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Abstract 

Protein complex assembly facilitates the combination of individual protein subunits into functional entities, and thus 
plays a crucial role in biology and biotechnology. Recently, we developed quasi‑twodimensional, silicon‑based 
compartmental biochips that are designed to study and administer the synthesis and assembly of protein com‑
plexes. At these biochips, individual protein subunits are synthesized from locally confined high‑density DNA brushes 
and are captured on the chip surface by molecular traps. Here, we investigate single‑gene versions of our quasi‑
twodimensional synthesis systems and introduce the trap‑binding efficiency to characterize their performance. We 
show by mathematical and computational modeling how a finite trap density determines the dynamics of protein‑
trap binding and identify three distinct regimes of the trap‑binding efficiency. We systematically study how protein‑
trap binding is governed by the system’s three key parameters, which are the synthesis rate, the diffusion constant 
and the trap‑binding affinity of the expressed protein. In addition, we describe how spatially differential patterns 
of traps modulate the protein‑trap binding dynamics. In this way, we extend the theoretical knowledge base for syn‑
thesis, diffusion, and binding in compartmental systems, which helps to achieve better control of directed molecular 
self‑assembly required for the fabrication of nanomachines for synthetic biology applications or nanotechnological 
purposes.

Background
The plethora of tasks that biomolecules autonomously 
fulfill inside living cells inspired and triggered many stud-
ies on the use of peptides  [1–3], nucleic acids  [4–9], or 
polysaccharides  [10–12] as building blocks for artificial 
nanodevices. Important properties of biomolecular nan-
odevices are bio-compatibility, stimuli-responsiveness, 

and the capability to self-assemble  [13]. These devices 
have the potential to serve for example as delivery sys-
tems for drugs or genetic material  [14, 15], for molecu-
lar computation  [16], or as nanosensors  [17]. However, 
for many applications the precise and reliable fabrication 
of nanomachines via self-assembly still remains a major 
challenge  [18, 19]. One particular problem is the inher-
ent complexity of the self-assembly of any multi-compo-
nent nanomachine [20, 21]. Freely diffusing components 
can interact in many different ways, which results in 
unwanted side-reactions and the formation of alternative, 
non-functional complexes. These off-pathway reactions 
cause a reduction of product quality and yield by divert-
ing and sequestering resources  [22]. There are different 
strategies to tackle these challenges. As an example, spa-
tio-temporal control of the assembly process is achieved 
by compartmentalization of the reaction chamber  [23]. 
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Furthermore, fine-tuning the stoichiometry of the indi-
vidual components  [24] or using molecular assembly 
lines  [25] can reduce the probability of off-pathway 
reactions.

Recently, we presented systems for the in-vitro syn-
thesis and assembly of protein complexes in quasi-
twodimensional silicon chips  [26]. In these systems, we 
separate component synthesis from component assembly 
by applying a soft, membrane-less compartmentaliza-
tion strategy: First, we attach DNA-brushes to confined 
regions on the surfaces of the chips. Second, the coding 
sequences that are comprised by the brushes are used as 
templates for the synthesis of protein subunits via cell-
free transcription and translation. Third, assembly of the 
subunits into protein complexes is coupled to their syn-
thesis and occurs either in solution or by scaffolding on 
the surfaces of the chips, which are coated with molecu-
lar traps.

In these systems, the dynamics of the assembly of 
nanomachines are determined by a specific set of parame-
ters. This set comprises the rates of component synthesis, 
the diffusion constants of the components, and the rate 
constants for component-component binding and com-
ponent-trap binding. An efficient fabrication of nanoma-
chines is only possible when these system parameters are 
well-adjusted to facilitate correct assembly and to sup-
press off-pathway reactions. Therefore, understanding 
how each of these parameters influences the assembly of 
nanomachines is a fundamental prerequisite for the effec-
tive genetic and geometric control of this process. In prac-
tice, depending on the synthesis process it might not be 
feasible to adjust all of the parameters or the range of pos-
sible parameter values might be highly restricted: Protein 
complexes assemble from defined subunits, which means 
that the options for molecular modifications are limited 

by the requirement that the functionality and integrity 
of the complex need to be preserved [27]. However, syn-
thesis rates, diffusion constants and binding affinities 
of subunits and surface traps are in principle adjustable, 
e.g. via changing temperature, DNA-brush densities and 
compositions, the viscosity of the reaction solution, and 
the particular choice of the molecular tags for trap bind-
ing. Furthermore, the biochip allows for adjustable posi-
tioning of the DNA brushes, introducing a distinct spatial 
component that is unique to the system.

