero, and mostly
within the 2σ confidence region for both parameters.

refitting methods achieve excellent parameter posterior
recovery when compared to the full PTA likelihood.

C. Model Selection

We now explore the efficacy of our refitting techniques
for spectral model selection. The SGWB spectrum is
typically modeled as a power-law, but other astrophys-
ical and cosmological phenomena, and potentially even
noise contamination, may influence its inferred shape.
We would like to test whether these models better fit
PTA data than a simple power-law, and make astrophys-
ical and cosmological interpretations from their spectral
characteristics.

Model selection with the current production-level PTA
analysis pipeline is challenging given the relatively slow
computation time of the PTA likelihood compared to the
size of the parameter space that must be searched over.
We must compare the Bayesian evidence of our data

given our hypothesis models, p(δ⃗t|H), to derive a Bayes

factor B12 = p(δ⃗t|H1)/p(δ⃗t|H2), and interpret those val-
ues to reject or accept H1 over H2. The interpretation
is problem-specific, but some rules-of-thumb are given in
Kass and Raftery [55]. In PTA analysis, model selection
is typically conducted via calculating the Savage-Dickey
density ratio [56] for low-contrast nested models, or with
product-space sampling for mildly-disjoint nested models
[see, e.g., 57–59].

One model selection technique that is currently im-
practical for production-level PTA analyses on large ar-
rays (≳ 40 pulsars) is nested sampling, for which one
analyzes each model separately to compute the Bayesian
evidence [60, 61]). Nested sampling is computationally
expensive and cannot be realistically used with the full

Disfavored model Favored model B
broken power-law power-law 21.1 ± 6.0

turnover power-law 1.71 ± 0.44
t-process power-law 50.7 ± 11.8

TABLE I. Bayes factors for different 10-frequency CURN
spectral models compared to a power-law when refitted to
a PTA free-spectrum via the Ultranest nested sampler [63].
As expected, a power-law model is favored over every other
tested model.

PTA likelihood given the combination of parameter di-
mensionality and slow evaluation time for larger arrays.
In the PTA literature, nested sampling has been used be-
fore, but only for a small collection of pulsars [62]. Our
new techniques now make spectral model selection via
nested sampling feasible for larger PTAs.

Table I compares Bayes factors between various spec-
tral models and the injected power-law behavior from
the same case-study simulation as Figure 3, using the
PTA free-spectrum refitting technique. A broken power-
law has power-law behavior at low frequencies that then
transitions into (in this case) a flat spectrum at higher
frequencies in order to account for a white-noise floor in
real data. This is used often in production-level analyses
as a data-driven way of identifying the optimal number
of frequencies with which to model a common red-noise
process such that the inference is not biased by white
noise [10]. A turnover model is similar in spirit to the
broken power-law—in that it is effectively two power-
laws connected by a bend—but motivated as a way to
model low-frequency SGWB spectral attenuation from
a binary population’s interactions with their respective
galaxy environments [17, 64]. A t-process model has an
underlying power-law behavior, but with per-frequency
deviations that are constrained by an inverse-Gamma
prior. This is used to account for spectral fuzziness ow-
ing to noise conflation with the CURN, or potentially
even binary-population finiteness influencing the spectral
shape [65]. Unsurprisingly, the power-law is the most fa-
vored model, since it is the injected spectrum. However,
the power-law is only slightly favored over the turnover
model with B = 1.71. This is because we allowed the
range of turnover frequencies to be in any of the 10 mod-
eled GW frequency bins. The model favored the low-
est frequency bin, which made it behave mostly like a
power-law. The broken power-law’s bend frequency was
also allowed to vary across all frequencies, however it is
much less favored than the power-law because its spectral
index at frequencies greater than the bend frequency is
fixed at zero, which the data do not support. Similarly,
the injected power-law signal is so strong that any noise-
induced deviations from it are small, thereby disfavoring
the t-process model.

