
Astronomy
&Astrophysics

A&A, 679, A20 (2023)
https://doi.org/10.1051/0004-6361/202347356
© The Authors 2023

PulsarX: A new pulsar searching package

I. A high performance folding program for pulsar surveys

Yunpeng Men1, Ewan Barr1, Colin J. Clark2,3, Emma Carli4, and Gregory Desvignes1

1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: ypmen@mpifr-bonn.mpg.de

2 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstraße 38, 30167 Hannover, Germany
3 Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
4 Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL,

UK

Received 4 July 2023 / Accepted 5 September 2023

ABSTRACT

Context. Pulsar surveys with modern radio telescopes are becoming increasingly computationally demanding. This is particularly true
for wide field-of-view pulsar surveys with radio interferometers and those conducted in real or quasi-real time. These demands result
in data analysis bottlenecks that can limit the parameter space covered by the surveys and diminish their scientific return.
Aims. In this paper we address the computational challenge of ‘candidate folding’ in pulsar searching, presenting a novel, efficient
approach designed to optimise the simultaneous folding of large numbers of pulsar candidates. We provide a complete folding pipeline
appropriate for large-scale pulsar surveys that includes radio frequency interference mitigation, de-dispersion, folding, and parameter
optimisation.
Methods. By leveraging the fast discrete dispersion measure transform (FDMT) algorithm, we have developed an optimised and
cache-friendly implementation that we term the pruned FDMT (pFDMT). This implementation is specifically designed for candidate
folding scenarios where the candidates are broadly distributed in dispersion measure space. The pFDMT approach efficiently reuses
intermediate processing results and prunes the unused computation paths, resulting in a significant reduction in arithmetic operations.
In addition, we propose a novel folding algorithm based on the Tikhonov-regularised least squares method that can improve the time
resolution of the pulsar profile.
Results. We present the performance of its real-world application as an integral part of two major pulsar search projects conducted
with the MeerKAT telescope: the MPIfR-MeerKAT Galactic Plane Survey (MMGPS) and the Transients and Pulsars with MeerKAT
(TRAPUM) project. In our processing of approximately 500 candidates, the theoretical number of de-dispersion operations can be
reduced by a factor of around 50 when compared to brute-force de-dispersion, which scales with the number of candidates.

Key words. methods: data analysis – pulsars: general

1. Introduction

Pulsars are compact stars that emit pulsed radiation at their
rotational period (e.g. Hewish et al. 1968). The remarkable
rotational stability of pulsars allows them to be treated as
precise clocks, providing a natural tool for the measurement
of astrophysical phenomena (e.g. Verbiest et al. 2008). Pulsars
in binary systems can be used to test the limits of general
relativity (e.g. Kramer et al. 2021) or the equation of state of
supra-nuclear matter (e.g. Demorest et al. 2010; Antoniadis et al.
2013), while an array of pulsars distributed across the sky offers
a natural detector for low-frequency gravitational waves (e.g.
EPTA Collaboration and InPTA Collaboration 2023; Agazie
et al. 2023; Reardon et al. 2023; Xu et al. 2023). Furthermore,
in the case of radio pulsars, the broadband radio emission
is altered by its propagation through the interstellar medium
(ISM), allowing the inference of properties such as the Galactic
free electron density (e.g. Cordes & Lazio 2002; Yao et al. 2017)
and magnetic field (e.g. Han et al. 2018).

Since the discovery of the first pulsar (e.g. Hewish et al.
1968), more than 3000 sources have been discovered through
pulsar searches, including Galactic plane and all-sky surveys

(e.g. Large et al. 1968; Manchester et al. 1996; Cordes et al. 2006;
Keith et al. 2010; Barr et al. 2013a; Stovall et al. 2014; Sanidas
et al. 2019; Han et al. 2021; Padmanabh et al. 2023), globular
clusters searches (e.g. Ransom et al. 2005; Hessels et al. 2007;
Possenti et al. 2001; Pan et al. 2021; Ridolfi et al. 2021, 2022),
and targeted observations of high-energy sources (e.g. Ransom
et al. 2011; Cognard et al. 2011; Keith et al. 2011; Kerr et al.
2012; Camilo et al. 2015; Barr et al. 2013b; Cromartie et al. 2016;
Wang et al. 2021; Bhattacharyya et al. 2021; Clark et al. 2023).
In these surveys, SIGPROC (Lorimer 2011) and PRESTO (Ransom
et al. 2002) have been two of the most popular software packages
used for pulsar searching, both of which are CPU-based. The
pulsar searching pipeline usually consists of several key stages:
(1) Radio frequency interference (RFI) mitigation is performed
to remove non-astrophysical signals from the raw data. (2) De-
dispersion is performed to correct for the frequency-dependent
delay caused by the propagation of the radio signal through
the ISM. (3) Acceleration searching is performed to detect sig-
nals with periods that are changing as a function of time due
to binary motion. (4) Finally, candidate folding is performed to
extract the time- and frequency-resolved pulse profile of each
detected signal. To improve performance, GPU-based software

A20, page 1 of 10
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Open access funding provided by Max Planck Society.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202347356
mailto:ypmen@mpifr-bonn.mpg.de
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs

Men, Y., et al.: A&A, 679, A20 (2023)

has also been developed to speed up the acceleration search (e.g.
Allen et al. 2013; Dimoudi et al. 2018; Barr 2020), for exam-
ple PEASOUP1. However, as presented in Lyon et al. (2016), the
number of candidates produced by contemporary pulsar surveys
is increasing, which is the result of improving survey technical
specifications, such as time resolution and bandwidth. Further-
more, applying a signal-to-noise ratio (S/N) filter to limit the
number of candidates is ineffective, and advanced candidate
selection mechanisms, such as pulsar candidate classifiers, are
required (e.g. Lee et al. 2013; Zhu et al. 2014; Balakrishnan
et al. 2021). These classifiers work on post-folding data, which
requires a larger number of candidates for folding initially.
Therefore, a more efficient candidate folding process is help-
ful when dealing with the increasing number of candidates. In
this work we have developed a new high performance folding
program to address this performance issue; it is part of a new
developing pulsar searching package, PULSARX2.