Their adjustability turns synthesis rates, diffusion con-
stants and binding affinities into system parameters that 
are particularly interesting to study. In multi-component 
systems, the impact of the synthesis rate, the diffusion 
constant and the trap-binding affinity may be obscured 
by the complexity of the reaction network. To better 
understand the fundamental process, we here focus on a 
simplified version of the biochip studied previously [26]. 
In this simplified system, only one type of protein subunit 
is actively expressed whereas subunits of a second type 
are tethered to the surface of the silicon chip and serve 
themselves as traps for the actively expressed subunits, 
see Fig.  1. Consequently, assembly of two-subunit com-
plexes can only occur at the surface but not in solution 
and the performance of these systems in terms of two-
subunit interaction can be characterized by their trap-
binding efficiency.

Here, we model these simplified biochips for pro-
tein synthesis and binding as spatially inhomogeneous 
reaction-diffusion systems with finite trap densities and 
three adjustable system parameters: (i) synthesis rate, (ii) 
diffusion constant, and (iii) trap-binding affinity of the 
expressed protein subunit. We show how the trap-binding 
efficiency is determined by the aforementioned system 
parameters and study the time evolution of protein-trap 

Fig. 1 Schematic representation of a compartmentalized biochip. A DNA brush is attached to the chip surface. The encoded sequences are 
transcribed by RNA polymerases (light gray) and translated by ribosomes (dark gray). The synthesized proteins (brown) spread by diffusion and bind 
to a second type of proteins (light brown) tethered to the chip surface by antibodies
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binding. In particular, we identify three distinct regimes 
of the trap-binding efficiency that arise from the interplay 
of protein synthesis and binding. Furthermore, we study 
the spatial distribution of bound proteins and investigate 
the influence of trap patterning on the trap-binding effi-
ciency. Finally, we test the predictive power of our compu-
tational modeling by comparison with experimental data.

Results and discussion
Trap‑binding efficiency in one‑box systems with finite trap 
density undergoes a transition from a binding‑dominated 
to a synthesis‑dominated regime
We consider a quasi-twodimensional system with height 
h and length l for which h ≪ l , i.e., a very flat box as 
sketched in Fig.  2a). The box is filled with a solution of 

proteins, where n new proteins are added to the box per 
unit of time [t] at the constant synthesis rate αsyn ≡ n/[t] . 
Protein synthesis is realized by in-vitro synthesis within 
the solution. The bottom of the box is coated with traps 
to which free proteins bind in a quasi-irreversible man-
ner with probability p per unit of time [t], i.e., with bind-
ing affinity κbin ≡ p/[t] . The trap density is finite and 
each trap can only bind one protein. Therefore, the num-
ber Nb(t) of bound proteins is always less or equal than 
a maximal value Nmax

b  , which corresponds to the total 
number of traps provided the lateral size of the proteins 
is smaller than the trap separation. We assume that the 
solution is perfectly mixed at all times so that the time 
evolution of the numbers Nu(t) and Nb(t) of unbound 
and bound proteins is described by

Fig. 2 Binding dynamics of the one‑box system with limited trap density. a One‑box system with finite trap density. The quasi‑twodimensional 
synthesis chip of height h and length l  with h ≪ l is filled with a solution of proteins (orange spheres) that bind to molecular traps (yellow 
cones) to form protein‑trap complexes. b Number Nb(t

∗) of bound proteins at t = t
∗ and c maximum of the trap‑binding efficiency fmax

b = fb(t
∗) 

for different ratios of synthesis rate αsyn and binding affinity κbin . d Number Nb(t) of proteins bound to traps normalized to the maximal value Nmax
b  

and e time‑evolution of the trap‑binding efficiency fb(t) for different choices of synthesis rate αsyn and binding affinity κbin . Note that the maximum 
of the trap‑binding efficiency fmax

b  is determined by the ratio of synthesis rate αsyn and binding affinity κbin , see also (c). For the light blue 
and magenta lines this ratio is one, thus fmax

b  is identical but reached at different time points. Background color indicates binding‑dominated 
(orange) and synthesis‑dominated (gray) regime for αsyn = 0.001 s−1 and κbin = 0.1 s−1 . Transition from the former to the latter occurs at t = t