Using our spectral refitting techniques, it is now possi-
ble to systematically explore the evidence for various real-
istic SGWB spectra in PTA data. We however emphasize
that this is currently only for spectral model selection;
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FIG. 6. The median, 1-σ, and 2-σ posterior credible constraints on log10 A, γ for a power-law process as a function of the
number of modeled frequencies, Nf . The blue regions signify the constraints from fitting to the lowest frequency upwards
(where these frequencies are explicitly shown in blue on the top x-axis)

, while the grey signifies fitting from the tenth frequency downwards. As the number of frequencies increase, the posteriors
become more constrained towards the injected parameter values (dashed black lines). For the PTA free-spectrum refit, we see
the expected behavior of the blue contours constraining the parameters more quickly than the grey. Qualitatively, GFL Lite

(right column) performs as well as the PTA free-spectrum refit (left column).

necessary developments for performing model selection
between inter-pulsar correlated models (e.g., monopole,
dipole, Hellings–Downs), or to assess evidence for the
presence of a CURN process over only intrinsic per-pulsar
noise, are discussed in section IV.

D. Evolution of Bayesian spectral constraints with
number of GW frequencies and pulsars

Given that spectral characterization is now trivial with
our refitting techniques, we use our simulations to study
how the Bayesian inference of spectral characteristics
evolves with the number of modeled GW frequencies and
pulsars.

1. Dependence on number of GW frequencies

In Figure 6 we recover the Bayesian posterior for a
CURN power-law process on our case-study simulation

as a function of the number of modeled GW frequencies.
Typically, we fit a common-process model to the Nf low-
est GW frequencies; this is shown by the blue regions.
However, we may also fit a power-law to our highest Nf

frequencies, given by the grey contours. This gives a com-
parison between the information content of the highest
versus lowest frequencies. The SGWB spectrum from
astrophysical or cosmological sources is expected to be
red, with more power at lower frequencies. Hence, PTAs
should be more sensitive to the SGWB at frequencies of
∼ 1/T than at higher frequencies, where intrinsic per-
pulsar red noise and white noise can dominate [66, 67].
Therefore we expect the blue contours to converge toward
the lines of injected values faster than the grey contours;
we see this for both the PTA free-spectrum refit and GFL
Lite techniques, where the posterior spread in recovered
parameters decreases significantly after only two frequen-
cies. The grey contours (representing fitting from higher
frequencies downwards) remain wide for a larger number
of modeled frequencies, where both techniques require
eight frequencies to converge on the spectral index γ,
while the recovered amplitude converges on the injection
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FIG. 7. The median, 1-σ, and 2-σ posterior credible con-
straints on log10 A, γ for a power-law process as a function of
the number of modeled pulsars, Np. The blue regions signify
posterior constraints of a 10 frequency power-law CURN fit-
ted to the Np-pulsars with the longest observing timespans,
while the grey regions are the corresponding constraints from
the Np shortest-timed pulsars. The black dashed line denotes
the injected SGWB spectral characteristics.

after only 4 frequencies. As expected, PTAs derive most
information on SGWB spectral characteristics from the
lowest analyzed GW frequencies, by virtue of the fact
that red noise processes have more power there.

2. Dependence on number of pulsars

We may also analyze the SGWB parameter posterior
recovery as a function of the number of pulsars Np in
our PTA (Figure 7), this time using the GFL Lite tech-
nique. Given the large number of combinations with
which Np pulsars can be chosen from the array of 45,
we only look at two sets of analyses, where we either add
pulsars by decreasing or increasing timespan. Similar to
section IIID 1, pulsars with longer observational times-
pans should be more informative of lower GW frequen-
cies, where the signal is expected to be strongest. There-
fore, we expect—and indeed, observe—that the blue con-
tours converge on the injected parameter values faster
than the grey contours, requiring only the∼eight longest-

timespan pulsars before the median and posterior cred-
ible regions of the recovered spectral characteristics be-
come approximately constant. By contrast, the ∼ 35
shortest-timed pulsars are required to recover the same
precision as those eight longest-timed pulsars.

