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Abstract. The gross primary production (GPP) of the ter-
restrial biosphere is a key source of variability in the global
carbon cycle. It is modulated by hydrometeorological drivers
(i.e. short-wave radiation, air temperature, vapour pressure
deficit and soil moisture) and the vegetation state (i.e. canopy
greenness, leaf area index) at instantaneous to interannual
timescales. In this study, we set out to evaluate the abil-
ity of GPP models to capture this variability. Eleven mod-
els were considered, which rely purely on remote sensing
data (RS-driven), meteorological data (meteo-driven, e.g. dy-
namic global vegetation models; DGVMs) or a combination
of both (hybrid, e.g. light-use efficiency, LUE, models). They
were evaluated using in situ observations at 61 eddy covari-
ance sites, covering a broad range of herbaceous and forest
biomes.

The results illustrated how the determinant of tempo-
ral variability shifts from meteorological variables at sub-
seasonal timescales to biophysical variables at seasonal and
interannual timescales. RS-driven models lacked the sensi-
tivity to the dominant drivers at short timescales (i.e. short-
wave radiation and vapour pressure deficit) and failed to cap-
ture the decoupling of photosynthesis and canopy greenness
(e.g. in evergreen forests). Conversely, meteo-driven models
accurately captured the variability across timescales, despite

the challenges in the prognostic simulation of the vegetation
state. The largest errors were found in water-limited sites,
where the accuracy of the soil moisture dynamics determines
the quality of the GPP estimates. In arid herbaceous sites,
canopy greenness and photosynthesis were more tightly cou-
pled, resulting in improved results with RS-driven models.
Hybrid models capitalized on the combination of RS obser-
vations and meteorological information. LUE models were
among the most accurate models to monitor GPP across all
biomes, despite their simple architecture.

Overall, we conclude that the combination of meteoro-
logical drivers and remote sensing observations is required
to yield an accurate reproduction of the spatio-temporal
variability of GPP. To further advance the performance of
DGVMs, improvements in the soil moisture dynamics and
vegetation evolution are needed.

1 Introduction

Within the global carbon cycle, the exchange of carbon via
photosynthesis and respiration in the terrestrial biosphere
represents one of the largest and most dynamic components.
Roughly 130 PgCyr−1 flows through plant stomata for gross
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primary productivity (GPP), from the total 875 PgC stored
in the atmosphere (IPCC, 2013; Friedlingstein et al., 2022).
During the decade 2012–2021, 3.1± 0.6 PgCyr−1 was cap-
tured in the net terrestrial biosphere sink (i.e. gross primary
productivity minus ecosystem respiration). With an interan-
nual variability of 1 PgCyr−1, it is considered the most vari-
able element in the global carbon cycle (Friedlingstein et al.,
2022). Despite the substantial role of GPP in the global car-
bon cycle, quantifying this flux is still associated with large
uncertainties (Anav et al., 2015).

The temporal variability of GPP is largely modulated by
the vegetation state (i.e. canopy greenness, leaf area index,
etc.) and hydrometeorological conditions (Beer et al., 2010;
Delpierre et al., 2012; Anav et al., 2015; Baldocchi et al.,
2018). Consequently, most GPP models rely on remotely
sensed (RS) observations of the vegetation, meteorologi-
cal forcings, or a combination thereof (Xiao et al., 2019;
Friedlingstein et al., 2022; Jung et al., 2020). The vegetation
state can be observed via remote sensing, making it an attrac-
tive approach to estimate global GPP dynamics. Vegetation
indices (VIs), such as the normalized difference vegetation
index (NDVI; Rouse et al., 1974), enhanced vegetation in-
dex (EVI; Huete et al., 2002) or near-infrared reflectance of
vegetation (NIRv; Badgley et al., 2017), are indicators of the
presence of (green) vegetation. Given their robustness and
the availability of relatively long time series, the potential of
these VIs as a (linear) proxy for GPP has been explored by
various studies (Tucker et al., 1986; Xiao et al., 2019; Huang
et al., 2019; Balzarolo et al., 2019). Advancing beyond this,
machine learning methods have been used to better exploit
the potential of optical RS data in the recent decade (e.g.
FluxCom; Jung et al., 2020), and the potential of new RS
proxies with a more direct link to photosynthesis has been es-
tablished, e.g. solar-induced chlorophyll fluorescence (SIF;
Frankenberg et al., 2011; Liu et al., 2017; Pickering et al.,
2022). The challenge associated with these models is that the
relation between vegetation state and photosynthesis can de-
couple due to other limiting factors, such as soil moisture,
temperature and short-wave radiation (Walther et al., 2016;
Hu et al., 2022).

Unlike RS-driven models, dynamic global vegetation
models (DGVMs) are driven largely by meteorological forc-
ings. They are process-based models in which the exchanges
of energy, water, and carbon between the terrestrial biosphere
and the atmosphere are simulated in a mechanistic manner.
These models allow one to assess the terrestrial carbon as-
similation in the global carbon budget or to investigate his-
toric and future trends under a changing climate (Friedling-
stein et al., 2022). The key challenge in these highly complex
models is the correct representation of all underlying pro-
cesses, including the dynamics of the canopy (Sitch et al.,
2015; Fatichi et al., 2019). The entangled nature of these
processes and the resulting disagreements in the model con-
ceptualizations contribute to the large spread between these
models and uncertainty associated with the land surface sink

in earth system models (Haughton et al., 2016; Collier et al.,
2018; Seiler et al., 2022).

In the frame of this study, hybrid models are models that
rely on a combination of RS observations of the vegetation
state and meteorological forcings. The light-use efficiency
(LUE) model, proposed by Monteith (1972), is one of the
most elementary formulations. Thanks to its compatibility
with RS observations and limited input requirements, this
semi-mechanistic approach is widely used and available in
many flavours and degrees of complexity (Pei et al., 2022).
Examples include the MODIS MOD17 GPP product (Run-
ning et al., 2004) or the LSA SAF GPP product (Satellite Ap-
plication Facility on Land Surface Analysis; Martínez et al.,
2020). These models benefit from the complementary in-
formation in RS data and meteorological forcings but re-
main sensitive to uncertainties associated with RS observa-
tions of dense vegetation and the incomplete representation
of soil moisture stress (Stocker et al., 2018; Xiao et al., 2019;
Bloomfield et al., 2023).

The impact of vegetation and hydrometeorological con-
ditions on the temporal variability of GPP ranges from in-
stantaneous to interannual timescales (Stoy et al., 2009; Ma-
hecha et al., 2010; Linscheid et al., 2020). As the available
GPP models vary in architecture, in the representation of un-
derlying processes (or absence thereof) and – eminently –
in their forcings, their shortcomings vary across biomes and
temporal scales (Anav et al., 2015; Mahecha et al., 2010;
Xiao et al., 2019). Depending on their application, models
are required to give a good estimate of annual variability, re-
sponse to climate extremes or changes in phenology. In order
to adequately capture these temporal patterns, the timescale-
dependent sensitivity of GPP to its drivers needs to be rep-
resented accurately (Delpierre et al., 2012; Linscheid et al.,
2021). Model evaluation studies or intercomparison studies
are in this regard generally restricted to a single model type
(RS-driven, meteo-driven or hybrid), driver and/or timescale
(Mahecha et al., 2010; Delpierre et al., 2012; Shao et al.,
2015). Despite important efforts made in this domain, most
notably with the International Land Model Benchmarking
system (ILAMB; Collier et al., 2018), it remains currently
largely unclear what the inter-model trade-offs are.

The overall objective of this study is to evaluate the ability
of various modelling approaches (RS-driven, meteo-driven
or hybrid) to capture the temporal variability of GPP. By
comparing the simulations of GPP with in situ eddy covari-
ance observations, we aim to assess (1) their performance
across a broad range of biomes and temporal scales and
(2) their sensitivity to drivers of GPP (i.e. vegetation state
and hydrometeorological conditions).
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Table 1. Selection of 61 FLUXNET/ICOS (Integrated Carbon Observation System) sites used in this study. Classification by plant functional
type (PFT; evergreen broadleaf forest: EBF, evergreen needleleaf forest: ENF, deciduous broadleaf forest: DBF, mixed forest: MF, wet-
land: WET, grassland: GRA, open shrubland: OSH, savanna: SAV, woody savanna: WSA, cropland: CRO) and hydroclimatic biome (HCB;
Boreal/Mid-Latitude/Transitional/Subtropical/Tropical+Energy/Water/Temperature-driven; Papagiannopoulou et al., 2018). Note that only
data beginning from 2007 were used in this study. All sites with data until 2018 are taken from the ICOS 2018 drought initiative; data for the
other sites were collected from the FLUXNET2015 dataset.