The algorithms used in our new folding program are pre-
sented in Sect. 2. We show the benchmarks in Sect. 3. The
application of PULSARX to the MPIfR-MeerKAT Galactic Plane
Survey in the L band (MMGPS-L; Padmanabh et al. 2023;
Bernadich et al. 2023) is discussed in Sect. 4, and the conclu-
sions are summarised in Sect. 5.

2. Algorithm

The purpose of the folding pipeline is to generate data cubes
that can be used for visualisation or for classification by machine
learning classifiers. Candidates from the acceleration search are
parameterised by a spin frequency, ν, a spin frequency derivative,
ν̇, and a dispersion measure (DM), as defined in Eq. (2). In the
folding process, the time stamp, t, of each sample in the input
time series is transformed to spin phase ϕ, which is predicted
from ν and ν̇:

ϕ = ϕ0 + νt +
1
2
ν̇t2, (1)

where ϕ0 is the reference phase at t = 0. By integrating data
samples over a discrete range of phase values, we obtain the
signal power as a function of spin phase, otherwise known as
the pulsar’s ‘profile’. To classify a candidate, it is useful to
view the profiles in different frequency sub-bands and time sub-
integrations. Therefore, we performed the folding process over
discrete, contiguous ranges of time and frequency. The resulting
collection of folded pulse profiles is referred to as an ‘archive’.
The reference phase of all profiles in the archive can be adjusted
to account for the difference between true and used values of
DM, ν and ν̇ of the candidate. The S/N of the candidate, summed
over all profiles, will be maximised as these values approach
their true values.

Because the raw data are often contaminated by RFI sig-
nals, it is necessary to perform RFI mitigation before the folding
process. The data are then de-dispersed (see Sect. 2.2) into fre-
quency sub-bands after RFI mitigation. These processes will be
discussed in the following sections, and the data flow diagram is
shown in Fig. 1.

2.1. RFI mitigation

Radio frequency interference signals are a common problem in
radio observations. If not mitigated, RFI signals can significantly
1 https://github.com/ewanbarr/peasoup.git
2 https://github.com/ypmen/PulsarX

RFI mitigation stage 1
(SKF)

Data Block

Normalization

RFI mitigation stage 2
(KF, ZDMF, ...)

Dedispersion

Folding
(multiple candidates)

Optimization

Plotting Candidates

Fig. 1. Data flow of the candidate folding pipeline. The raw data are
divided into blocks, and for each block the following steps are per-
formed: RFI mitigation, normalisation, de-dispersion, and folding. Once
all the data blocks have been folded, parameter optimisation and candi-
date plotting are carried out for each candidate.

affect the profiles estimated during the folding process. Some
algorithms have been widely used to mitigate the RFI signals
(e.g. Offringa et al. 2012; Men et al. 2019; Morello et al. 2022). In
our program, there are several RFI mitigation algorithms avail-
able, including the skewness-kurtosis filter (SKF), the zero-DM
matched filter (ZDMF), and the Kadane filter (KF): (1) The SKF
algorithm removes outliers based on the skewness and kurtosis
of time samples in different frequency channels. (2) The ZDMF
algorithm removes the correlated component between frequency
channels in each channel, as discussed in Men et al. (2019).
(3) The KF algorithm searches for the maximum summation
along time samples in each frequency channel based on Kadane’s
algorithm and replaces them by the mean value or a random
value if the S/N is beyond a given threshold. Figure 2 shows
an example of the SKF, ZDMF, and KF algorithms tested on
observation data of MMGPS-L. Previous research has proposed
using kurtosis-based RFI mitigation in baseband data (Nita et al.
2007). In the SKF, we extended this approach to filterbank data.
Due to the presence of non-Gaussian noise in filterbank data,
we adopted a threshold based on the inter-quartile range instead,
which is similar to the inter-quartile range mitigation (IQRM)
approach presented in Morello et al. (2022). The skewness and
kurtosis definitions of SKF are shown in Appendix A, and the
S/N definition of KF is shown in Appendix B.

A20, page 2 of 10

https://github.com/ewanbarr/peasoup.git
https://github.com/ypmen/PulsarX

Men, Y., et al.: A&A, 679, A20 (2023)

0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

900

1000

1100

1200

1300

1400

1500

1600

1700

Fr
eq

ue
nc

y
(M

Hz
)

0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

900

1000

1100

1200

1300

1400

1500

1600

1700

Fr
eq

ue
nc

y
(M

Hz
)

0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

900

1000

1100

1200

1300

1400

1500

1600

1700

Fr
eq

ue
nc

y
(M

Hz
)

0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

900

1000

1100

1200

1300

1400

1500

1600

1700

Fr
eq

ue
nc

y
(M

Hz
)

Fig. 2. Example of RFI mitigation with SKF, ZDMF, and KF. The test data used are from MMGPS-L and have 2048 frequency channels with a
time resolution of 153 us. The SKF, ZDMF, and KF are applied successively to the raw data. The top-left panel displays the dynamic spectrum of
the raw filterbank data. The top-right panel shows the dynamic spectrum of the data after application of the SKF, which removes the bad frequency
channels. The bottom-left panel shows the dynamic spectrum of the data after application of the ZDMF, which eliminates zero-DM RFI signals
and the baseline variation. Finally, the bottom-right panel shows the dynamic spectrum of the data after application of the KF, which removes
long-duration RFI signals.

2.2. De-dispersion

High frequency resolution is unnecessary for candidate clas-
sification. In addition, de-dispersing the data into sub-bands
with low frequency resolution can accelerate the folding pro-
cess by reducing the number of channels to be processed. As
discussed in Sect. 3, de-dispersion becomes the bottleneck of
the entire pipeline, and we adopted the fast discrete dispersion
measure transform (FDMT) algorithm (Zackay & Ofek 2017)
to speed up this process. However, the FDMT algorithm is
designed for equally spaced DM trials, while candidate DMs
are typically unevenly spaced. To address this, we modified
the FDMT algorithm with a pruning strategy to accommodate
the large, non-uniform DM trials encountered in de-dispersion.
The modifications consist of three parts: (1) reordering the DM
trials to enable in-place computation, which improves cache-
friendliness; (2) pruning the unused intermediate de-dispersion
computations; and (3) applying partial iterations of the FDMT
algorithm to obtain the sub-band data. We refer to our modified
algorithm as the pruned fast discrete dispersion measure trans-
form (pFDMT). Since we were working with filterbank power
data, we applied incoherent de-dispersion to correct for dis-
persion delays between frequency channels. The delay between
frequencies f1 and f2 can be expressed as

τd =
e2

2πmec
DM

 1
f 2
1

−
1
f 2
2

 , (2)

where e,me, and c are the elementary charge, electron mass, and
speed of light in a vacuum, respectively.