∗ , i.e., 
when the maximum fmax

b  of the trap‑binding efficiency is reached
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and mass conservation

with initial numbers Nb(0) and Nu(0) of bound and 
unbound proteins. A solution of this initial value prob-
lem is given by Eq.  (15) in the Methods section. In the 
following, we investigate the time evolution of the frac-
tion fb(t) of bound proteins in the box

and refer to fb(t) as the trap-binding efficiency of the sys-
tem. For more efficient systems, the maximum fmax

b  of the 
trap-binding efficiency gets closer to the highest possible 
value 1, is reached at an earlier point in time t = t∗ after 
protein synthesis has started and stays at a high level for a 
longer time than for less efficient systems. Figure 2 shows 
examples for the number Nb(t

∗) of bound proteins at 
t = t∗ (Fig. 2b), the maximum fmax

b = fb(t
∗) of the trap-

binding efficiency (Fig.  2c), the time evolution of the 
number Nb(t) of bound proteins (Fig.  2d), and the time 
evolution of the trap-binding efficiency fb(t) (Fig. 2e) for 
different synthesis rates αsyn and binding affinities κbin : 
As expected, the number Nb(t) of bound proteins 
increases and approaches the plateau value Nmax

b  . The 
trap-binding efficiency fb(t) increases after the onset of 
protein synthesis at a rate that is determined by the bind-
ing affinity κbin . For longer timescales, the synthesis rate 
αsyn determines how fast fb(t) approaches zero as the 
long-term behavior of the trap-binding efficiency is gov-
erned by fb(t) ∝ Nmax

b

(
αsynt

)−1 . Thus, for each particular 
choice of κbin and αsyn , we can distinguish a binding-
dominated and a synthesis-dominated regime for the 
time evolution of the trap-binding efficiency. The transi-
tion from the first to the latter regime occurs at time t∗ 
when the trap-binding efficiency has reached its maxi-
mum fmax

b  and starts to decrease, see Fig.  2e). At this 
time, many traps are already saturated, whereas the total 
number of proteins keeps to increase linearly. The time 
t∗ , the trap-binding efficiency maximum fmax

b  and the 
number Nb(t

∗) of bound proteins at t = t∗ depend on the 
binding affinity κbin and the synthesis rate αsyn , see 
Figs. 2 b), c), and e). They can be determined by solving 
the initial value problem defined in Eqs.  (1) and (2) 
together with d

dt
fb(t)|t=t∗ = 0.

(1)
d

dt
Nu(t) = - κbinNu(t)

(
Nmax

b - Nb(t)
)
+ αsyn,

(2)
d

dt
Nb(t) = κbin Nu(t)

(
Nmax

b −Nb(t)
)
,

(3)N(t) ≡ Nb(t)+Nu(t) = αsynt +Nb(0)+Nu(0)

(4)fb(t) ≡ Nb(t)/N(t)

Trap‑binding efficiency in two‑box systems 
with inhomogeneous synthesis and slow diffusion exhibits 
three distinct regimes
We extend the one-box system introduced above by a 
second box that is identical and directly connected to 
the first one, see Fig. 3a). As in the one-box system, both 
boxes 1 and 2 of the two-box system are filled with a pro-
tein solution and their bottom is coated with traps that 
the proteins can bind to. Both boxes of the system are 
open in the sense that proteins can freely diffuse between 
them with diffusion rate D̃ . The diffusion rate D̃ is defined 
as the diffusion constant D of the proteins scaled by the 
box length l , D̃ ≡ D/l2 , and is expressed by the inverse 
unit of time [t]−1 . In contrast to the one-box system, pro-
tein synthesis in the two-box system is not homogene-
ous. Instead, proteins are only synthesized in box  1 but 
not in box 2. Thus, the dynamics of the numbers Ni,u(t) 
and Ni,b(t) of unbound and bound proteins in boxes i = 1 
and 2 are described by

with synthesis rate αsyn and binding affinity κbin defined 
in the context of Eq. (1). In addition, mass conservation 
leads to the relationship

The time evolution of the numbers of bound proteins in 
box  1 and 2 is shown in Fig.  3b): Due to the spatially 
inhomogeneous synthesis of proteins in the two-box sys-
tem, the traps in box  2 are saturated at a later point in 
time than the traps in box  1. For a given synthesis rate 
αsyn and binding affinity κbin , the lag time depends on the 
diffusion rate D̃ and is negligible for very fast diffusion 
(i.e., in well-mixed systems) as expected. A diffusion that 
is slow enough to cause a lag in the saturation of traps in 
box  2 has also an impact on the trap-binding efficiency 