ID Name Period PFT HCB

AU-ASM Alice Springs 2009–2013 ENF SubTr_W
AU-Cpr Calperum 2009–2014 SAV Trans_W
AU-DaP Daly River Savanna 2006–2013 GRA Trans_E
AU-DaS Daly River Cleared 2007–2014 SAV Trans_E
AU-Dry Dry River 2007–2014 SAV Trans_E
AU-How Howard Springs 2000–2014 WSA Trans_E
AU-Stp Sturt Plains 2007–2014 GRA Trans_E
AU-Tum Tumbarumba 2000–2014 EBF Trans_E
BE-Bra Brasschaat 1995–2018 MF MidL_T
BE-Lon Lonzée 2003–2018 CRO MidL_T
BE-Vie Vielsalm 1995–2018 MF MidL_T
BR-Sa1 Santarém-Km67 2002–2012 EBF Tropic
CA-Gro Ontario – Groundhog River 2003–2015 MF Bor_T
CH-Lae Lägeren 2003–2018 MF MidL_T
CZ-BK1 Bílý Kříž forest 2003–2018 ENF MidL_T
CZ-Lnz Lanžhot 2014–2018 MF MidL_T
CZ-RAJ Rájec 2011–2018 ENF MidL_T
CZ-Stn Štítná 2009–2018 DBF MidL_T
DE-Geb Gebesee 2000–2018 CRO MidL_T
DE-Hai Hainich 1999–2018 DBF MidL_T
DE-Hte Hütelmoor 2008–2018 WET MidL_T
DE-Kli Klingenberg 2003–2018 CRO MidL_T
DE-Obe Oberbärenburg 2007–2018 ENF MidL_T
DE-RuS Selhausen Jülich 2010–2018 CRO MidL_T
DE-RuW Wustebach 2009–2018 ENF MidL_T
DE-Seh Selhausen 2006–2010 CRO MidL_T
DE-Spw Spreewald 2009–2014 WET MidL_T
DE-Tha Tharandt 1995–2018 ENF MidL_T
DK-Sor Sorø 1995–2018 DBF MidL_T
ES-Abr Albuera 2014–2018 SAV Trans_E
ES-LM1 Majadas del Tietar North 2013–2018 SAV Trans_E
ES-LM2 Majadas del Tietar South 2013–2018 SAV Trans_E
FI-Hyy Hyytiälä 1995–2018 ENF Bor_WT
FI-Let Lettosuo 2008–2018 ENF Bor_WT
FI-Var Värriö 2015–2018 ENF Bor_E
FR-Fon Fontainebleau-Barbeau 2004–2014 DBF MidL_T
FR-Hes Hesse 2013–2018 DBF MidL_T
FR-Pue Puéchabon 1999–2014 EBF Trans_E
GF-Guy Guyaflux (French Guiana) 2004–2015 EBF Tropic
IT-Cp2 Castelporziano2 2011–2018 EBF Trans_E
IT-SR2 San Rossore 2 2012–2018 ENF Trans_E
IT-SRo San Rossore 1998–2012 ENF Trans_E
NL-Loo Loobos 1995–2018 ENF MidL_T
RU-Fy2 Fyodorovskoye dry spruce 2014–2018 ENF Bor_WT
RU-Fyo Fyodorovskoye 1997–2018 ENF Bor_WT
SE-Deg Degerö 2000–2018 WET Bor_WT
SE-Htm Hyltemossa 2014–2018 ENF MidL_T
SE-Lnn Lanna 2013–2018 CRO MidL_T
SE-Nor Norunda 2013–2018 ENF MidL_T
SE-Ros Rosinedal-3 2013–2018 ENF Bor_WT
SE-Svb Svartberget 2013–2018 ENF Bor_WT
US-ARM Southern Great Plains 2003–2013 CRO MidL_W
US-Ha1 Harvard Forest EMS (HFR1) 1991–2013 DBF MidL_W
US-Me6 Metolius Young Pine Burn 2010–2015 ENF Trans_E
US-MMS Morgan Monroe State Forest 1999–2015 DBF MidL_W
US-SRC Santa Rita Creosote 2008–2015 OSH Trans_E
US-SRG Santa Rita Grassland 2008–2015 GRA Trans_E
US-SRM Santa Rita Mesquite 2004–2015 WSA Trans_E
US-UMB UMich Biological Station 2000–2015 DBF Bor_T
US-UMd UMBS Disturbance 2007–2015 DBF Bor_T
ZA-Kru Skukuza 1999–2013 SAV Trans_W
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2 Materials and methods

2.1 Test sites

The evaluation of the GPP models was performed using
in situ observations from eddy covariance stations. Test sites
were selected from the FLUXNET2015 dataset (Pastorello
et al., 2020) and the ICOS “2018 drought initiative” dataset
(Drought 2018 Team and ICOS Ecosystem Thematic Cen-
tre, 2019). It was ensured that the sites had a homogeneous
land cover, which could be captured by the remote sens-
ing products. A site was considered homogeneous when in
1 km× 1 km area surrounding the station location was dom-
inated by a unique vegetation type (i.e. grassland, deciduous
forest, evergreen forest). The site homogeneity was visually
evaluated using high-resolution satellite images in Google
Earth. Additionally, the sites were required to have a min-
imum of 3 years of GPP data since 1 January 2007 (i.e.
the start of the SIF time series). This resulted in a selec-
tion of 61 sites, listed in Table 1. The dataset contained
461 years worth of GPP data, in which evergreen needleleaf
forest (ENF) and the mid-latitude temperature-driven hydro-
climatic biome (MidL_T; Papagiannopoulou et al., 2018)
were dominantly represented.

All data were pre-processed with the ONEFLUX pipeline
(Pastorello et al., 2020). The observed net ecosystem ex-
change was partitioned into the ecosystem respiration and
GPP components using the daytime fluxes and a con-
stant friction velocity threshold across years (labelled as
GPP_DT_CUT in the database). Depending on site data
quality, the reference GPP (GPP_DT_CUT_REF) or mean
GPP (GPP_DT_CUT_MEAN) method was selected.

Daily data with a quality flag indicating poor gap filling
(QF< 0.1) were discarded in the analysis. It was ensured that
the same time periods were considered for all models at each
site.

The test sites were classified per plant functional
type (PFT; taken from the FLUXNET/ICOS International
Geosphere–Biosphere Programme (IGBP) metadata) and
hydro-climatic biome (HCB; Papagiannopoulou et al., 2018);
see Table 1. The distribution of the sites across PFT and
HCB is shown in Tables S1 and S2 in the Supplement).
Seven PFT-HCB classes were selected for extra detailed
analysis, given their importance and/or data quantity: ever-
green broadleaf forest in tropical biome (EBF-Tropic), de-
ciduous broadleaf forest in mid-latitude temperature-driven
biome (DBF-MidL_T), evergreen needleleaf forest in boreal
water–temperature-driven biome (ENF-Bor_WT), evergreen
needleleaf forest in mid-latitude temperature-driven biome
(ENF-MidL_T), evergreen needleleaf forest in transitional
energy-driven biome (ENF-Trans_E), savanna in transitional
energy-driven biome (SAV-Trans_E) and croplands in mid-
latitude temperature-driven biome (CRO-MidL_T).

2.2 Meteorological data

Incoming short-wave radiation, long-wave radiation and pre-
cipitation data, required by the meteo-driven and hybrid GPP
models, were taken from the half-hourly tower observations.
Due to large gaps in the atmospheric humidity time series,
ERA5 was used as an alternative source for air temperature,
atmospheric humidity, wind speed and atmospheric pres-
sure (Hersbach et al., 2020). It was verified that the impact
of the use of ERA5 instead of local observations was lim-
ited for these variables (Fig. S2 and Tables S3 and S4 in
the Supplement). The forcing from ERA5 (hourly resolu-
tion) was linearly interpolated to match the 30 min tempo-
ral resolution from the tower observations. The atmospheric
CO2 concentration was taken from the TRENDY time se-
ries (Sitch et al., 2015; https://sites.exeter.ac.uk/trendy, last
access: 12 May 2023).

2.3 Remote sensing data

The simplest models considered were the linear regressions
based on remotely sensed proxies of GPP, including VI
and SIF. Remote sensing data were gathered from SPOT
Vegetation+PROBA-V (SPV) for each tower location (the
nearest pixel). This data product has a 10 d interval and 1 km
resolution. The SPV decadal synthesis product is derived us-
ing the “maximum value composite” procedure after qual-
ity check of SPV native data and gives the best reflectance
value on the 10 d time interval. Though daily data are avail-
able, they were not used here. The use of daily data would
introduce gaps and noise in the SPV time series (in case
of cloudy conditions at satellite overpass time, for instance)
while not adding significant information on the vegetation
status throughout the study period.