The pFDMT algorithm consists of two steps: (1) generating
the de-dispersion tree, which utilises the FDMT algorithm with
a cache-friendly design that allows for in-place computation, and
(2) pruning the tree to reduce the processing. To help explain the
pFDMT algorithm, we first provide some definitions:

– node: A time series of one frequency channel with a specific
DM.

– attribute: A parameter pair, consisting of a DM and channel
index.

– atomic de-dispersion: The process of de-dispersing two
adjacent channels with one DM.

– butterfly: A butterfly is composed of two consecutive atomic
de-dispersions performed on adjacent channels with two
successive DMs.

– stage: Each stage consists of multiple butterflies.
– root: A final de-dispersed time series with all frequency

channels scrunched of a particular DM in the final stage.
In this paragraph, we describe the FDMT algorithm, while the
modification will be described in the following paragraphs. The
de-dispersion tree is composed of multiple stages, where each
stage consists of multiple butterflies. In each stage, the butter-
flies perform de-dispersion on adjacent channels using a finer
DM grid compared to the previous stage. This transformation
results in new nodes with a DM step and a number of channels
that are halved compared to the previous stage after each stage.
Initially, the data consist of Nf frequency channels, at a single
DM trial, for example DM = 0. In each step, pairs of neighbour-
ing channels are de-dispersed at two DM trials spaced by half the
total DM range, and summed together. After the nth stage, there

A20, page 3 of 10

Men, Y., et al.: A&A, 679, A20 (2023)

are therefore Nf/2n sub-bands, de-dispersed at 2n DM values. As
a result, the number of stages can be calculated as log2 Nf . In the
first stage, each pre-transformed node’s attributes correspond to
the channel index and the same DM of the starting DM trial. In
the final stage, we obtain the de-dispersed time series of the DM
trials.

To reduce the algorithm’s complexity, unused atomic de-
dispersions can be pruned using the following steps: (1) starting
from the nodes after the final stage and identifying the unused
roots with DMs that are not among the candidate DMs; (2) prun-
ing the atomic de-dispersions that lead to these roots; (3) moving
to the previous stage and identifying nodes that do not have
atomic de-dispersions to the pre-transformed nodes in the next
stage; (4) pruning these atomic de-dispersions; and (5) repeating
steps (3) and (4) until the first stage is reached.

To reduce the smearing caused by DM errors, we can adjust
the DM step in the final stage of our algorithm. Furthermore,
to improve the range of de-dispersed DMs, we can apply the
pFDMT algorithm to multiple DM trials with different starting
DM values. For larger DMs, intra-channel smearing becomes
significant, and we can enhance computational efficiency by
integrating samples to a coarser time resolution and increasing
the DM step.

Since we only require the sub-band data and not the full
de-dispersed time series, we can optimise the algorithm by stop-
ping at the intermediate stage that corresponds to the desired
number of frequency channels, denoted as Nsub. The compu-
tational operations of the pFDMT algorithm can be expressed
as ηNtNf log2

Nf
Nsub

, where Nt and Nf represent the number of
time samples and frequency channels, respectively. The filling
factor of all atomic de-dispersions, denoted by η, is dependent
on the distribution of the DM trials. In contrast, the operations
of performing brute-force de-dispersion for each candidate are
NtNf Ncand, where Ncand is the number of candidates. The com-
putational operations are reduced by a factor of Ncand

η log2(Nf/Nsub) .
The pseudo-code of the pFDMT algorithm is presented in
Algorithm 1, and Fig. 3 illustrates an example with eight fre-
quency channels. To execute the pFDMT algorithm in a CPU
cache-friendly manner, we implemented a depth-first traversal
recursive process, and the butterfly can be performed in place.
Hence, the space complexity of the algorithm is O(NtNf).

2.3. Folding

To enhance the visual significance of the candidate’s profile and
preserve its time variation information, we can perform intensity
integration of the sub-banded data based on the spin phase over
successive time spans. This process, known as folding, can be
viewed as the estimation of the profile, s, of a periodic signal
from the intensity time series, x. If we disregard the effects of
sampling, we can model the intensity, x, as

x(t) = s(ϕ(t)) + n(t), (3)

where ϕ(t) is the phase at time t that can be calculated from
Eq. (1). n is the noise, which is assumed as Gaussian white noise
with a mean of zero and a variance of σ2 in our calculation. The
profile s can be approximated by a step function, given by

s(ϕ) =
N−1∑
k=0

ck fk(ϕ), (4)

fk(ϕ) =
{

1 k < Nϕ < k + 1,
0 otherwise, (5)

Algorithm 1 Pseudo code of the pFDMT algorithm. DDD is a
one-dimensional array with the shape of (Nf), and DDDidm,ichan =
DDD[ichan ∗ ndm + idm], where ndm is the number of DMs at the
current stage. XXX is the spectra before performing the first stage,
e.g. a two-dimensional array with the shape of (Nf , Nt), which
is updated in the subsequent stages. Specifically, XXXidm,ichan =
XXX[ichan ∗ ndm + idm, :]. depth is defined as the difference in
stage indices between the root and the current stage of the
de-dispersion tree.