3. Characterization through the effective number of pulsars

From these analyses, it is clear that not all pulsars and
frequencies contribute equally toward spectral character-
ization. Frequencies with more noise than others will be
down-weighted in spectral model fitting, as will pulsars
whose overall noise level exceeds that of others. Using
the GFL Lite free-spectrum of each pulsar, we can calcu-
late the effective number of pulsars Neff in an Np-pulsar
PTA searching for an Nf frequency power-law SGWB
spectrum. We adapt and modify Eq. (8) in Cornish and
Sampson [68] to the case of spectral characterization, also
accounting for the uncertainty on the free-spectrum mea-
surements:

Neff =

∑Np

p=1

∑Nf

k=1 1/σ(log10 ρp,k)
2

max1≤p≤Np

∑Nf

k=1 1/σ(log10 ρp,k)
2
, (13)

where σ is measurement uncertainty. The free-spectrum
posteriors log10 ρp,k come from the p-th pulsar and k-th
frequency of the GFL Lite free-spectrum pipeline. We es-
timate the measurement uncertainty of the posterior of
the p-th pulsar and k-th frequency with σG, a rank-based
estimate of the standard deviation to account for distri-
bution non-Gaussianity, σG ≈ 0.7413× IQR, where IQR
is the interquartile range, and the prefactor originates
from computing the IQR of a Gaussian [69]. However,
some posteriors are prior-dominated and uninformative,
and estimating the standard deviation will return, at
worst, that of the prior. We determine which pulsar and
frequency posteriors are uninformative by computing the
Savage-Dickey density ratio [56], which, in this case, is
used to estimate the Bayes factor between a model with
and without a CURN process in a given pulsar, at a
given frequency. B > 1 suggests that a CURN process
is supported, while if B < 1, we determine that it is
uninformative and set σ = ∞. The normalization of
Equation 13 ensures that Neff ≥ 1 for all Np and Nf .
Therefore Neff is the effective number of pulsars relative
to the most constrained (i.e., least noisy, and therefore
most informative) pulsar for spectral characterization in
the array. For a PTA with heterogeneous pulsar spectral
uncertainties, Neff < Np, while a PTA with homogeneous
uncertainties would have Neff = Np.
Figure 8 shows the relationship between the power-law

parameter uncertainties as a function of Neff . We fitted
a 10-frequency, Np-pulsar powerlaw with the GFL Lite
pipeline, adding pulsars in order of the greatest to small-

est value of
∑Nf

k 1/σG(log10 ρp,k)
2, i.e., in order of most-

constrained to least-constrained pulsar spectrum. We
computed the marginalized posterior uncertainty on both
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FIG. 8. The relationship between the effective number of
pulsars in a PTA, Neff , and the uncertainty on the spectral
parameters (see text for a definition of σG), derived using
GFL Lite. We increase Np and keep the number of GW fre-
quencies as 10. The recovered parameter uncertainties scale
approximately as the expected 1/

√
Neff for both log10 A and

γ.

power-law parameters using the rank-based standard-
deviation estimate σG, defined es earlier. We see here
that increasing the number of real pulsars increases the
effective number of pulsars in the PTA, and decreases σG

for both parameters. These studies allow us to posit a
general relationship for spectral constraints in Bayesian
PTA analyses, where σG ∝ 1/

√
Neff , as one may expect

for a standard-deviation-type quantity computed from a
data sample.

E. Recreating the results of the NANOGrav
12.5-year data set

We now apply our refitting techniques to the
NANOGrav 12.5-year data set to assess performance
against published results. Analysis of the NANOGrav
12.5-year data set did not find significant evidence for
Hellings & Downs inter-pulsar correlations, however,
there was strong evidence for a CURN process. The
posterior probability density for an analysis with a 5 fre-
quency power-law CURN process (including 30 frequency
power-law per-pulsar intrinsic red noise) is shown in Fig-
ure 9, along with a PTA free-spectrum refit and GFL
Lite analysis on this data set. The PTA free-spectrum
refit is consistent with the published full likelihood with
a Hellinger distance of H = 0.13.