(5)
d
dt

= D̃
(
N2,u(t)−N1,u(t)

)
− κbinN1,u(t)

(
Nmax

1,b −N1,b(t)
)
+ αsyn ,

(6)
d

dt
= κbinN1,u(t)

(
Nmax

1,b −N1,b(t)
)
,

(7)
d
dt

= D̃
(
N1,u(t)−N2,u(t)

)
− κbinN2,u(t)

(
Nmax

2,b −N2,b(t)
)
, and

(8)
d

dt
= κbinN2,u(t)

(
Nmax

2,b −N2,b(t)
)
,

(9)

N(t) = N1,u(t)+N1,b(t)+N2,u(t)+N2,b(t)

= αsynt +N1,u(0)+N1,b(0)+N2,u(0)+N2,b(0) .
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Fig. 3 Binding dynamics in a two‑box system with diffusion rates D̃ = 0.001 s−1 (left) and D̃ = 0.1 s−1 (right), and synthesis rates αsyn and binding 
affinities κbin as indicated. a The two‑box system with box height h , box length l  , and h << 2 l . Proteins (orange spheres) can freely diffuse 
between both boxes and bind to traps (yellow cones). New proteins are synthesized only in the left box (blue). b Numbers Ni,b(t) of bound 
proteins in box i = 1 (dashed lines) and i = 2 (solid lines). Because synthesis is restricted to box 1, saturation of traps in box 2 is lagging behind. 
This lag is not observable in well‑mixed systems with high diffusion rates. c In two‑box systems, the trap‑binding efficiency fb(t) exhibits a pure 
binding‑dominated ( 0 ≤ t < t

∗
1 ), a mixed ( t∗1 ≤ t < t

∗
2 ), and a pure synthesis‑dominated regime ( t ≥ t

∗
2 ) as indicated by background shading. d) 

Individual trap binding efficiencies fi,b(t) ≡ Ni,b(t)/Ni(t) of box i = 1 (dashed lines) and i = 2 (solid lines). Transitions from the binding‑dominated 
to the synthesis‑dominated regimes in the boxes 1 and 2 occur at time points t∗1 and t∗2 , respectively. Arrows point to the maxima of f1,b(t) and f2,b(t) 
at t = t

∗
1 and t = t

∗
2 , respectively
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fb(t) ≡
(
N1,b(t)+N2,b(t)

)
/N(t) of the two-box system. 

The time evolution of fb(t) can be now divided into three 
regimes, see Fig. 3c): At first, the system is in a pure bind-
ing-dominated regime (with boxes 1 and 2 being both in 
the binding-dominated regime). In this regime, the trap-
binding efficiency fb(t) monotonically increases. At t = t∗1 
box  1 undergoes a transition from the binding-domi-
nated to the synthesis-dominated regime, see Fig. 3d). At 
this point in time, the two-box system enters a mixed 
regime, because box  2 is still in the binding-dominated 
regime. The system remains in the mixed regime until 
t = t∗2 when box 2 also undergoes a transition to the syn-
thesis-dominated regime and the two-box system enters 
the pure synthesis-dominated regime. For fast diffusion, 
the mixed regime is short-lived because the lag time 
t∗2 − t∗1 becomes small. Note that the time evolution of 
the trap-binding efficiency in the mixed regime strongly 
varies depending on the system parameters. In contrast, 
in the pure synthesis-dominated regime the trap-binding 
efficiency always monotonically decreases and asymptot-
ically approaches fb(t) ∝

(
Nmax

1,b +Nmax
2,b

)(
αsynt

)−1.

Binding and diffusion in quasi‑realistic systems with finite 
trap densities and inhomogeneous synthesis
To study diffusion and binding for finite trap densities 
in a more realistic system, we investigate a system com-
prised of M ≫ 1 boxes. The number Ni(t) of proteins in 
box i = 1, ...,M changes over time due to the synthesis 
of new proteins and their diffusion between neighbor-
ing boxes. The proteins freely diffuse with diffusion rate 
D̃ until they bind to traps, which coat the bottom of the 
boxes, with binding affinity κbin . Binding can only occur 
as long as free traps are available, which implies that 
the number Ni,b(t) of bound proteins in box i cannot 
exceed its maximum Nmax

i,b  . Like in the two-box system 
introduced above, the synthesis of new proteins can be 
restricted to a specific subset of boxes. We here focus 
on a system with M = 100 boxes and - corresponding 
to the experimental system - boxes i = isyn = 12, ..., 19 
serving as sources for new proteins of which each pro-
vides new proteins at a synthesis rate αsyn . As an exam-
ple, the 100-box system could be a spatially discretized 
model of a quasi-twodimensional biochip of length 
L = 1mm , where each box represents a section with 
length l = 10µm of the chip. Note that in this case the 
box index i indicates the discretized position relative to 
the biochip and L = l ·M.