1: for isub = 1, 2, . . . , nsub do
2: DEDISPERSE(depthnsub, isub)
3: end for
4: procedure DEDISPERSE(depth, ichan)
5: if depth == log2 Nf then
6: DDD0,ichan = DM start
7: return
8: end if
9: DEDISPERSE(depth+1, 2*ichan)

10: DEDISPERSE(depth+1, 2*ichan+1)
11: for idm = 1, 2, . . . , ndm do
12: DDDidm,2∗ichan+1 += DM step at current depth, i.e. 2depth

times DM step at the root
13: d0 = DDDidm,2∗ichan
14: d1 = DDDidm,2∗ichan+1
15: BUTTERFLY(XXXidm,2∗ichan, XXXidm,2∗ichan+1, d0, d1)
16: end for
17: end procedure
18: procedure BUTTERFLY(xxx, yyy, d0, d1)
19: if path0 is activated then
20: perform de-dispersion between xxx and yyy with DM =

d0
21: update xxx with the de-dispersed time series above
22: end if
23: if path1 is activated then
24: perform de-dispersion between xxx and yyy with DM =

d1
25: update yyy with the de-dispersed time series above
26: end if
27: end procedure

where k represents the kth phase bin of the profile; in other
words, fk(ϕ) = 1 when the phase, ϕ, of a sample is located in
the phase range of the kth phase bin. N represents the number of
phase bins. ck is the coefficient of fk(ϕ), which can be estimated
using the least squares method. χ2 is defined as

χ2 =
∑

i

(
x(ti) −

∑N−1
k=0 ck fk(ϕ(ti))

)2

σ2 , (6)

where i represents the ith sample. It can be minimised to obtain
the coefficients

ck =
1

Ck

∑
i,k<Nϕ(ti)<k+1

x(ti), (7)

where Ck is the number of samples that locate in the kth phase
bin. This is the algorithm used in the software package DSPSR
(van Straten & Bailes 2011).

However, the time resolution of the profile estimated from
this traditional folding algorithm is limited by the time resolu-
tion of the integrated samples in the raw data, as the integration
effect introduced by sampling is not considered in Eq. (3). To

A20, page 4 of 10

Men, Y., et al.: A&A, 679, A20 (2023)

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

DM channel

0 0

4 0

0 1

4 1

0 2

4 2

0 3

4 3

DM channel

0 0

4 0

2 0

6 0

0 1

4 1

2 1

6 1

DM channel

0 0

4 0

2 0

6 0

1 0

5 0

3 0

7 0

DM channel

outputinput

Fig. 3. Example of the pFDMT algorithm using eight frequency channels. The de-dispersion is only applied to DM = [1, 2], resulting in a de-
dispersed sub-band data of two frequency channels. The output data are shaded in blue. The start DM is 0 and the DM step is 1, both of which
can be adjusted. The solid red line indicates that the ‘atomic de-dispersion’ is non-pruned, while a translucent dashed black line or dotted red line
indicate that it is pruned. The translucent dotted red line represents the pruned atomic de-dispersion in the final stage, which is not used as only
sub-band data are needed.

address this issue, we propose a novel folding algorithm based on
the Tikhonov-regularised least squares method (TRLSM), also
known as ridge regression (Tikhonov 1943; Hoerl & Kennard
1970). We modified the signal model from Eq. (3), given by

x(t) =
∫ ϕ(t+∆t/2)

ϕ(t−∆t/2)
s(ϕ(t))dϕ(t) + n(t), (8)

where ∆t is the time resolution of one sample. Combined with
Eq. (4) and Eq. (5), we have

x(t) =
N−1∑
k=0

wk(t)ck + n(t), (9)

where wk(t) is the fraction of the kth phase bin swept by the sam-
ple at time t. Solving ck using the normal least squares method in
Eq. (6) is an inverse problem that has a stability problem, which
can be handled using the Tikhonov regularised χ′2:

χ′2 =
∑

i

(
x(ti) −

∑N−1
k=0 wk(ti)ck

)2

σ2 + λ

N−1∑
k=0

c2
k , (10)

where λ is the ridge parameter (see Sect. 4.1 for a discussion of
that). Equation (10) can be represented in the matrix form:

χ′2 =
(xxx −WWWccc)T (xxx −WWWccc)

σ2 + λcccTccc, (11)

where T represents the transposition. Minimising χ′2 gives

ccc = (WWWTWWW/σ2 + λIII)−1WWWT xxx/σ2, (12)

where III is the identity matrix.
To investigate the performance of the TRLSM folding algo-

rithm, we conducted a folding test on simulation data that
include a periodic signal with Gaussian white noise. The signal
has a Gaussian profile with a frequency of 650 Hz, and the data
have a time resolution of 130µs. Figure 4 illustrates the improve-
ment of profile resolution achieved with the TRLSM folding

0.2 0.4 0.6 0.8
Phase

0

1

2

3

4

Am
pl

itu
de

TRLSM folding (= 1)
DSPSR folding
simulated profile

Fig. 4. Comparison between the TRLSM and DSPSR folding algo-
rithms, using a folding example. The simulated profile is represented by
a dotted red line, while the profile estimated from the DSPSR folding
algorithm is shown as a solid blue line. The TRLSM folding algorithm
is represented by a dashed green line, with a ridge parameter of λ = 1.

algorithm compared to the DSPSR folding algorithm. Further
investigation of this folding algorithm will be presented in future
work (Men et al., in prep.).

In most real data folding cases, the time resolution is usually
lower than or comparable to the phase resolution of the profile.
Therefore, the weight matrix, W, is a sparse matrix, which signif-
icantly reduces the computing complexity of Eq. (12), namely,
O(NsubNt + N3

b), where Nn is the number of phase bins of the
profile.