For GFL Lite, we modeled a 5-frequency free-spectrum
and 30-frequency power-law (to model the intrinsic red
noise), and refit to the 5 free-spectrum posteriors. We
found that, because there is excess unmodelled noise in
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FIG. 9. Fitting a 5 frequency power-law to the NANOGrav
12.5-year data set via the PTA free-spectrum refit technique
(blue) and GFL Lite analysis (green and dotted black). We
compare our analyses to the published posterior (orange). We
find excellent agreement between the published result and the
PTA free-spectrum refit, which attains a Hellinger distance of
H = 0.13. The 45-pulsar GFL Lite analysis does not recover
the full likelihood posterior as well (H = 0.31). However,
removing one mismodeled pulsar results in better performance
(green, H = 0.12) – see text for details.

the real data set2, modeling a greater number of frequen-
cies with the free-spectrum in each individual pulsar re-
sulted in noise corruption, causing the free-spectrum to
be conflated with intrinsic red noise in some pulsars. This
is not a problem in the PTA free-spectrum refit, where
the strength of the CURN from all of the pulsars inhibits
the potential conflation with intrinsic red noise in pulsars
that have misspecified noise models. Keeping the GFL
Lite free-spectrum to just 5 frequencies, and allowing the
intrinsic red noise to be informed by 30 frequencies, at-
tempts to limit this confusion. Unfortunately for pulsar
B1855+09, the power-law is a poor model for its intrinsic
red noise, resulting in the free-spectrum posterior recov-
ering the strong intrinsic red noise of this pulsar rather
than the CURN. When a 5 frequency GFL Lite refit is
conducted, this pulsar is influential, causing the GFL Lite
refit posterior to appear slightly offset from that of the
full PTA likelihood in Figure 9, with a Hellinger distance
of H = 0.31. Removing this pulsar results in a more con-
sistent refit, with a Hellinger distance of just H = 0.12.
For the remainder, unless otherwise specified, we conduct
the GFL Lite refit with just 44 pulsars. Improving the
modelling of B1855+09 is beyond the scope of this paper
and we discuss how we can improve analysis of pulsars
like it in section IV.
Table II shows the results of model selection for various

2 The potential for model misspecification in pulsar timing
datasets when only simple noise models are used has now been
recognized. Ameliorating this requires custom noise modeling.
This has been challenging to incorporate in large-array studies,
but is recognized as the correct path forward.
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Disfavored model Favored model B
γ=13/3 power-law power-law 1.17 ± 0.40
broken power-law power-law 1.82 ± 0.34

turnover power-law 2.23 ± 0.57
t-process power-law 1.83 ± 0.57

TABLE II. Bayes factors B for different 5-frequency common-
process spectral models compared to a power-law, when re-
fitted to a PTA free-spectrum for the NANOGrav 12.5-year
data set. The power-law has varied spectral index γ unless
stated.

5-frequency spectral models with the PTA free-spectrum
refit via nested sampling, a technique that estimates the
Bayesian evidence of a model, and which we introduced in
section III C. We see that a varied-γ power-law is barely
favored over a γ = 13/3 power-law, and γ = 13/3 is not
ruled out by these data. There is a little more evidence to
favor a power-law over broken power-law, turnover, and
t-process spectra, however none of these are substantial.

We also characterize the spectral recovery as a function
of the number of modeled GW frequencies and pulsars.
The PTA free-spectrum refit to increasing numbers of
low GW frequencies (blue) in the left panel of Figure 10
shows a similar “shallowing” of the spectrum as seen in
Arzoumanian et al. [10], where γ trends toward ∼ 2− 3,
potentially due to coupling with unmodeled excess higher
frequency noise. Meanwhile, increasing the number of
frequencies from f = 30/T downwards tends to have a
broad, unconstrained posterior for all frequencies consis-
tent with low γ i.e. a flatter power spectrum typified by
white noise. Fitting up to the first 5 frequencies, GFL
Lite is consistent with the PTA free-spectrum refit. In
the right panel, we use GFL Lite to fit a 5 frequency
power-law to an increasing number of pulsars (including
B1855+09), added by decreasing pulsar timespan (green)
and increasing pulsar timespan (grey). As with Figure 7,
the green posterior is constrained after relatively few pul-
sars are added (∼ 14),3 while the grey posterior is un-
constrained, particularly for γ, until the final 10 pulsars
are added.