Equivalently to the two-box system described above, 
the time-evolution of the numbers Ni,u(t) and Ni,b(t) of 
free and bound proteins in box i is given by

for i = 2, ...,M − 1 , and

where the Iverson bracket 
[
i = isyn

]
= 1 if box i is a 

source for new proteins and 0 otherwise. In addition, 
mass conservation must hold, which implies

We solved the system of equations (10) to (14) numeri-
cally by using Euler’s method with a fixed discrete time 
step.

Trap‑binding efficiency in quasi‑realistic systems
At first, we study the time-dependent trap-binding 
efficiency fb(t) of the 100-box system, which is defined 
equivalently to Eq. (4) by the ratio of the total number 
Nb(t) ≡

∑100
i=1 Ni,b(t) of bound proteins and the total 

number N(t) ≡
∑100

i=1 Ni(t) of all proteins in the system. 
Like in the simple two-box system described above, 
the time evolution fb(t) of the trap-binding efficiency 
in the 100-box system can also be divided into three 
distinct regimes, see Fig.  4: (i) a pure binding-domi-
nated regime, where all boxes are in the binding-dom-
inated regime; (ii) a mixed regime with at least one 
box in the binding-dominated regime and at least one 
box in the synthesis-dominated regime; and (iii) a pure 
synthesis-dominated regime, where all boxes are in 
the synthesis-dominated regime. In all three regimes, 
the trap-binding efficiency is higher in systems with a 
faster diffusion, a lower synthesis of new proteins, or a 
higher trap binding affinity. A lower synthesis of new 

(10)

d

dt
= κbinNi,u(t)

(
Nmax

i,b −Ni,b(t)
)

for i=1, ...,M ,

(11)

d

dt
= D̃

(
Ni+1,u(t)+Ni−1,u(t)− 2Ni,u(t)

)

− κbinNi,u(t)
(
Nmax

i,b −Ni,b(t)
)
+ αsyn

[
i = isyn

]

(12)

d

dt
= D̃

(
N2,u(t)−N1,u(t)

)

− κbinN1,u(t)
(
Nmax

1,b −N1,b(t)
)

+ αsyn
[
1 = isyn

]
,

(13)

d

dt
= D̃

(
NM−1,u(t)−NM,u(t)

)

− κbinNM,u(t)
(
Nmax

M,b −NM,b(t)
)

+ αsyn
[
M = isyn

]
,

(14)

M∑

i=1

(
Ni,u(t)+Ni,b(t)

)
=

M∑

i=1

(
Ni,u(0)+Ni,b(0)+ αsynt

[
i = isyn

])
.
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proteins, a faster diffusion, or a smaller binding affin-
ity of proteins and traps attenuate the accumulation 
of trapped proteins in the proximity of the synthesis 
sites and, thus, cause a delay of the transition from the 
pure binding-dominated to the mixed regime. A tran-
sition from the mixed to the pure synthesis-dominated 
regime occurs when the box that is the most distant 
from the synthesis sites enters the synthesis-domi-
nated regime. Therefore, this transition is delayed by 
slower diffusion, weaker binding, and lower synthesis.

Inhomogeneities in the trap density modulate 
the distribution of bound molecules
So far, we discussed systems with a homogeneous trap 
density, i.e, with a location-independent maximal num-
ber of bound proteins per box Nmax

i,b = Nmax
b  for all boxes 

i = 1, ...,M . In this paragraph, we investigate how inho-
mogeneities in the trap density modulate the dynamics 
and the localization of trap binding. In an experimental 
setup, these inhomogeneities may arise from an intended 
trap patterning, an incomplete coating of the reaction 
chamber or microfluidic chip with traps, or from impu-
rities in the reaction solution that block the traps in an 
unspecific manner before proteins can bind. In Fig. 5 we 
plotted distributions of bound proteins at specific times 
for binding affinity κbin = 2e − 4 .�t−1 , diffusion rate 
D̃ = 8.3e − 2 .�t−1 , synthesis rate αsyn = 2e − 4 .�t−1 
and the trap pattern indicated by the blue solid line. The 
distribution of bound proteins may reflect the trap pat-
tern already at early times when most of the traps are 
still unoccupied because the probability that a protein 
gets trapped is reduced in areas with a lower trap density. 