Derived from the SPV data, the normalized difference veg-
etation index (NDVI), the enhanced vegetation index (EVI)
and near-infrared of vegetation (NIRv) are given below, ac-
cording to Tucker (1979), Huete et al. (2002) and Badgley
et al. (2017):

NDVI=
R770−800−R630−670

R770−800+R630−670
, (1)

EVI= 2.5
R770−800−R630−670

R770−800+ 6 ·R630−670+ 7.5 ·R460−475+ 1
, (2)

NIRv= NDVI ·R770−800, (3)

where R is the reflectance between the wavelengths in
the subscript (in nm). Wavelength range 770–800 nm was
used for the NIR reflectance, 630–670 nm was used for red
reflectance, and 460–475 nm was used for blue band re-
flectance.

Additionally, the canopy structure-related near-infrared
reflectance of vegetation multiplied by incoming sunlight
(NIRvP) was included (Dechant et al., 2022). It was calcu-
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Table 2. Overview of the RS-driven, hybrid and meteo-driven GPP models used in this study. The following modelling methodologies are
used: quantile regression (QR), machine learning (ML), light-use efficiency (LUE) models and dynamic global vegetation models (DGVMs).
The remote sensing (RS) sources are SPOT-Vegetation+PROBA-V (SPV), GOME-2, MODIS and Copernicus Global Land Service (CGLS)
products. The short-wave radiation (SWrad) and other meteorological data were obtained from in situ tower observations, ERA-5 and GEOS-
5.

Model Method Forcing Reference

RS data SWrad Other meteo. data

NDVI
−
−
−
−
→

E
m

pi
ri

ca
l QR

R
S-

dr
iv

en

SPV – – this study
EVI QR SPV – – this study
NIRv QR SPV – – this study
SIF QR GOME-2∗ – – this study
FluxComRS

M
ec

ha
ni

st
ic
←
−
−
−
− ML MODIS – – Jung et al. (2020)

NIRvP QR
H

yb
ri

d SPV in situ – This study
FluxComRSMet ML MODIS ERA5 ERA5 Jung et al. (2020)
MOD17 LUE MODIS GEOS-5 GEOS-5 Running et al. (2004)
LSA SAF LUE CGLS in situ in situ+ERA5 Martínez et al. (2020)

ISBA DGVM

M
et

eo – in situ in situ+ERA5 Delire et al. (2020)
ORCHIDEE DGVM – in situ in situ+ERA5 Krinner et al. (2005)

∗ The SIF data from GOME-2 were the downscaled product from Duveiller et al. (2020), using NIRv, NDWI and LST from MODIS.

lated as follows:

NIRvP= NIRv ·PAR, (4)

where PAR is the daily mean photosynthetically active radi-
ation, calculated as a constant fraction (0.45) of the in situ
incoming short-wave radiation observations (Howell et al.,
1983). For remotely sensed SIF data, we relied on the down-
scaled GOME-2 SIF product by Duveiller et al. (2020) (8 d
interval, 0.05◦ resolution), given the coarse spatial resolu-
tion of the GOME-2 SIF product (> 40 km), sparse global
coverage (only a dozen of GOME-2 observations for all
tower locations were available per year) and the limited avail-
able time series of TROPOMI (starting in May 2018). The
downscaling procedure involves a LUE methodology, in-
volving NIRv, normalized difference water index (NDWI;
Gao, 1996) and land surface temperature (LST) data from
MODIS. Duveiller et al. (2020) demonstrated that this prod-
uct has a high spatio-temporal agreement with TROPOMI
SIF observations, so the impact of the artefacts due to the
downscaling procedure are assumed to be limited.

2.4 GPP models

A range of models to estimate GPP was selected, repre-
senting RS-driven, meteo-driven and hybrid approaches. An
overview is given in Table 2.

RS-based regression models

The simplest models considered were the linear regressions
based on remotely sensed proxies of GPP. A robust linear
regression model of the RS data versus the daily GPP was

constructed using quantile regression (Koenker and Hallock,
2001). The complete dataset was used to obtain a model for
each proxy. The use of daily or 16 d average GPP did not
have a strong impact on the results. Only NIRvP, which used
in situ incoming short-wave radiation observations, had a sig-
nificantly steeper slope using the daily resolution GPP (see
Fig. S1).

Note that the training data used here were also used in
the evaluation of the model performance. Furthermore, most
models in this study were directly or indirectly trained with
data from eddy covariance towers (FluxCom (Jung et al.,
2020), ORCHIDEE (Friend et al., 2007), etc.). Consequently,
it was not possible to ensure an independent validation of
the models. To minimize the impact on the study results, the
evaluation was largely based on metrics that are not impacted
by the slope of the linear regression (correlation and phenol-
ogy analysis; see further below). Absolute errors and bias of
the models were not evaluated in this study, as these indices
are significantly affected by the overlap between training and
evaluation data, (but they are shown in Fig. S3 for complete-
ness). Additionally, the robustness of the regression was ver-
ified by performing the regression 20 times using a random
subset of 50 % of the tower sites (Fig. S1). The regression
for NDVI had the largest uncertainty, where the coefficient
of variation of the slope was 9 %. For the other proxies, this
was around 4 %–5 %. With this result, the quantile regres-
sion was found to be robust and independent of the training
data sub-selection. The impact of the shared data in the train-
ing and evaluation phase on the results is thus assumed to be
limited.
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Machine learning models

The FluxCom dataset consists of up-scaled FLUXNET ob-
servations, using machine learning, remote sensing data
and meteorological data (Jung et al., 2020). In this study,
we considered the FluxComRS GPP product (0.0833◦ grid,
8 d resolution), which relies on MODIS observations and
the FluxComRSMet GPP product (0.5◦ grid, daily resolu-
tion), which incorporates supplementary ERA5 meteorolog-
ical data. Notably, a basic soil water balance model is used
to derive the water availability index from the meteorologi-
cal data and ingest it in the FluxComRSMet machine learning
algorithm (Tramontana et al., 2016). For each tower location,
the closest pixel was extracted from the database.

Light-use efficiency models

As opposed to the pure RS data-driven methods described
above, semi-mechanistic models have been developed, which
incorporate meteorological forcings to estimate GPP. A
widely applied method, thanks to its compatibility with re-
mote sensing observations, is the LUE model (Monteith,
1972). The core of this method is given in Eq. (5), where the
plant productivity depends on the absorbed photosynthetic
active radiation (APAR) and a light-use efficiency factor (ε).

GPP= εAPAR (5)

This approach forms the basis of the MODIS MOD17 GPP
product (Running et al., 2004) and the LSA SAF GPP prod-
uct (Martínez et al., 2020).

The algorithm behind MOD17 is a fairly simplistic formu-
lation, where ε is linearly dependent on air temperature and
vapour pressure deficit. Atmospheric forcings for this prod-
uct are taken from the GMAO/NASA daily global meteoro-
logical reanalysis dataset, generated by GEOS-5 (Goddard
Earth Observing System-5). Soil moisture is not considered
in the MOD17 model (Running et al., 2004). Conversely, in
the LSA SAF model ε depends on the ratio between the ac-
tual and potential evapotranspiration. Consequently, the im-
pact of soil moisture is indirectly considered.

For MOD17, the closest pixel was extracted for each tower
site (MOD17 GPP is available at 1 km resolution with 8 d in-
terval). The LSA SAF GPP in this study was produced by
executing the model for each site (as no global coverage or
long time series were operationally available in the LSA SAF
GPP product). The inputs for this model were leaf area index
(LAI) and the fraction of absorbed photosynthetic active ra-
diation (FAPAR) from the Copernicus Global Land Service
and ERA5 plus in situ meteorological forcings (see De Pue
et al., 2022 for more details on the modelling approach).

Dynamic global vegetation models

DGVMs apply a largely mechanistic methodology to esti-
mate GPP, and its temporal variability is driven exclusively

by meteorological forcings. Here, ISBA (Delire et al., 2020)
and ORCHIDEE (Krinner et al., 2005) were considered.
ISBA is the component within Surfex v8.1 (SURFace EX-
ternalisée), dedicated to the modelling of energy, water, and
carbon exchanges between the soil–vegetation–snow contin-
uum and the atmosphere. The numerous processes involved
in these exchanges (soil moisture dynamics, evapotranspi-
ration, stomatal closure, canopy growth, canopy radiation
transfer, etc.) are fully coupled. Similarly, ORCHIDEE is a
well-established model for the simulation of vegetation in the
context of earth system models. The version used here was
the one that was prepared for the sixth phase of the Cou-
pled Model Intercomparison Project (CMIP6). Both DGVMs
share a similar architecture but rely on different formula-
tions for the same processes (e.g. photosynthesis following
Goudriaan et al., 1985, and Jacobs et al., 1996, in ISBA ver-
sus Farquhar et al., 1980, and Collatz et al., 1992, in OR-
CHIDEE) and differ in parameterization.

The models were configured to run with identical atmo-
spheric forcing (constructed from ERA5 and in situ meteo-
rological observations), identical land cover and prognostic
vegetation growth. These models were run offline and were
not coupled to an atmospheric model. For more details on
the DGVM configuration and an in-depth evaluation of these
models, see De Pue et al. (2022).