2.4. DM, ν, and ν̇ optimisation

To find the optimal DM, ν, and ν̇ parameters for each candi-
date, an additional optimisation step is required as the coarse
grid of the parameter space in an acceleration search may not be

A20, page 5 of 10

Men, Y., et al.: A&A, 679, A20 (2023)

Fig. 5. Benchmark results of the folding pipeline, which includes de-dispersion, folding, and optimisation processes. The left panel illustrates the
relation between time consumption and the number of candidates running on a single thread. The right panel shows the relation between time
consumption and the number of threads with 512 candidates. The dotted red line represents the brute-force de-dispersion, while the dash-dot blue
line represents the pFDMT algorithm. The folding process is represented by the dashed green line, and the optimisation process is represented by
the solid black line.

optimal. We propose a novel iterative algorithm in our pipeline
consisting of several steps in each iteration: (1) Calculate the
integrated time-phase spectrum by scrunching the archive along
all frequency channels. (2) Optimise ν and ν̇ by maximising the
χ2

s of the integrated profile, which is calculated by scrunching
the time-phase spectrum along time. Here, χ2

s is defined as

χ2
s =

N−1∑
k=0

(si − s̄)2

σ2
s
, (13)

where s̄ and σ2
s are the mean and variance of the noise inferred

from the archive. (3) Correct the phase shifts of the profiles
in the original archive with the updated ν and ν̇. (4) Calcu-
late the integrated frequency-phase spectrum by scrunching the
updated archive along time. (5) Optimise DM by maximising
χ2

s of the integrated profile, which is calculated by scrunch-
ing the frequency-phase spectrum along frequency. (6) Correct
the phase shifts of the profiles in the updated archive with
the updated DM. This iterative procedure terminates when the
change of the parameters is less than a predefined precision. We
used χ2

s instead of S/N as the criterion for the significance of
the profile because it can be efficiently computed. The complex-
ity of this iterative optimisation algorithm is significantly lower
than the brute-force algorithm that searches for the best DM, ν
and ν̇ in a three-dimensional grid.

3. Benchmark

To evaluate the performance of our folding pipeline, we gen-
erated a simulated dataset with a similar format as the data
in MMGPS-L, featuring a time resolution of 153µs, 2048 fre-
quency channels, and 10 min observation time. Rather than
performing a full acceleration search, we instead simulated the
input parameters of candidates for the folding pipeline. We used
a logarithmic uniform distribution for the spin frequency ranging
from 0.1 to 1000 Hz and a fixed zero value for the spin frequency
derivative, which did not affect the folding and optimisation per-
formance. We also used an equally spaced DM grid from 0 to
3000 cm−3 pc, which is the worst case for the pFDMT algorithm.

In PULSARX, there are two implementations of the folding
pipelines: psrfold_fil and psrfold_fil2. The only differ-
ence between them is the de-dispersion algorithm they employ.
The former utilises brute-force de-dispersion, while the latter
utilises the pFDMT algorithm. We benchmarked the folding
pipelines on a INTEL(R) XEON(R) SILVER 4116 CPU at
2.10 GHZ, which is used in MMGPS-L. The results are
presented in Fig. 5. From the left panel, we can see that the
pFDMT algorithm becomes more efficient than the brute-force
de-dispersion algorithm as the number of candidates increases,
since the pFDMT algorithm has smaller memory input/output
(IO) operations and computing complexity. The folding process
consumes only about 10% of the time, which increases slowly
in the regime of fewer candidates and becomes close to linearly
scaled with more candidates. This is due to the fact that
the memory I/O operations is reduced when there are more
candidates since the folding process will reuse the sub-band de-
dispersed data. This can also explain that the time consumption
is not linearly scaled with the number of threads, as shown in the
right panel of Fig. 5. The time consumption on the optimisation
process is linearly scaled with the number of candidates as
expected. It is expected that the optimisation process will
dominate the time consumption when the number of candidates
becomes larger. The right panel of Fig. 5 shows the scale relation
of the time consumption with the number of threads, which is
not linearly scaled except for the optimisation process, because
the performance of the other processes are limited by memory
I/O operations rather than computing power. In conclusion,
psrfold_fil2 can operate almost in real-time with 8 CPU
threads for about 500 candidates, which is highly efficient.

4. Discussions

4.1. The ridge parameter, λ

In the TRLSM folding algorithm, the ridge parameter, λ, is
adjustable. Choosing a small value for λ can result in a noisy
profile, while selecting a large value can lead to a broadening
of the profile and reduced resolution. Finding the optimal ridge
parameter for different regimes has been extensively studied

A20, page 6 of 10

Men, Y., et al.: A&A, 679, A20 (2023)

(Ayinde & Lukman 2016). In our case, we can optimise λ to
enhance the S/N of the profile. Here, we present a brief prin-
ciple solution, and more details will be provided in future work
(Men et al., in prep.). Firstly, we can demonstrate the algorithm
within the Bayesian framework, where we interpret λ as the prior
precision (i.e. the inverse variance) of the pulse profile amplitude
for a single phase bin. In this framework, the likelihood and prior
can be given as

P(xxx|ccc) =
1

(2πσ2)N/2 exp
(
−

1
2σ2 (xxx −WWWccc)T (xxx −WWWccc)

)
, (14)

P(ccc) =
1

(2π/λ)N/2
exp

(
−
λ

2
cccTccc

)
, (15)

respectively. We can then define the Bayes factor as

K =

∫
P(xxx|ccc)P(ccc)dccc

P(xxx|c = 0c = 0c = 0)
. (16)

By maximising K, which maximises the chi-square of the pulse
profile, but with an ‘Occam’s razor’ penalty factor that prevents
over-fitting (noisy pulse profiles) caused by a very small λ, we
can obtain the optimal ridge parameter, λ.

4.2. Comparison with PRESTO

PRESTO3 is a widely used pulsar search package that offers
various tools for different tasks, including rfifind for RFI miti-
gation, prepsubband for de-dispersion, prepfold for candidate
folding, and so on. In this context, we provide a brief comparison
between prepfold and psrfold_fil2, which both perform
similar tasks, including RFI mitigation, de-dispersion, fold-
ing, and optimisation, but with different algorithms. prepfold
performs these tasks for each candidate in a single run and
employs a brute-force de-dispersion approach for each candi-
date. In the folding process, prepfold estimates the profile
using ccc = WWWT xxx (i.e. λ = ∞ in Eq. (12); Bachetti et al. 2021).
Additionally, prepfold applies brute-force optimisation in the
three-dimensional grid of DM, ν, and ν̇. Furthermore, prepfold
has the capability to fold intermediate products of de-dispersion
in the searching stage, such as the de-dispersed time series or
sub-band spectrum. It can perform the conversion of time from
topocentric to barycentric reference frame, along with folding
the binary candidate using the orbital parameters. These fea-
tures are not currently supported in psrfold_fil2. However,
efficient raw data folding can save the storage and disk I/O
operations by eliminating the need for intermediate products
of de-dispersion in the searching stage. To improve the effi-
ciency of the folding pipeline, psrfold_fil2 applied several
different algorithms, including (1) folding multiple candidates
simultaneously to reduce the disk I/O operations; (2) using
the pFDMT algorithm to speed up de-dispersion before fold-
ing when there are many candidates; (3) using a novel iterative
optimisation algorithm to speed up the DM,ν,ν̇ optimisation
significantly compared to the brute-force optimisation in a three-
dimensional grid. We conducted a real benchmark comparison
between the folding program in PULSARX and PRESTO, as
depicted in Fig. 6. The results reveal that psrfold_fil2 out-
performs prepfold by approximately 50 times when dealing
with a large number of candidates. This benchmark employed
an non-volatile memory express solid-state drive (NVMe SSD)
with an I/O bandwidth of around 2 GB s−1. However, it is worth
3 https://github.com/scottransom/presto.git