How clearly the trap pattern is imprinted in the distribu-
tion of bound proteins at a given point in time can dif-
fer for binding reaction-limited systems (with relatively 

Fig. 4 Trap‑binding efficiency fb(t) in 100‑box systems with synthesis rate αsyn , binding affinity κbin and diffusion rate D̃ . Time‑evolution 
of the trap‑binding efficiency fb(t) for a 100‑box system with synthesis of proteins restricted to boxes 12 to 19 and system parameters 
as indicated. Circles and stars mark the transition from the pure binding‑dominated to the mixed regime at t∗1 and from the mixed to the pure 
synthesis‑dominated regime at t∗100 , respectively

Fig. 5 Inhomogeneities in the trap pattern of a 100‑box system 
can be reflected by the distributions of bound proteins long 
before the traps get saturated. Local numbers of bound proteins 
Ni,b(t) for binding affinity κbin = 2e − 4 .�t

−1 , diffusion rate 
D̃ = 8.3e − 2 .�t

−1 , synthesis rate αsyn = 2e − 4 .�t
−1 , and specific 

points in time as indicated in the figure legend. Numbers are 
normalized to the overall largest value of the local maximal numbers 
Nmax
i,b  of bound proteins, i.e., Nmax

b = max(Nmax
i,b : i = 1, ..., 100) . The 

local maximal numbers Nmax
i,b  are equivalent to the local numbers 

of traps (solid blue line, “ ∞”), i.e., the inhomogeneous trap pattern. 
The gray box indicates the area of protein synthesis
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high diffusion constants and low binding affinities) and 
diffusion-limited systems (with relatively low diffusion 
constants and high binding affinities). For the trap pat-
tern in Fig. 5, the distributions of bound proteins reflect 
the inhomogeneous trap density already at early time 
points if the system is binding reaction-limited and not 
diffusion-limited.

Systems with spatially restricted binding domains
For certain applications or for technical reasons, binding 
of proteins to traps might be restricted to a specific 
region within the chip surface. We model such systems by 
setting the maximal number of bound proteins Nmax

i,b = 0 
for all boxes i except for i = itrap = 15+ kdist,
..., 15+ kdist + kwidth , where kdist indicates the distance 

between the synthesis sites and the trap region, and kwidth 
refers to the number of consecutive boxes that define the 
trap region. We set kwidth = 8 and Nmax

itrap,b
= Nmax

b > 0 . 
Figure  6 shows total numbers and exemplary distribu-
tions of bound proteins at several points in time and for 
different trap positions. Proteins that diffuse faster and 
are less easily captured by traps have a greater chance to 
spread throughout the whole reaction chamber such that 
the number of proteins in solution gets more homogene-
ous. Thus, in these systems the total number of bound 
proteins as a function of time depends much less on the 
distance kdist between synthesis sites and traps compared 
to systems with slowly diffusing proteins with a high trap-
binding affinity. For a system with known synthesis rate 

Fig. 6 Binding in spatially restricted domains. a The system consists of 100 boxes where binding is restricted to 8 consecutive boxes itrap such 
that Nmax

i,b = Nmax
b  for i = itrap and Nmax

i,b = 0 elsewhere. Synthesis sites are at boxes isyn = 7, ..., 14 (blue) and boxes with traps (yellow) are located 
in a specific distance kdist to the synthesis site as indicated. Further system parameters are binding affinity κbin = 2e − 2 .�t

−1 , diffusion rate 
D̃ = 9.8e − 3 .�t

−1 , and synthesis rate αsyn = 2e − 4 .�t
−1 . b Total number of bound proteins in the biochip at different time points and distances 

between synthesis sites and traps. The bold line corresponds to the time point in  (c), which shows the distributions of bound proteins for different 
trap distances kdist
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and diffusion rate, these differences in the trap-position 
dependence could be exploited to determine an unknown 
binding affinity κbin : Using the binding affinity as the fit 
parameter, the computed total number of bound proteins 
could be fitted to the measured amount of bound pro-
teins, either at a specific time point for different trap 
positions or at several time points for a specific trap 
position.