Finally, we also analyze the measurement uncertainty
of {log10 A, γ} as a function of the effective number of
pulsars, Neff , using the GFL Lite technique. Figure 11
shows σG of parameters for a 5 frequency power-law
model as a function of Neff as we increase the number
of pulsars in the array in order of greatest to the smallest

value of
∑Nf

k 1/σG(log10 ρp,k)
2. We use the same meth-

ods as section IIID 3. Again, we observe an approximate
1/
√
Neff scaling relationship. We need at most 4 pulsars

3 The 14 pulsars are J1744-1134, J1455-3330, J1012+5307,
B1937+21, J2145-0750, J1909-3744, J1918-0642, J1643-1224,
J2317+1439, B1855+09, J1713+0747, J0030+0451, J1640+2224
and J0613-0200. It is likely that removing B1855+09 would re-
sult in better constraining power.

that are equivalent to the best modeled pulsar in order
to effectively recover the spectral characteristics of the
CURN from this data set. We also notice that the real
data set has fewer numbers of effective pulsars than our
earlier simulated data sets, due to the data model of the
simulations being entirely known and prescribed.

IV. CONCLUSIONS & FUTURE PROSPECTS

We have developed a set of rapid and robust spectral
refitting techniques that operate on posterior samples
from pulsar and PTA Bayesian periodogram analyses,
where the power spectral density is jointly modeled by
free parameters at each GW frequency (sometimes re-
ferred to in the PTA literature as free-spectrum analyses).
This is a generalization of our previously-developed Fac-
torized Likelihood (FL) technique [31], where GW back-
ground amplitude posteriors for fixed power-law spec-
tral index models are combined in post-processing, under
the assumption that spectral characterization is mostly
driven by autocorrelation information in the PTA covari-
ance matrix. The main limitation of FL was its condi-
tioning on a GW-background spectral model with a fixed
power-law spectral index. Our new formulations loosen
that assumption, allowing for refitting and inference of
arbitrary spectral models.
In order of generality, we assessed the performance of:

a model that refits on a Bayesian PTA free-spectrum
(PTA free-spectrum refit); and one that refits on the com-
bination of per-pulsar free-spectra, which act as proxies
for the CURN signal in each pulsar, with intrinsic per-
pulsar red noise modeled separately (GFL Lite). These
techniques are several orders of magnitude faster in eval-
uating their likelihood functions when compared to the
production-level PTA pipeline, and also scale much more
favorably when adding new pulsars. These gains in speed
and scalability will be important in safeguarding PTA
analyses from future bottlenecks, as significantly more
data and pulsars are added to arrays through IPTA com-
binations and high-cadence observations in MeerTime
[70], CHIME [71], and (farther in the future) the SKA
[72].
We assessed the fidelity of parameter estimation us-

ing a set of 100 realistic PTA data sets based on the
NANOGrav 12.5-year data set that is extended into the
future, and into which realizations of a GW background
are injected with power-law spectral characteristics based
on supermassive black-hole binary population models.
Through Hellinger-distance comparisons—which assess
the distance between probability distributions—we found
that the PTA free-spectrum refit and GFL Lite analy-
ses are equivalent in performance, and consistent with
the full production-level PTA likelihood analysis. While
equivalent, we recommend using these refit methods in
the following cases. For the PTA free-spectrum refit, it
should be used when one is analyzing the evolution of
spectral characterization with the number of GW fre-
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FIG. 10. Left: The median, 1-σ, and 2-σ posterior credible constraints on log10 A, γ for an Nf frequency power-law as a
function of number of GW frequencies in the NANOGrav 12.5-year data set. In blue, we show increasing number of frequencies
from the lowest bin and increase upwards to f = 30/T for the free-spectrum refit, and in green, we show the same analysis for
GFL Lite upwards to 5/T which is consistent with the blue contour. In grey, we show addition of frequencies from f = 30/T
downwards for the free-spectrum refit. We observe a similar shallowing of the spectrum as Arzoumanian et al. [10] when a
larger number of frequencies are modeled because of the contribution of white noise. Right: A 5-frequency power-law is fit to an
increasing number of pulsars in the NANOGrav 12.5-year data set, where green regions show constraints from adding pulsars
in longest- to shortest-timed order. The blue posteriors are well constrained after ∼ 14 pulsars, while the grey posterior require
∼ 36 pulsars out of 45 to be constrained. Hence, the longest 14 pulsars are the most important for spectral characterization in
this data set.