Fig. 6. Benchmark results obtained from a 10-min simulation dataset
with 2048 frequency channels and a time resolution of 153µs,
comparing the folding program psrfold_fil2 in PULSARX with
prepfold in PRESTO. The benchmark was conducted using an
Intel(R) Core(TM) i7-10750H CPU clocked at 2.60 GHz, along with an
NVMe SSD boasting a high bandwidth of approximately 2 GB s−1.

200 400 600 800
Number of candidates

10

20

30

40

50

60

70

80

Op
er

at
io

n
re

du
ct

io
n

fa
ct

or

Simulation
MMGPS-L

Fig. 7. Operation reduced factor achieved by the pFDMT algorithm
compared to the brute-force algorithm. The solid blue line represents
the test data obtained from MMGPS-L, where the number of candidates
is determined based on the S/N cutoff. The dashed red line represents
the simulated data with an equally spaced distribution of DMs.

noting that prepfold demands significantly greater disk I/O
operations, which implies that its performance will be notably
slower when executed on a hard disk drive. These features
make psrfold_fil2 particularly suitable for handling the fold-
ing processing of pulsar surveys with a large data rate, for
example MMGPS and Transients and Pulsars with MeerKAT
(TRAPUM).

4.3. Application to the MMGPS-L

PULSARX has been employed within the MMGPS-L and
TRAPUM projects. The TRAPUM initiative involves multi-
ple sub-projects, including the Globular Cluster Survey, Fermi
Source Survey, Nearby Galaxy Survey, and more, each char-
acterised by distinct configurations. In this context, we focus
on elucidating the specific application of PULSARX within the

A20, page 7 of 10

https://github.com/scottransom/presto.git

Men, Y., et al.: A&A, 679, A20 (2023)

(a)

(b)

(c)

(e)

(d)

(f)

(g)

(h)

Fig. 8. Candidate plot generated by the folding pipeline of MMGPS-L, showing a known pulsar, PSR B1609-47. The plot is divided into eight panels:
Panel a shows the folded profile of a candidate, with the grey vertical span indicating intra-channel dispersion smearing and red lines indicating
pulse and noise amplitudes. Panel b shows the frequency-phase spectrum with time spans integrated. Panel c shows the time-phase spectrum with
frequency channels integrated. Panel d shows the meta-information of the observation and candidate. Panel e shows the χ2-ν relation. Panel f shows
the χ2 spectrum of the ν-ν̇ plane, with the red cross representing the pre-optimised ν and ν̇. Panel g shows the χ2-DM relation. Panel h shows the
χ2–ν̇ relation. In panels e, g, and h, the red line represents the pre-optimised value, and the yellow line shows the fitting curve of the relation under
the assumption that the candidate’s profile is Gaussian with a pulse width estimated from the folded profile.

MMGPS-L project. The MMGPS-L is a wide field-of-view pul-
sar survey conducted with the MeerKAT telescope. Detailed
information about the MMGPS-L configuration can be found
in Padmanabh et al. (2023). This survey generates approximately
21 TB of data per hour, making it crucial to develop a high-
performance processing pipeline capable of handling such a high
data rate while working within the limitations of available disk
space. For the acceleration search, we utilized the GPU-based
acceleration search package PEASOUP and performed can-
didate folding using PULSARX. As PULSARX is CPU-based,
it can run simultaneously with PEASOUP without resource
competition. The time required for candidate folding in the
MMGPS-L processing can be accommodated within the dura-
tion of the acceleration search. Figure 7 illustrates an example of
the operation reduction factor achieved by the pFDMT algorithm
using real DM trials of the candidates from a MMGPS-L obser-
vation. Notably, it is close to the equal-spaced DM trials. From
the information presented in Fig. 7, it can be observed that the

pFDMT algorithm achieves a significant operation reduction fac-
tor of approximately 50 when processing around 500 candidates.
Figure 8 shows an example plot generated by the MMGPS-L
processing pipeline.

5. Conclusions

With the era of the Square Kilometer Array (SKA) approaching,
more powerful computing hardware will be required to handle
the massive amounts of data generated. Nonetheless, it is still
worth exploring the more efficient algorithms that can signifi-
cantly enhance the performance of the software we already use.
This work introduces a new high performance folding program
that includes an efficient de-dispersion algorithm and param-
eter optimisation, speeding up the pulsar searching pipeline
significantly. Additionally, we have developed a skewness- and
kurtosis-based RFI mitigation algorithm to remove the fre-
quency channels contaminated by RFI signals. We propose a

A20, page 8 of 10

Men, Y., et al.: A&A, 679, A20 (2023)

novel folding algorithm that can improve the resolution of the
profile estimated from the folding process. We also demon-
strate the application of the program to the MMGPS, showcas-
ing its efficiency in handling the high data rate of this wide
field-of-view interferometer-based pulsar survey. This provides
inspiration for improving the performance of the pulsar search-
ing pipeline in future radio telescopes, for example MeerKAT+
and SKA.