2.5 Analysis

To evaluate the performance of the models to capture the
temporal variability, the time series in the dataset were
decomposed in two ways: (1) by separating the inter-site
variability, seasonal variability, and variability of seasonal
anomalies and (2) by separating daily, weekly, monthly, sea-
sonal, and interannual components with singular spectral
analysis (SSA).

The performance at these timescales was evaluated by
comparing the simulated variability (quantified by the stan-
dard deviation, σ ) in observations and simulations and by
computing the Pearson correlation (r). Additionally, the co-
variance (cov) between GPP and its driver variables was used
to assess the sensitivity of GPP to these variables. It was eval-
uated whether the models reproduce the observed patterns.

Finally, the accuracy of the simulated carbon phenology
was evaluated by comparing the timing of the simulated sea-
sonal GPP cycle with observations. Details on the methodol-
ogy are given below.

Inter-site, seasonal and anomaly components

The variability of the simulated and observed GPP was de-
composed into the inter-site (i.e. spatial) component, sea-
sonal component and the component associated with the
anomalies. If we concatenate the GPP time series from all
sites into one array, we can decompose it as follows:

Xall =Xsite+Xseas+Xanom, (6)
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Figure 1. Illustration of the GPP data (top row) decomposition into inter-site (i.e. spatial) component (second row), seasonal component
(third row) and the component associated with the anomalies (bottom row). This example shows the observed GPP from DE-Spw, RU-Fyo
and US-SRM (left to right, respectively).

where Xall is the full dataset, Xsite contains the mean GPP
of each site, Xseas contains the mean seasonal cycle of each
site (after subtracting the mean of the site) and Xanom con-
tains the resulting anomalies. An illustration of this decom-
position is given in Fig. 1. The mean seasonal cycle was ob-
tained by subtracting the time series mean and computing the
smoothed (20 d moving average) mean annual cycle. The ac-
curacy of the models to capture each of these components
was evaluated using the metrics given further below.

Singular spectrum analysis

To assess the spectral nature of the modelled GPP anomalies,
the observed and modelled signals were decomposed in five
classes (daily, weekly, monthly, annual and interannual) us-
ing singular spectrum analysis (SSA, also referred to as sin-
gular system analysis). SSA is a method which allows one
to decompose a signal into sub-signals with specific spec-
tral properties (Elsner and Tsonis, 1996; Golyandina et al.,
2001). The approach used here was similar to the one pro-
posed by Mahecha et al. (2007). The procedure can be sum-
marized in two steps: the signal decomposition and the re-
construction of the sub-signals. In the signal decomposition
step, lagged windows of the original signal were stacked.
This array was subsequently decomposed into its underly-
ing orthogonal features by a principal component analysis
(PCA). Resulting was a decomposition of the original series
in elementary sub-signals, usually characterized by a simple
oscillating feature.

Next, these elementary sub-signals were binned accord-
ing to their spectral properties to reconstruct sub-signals with

Table 3. Classification of the temporal scales in the SSA.

Timescale The min–max period

Daily < 8 d
Weekly 8–32 d
Monthly 32–128 d
Annual 128–512 d
Interannual > 512 d

uniform spectral properties. In this study, similar bins as in
the study by Mahecha et al. (2010) were used (see Table 3).

As discussed by Mahecha et al. (2010), some elementary
sub-signals might contain features with mixed spectral prop-
erties. To avoid this, Mahecha et al. (2010) proposed a double
pass procedure, where the SSA is applied again on the recon-
structed sub-signals. However, this procedure yielded limited
improvements in this study. Instead, it was found to be ben-
eficial to attribute a higher weight to the high-frequency bins
compared to the low-frequency bins. This was achieved us-
ing weights proportional to the lower-frequency limit of each
bin. An example of the analysis is shown in Fig. 2.

The benefit of SSA compared to other spectral disaggre-
gating methods (e.g. the Fourier transformation) is that it is
less sensitive to gaps in the dataset and that it can handle
datasets with a lower sampling frequency (e.g. the NDVI
time series with 8 d resolution). Consequently, datasets
with lower sampling frequency have no signal at the daily
timescale. The SSA was applied to the observed and simu-
lated GPP, allowing evaluation at each timescale. The evalu-
ation was performed using the metrics given below.
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Figure 2. SSA decomposition of the observed GPP in DE-Spw and
the simulation by ORCHIDEE.

Performance metrics

The daily GPP estimations from the various models were
compared to the observed GPP at the eddy covariance sta-
tions (Table 1). The variability of the (decomposed) time se-
ries was quantified using the standard deviation of the data
(σ ). The relative variance (rel.σ 2) of a time series compo-
nent was calculated as

rel.σ 2
=
σ 2

comp

σ 2
all
, (7)

where σcomp and σall are the standard deviations (σ ) of the
component and the full dataset, respectively. This calculation
assumes all components to be independent (as the covariance
is ignored). It was verified that the covariance of the compo-
nents is negligible compared to the variance. Detailed results
are given in Tables S8 and S9.

Furthermore, the performance of the models was quanti-
fied using the Pearson correlation r:

r =

∑no(y∗− y∗)(yo
− yo)√∑no(y∗− y∗)2

∑no(yo− yo)2
, (8)

where y∗ and yo are the predicted and observed values, re-
spectively; y represents the mean of y; and no represents the
number of observations. Significant differences between the
models were evaluated with the Wilcoxon signed-rank test.

Note that MOD17 or FluxComRS are 8 d integrated GPP
products, yet they are treated here as daily instantaneous
products, analogous to the other RS-based GPP products.
Consequently, it can be expected that these GPP products
will be less capable of estimating the high-frequency anoma-
lies.

Driver variables

Short-wave incoming radiation (SWrad; tower observation),
air temperature at 2 m (TA; tower observation), vapour pres-
sure deficit at 2 m (VPD; tower observation) and surface soil
moisture (SWC; ERA5) were selected as key hydrometeoro-
logical drivers for GPP. Their impact at daily to interannual
timescales was assessed by decomposing each time series us-
ing SSA and calculating the covariance (cov) with GPP at
each timescale. This was computed as

cov(x,y)=
1
no

no∑
i=1
(xi − x)(yi − y), (9)

where x and y represent two variables (e.g. GPP and SWrad).
This analysis was performed for each site separately. The
similarity between the observed and simulated covariances
was evaluated by comparing the median covariance across all
sites and by computing the root mean square error (RMSE)
between both. RMSE is computed as

RMSE=

√∑no(y∗− yo)2

no
, (10)

where y∗ and yo are the predicted and observed values (co-
variances in this case), respectively. SWrad, TA and VPD
were collected from the tower meteorological observations.
Given that no standardized soil moisture observations were
available at each site, SWC was taken from ERA5 (using the
0–7 cm layer) for each location.

As these drivers are not mutually independent, their co-
variance was evaluated for each HCB and is given in
Fig. S4. A positive covariance was found between SWrad,
TA and VDP in most sites, and a negative covariance of
these variables was found with SWC. The covariances were
the strongest at the seasonal timescale. Most HCB classes
showed similar behaviour, with some exceptions in the
Tropic and Trans_W biomes.

Carbon phenology

The (carbon) phenology in the time series was quantified by
the timing of the start, maximum and end of the seasonal GPP
cycle (SOS, MOS and EOS, respectively). This was achieved
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by applying a smoothing operation (20 d rolling mean), fol-
lowed by a threshold procedure (Maleki et al., 2020; De Pue
et al., 2022). In this procedure, the minima and maxima were
used to delineate the growing and senescent phase of the sea-
son. MOS was defined as the date when the maximum of the
season is reached, SOS and EOS were defined at the dates
where the growing or senescent phase cross the threshold
value T . And T was calculated for each growing or senescent
phase as T = P5+ 0.2(P95−P5), where P5 and P95 are the
5th and 95th percentiles. If the seasonal cycle was not pro-
nounced enough ((P5−P95)/P50 < 0.2), the detected phe-
nology was considered unreliable and omitted. The bias and
accuracy of the phenology were evaluated by calculating the
mean error (ME) and root mean square error (RMSE).

3 Results

3.1 Inter-site and seasonal variability

A comparison of the variability of GPP in observations and
simulations is given in Table 4. The overall observed variabil-
ity of σ = 4.18 gC m−2 d−1 was underestimated in all mod-
els, except LSA SAF. After decomposing the observed GPP
dataset, the inter-site variance represented 18 % of the to-
tal variance, the seasonal cycles represented 62 % and the
anomalies represented 24 % (the sum of these fractions is
larger than 100 % due to covariances; see Tables S8 and S9).
This partitioning was not well represented in the NDVI, EVI
or NIRv time series, where a large fraction of the variance
(> 30 %) was attributed to the inter-site component and a
very small fraction (< 12 %) to the anomalies. In the NDVI
observations, the inter-site variance was even larger than the
seasonal variance. In SIF, the contribution of the spatial and
seasonal components was reasonably accurate, but the rel-
ative variance of the anomalies was too low (10 %). The
relative variance of the seasonal pattern was strongly over-
estimated in the FluxCom products (∼ 80 %), whereas the
contribution of the anomalies was the lowest of all datasets
(∼ 5 %). The closest match with the observed variance par-
titioning was found in NIRvP, MOD17, LSA SAF and the
DGVMs. To ensure that these results were not affected by
the temporal resolution of the time series, the same analysis
was performed after downsampling to a 10 d interval. This
did not result in substantial changes in the variability or its
partitioning (Table S6).