quencies, because combined influence of the PTA will
make it less likely to confuse a CURN process with high-
frequency white and/or mismodelled noise. If available,
this technique can also be used to refit on PTA free-
spectral posteriors that have an assumed inter-pulsar cor-
relation signature. For example, in the case study pre-
sented in Figure 3, the Hellinger distance (closer to zero
is better) of the PTA free-spectrum refit was 0.06 when
refitting on the HD-correlated free-spectrum, compared
to 0.10 from the CURN free-spectrum. Additionally,
we showed that the PTA free-spectrum refit technique
allows us to trivially perform spectral-model selection.
The GFL Lite technique should be used in studying how
different subsets of frequencies and pulsars—e.g., long-
baseline pulsars versus short-baseline pulsars—affect the
spectral characterization of a CURN process (which is
used as an approximate spectral model of the GW back-
ground). Care must be taken to ensure that, at the single
pulsar level, the CURN process and intrinsic pulsar noise

are not being conflated, as this will reduce the accuracy
of the refitted posterior when compared to the full PTA
likelihood. GFL Lite is more sensitive to noise misspecifi-
cation than the PTA free-spectrum refit, since the latter
has the benefit of many other pulsars to mitigate the
impact of noise and CURN conflation.

We plan for a further generalization of the GFL Lite
method, called GFL, which will have the advantage of al-
lowing trivial changes to the spectral models and priors of
the intrinsic red noise in each pulsar. This method will
enable quick GW-background analyses in the presence
of advanced per-pulsar red-noise models that are cus-
tomized to each pulsar, which is currently not tractable
with the production-level PTA pipeline for large arrays.
As shown in section III E, model misspecification of in-
trinsic red noise results in an inaccurate refitted poste-
rior; advanced noise modeling, in concert with GFL, will
improve SGWB spectral characterization for more pul-
sars and numbers of GW frequencies [73]. We also sus-
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. We fit a 5-frequency power-law to an increasing number of
pulsars in the array. About 12 pulsars (Neff ∼ 3.6) inform
the spectral characteristics of the CURN, with a scaling of
1/

√
Neff . We use the single pulsar free-spectra from GFL

Lite for calculating Neff .

pect that the main loss of information and fidelity at the
moment is through the sampling and representation of
the distribution tails of the per-pulsar free-spectral pos-
teriors. A potential solution to this is to use Gibbs tech-
niques and to draw directly from the analytic conditional
posteriors of our free-spectral parameters, which has been
shown to have better tail sampling [74, 75]. This work
will appear in a future publication.

Improvements to the representation of the posterior
densities could be achieved through alternative KDE ker-
nel functions that have more gradual drop-offs in sup-
port. If information is being lost in our density esti-
mation, then performance gains may be made through
multivariate KDEs across frequencies, or other higher-
dimensional density estimation techniques based on neu-
ral network architectures, such as normalizing flows [76].
Another avenue is based on likelihood reweighting tech-
niques, where an approximate distribution that is eas-
ier to sample is used to generate many random draws,
then a subsequent reweighting stage updates these sam-
ples based on their support under the correct (potentially
computationally-expensive) distribution [see, e.g., 77, for
a recent PTA application]. Given the speed with which
GFL refit analyses can be conducted, we could subse-
quently reweight these samples to match the full PTA
likelihood. While this procedure will add extra compu-
tation time, it would still be quite a bit faster than a full
pipeline analysis.

We also envision that future development of GFL-style
refitting techniques will include inter-pulsar correlations,
which would be the zenith of stochastic GW-background
modeling through compressed sufficient statistics. While
our current techniques are based on power-spectrum

modeling, we would need to recover the Fourier coeffi-
cients of the timing residuals in order to retain phase
information among the pulsars. We would then need to
accurately represent the likelihood distribution of these
Fourier coefficients, using density estimation techniques,
to act as sufficient statistics for inter-pulsar correlation
studies. There is ongoing development along these lines
to replace the current production-level PTA pipeline and
ensure that future Bayesian PTA analyses with signifi-
cantly larger data sets will continue to be tractable.
The new techniques presented in this paper will