Acknowledgements. The authors would like to thank Scott Ransom for his help-
ful discussion regarding PRESTO. The MeerKAT telescope is operated by the
South African Radio Astronomy Observatory, which is a facility of the National
Research Foundation, an agency of the Department of Science and Innovation.
SARAO acknowledges the ongoing advice and calibration of GPS systems by the
National Metrology Institute of South Africa (NMISA) and the time space refer-
ence systems department of the Paris Observatory. TRAPUM observations used
the FBFUSE and APSUSE computing clusters for data acquisition, storage and
analysis. These clusters were funded and installed by the Max-Planck-Institut für
Radioastronomie and the Max-Planck-Gesellschaft. E.C. acknowledges funding
from the United Kingdom’s Research and Innovation Science and Technol-
ogy Facilities Council (STFC) Doctoral Training Partnership, project reference
2487536. Y.P.M., E.B. and G.D. acknowledge continuing support from the Max
Planck society.

References
Agazie, G., Anumarlapudi, A., Archibald, A. M., et al. 2023, ApJ, 951, L8
Allen, B., Knispel, B., Cordes, J. M., et al. 2013, ApJ, 773, 91
Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Science, 340, 448
Ayinde, K., & Lukman, A. 2016, Hacettepe J. Math. Stat., 46, 1
Bachetti, M., Pilia, M., Huppenkothen, D., et al. 2021, ApJ, 909, 33
Balakrishnan, V., Champion, D., Barr, E., et al. 2021, MNRAS, 505, 1180
Barr, E. 2020, Astrophysics Source Code Library [record ascl:2001.014]
Barr, E. D., Champion, D. J., Kramer, M., et al. 2013a, MNRAS, 435, 2234
Barr, E. D., Guillemot, L., Champion, D. J., et al. 2013b, MNRAS, 429, 1633
Bernadich, M. C. i., Balakrishnan, V., Barr, E., et al. 2023, arXiv e-prints

[arXiv:2308.16802]
Bhattacharyya, B., Roy, J., Johnson, T. J., et al. 2021, ApJ, 910, 160
Camilo, F., Kerr, M., Ray, P. S., et al. 2015, ApJ, 810, 85
Clark, C. J., Breton, R. P., Barr, E. D., et al. 2023, MNRAS, 519, 5590
Cognard, I., Guillemot, L., Johnson, T. J., et al. 2011, ApJ, 732, 47
Cordes, J. M., & Lazio, T. J. W. 2002, arXiv e-prints

[arXiv:astro-ph/0207156]
Cordes, J. M., Freire, P. C. C., Lorimer, D. R., et al. 2006, ApJ, 637, 446
Cromartie, H. T., Camilo, F., Kerr, M., et al. 2016, ApJ, 819, 34
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels,

J. W. T. 2010, Nature, 467, 1081

Dimoudi, S., Adamek, K., Thiagaraj, P., et al. 2018, ApJS, 239, 28
EPTA Collaboration and InPTA Collaboration (Antoniadis, J., et al.) 2023,

A&A, 678, A50
Han, J. L., Manchester, R. N., van Straten, W., & Demorest, P. 2018, ApJS, 234,

11
Han, J. L., Wang, C., Wang, P. F., et al. 2021, Res. Astron. Astrophys., 21, 107
Hessels, J. W. T., Ransom, S. M., Stairs, I. H., Kaspi, V. M., & Freire, P. C. C.

2007, ApJ, 670, 363
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968,

Nature, 217, 709
Hoerl, A. E., & Kennard, R. W. 1970, Technometrics, 12, 55
Keith, M. J., Jameson, A., van Straten, W., et al. 2010, MNRAS, 409, 619
Keith, M. J., Johnston, S., Ray, P. S., et al. 2011, MNRAS, 414, 1292
Kerr, M., Camilo, F., Johnson, T. J., et al. 2012, ApJ, 748, L2
Kramer, M., Stairs, I. H., Manchester, R. N., et al. 2021, Phys. Rev. X, 11, 041050
Large, M. I., Vaughan, A. E., & Wielebinski, R. 1968, Nature, 220, 753
Lee, K. J., Stovall, K., Jenet, F. A., et al. 2013, MNRAS, 433, 688
Lorimer, D. R. 2011, Astrophysics Source Code Library [record
ascl:1107.016]

Lyon, R. J., Stappers, B. W., Cooper, S., Brooke, J. M., & Knowles, J. D. 2016,
MNRAS, 459, 1104

Manchester, R. N., Lyne, A. G., D’Amico, N., et al. 1996, MNRAS, 279, 1235
Men, Y. P., Luo, R., Chen, M. Z., et al. 2019, MNRAS, 488, 3957
Morello, V., Rajwade, K. M., & Stappers, B. W. 2022, MNRAS, 510, 1393
Nita, G. M., Gary, D. E., Liu, Z., Hurford, G. J., & White, S. M. 2007, PASP,

119, 805
Offringa, A. R., van de Gronde, J. J., & Roerdink, J. B. T. M. 2012, A&A, 539,

A95
Padmanabh, P. V., Barr, E. D., Sridhar, S. S., et al. 2023, MNRAS, 524, 1291
Pan, Z., Qian, L., Ma, X., et al. 2021, ApJ, 915, L28
Possenti, A., D’Amico, N., Manchester, R. N., et al. 2001, arXiv e-prints

[arXiv:astro-ph/0108343]
Ransom, S. M., Eikenberry, S. S., & Middleditch, J. 2002, AJ, 124, 1788
Ransom, S., Hessels, J., Stairs, I., et al. 2005, ASP Conf. Ser., 328, 199
Ransom, S. M., Ray, P. S., Camilo, F., et al. 2011, ApJ, 727, L16
Reardon, D. J., Zic, A., Shannon, R. M., et al. 2023, ApJ, 951, L6
Ridolfi, A., Gautam, T., Freire, P. C. C., et al. 2021, MNRAS, 504, 1407
Ridolfi, A., Freire, P. C. C., Gautam, T., et al. 2022, A&A, 664, A27
Sanidas, S., Cooper, S., Bassa, C. G., et al. 2019, A&A, 626, A104
Stovall, K., Lynch, R. S., Ransom, S. M., et al. 2014, ApJ, 791, 67
Tikhonov, A. N. 1943, Proc. USSR Acad. Sci., 39, 195
van Straten, W., & Bailes, M. 2011, PASA, 28, 1
Verbiest, J. P. W., Bailes, M., van Straten, W., et al. 2008, ApJ, 679, 675
Wang, P., Li, D., Clark, C. J., et al. 2021, Sci. China Phys. Mech. Astron., 64,