Depending on the land cover type, the variability and its
partitioning between different components varied (Table 5).
As expected, limited seasonal variability was observed in
the EBF-Tropic sites (σseason= 0.68 gCm−2 d−1) compared
to DBF-MidL_T sites (σseason= 5.11 gCm−2 d−1). Still, the
variability of the anomalies of the tropical sites was compa-
rable to that in other sites (σanom ≈ 2.00 gCm−2 d−1). The
CRO-MidL_T sites had the largest variability in the anoma-
lies (σanom= 3.43 g Cm−2 d−1).

Figure 3. Taylor diagram of the simulated GPP (circles) and its
seasonal anomalies (squares); median of the metrics at all sites.

The Taylor diagram of the modelled GPP and its sea-
sonal anomalies is shown in Fig. 3. In terms of correla-
tion, the DGVMs, LSA SAF and the FluxCom products
achieved a distinctly better performance (r > 0.83, median
for all sites) compared to the linear-regression-based mod-
els (and MOD17). The NDVI-based model had the weak-
est correlation with observations (r = 0.57, median for all
sites). The correlation of the simulated GPP was substan-
tially reduced after subtracting the mean seasonal cycle.
For NDVI, EVI, NIRv and SIF, ranom was smaller than 0.2
(median for all sites). LSA SAF and ISBA were the only
models with ranom > 0.5 (median for all sites). The per-
formance of FluxCom to estimate the anomalies was sim-
ilar to the NDVI-, EVI- and NIRv-based models. Though
FluxComRSMet achieved ranom = 0.43 (median for all sites),
the variability of the anomalies was strongly underestimated.

A notable difference emerged in the anomalies simulated
with NIRvP and SIF. While both datasets showed a similar
performance in the full GPP time series, SIF performed much
poorer than NIRvP in the anomalies.

The RS-driven models, which relied purely on RS obser-
vation of the vegetation state, had a significantly lower σanom
(Wilcoxon p < 0.05) compared to the models that used mete-
orological forcing. This difference in performance was most
pronounced in the forest sites (Fig. 4). In sites dominated
by (water-limited) herbaceous vegetation, this was less the
case; GPP estimations based on simple greenness sensitive
NDVI-, EVI- and NIRv-based models often even outper-
formed DGVMs.

3.2 Timescale disaggregation

The variability of the time series after SSA decomposition
is given in Table 6. In agreement with the variability of
the seasonal GPP and its anomalies, the largest variability
was explained by the annual timescale (77 %, median for all
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Table 4. Standard deviation of the observed and simulated GPP (gCm−2 d−1), decomposed into the inter-site, seasonal and anomaly (ob-
tained after subtracting the spatial and seasonal component) components, and the fraction of the total variance (italics). This analysis done
after grouping all sites together.

All Inter-site Seasonal Anomalies

Observation 4.18 1.77 0.18 3.29 0.62 2.05 0.24

NDVI 2.10 1.46 0.48 1.33 0.40 0.74 0.12
EVI 2.95 1.69 0.33 2.25 0.58 0.90 0.09
NIRv 3.13 1.78 0.33 2.40 0.59 0.97 0.10
FluxComRS 2.81 1.12 0.16 2.50 0.79 0.66 0.06
SIF 3.41 1.65 0.23 2.78 0.66 1.05 0.10

NIRvP 3.34 1.17 0.12 2.72 0.66 1.77 0.28
FluxComRSMet 2.83 1.15 0.16 2.59 0.84 0.54 0.04
MOD17 3.13 1.39 0.20 2.42 0.60 1.51 0.23
LSA SAF 4.83 2.24 0.21 3.68 0.58 2.38 0.24

ISBA 3.64 1.46 0.16 2.88 0.63 1.85 0.26
ORCHIDEE 3.68 1.34 0.13 3.18 0.75 1.75 0.23

Figure 4. Pearson correlation of the modelled GPP and its anomalies for sites in seven PFT-HCB classes (see Table 1).

Table 5. Median standard deviation of the observed GPP per land
cover class (gCm−2 d−1), decomposed into the seasonal compo-
nent and its anomalies. The fraction of the total variability is given
in italics.

All Seasonal Anomalies

EBF-Tropic 2.25 0.68 0.09 2.15 0.91
DBF-MidL_T 5.11 4.79 0.90 2.01 0.17
ENF-Bor_WT 3.61 3.41 0.86 1.53 0.19
ENF-MidL_T 3.50 3.14 0.81 1.98 0.28
ENF-Trans_E 3.25 2.53 0.61 2.03 0.39
SAV-Trans_E 2.05 1.65 0.65 1.21 0.35
CRO-MidL_T 4.75 3.46 0.50 3.43 0.53

sites). At daily, weekly and monthly timescales, the relative
variance was roughly 10-fold smaller. The least variability
was found for the interannual timescale (1 %, median for all
sites). More detailed results per land cover type are given in

Table S6. Most land covers followed the same pattern, with
the exception of the EBF-Tropic sites, where seasonal vari-
ance was smaller than the variance at daily, weekly, monthly
or even annual timescales.

The RS-driven models underestimated the variance at all
timescales, especially at the annual scale. Furthermore, very
limited variability was found at the interannual scale, and the
relative variance at monthly scale was overestimated in these
models. NDVI was the least suitable proxy to capture this
variability, whereas the relative variance partitioning in SIF
approximated most closely the observations. Notably, the in-
clusion of PAR in NIRvP improved the GPP variability but
degraded the variance partitioning across timescales.

The FluxCom products contained a too strong annual sig-
nal and underestimated variability at other scales. The incor-
poration of daily meteorological forcing in FluxComRSMet
added variability at the daily timescale but reduced variabil-
ity at weekly and monthly timescales. The annual variabil-
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Table 6. Standard deviation of the observed and simulated GPP (gCm−2 d−1), decomposed into the different timescale components using
SSA (median values for all test sites). The fraction of the total variability is given in italics.

All Daily Weekly Monthly Annual Interannual

Observation 3.50 0.98 0.07 0.79 0.06 0.75 0.05 2.88 0.77 0.34 0.01

NDVI 1.20 0.21 0.06 0.47 0.33 0.65 0.57 0.05 0.00
EVI 1.60 0.21 0.04 0.52 0.24 1.10 0.70 0.07 0.00
NIRv 1.68 0.22 0.04 0.53 0.29 1.03 0.65 0.09 0.00
FluxComRS 2.47 0.35 0.03 0.45 0.05 2.24 0.92 0.09 0.00
SIF 2.69 0.55 0.06 0.90 0.16 1.79 0.76 0.11 0.00

NIRvP 2.45 0.60 0.17 0.81 0.29 1.32 0.54 0.06 0.00
FluxComRSMet 2.57 0.35 0.02 0.22 0.01 0.25 0.01 2.49 0.95 0.04 0.00
MOD17 2.83 0.92 0.19 0.79 0.15 1.61 0.63 0.07 0.00
LSA SAF 3.59 1.42 0.16 0.82 0.06 0.63 0.03 3.09 0.72 0.17 0.00

ISBA 3.01 0.93 0.10 0.71 0.05 0.45 0.04 2.58 0.80 0.23 0.01
ORCHIDEE 3.13 0.72 0.06 0.57 0.03 0.73 0.06 2.70 0.85 0.15 0.00

ity was approximated relatively well, but the variability at
shorter timescales was roughly 3-fold too small.

The variability across all timescales was best represented
by the meteo-driven DGVMs (Table 6). There were minor
differences between ORCHIDEE and ISBA, as the variance
at daily and weekly timescales was slightly more accurate in
ISBA, and the variance at monthly and annual timescales was
more accurate in ORCHIDEE. This trend was confirmed in
most land covers (see Table S6). LSA SAF also estimated the
variability reasonably accurately but overestimated the daily
variability.

The correlation of the simulations at these timescales is
given in Fig. 5. Note that the strength of the signal at inter-
annual scale was relatively low (in observed and simulated
GPP). Evaluating the correlation of this component should
thus be done with caution, as the SSA itself can induce er-
rors of comparable magnitude (Mahecha et al., 2010). It is
shown here but not discussed in detail.