have several immediate benefits for astrophysical- and
cosmological-model testing with PTA data. The demo-
graphics and dynamics of supermassive black-hole binary
populations is encoded in the amplitude and shape of the
GW characteristic strain spectrum in the PTA band. Our
techniques offer a path to use intermediate data prod-
ucts (i.e., Bayesian free-spectrum posteriors) for rapid
spectral parameter estimation and model selection. Like-
wise, several potential sources of early-Universe GW-
background signals give rise to strain spectra that deviate
from the expected form of the supermassive black-hole
binary population signal, e.g., a phase transition may
produce a more peaked spectrum than the power-law ex-
pected from binaries.
We plan to use our fast and flexible techniques to study

milestones for PTA spectral estimation, such as what can
be inferred in the near future about SMBHB populations,
and the conditions under which cosmological background
signals could be inferred beneath a dominant astrophys-
ical signal. Answering these questions, and developing
the spectral-estimation techniques with which they are
addressed, are key to illuminating the path for PTA sci-
ence in the next decade.

A. Software

The introduced refit methods are featured in a new
analysis suite called ceffyl for quick model selection and
parameter estimation of spectra given PTA data. This
is achieved by creating condensed data products repre-
senting the Bayesian spectra of a PTA’s timing resid-
uals. The data are represented by highly optimized
KDEs from which we can extract probabilities to form
Bayesian likelihoods to estimate our PTA likelihoods and
to rapidly recover posteriors to our models. The suite em-
ploys code from enterprise [36], which was also used to
create our free-spectra and the full likelihood posteriors
to which our analyses were compared. The PTA free-
spectrum refit method is featured in the wrapper code,
PTArcade [78]. We conducted parameter estimation via
MCMC with PTMCMC [79], which utilizes parallel temper-
ing and empirical proposal distributions for more effi-
cient sampling of the parameter space, while the nested
sampler UltraNest [63] is used for model selection. To
calculate the relevant KDE bandwidths, we translated
the Sheather-Jones algorithm from an R implementation

https://github.com/astrolamb/ceffyl
https://github.com/andrea-mitridate/PTArcade
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[80] into Python; this code is now contained within the
ceffyl suite. The KDEs are created using the FFTKDE
method in KDEpy [81], and we use ChainConsumer [82] to
create our corner plots to compare posteriors. The suite
of PTA simulations were created with libstempo [83].
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Appendix A: Kernel Density Estimators

Selecting the optimal kernel K and bandwidth h typ-
ically focuses on minimizing the asymptotic mean inte-
grable squared error (AMISE) between the underlying

distribution f and the reconstructed estimator f̂ given
N samples:

AMISE(h) =
R(K)

Nh
+

1

4
σKh4R(f ′′). (A1)

Here, R(g) =
∫
g(x)2dx for any function g, and σ2

K =∫
x2K(x)dx > 0 is the second moment of the kernel, at

a given point x. The second derivative f ′′ is with respect
to x. Note that if the kernel is normal with standard
deviation σ, σ2

K = σ2.
The optimal bandwidth h∗ is found by minimizing

Equation A1 with respect to h such that

h∗ =

(
R(K)

σ4
KR(f ′′)

) 1
5

N− 1
5 . (A2)

If the kernel is normal with standard deviation σK = 1,
and the underlying distribution f is known to be normal
with standard deviation σ, bandwidth selection is trivial:
h∗ = 1.06 σ̂ N−1/5, where σ̂ is the standard deviation of
the samples.
However, f is not always known and a method is re-

quired to reduce the AMISE without prior knowledge of
f . One such method is the Sheather-Jones plug-in selec-
tor [48]. It computes the optimal bandwidth h∗ by esti-
mating R(f ′′) and iteratively solving Equation A2 with
the Newton-Raphson method. This is a fast and effective
bandwidth selector which we use in our KDE reconstruc-
tions.
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FIG. 12. A demonstration on the importance of good sam-
pling to construct an accurate KDE. We randomly drew 100,
1000, and 10000 points from a Rayleigh distribution f(x),

and created the KDE f̂(x) with the Epanechnikov kernel [47]
and a bandwidth selected by the Sheather-Jones method [48].
The bottom panel shows the absolute difference between the
actual distribution and its reconstruction.