129562
Xu, H., Chen, S., Guo, Y., et al. 2023, Res. Astron. Astrophys., 23, 075024
Yao, J. M., Manchester, R. N., & Wang, N. 2017, ApJ, 835, 29
Zackay, B., & Ofek, E. O. 2017, ApJ, 835, 11
Zhu, W. W., Berndsen, A., Madsen, E. C., et al. 2014, ApJ, 781, 117

A20, page 9 of 10

http://linker.aanda.org/10.1051/0004-6361/202347356/1
http://linker.aanda.org/10.1051/0004-6361/202347356/2
http://linker.aanda.org/10.1051/0004-6361/202347356/3
http://linker.aanda.org/10.1051/0004-6361/202347356/4
http://linker.aanda.org/10.1051/0004-6361/202347356/5
http://linker.aanda.org/10.1051/0004-6361/202347356/6
http://www.ascl.net/2001.014
http://linker.aanda.org/10.1051/0004-6361/202347356/8
http://linker.aanda.org/10.1051/0004-6361/202347356/9
https://arxiv.org/abs/2308.16802
http://linker.aanda.org/10.1051/0004-6361/202347356/11
http://linker.aanda.org/10.1051/0004-6361/202347356/12
http://linker.aanda.org/10.1051/0004-6361/202347356/13
http://linker.aanda.org/10.1051/0004-6361/202347356/14
https://arxiv.org/abs/astro-ph/0207156
http://linker.aanda.org/10.1051/0004-6361/202347356/16
http://linker.aanda.org/10.1051/0004-6361/202347356/17
http://linker.aanda.org/10.1051/0004-6361/202347356/18
http://linker.aanda.org/10.1051/0004-6361/202347356/19
http://linker.aanda.org/10.1051/0004-6361/202347356/20
http://linker.aanda.org/10.1051/0004-6361/202347356/21
http://linker.aanda.org/10.1051/0004-6361/202347356/21
http://linker.aanda.org/10.1051/0004-6361/202347356/22
http://linker.aanda.org/10.1051/0004-6361/202347356/23
http://linker.aanda.org/10.1051/0004-6361/202347356/24
http://linker.aanda.org/10.1051/0004-6361/202347356/25
http://linker.aanda.org/10.1051/0004-6361/202347356/26
http://linker.aanda.org/10.1051/0004-6361/202347356/27
http://linker.aanda.org/10.1051/0004-6361/202347356/28
http://linker.aanda.org/10.1051/0004-6361/202347356/29
http://linker.aanda.org/10.1051/0004-6361/202347356/30
http://linker.aanda.org/10.1051/0004-6361/202347356/31
http://www.ascl.net/1107.016
http://www.ascl.net/1107.016
http://linker.aanda.org/10.1051/0004-6361/202347356/33
http://linker.aanda.org/10.1051/0004-6361/202347356/34
http://linker.aanda.org/10.1051/0004-6361/202347356/35
http://linker.aanda.org/10.1051/0004-6361/202347356/36
http://linker.aanda.org/10.1051/0004-6361/202347356/37
http://linker.aanda.org/10.1051/0004-6361/202347356/37
http://linker.aanda.org/10.1051/0004-6361/202347356/38
http://linker.aanda.org/10.1051/0004-6361/202347356/38
http://linker.aanda.org/10.1051/0004-6361/202347356/39
http://linker.aanda.org/10.1051/0004-6361/202347356/40
https://arxiv.org/abs/astro-ph/0108343
http://linker.aanda.org/10.1051/0004-6361/202347356/42
http://linker.aanda.org/10.1051/0004-6361/202347356/43
http://linker.aanda.org/10.1051/0004-6361/202347356/44
http://linker.aanda.org/10.1051/0004-6361/202347356/45
http://linker.aanda.org/10.1051/0004-6361/202347356/46
http://linker.aanda.org/10.1051/0004-6361/202347356/47
http://linker.aanda.org/10.1051/0004-6361/202347356/48
http://linker.aanda.org/10.1051/0004-6361/202347356/49
http://linker.aanda.org/10.1051/0004-6361/202347356/50
http://linker.aanda.org/10.1051/0004-6361/202347356/51
http://linker.aanda.org/10.1051/0004-6361/202347356/52
http://linker.aanda.org/10.1051/0004-6361/202347356/53
http://linker.aanda.org/10.1051/0004-6361/202347356/53
http://linker.aanda.org/10.1051/0004-6361/202347356/54
http://linker.aanda.org/10.1051/0004-6361/202347356/55
http://linker.aanda.org/10.1051/0004-6361/202347356/56
http://linker.aanda.org/10.1051/0004-6361/202347356/57

Men, Y., et al.: A&A, 679, A20 (2023)

Appendix A: Skewness and kurtosis

The skewness, γ, and kurtosis, κ, of a time series are defined
as

γ =
1
N

∑N−1
i=0 (xi − µ)3

(1
N

∑N−1
i=0 (xi − µ)2)3/2

, (A.1)

κ =
1
N

∑N−1
i=0 (xi − µ)4

(1
N

∑N−1
i=0 (xi − µ)2)2

, (A.2)

µ =
1
N

N−1∑
i=0

xi , (A.3)

respectively, where i represents the ith sample of the time series,
and N is the number of total samples.

Appendix B: S/N definition

After the KF has found the maximum summation in a time series
xxx, the detection statistic S/N is defined as

S/N =
∑b

i=a xi
√

b − a + 1σ
, (B.1)

where a and b are the count of the start sample and end sample
of the duration with maximum summation (i.e. a contiguous sub-
array in xxx with the largest sum), and σ is the standard deviation
of the time series.

A20, page 10 of 10

	PulsarX: A new pulsar searching package
	1 Introduction
	2 Algorithm
	2.1 RFI mitigation
	2.2 De-dispersion
	2.3 Folding
	2.4 DM, , and optimisation

	3 Benchmark
	4 Discussions
	4.1 The ridge parameter,
	4.2 Comparison with PRESTO
	4.3 Application to the MMGPS-L

	5 Conclusions
	Acknowledgements
	References
	Appendix A: Skewness and kurtosis
	Appendix B: S/N definition