Experimental validation: protein synthesis, diffusion, 
and trap binding in a quasi‑twodimensional silicon‑based 
compartmental system
In this section, we compare experimental data to predic-
tions from our computational 100-box system to validate 
our modeling approach. The experimental setup has been 
described previously [26]. Briefly, we used compartments 
of dimensions 200µm width, 1000µm length, and 2µm 
height. First, we uniformly immobilized DNA along the 
width of the compartment, close to one edge. Here, we 

used DNA encoding the bacteriophage protein gp10 as 
a model protein. Antibody-based traps (tagged protein 
gp11-HA) were then immobilized all along the compart-
ments, excluding the area of the DNA. After washing all 
non-immobilized bio-molecules, we filled the compart-
ments with a cell-free reaction solution and sealed them. 
Incubating the compartments for 2–3 h enabled the syn-
thesis, diffusion, and trapping of gp10 from the immobi-
lized DNA to the traps to occur.

First, we studied the distribution of trapped gp10 
for different fractions of coding sequences in the DNA 
brush. The protein synthesis rate can be controlled by 
the amount of coding DNA provided that all compo-
nents required for protein synthesis are added in excess. 
Figure 7 shows that for a higher synthesis rate indeed a 
larger part of the chip is covered with gp10 120 min after 
protein synthesis has started and that our computational 
100-box model reproduces the experimental data.

Fig. 7 Experimental validation of the 100‑box model. Fluorescence signals of trap‑bound gp10 synthesized in a quasi‑twodimensional, 
silicon‑based expression system recently introduced [26] (symbols) and corresponding simulation results at t = 21 · 103�t (dashed lines). In 
the experiment, the gp10 synthesis rate is roughly proportional to the amount of gp10‑coding DNA sequences. Simulations were performed 
in the 100‑box system as described in the main text with synthesis sites being located at boxes isyn = 7, ..., 14 , binding affinity κbin = 2e − 3 .�t

−1 , 
diffusion rate D̃ = 0.045 .�t

−1 and synthesis rate as indicated. Increasing the amount of gp10‑coding DNA sequences on the biochip by a factor 
of 4 corresponds to an increase in the simulation parameter αsyn by roughly the same fold change
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Second, we checked whether the 100-box model cor-
rectly predicts the influence of trap patterns on the dis-
tribution of proteins within the chip and their binding 
to the traps. Instead of gp10, which requires post-stain-
ing for visualization [26], we used GFP as a model pro-
tein and reporter. GFP is a fluorescent protein and can 
therefore be monitored both as a freely diffusing mol-
ecule and when bound to a trap. We performed experi-
ments with three different trap distributions, see Fig. 8: 
for the first trap distribution, traps were only present 
in proximity to the DNA brushes; for the second, traps 

were distributed homogeneously along the chip; for 
the third, the area covered by traps and, thus, the total 
number of traps was approximately doubled compared 
to the second. After start of synthesis, GFP fills both 
the traps and the reaction solution of the chip. The 
trap pattern has an impact on the distribution of GFP 
because the traps effectively slow down the spread of 
GFP within the chip, see Fig. 8. The strong correlation 
between simulation and experimental results suggests 
that the computational model provides an adequate 

Fig. 8 Qualitative comparison of experimental results and simulations for different trap patterns. a, c, e Fluorescence signals of bound 
and unbound ( b+ u ) GFP synthesized in a quasi‑twodimensional, silicon‑based expression system recently introduced [26] for different trap 
patterns (purple bars) 1 h after start of synthesis. Signal normalized to the respective maximum value measured after 2 h. b, d, f Simulations of GFP 
synthesis, diffusion and binding in a 100‑box system with synthesis sites being located at boxes isyn = 12, ..., 19 (gray boxes), trap patterns as in a, c 
and e, respectively, and at simulation time t = 39 · 103�t . Number of bound and unbound GFP molecules is normalized to the respective maximal 
number of traps per box
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description of protein synthesis, diffusion, and binding 
in compartmentalized systems introduced in [26].