Most models had a good correlation with GPP at the an-
nual timescale (r > 0.80, median for all sites), except the
NDVI-based model. At monthly the timescale, the correla-
tion dropped to r ≈ 0.25 for all models (median for all sites).
At weekly timescale, the models that relied solely on remote
sensing observations were very poorly correlated to the ob-
served GPP. Compared to these models, the models that in-
cluded meteorological data achieved a significantly higher
correlation (Wilcoxon p < 0.05). At daily scale, r increased
again. LSA SAF and ISBA achieved r > 0.65 (median for all
sites) at this spectral range.

Separating the results by PFT (Fig. 6) shows that the cor-
relation at monthly and seasonal timescales was generally
larger for DBF sites compared to ENF sites. At seasonal
scale, this was most pronounced for the greenness-sensitive
VI proxies (NDVI, EVI and NIRv).

Dryland sites, such as the SAV sites, generally showed a
higher correlation at the interannual scale for the RS-driven
models. Not all models manage to capture these interannual
patterns. For example, ORCHIDEE obtained only a very low
correlation at this scale. Regardless, the interannual scale had
only a minor contribution to the total variability.

In the CRO sites, the RS-driven models had a signifi-
cantly lower r at weekly timescale compared to the DGVMs
(Wilcoxon p < 0.05, with the exception of NIRv vs. OR-
CHIDEE and MOD17 vs. ORCHIDEE). However, at the
monthly timescale, the RS-driven models had a higher r than
the DGVMs (significantly for SIF, FluxComRS and MOD17),
and at the annual scale this trend persisted (significantly for
EVI, NIRv, FluxComRSMet and MOD17).

3.3 Drivers of GPP

Given the different performances across timescales, the co-
variance between the GPP and its key drivers (SWrad, TA,
VPD and SWC) was evaluated. The observed and simulated
covariances are shown in Fig. 7. These are the median covari-
ances for all sites. The covariance is impacted by the variance
of the GPP estimates, as opposed to the Pearson correlation.
For completeness, the latter is computed as well and is given
in Fig. S5.

In the observations, all drivers had the highest covari-
ance with GPP at the seasonal scale. SWrad and VPD had
a stronger covariance at daily scale compared to weekly and
monthly timescales, whereas TA had a slightly stronger co-
variance at weekly timescale. The covariance between SWC
and GPP was negative, indicating that GPP was smaller dur-
ing wet root-zone soil moisture anomalies (and higher during
dry anomalies). This was largely attributed to the negative co-
variance between SWC and the other drivers, as wet condi-
tions are associated with periods of rain and cloudy weather
(Fig. S4). The covariance between GPP and SWC was sim-
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Figure 5. Pearson r across timescales after SSA decomposition; median score for all sites. Error bars indicate the 25–75 quantiles.

Figure 6. Pearson r in DBF, ENF, SAV and CRO across timescales.

ilar at daily, weekly and monthly timescales. For all drivers
and GPP, the interannual signal was very weak, resulting in
a negligibly small covariance.

Substantial differences in the observed correlations were
found between different biomes, as highlighted in the plots
of the weekly, monthly and annual covariance (Fig. 8). For
example, the covariance between SWrad and GPP at the an-
nual scale was very strong for most biomes, but it was very
weak for EBF-Tropic (due to a small variability of the GPP
signal at this scale) and SAV-Trans_E sites (due to downreg-

ulation of photosynthesis by other constraining factors). An-
other clear trend was the shift in covariance between SWC
and GPP from negative in biomes where water is not a con-
straining factor (e.g. DBF-MidL_T) to water-limited biomes
(e.g. SAV-Trans_E).

The accuracy of the models to reproduce these patterns
was quantified by RMSE (see Tables S10 and S11 for
detailed results). The RS-driven models generally had a
very low sensitivity to all drivers at weekly and monthly
timescales. The covariances at annual scale were underes-
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Figure 7. Covariance (median for all sites) of the simulated GPP and its drivers (SWrad, TA, VPD and SWC). Covariance based on obser-
vations is shown with the bars with hatching. The coloured bar plots indicate the covariance in the simulations. Note that the covariance is
shown using a symmetric log scale.

timated as well. This can be attributed partly to the lower
variance of the RS-driven GPP estimates at annual scale, but
the Pearson r also indicated a too low sensitivity (Fig. S6).
Conversely, the sensitivity of the meteo-driven models was
generally more accurate. Some oversensitivity to the meteo-
rological drivers was found in ISBA, whereas ORCHIDEE
was generally among the most accurate models. The covari-
ance with soil moisture was more accurate in ISBA than OR-
CHIDEE (e.g. RMSE at weekly, monthly and annual scales
10 %–30 % more accurate)

The performance of the hybrid models was highly vari-
able. LSA SAF was generally too sensitive to meteorological
drivers, whereas MOD17 (also a LUE model) was too insen-
sitive to all drivers (though more sensitive than the RS-driven
models). The covariance of GPP with its drivers was gener-
ally most accurate in the FluxCom products. Their largest
shortcoming was a too low sensitivity to SWrad at daily and
weekly timescales.

The dynamics in temperate DBF forest sites were repro-
duced fairy well by most models. The strong annual covari-
ances were represented well by all models. Even the RS-

driven models had a relatively high covariance at this scale.
At annual scale, the DGVMs and LSA SAF were most accu-
rate in this biome (RMSE 3- to 4-fold lower than RS-driven
models). In contrast, the high annual covariance was not rep-
resented well by the NDVI-, EVI- and NIRv-based models in
the ENF sites. The covariance between GPP and the drivers
at annual scale was generally too weak. FluxCom and the
DGVMs were more accurate (RMSE 4- to 5-fold lower than
in VI-based models).

VPD and SWC were strong drivers for annual variabil-
ity in the savanna sites. This was reproduced accurately by
the RS-driven models and ISBA. NIRvP, FluxComRSMet and
ORCHIDEE did not capture the annual covariance with VPD
and SWC (RMSE for SWC and VPD 2- to 3-fold higher than
ISBA, i.e. the most accurate model).

In the EBF-Tropic biome, all models had a too strong
relation with the drivers at annual scale. A resemblance
with the observed annual relations was found only in the
FluxComRSMet product. It was the only model with an ac-
curate positive GPP-SWC annual covariance for the EBF-
Tropic sites.
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Figure 8. Covariance of the simulated GPP and its drivers at weekly, monthly and seasonal timescales. Covariance based on observations are
in the bars with hatching, and grey bars highlight the deviation for a land cover from the overall average. The coloured bar plots indicate the
covariance in the simulations.
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The results for the FluxCom products highlight the impor-
tance of incorporating meteorological forcings in the GPP
product. FluxComRSMet was superior to FluxComRS in the
reproduction of GPP at different timescales. The coarser spa-
tial resolution of FluxComRSMet did not have a negative im-
pact on the performance in this study.

This analysis gives a coarse estimate of the (linear) sen-
sitivity of the simulated GPP to the drivers impacting GPP.
Note that many effects were not accounted for, including
compound effects, legacy effects or the impact of other con-
straining variables (e.g. LAI in the DGVMs).

3.4 Phenology

The accuracy of the simulated timing of the seasonal GPP
cycle (start, max and end of season) is plotted in Fig. 9
(RMSE scores are calculated for every site individually).
Generally, the simulations of SOS and EOS were generally
less accurate in the RS-driven models (RMSE SOS ≈ 30–
38 d, EOS ≈ 25–50 d; except FluxComRS) compared to the
meteo-driven models (RMSE SOS ≈ 24–28 d, EOS ≈ 17–
21 d). The phenology in the NDVI-based model was the least
accurate, which was largely attributed to a bias in the timing,
especially in the EOS (≈ 50 d delayed; see Fig. S7). This bias
was also observed in EVI and NIRv but was smaller (≈ 10 d
delayed). Notably, the most accurate simulations of SOS and
EOS were obtained with FluxComRS, which purely relied on
remote sensing observations.

To highlight differences between biomes, the mean annual
cycle of DBF-MidL_T, ENF-MidL_T and SAV-Trans_E is
plotted in Fig. 10 (the annual cycle of the other biomes can
be found in Figs. S8 and S9). The DBF-MidL_T had a very
distinct SOS around the fifth month of the year. The interan-
nual variability of the observed GPP cycle was limited com-
pared to other biomes. Most models reproduced the phenol-
ogy fairly accurately. In the NDVI time series, an evident
illustration of the so-called “saturation effect” was observed,
as the simulated GPP reached a plateau during mid-summer.

In the ENF-MidL_T biome, the coupling between canopy
greenness and GPP was less strong than in DBF-MidL_T.
Consequently, the meteo-driven and hybrid models were
generally more accurate to simulate the timing of the GPP
cycle in this biome (RMSE SOS≈ 10–18 d, EOS≈ 10–18 d;
see also Fig. 9) than the RS-driven models (RMSE SOS
≈ 35–50 d, EOS ≈ 22–50 d). Also note the delayed MOS in
the ISBA simulations for this biome. This was largely asso-
ciated with the delay in the prognostic LAI seasonal cycle
(De Pue et al., 2022).