After the optimal bandwidth is selected, substituting
Equation A2 into Equation A1 finds the following rela-
tion between the AMISE and the kernel:

AMISE(h∗) ∝ [σKR(K)]
4
5 . (A3)

The optimal kernel is the kernel which minimizes this
relation. This is the Epanechnikov kernel [47] which has
the form

K(x) =
3

4
(1− x2), x ∈ [−1, 1]. (A4)

We expect to collect samples at the lower boundary of the
free-spectrum prior. To ensure accurate KDE represen-
tation of the samples at the boundary, we mirror the data
at the boundary point and fit the KDE to the mirrored
data. This reduces the bias induced at the boundary.
We then compute probability densities along a grid of
log10 ρ within the prior boundaries that is finer than the
bandwidth size.

Figure 12 shows a toy model of using KDEs to recre-
ate a distribution. We randomly drew 100, 1000, and
10000 points from a Rayleigh distribution, f(x) =

n 0.25 0.50 0.75 1.0 1.5 2.0 3.0 4.0
H 0.09 0.18 0.26 0.34 0.50 0.63 0.82 0.93

TABLE III. The Hellinger distance, H, between two univari-
ate normal distributions with equal standard deviations, yet
with means offset by a certain number of standard deviations,
n.

x exp
(
−x2/2

)
, and recreate the distribution from those

random samples using a KDE with the aforementioned
optimizations. The reconstruction improves as the num-
ber of random draws in the training sample increases.
Constructing a KDE with 10000 random samples from
the distribution more accurately estimates the original
distribution than using less number of samples. There-
fore, the more data points we draw from the original
distribution, the smaller the absolute difference between
the distribution and its reconstruction.

Appendix B: The Hellinger Distance

Given probability density functions f(x⃗) and g(x⃗) in
N -dimensional parameter space, the Hellinger distance
H is defined as

H2(f, g) =
1

2

∫ (√
f(x⃗)−

√
g(x⃗)

)2

dNx

= 1−
∫ √

f(x⃗)g(x⃗)dNx.

We choose the Hellinger distance as a metric for re-
fitting accuracy over other distance measures—such as
Jensen-Shannon—as it is bounded 0 ≤ H ≤ 1, and valid
for multivariate distributions. A value of H = 0 implies
that distributions are identical, while H = 1 implies that
they do not have any overlap and are completely different
distributions.
Our goal in building rapid and accurate refitting tech-

niques is to ensure the Hellinger distance with respect
to the posterior derived from the full PTA likelihood
is sufficiently small. The interpretation of what suffi-
ciently small means is problem-specific, but some guid-
ing intuition can be gleaned from simple analytic exam-
ples. One can show that the Hellinger distance between
two univariate normal distributions, f ∼ N (µ1, σ1) and
g ∼ N (µ2, σ2), is

H =

{
1−

√
2σ1σ2

σ2
1 + σ2

2

exp

[
−1

4

(µ1 − µ2)
2

σ2
1 + σ2

2

]}1/2

, (B1)

where µ and σ are the mean and standard deviation of
the respective distributions. For distributions of equal
standard deviation, but with their means offset from one
another by a certain number, n, of these standard devi-
ations, the Hellinger distance is

H =

[
1− exp

(
−n2

8

)]1/2
. (B2)
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A 1-σ offset between these normal distributions may not
typically be regarded as a significant disparity, and cor-
responds to a Hellinger distance of 0.34. Values for other
n are given in Table III.
In Figure 13 we show some examples of univariate nor-

mal distributions with different means and standard de-
viations. Assuming we generate n = 100 realizations
from these distributions, we show what the associated p-
p plots would be, and the Hellinger distance between the
distributions.
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FIG. 13. Examples of what p-p plots look like for distributions that are approximately, but not entirely, equal to the true
posterior (here the standard normal distribution N (0, 1) – the blue curves in the insets), if we assume that we create n = 100
realizations of data. The orange curves in the insets show a modified normal distribution N (µ, σ): our approximated posterior.
The large figures show the corresponding p-p plots. At the top we have indicated the associated Hellinger distance between the
two posteriors.
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