A strong variability of the annual GPP cycle was observed
in the SAV-Trans_E biome (Fig. 10), making it very chal-
lenging to capture the timing of the GPP cycle accurately
(Fig. 9). However, in these sites, a stronger coupling ex-
isted between GPP and the canopy greenness. At the SOS,
a distinct difference between the RS-driven models and the
meteo-driven models emerged. The RS-driven models were

more accurate (RMSE SOS ≈ 20–30 d for NDVI, EVI and
NIRv) compared to the DGVMs (RMSE SOS≈ 46–82 d). In
this biome, the inclusion of PAR in NIRvP resulted in a less
accurate phenology compared to NIRv. In NIRv, the reduced
photosynthesis due to water-limiting conditions in the sec-
ond half of the growing season was evident, whereas GPP
remained high in NIRvP.

4 Discussion

The variability of GPP is largely modulated by the vegetation
state (canopy greenness, leaf area index, etc.) and hydrome-
teorological conditions. As indicated by Stoy et al. (2009),
the relation of GPP to these factors shifts across timescales:
“Quantifying flux variability at longer timescales requires in-
formation on how ecosystems change in response to climatic
variability, rather than how they merely respond to climatic
variability”. In this study, we investigated how well the im-
pact of these factors is captured in RS-driven, meteo-driven
and hybrid models.

4.1 Vegetation state

Depending on the biome, the vegetation state is tightly cou-
pled (e.g. in water-limited herbaceous sites), more loosely
coupled (e.g. deciduous broadleaf forests) or completely de-
coupled (e.g. tropical evergreen broadleaf forests) to GPP
(Hu et al., 2022). Vegetation indices, such as NDVI, EVI
and NIRv are effective proxies to track the vegetation state
via remote sensing. They have proven to be an effective,
low-cost proxy for GPP in biomes with an evident coupling
between canopy greenness and photosynthesis (Xiao et al.,
2019; Huang et al., 2019).

However, an important discrepancy was found between
the RS observations and the observed GPP in the spatio-
temporal partitioning of their variability. The inter-site vari-
ability of NDVI, EVI, NIRv and (to a lesser extent) SIF was
substantially higher than that of the GPP observations. Fur-
thermore, the variability of the anomalies in the models was
relatively small (see Tab 4). This high inter-site variability
indicated that there was a need to use land-cover-dependent
relations to estimate GPP from the remotely sensed veg-
etation proxies. Several studies have confirmed that PFT-
specific relations considerably improved the GPP estimates
from NDVI (Huang et al., 2019), EVI (Shi et al., 2017;
Huang et al., 2019), NIRv (Badgley et al., 2019; Huang et al.,
2019) and SIF (Gao et al., 2021). FluxComRS also relied on
land cover data to estimate GPP from RS observations (Jung
et al., 2020) and captured the spatial and seasonal variability
more accurately (see Table 4). Results from explorative tests
with PFT-specific regression models are shown in Figs. S10
and S11. They indicated that improved results were largely
caused by improved spatial correlation. The variability of the
seasonal signal and anomalies remained underestimated.
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Figure 9. RMSE (per site) in the timing of the start, max and end of the seasonal GPP cycle (SOS, MOS and EOS). Bars show overall results
(median for all sites); markers show separate results for three PFT-HCB classes.

The biome-dependent relation between vegetation green-
ness and GPP was also evident in the seasonal cycle (Fig. 4)
and in the annual timescale (Fig. 6). For DBF and CRO
biomes, the coupling between VI and GPP resulted in
high correlations at these timescales, whereas the decou-
pling in other biomes emerged. This was most pronounced
in evergreen forest sites (ENF and EBF), and the decou-
pling increased as the climate was increasingly water-limited
(ENF-Bor_WT<ENF-MidL_T<ENF-Trans_E; see Figs. 4
and 8). Opposed to herbaceous sites in the same arid biomes
(e.g. SAV-Trans_E), the photosynthesis downregulation in
ENF sites was not translated into rapid changes in vegetation
greenness.

As often reported, the decoupling of leaf phenology and
carbon phenology was also poorly captured in the VI-based
models. This was most pronounced in the senescent phase,
where photosynthesis halts, due to decrease in SWrad and
TA, before canopy greenness drops (Kong et al., 2020; Wang
et al., 2020).

All VIs were insensitive to the decoupling of canopy
greenness and photosynthesis at seasonal timescale, but
NDVI performed significantly worse than EVI and NIRv in
this respect. Saturation in dense canopies, background ef-
fects and atmospheric influences (Huete et al., 2002; Olofs-
son et al., 2008) likely explain the underestimated variability
of the seasonal cycle in NDVI time series, especially in for-
est biomes (illustrated in Fig. 10). Between EVI and NIRv,
no substantial differences in performance were found.

SIF is a more direct proxy for photosynthesis and is there-
fore expected to capture the decoupling between vegeta-
tion greenness and GPP more accurately than VIs (Duveiller
et al., 2020; Pickering et al., 2022). However, SIF did not
perform significantly better than EVI or NIRv at the annual
timescale (Figs. 5 and 6). Exceptions were the arid biomes,
ENF_Trans-E and SAV_Trans-E, where SIF outperformed
EVI and NIRv. It remains unclear in what measure the down-
scaling processing is responsible for the moderate SIF scores.
Future missions with high-resolution SIF, such as European

Spatial Agency’s Earth Explorer – FLEX (FLuorescence EX-
plorer, due to be launched in 2025), will provide further in-
sights (Duveiller et al., 2020).

The results with the VI-based models seemed to indicate
that the remotely sensed observations of the vegetation state
were insufficient to describe GPP in evergreen vegetation.
However, FluxComRS relied exclusively on these observa-
tions as predictors and managed to capture GPP patterns in
ENF. Furthermore, it produced the most accurate results re-
garding the GPP phenology. This product illustrated that, in
combination with land cover information and non-linear rela-
tions, accurate estimates of GPP at the seasonal timescale can
be obtained from optical remote sensing (Tramontana et al.,
2016).

Conversely, it is very challenging to accurately model the
state of the vegetation without RS observations (Fatichi et al.,
2019). In a detailed evaluation of the water, energy and car-
bon modelling in ISBA and ORCHIDEE, it was reported that
the leaf phenology in ISBA and ORCHIDEE was delayed
compared to observations and that it failed to capture the
observed seasonal variability. De Pue et al. (2022) reported
that these errors were strongly correlated to errors in GPP.
Despite these inaccuracies, the performance of the DGVMs
was generally better than the VI-based models. The domi-
nant impact of meteorological forcings and the decoupling
of greenness and photosynthesis was captured accurately in
the DGVMs.

Next to the complexity of plant physiology and biomass
allocation; there can be a substantial impact of management
practices (e.g. crop rotations, sowing and harvest in crop-
lands; Osborne et al., 2010). The lack of these practices in the
configuration of the DGVMs in this study also resulted in a
poorer performance of the monthly and annual-scale GPP in
croplands (see Fig. 6). Observations of these practices in re-
mote sensing contribute to a better performance in croplands
with RS-driven models. At a global scale, the lack of an ade-
quate description of land management contributes consider-
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Figure 10. Annual GPP cycle in observations and models for sites in the DBF-MidL_T, ENF-MidL_T and SAV-Trans_E biomes. The lines
show the median cycle, and the shaded area shows the 25–75 percentile. Time series of sites located at the Southern Hemisphere were shifted
by 6 months to match with the annual cycle of sites in the Northern Hemisphere.

ably to uncertainties associated with the global carbon cycle
in earth system models (Friedlingstein et al., 2022).

In summary, based on the observed vegetation state, a
coarse estimate of the annual-scale GPP can be made. How-
ever, vegetation indices and linear regressions are insufficient
to capture the decoupling of greenness and photosynthesis
due to other confounding factors. Information on the hy-
drometeorological conditions is needed to capture this vari-
ability in all biomes, even at the seasonal scale.

4.2 Meteorological conditions

Meteorological conditions are the main drivers of variabil-
ity of GPP at sub-seasonal scale (Stoy et al., 2009). At daily
timescale, patterns were largely dominated by SWrad and
VPD (see Fig. 7). The impact of TA was more pronounced
at weekly and monthly timescales (though still dominated by
SWrad).

The RS-driven models had a very low performance to sim-
ulate these sub-seasonal patterns (Fig. 5). They had a tempo-
ral resolution of 8–10 d, so the variability at daily timescale

https://doi.org/10.5194/bg-20-4795-2023 Biogeosciences, 20, 4795–4818, 2023



4812 J. De Pue et al.: Temporal variability of observed and simulated gross primary productivity

was absent. At weekly and monthly timescales, they had
nearly no sensitivity to the driver variables (Fig. 7). Conse-
quently, the correlation of the anomalies was very weak in
comparison to other models (Fig. 4).

NIRvP was the most simplistic approach to incorporate
SWrad (as PAR) as key driver for photosynthesis (Eq. 4).
Compared to NIRv (and SIF), NIRvP captured anomalies in
GPP more accurately, in particular at the weekly timescale
(Figs. 3 and 5).

Alternatively, light-use efficiency models ingest more me-
teorological variables, such as VPD and TA, in addition
to SWrad and vegetation state variables. Consequently, the
quality of the simulated GPP strongly depended on the qual-
ity of the meteorological forcings. The MOD17 product re-
lied on the coarse GMAO/NASA reanalysis dataset for the
meteorological forcing and failed to achieve a better perfor-
mance than the VI-based models (Fig. 3). The LSA SAF GPP
model, here forced by in situ SWrad observations, excelled
in the simulation of temporal variability at all timescales and
in all domains. Although there were other factors that im-
pact the performance (e.g. the incorporation of soil mois-
ture stress, which was absent in MOD17), the difference in
SWrad forcings likely contributed substantially to the dif-
ference in performance, given the sensitivity of the models
to SWrad and the quality of SWrad in reanalysis products
(Anav et al., 2015; Urraca et al., 2018; Zheng et al., 2018).

The incorporation of meteorological forcings in
FluxComRSMet improved the algorithm’s ability to cap-
ture the anomalies compared to FluxComRS (Fig. 3). This
was most evident in forest sites (Fig. 4), though the improve-
ment was restricted to the weekly timescale (Fig. 5). Still,
despite the introduction of meteorological variables, the
variance of the anomalies remained strongly underestimated
(Table 4).

In contrast, the meteo-driven DGVMs represented the
variability of GPP accurately across timescales. A significant
difference between ISBA and ORCHIDEE was found in the
performance at daily timescale (Fig. 5). The superior perfor-
mance of ISBA at this timescale seemed to be originating
from a more accurate sensitivity to SWrad than ORCHIDEE
(Fig. 7). Conversely, the sensitivity to atmospheric drivers
at weekly and monthly timescales was more accurate in OR-
CHIDEE, whereas ISBA was generally oversensitive (Figs. 7
and 6). Though the performance of ORCHIDEE to simulate
GPP at these longer timescales was not superior (due to other
confounding factors, e.g. soil moisture or LAI), ORCHIDEE
is likely more accurate in assessing the impact larger mete-
orological anomalies, such as heat waves, on GPP. Further
research addressing the performance of the models under ex-
treme conditions is needed to confirm this.

4.3 Soil moisture

At sub-seasonal scale, the RS-driven models demonstrated a
big difference in performance between forest and herbaceous

biomes. A substantially better performance was achieved in
herbaceous sites (Fig. 4), where the coupling between veg-
etation greenness and GPP is much tighter than in forest
sites Hu et al. (2022). The indirect observation of soil mois-
ture stress in VIs allowed for accurate sub-seasonal-scale
modelling of GPP in these strongly water-limited biomes
(AghaKouchak et al., 2015). In other biomes, the combina-
tion with a drought indicator is required to simulate GPP in
such conditions (Maleki et al., 2022).

No downregulation due to soil moisture or temperature
stress is considered explicitly in NIRvP. However, changes
in light-use efficiency are partly reflected in changes in the
canopy structure (Xu et al., 2021). Consequently, NIRvP can
yield similar results than SIF, as demonstrated in the work
by Dechant et al. (2022). Regardless, in water-limited herba-
ceous sites (e.g. SAV-Trans_E), the sensitivity to soil mois-
ture stress in NIRv was eliminated in NIRvP, due to a too
high sensitivity to SWrad (Fig. 8). An illustration of this lack
of soil moisture stress downregulation was evident in the
mean annual cycle of NIRvP, where GPP was consistently
overestimated during the dry season (Fig. 10). The downreg-
ulation was more accurately reflected in the SIF model.

The seasonal GPP patterns in water-limited sites (e.g.
ENF-Trans_E or SAV-Trans_E) were generally simulated
less accurately (see Fig. 4) in DGVMs, indicating that the
soil moisture dynamics or the soil moisture stress response of
the vegetation were an important source of errors (Vereecken
et al., 2019; Raoult et al., 2021; De Pue et al., 2022). In
the arid biomes, differences between ISBA and ORCHIDEE
were most evident. The soil moisture dynamics and response
to soil moisture stress in ORCHIDEE were demonstrated to
be less accurate compared to ISBA in a previous study by
De Pue et al. (2022).

4.4 Uncertainties

The in situ observation uncertainty may contribute to the dis-
agreement between models and observations. The eddy co-
variance observations are associated with site-dependent ran-
dom errors due to instrumentation, stochastic nature of turbu-
lence and varying footprint (Mauder et al., 2020). Addition-
ally, the typical non-closure of the energy balance might indi-
cate that the observed carbon fluxes suffer from a similar bias
(Gao et al., 2019), and there are significant uncertainties as-
sociated with the carbon flux partitioning in the ONEFLUX
preprocessing pipeline (Pastorello et al., 2020).

Though land cover homogeneity and data quality were cri-
teria for site selection, the discrepancy between the spatial
scale of the in situ and remote sensing observations may con-
tribute to the disagreement between observed and simulated
GPP (Xie et al., 2021). Furthermore, there is a representation
bias in the selection of test sites used here. There are limited
sites included from South America, Africa and Asia. Con-
sequently, some of the results reported here might be biased
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due to the dominant representation of (needleleaf) forest sites
in temperate climates.

Lag effects of the drivers were not investigated in the
frame of this study. Generally, it is mainly precipitation
which leads to time lag effects (Papagiannopoulou et al.,
2017), but that effect was largely accounted for by consid-
ering soil moisture. However, severe drought extremes can
have a legacy effect, with a substantial impact on the inter-
annual variability of GPP in terrestrial ecosystems (Bastos
et al., 2020). These effects fall out of the scope of this study.

The interannual variability in the SSA-decomposed time
series was relatively small, in agreement with the results of
Mahecha et al. (2010). Given the associated uncertainty and
relatively short time series in most sites, interpretation of the
results at these timescales should be done with caution. In sa-
vanna biomes, there was an indication that RS-driven models
captured the interannual variability better than meteo-driven
models (see Fig. 6). In other biomes, the interannual correla-
tion was very weak.

This study evaluated the ability of the models to capture
the variability in GPP. It relied on analysis of the variance,
the Pearson correlation and metrics for phenology. The ab-
solute errors were not evaluated here. These results give no
guidance on the bias or accuracy of the simulated GPP itself.

5 Conclusions

The temporal variability of GPP is modulated by vege-
tation state and hydrometeorological factors, operating at
instantaneous to interannual timescales. In this study, we
set out to evaluate the ability of GPP models to capture
this variability. Eleven models were considered, encom-
passing remote sensing-driven models (e.g. NDVI regres-
sion, SIF, FluxComRS), meteo-driven models (i.e. ISBA and
ORCHIDEE DGVMs) and hybrid models that combined
both inputs (e.g. FluxComRSMet or LUE algorithms, such as
MOD17 and LSA SAF). They were evaluated using in situ
observations of GPP at 61 eddy covariance sites, covering a
broad range of biomes. The analysis comprises decomposi-
tion of the signal in daily to interannual timescales, covari-
ance with driver variables and phenology.

The results illustrated how the determinant of tempo-
ral variability shifts from meteorological variables at sub-
seasonal timescales to biophysical variables at seasonal and
interannual scales. Consequently, shortcomings were accord-
ingly associated with RS-driven and meteo-driven models.
To capture the full range of variability accurately, RS-driven
models lack the sensitivity to the dominant drivers at short
timescales, i.e. SWrad and VPD. Furthermore, they failed to
capture the decoupling of photosynthesis and canopy green-
ness in evergreen vegetation or during senescence. Con-
versely, meteo-driven models accurately captured the vari-
ability across timescales. Though the prognostic simulation

of the vegetation state remains elusive, the seasonal patterns
in GPP are accurately reproduced.

Important challenges remain in the simulation of soil
moisture and the response of vegetation to soil moisture
stress, illustrated by the poorer performance of the DGVMs
in water-limited sites. RS-driven models captured the GPP
anomalies accurately in these sites, as they were character-
ized by a tight coupling of vegetation greenness.

Hybrid models capitalized on the combination of RS ob-
servations and meteorological information. The simple inclu-
sion of PAR in NIRvP was beneficial to capture the variabil-
ity of GPP at all timescales. LUE models were among the
most accurate models to monitor GPP across all biomes, but
large differences between MOD17 and LSA SAF illustrated
their sensitivity to the quality of the meteorological forcings
used.

Overall, we conclude that the combination of meteoro-
logical drivers and remote sensing observations are needed
to yield an accurate reproduction of the spatio-temporal
variability of GPP. To further advance the performance of
DGVMs, improvements in the soil moisture dynamics and
vegetation evolution are needed.
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