Conclusion
Recently, we introduced quasi-twodimensional, sil-
icon-based systems for the in-vitro synthesis and 
assembly of bionanomachines consisting of multi-
ple protein subunits, where we introduced a model 
to examine different modes of protein assembly  [26]. 
Here, we discussed a simplified version of these sys-
tems, in which a single protein subunit is synthesized 
either everywhere or in a spatially defined region 
of the chip and is later bound to the chip surface by 
molecular traps. The dynamics of these simplified sys-
tems are governed by the synthesis rate αsyn , the dif-
fusion constant D of the protein, and the trap-binding 
affinity κbin . We studied the influence of these param-
eters on the system’s trap-binding efficiency fb(t) , 
which is defined as the time-dependent fraction of 
proteins that are bound to traps, see Eq.  (4). In par-
ticular, we took into account that the trap density is 
limited. We found that systems with spatially homoge-
neous synthesis of proteins undergo a transition from 
a binding-dominated to a synthesis-dominated regime 
after protein synthesis has started: The first regime is 
characterized by a high fraction of proteins that get 
bound to traps, whereas in the second regime a high 
fraction of traps is occupied and the systems fills up 
with unbound proteins. Thus, the trap-binding effi-
ciency increases in the binding-dominated regime 
and decreases in the synthesis-dominated regime. A 
spatial confinement of protein synthesis introduces 
more complexity to the binding dynamics: Systems 
with a spatially inhomogeneous synthesis that are not 
well-mixed also exhibit a pure binding-dominated 
and a pure synthesis-dominated regime, but these are 
separated by a mixed regime. In the mixed regime, 
local binding-dominated coexist with local synthesis-
dominated regimes. Spatial inhomogeneities of pro-
tein synthesis are not the only way to modulate the 
dynamics of protein spreading and trap binding in the 
biochip. Further complexities can be introduced by 
using non-uniform distributions of traps on the sur-
face of the synthesis systems. Depending on the system 
parameters, the spatial distribution of bound proteins 
is shaped by the trap pattern long before all traps get 
saturated. Therefore, designing non-uniform trap dis-
tributions provides a possibility to control both the 
temporal and the spatial dependence of protein-trap 
binding. Furthermore, we studied systems with spa-
tially restricted binding where traps are only present 
in a distinct, narrow region on the surface. We showed 

that the system parameters determine the impact 
of the distance between synthesis and trap sites on 
the protein-trap binding dynamics. This parameter-
dependence could potentially open up a new path to 
infer for example unknown binding affinities from 
systems with known synthesis rates and diffusion con-
stants: To this end, the model presented in this work 
might be fitted to the fluorescence time courses of 
trapped proteins measured in a series of experiments 
with increasing distances between synthesis and trap 
sites. Finally, we performed experiments to validate 
our modeling approach. We used single-gene versions 
of our silicon-based compartmental system introduced 
in [26] to synthesize the proteins gp10 and GFP for dif-
ferent synthesis rates (gp10) and trap patterns (GFP). 
Simulations based on the here defined diffusion sys-
tem with limited trap density reproduce the experi-
mental findings, which indicates that the presented 
model is an adequate description of protein synthe-
sis, diffusion and binding in quasi-twodimensional 
biochips. Overall, our work broadens the theoretical 
understanding of synthesis, diffusion, and binding pro-
cesses in compartmental systems. This advancement 
enables improved control over directed molecular self-
assembly, facilitating the fabrication of nanomachines 
for applications in synthetic biology or nanotechnol-
ogy  (Additional file 1, 2).

Methods
Time‑dependent number of bound proteins in the one‑box 
system
We solved the differential Eqs. (1) and (2) using the soft-
ware Wolfram Mathematica. The number Nb(t) of bound 
proteins relative to its maximal value Nmax

b  is given by

with Erf(z) indicating the Gauss error function,

and all further symbols defined in the main text.

Experimental methods
The experimental setup was previously described 
in  [26]. For visualization of on-chip dynamic expres-
sion, Fig.  8, the chip was placed in an incubator 

(15)

Nb(t)
Nmax

b
= 1− η

e−�2Cζ (t)2

e−�2Cζ (0)2 +Nmax
b η�

√
π
(
Erf

[
�Cζ (t)

]
− Erf

[
�Cζ (0)

])

� ≡
√

κbin

2αsyn
, Cζ (t) ≡ −Nmax

b

+Nb(0)+Nu(0)+ αsynt , η ≡
(
1−

Nb(0)

Nmax
b

)
,
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chamber (Bold-line stage top incubator, Okolab) 
installed on the microscope and set to 30 ◦C . Fluores-
cent images were obtained using an AxioObserver Z1 
inverted microscope with a motorized stage (Zeiss), 
10x/0.3 MPlanFL N (Olympus) Objective. Illumination 
was performed using a Colibri2 LED illumination sys-
tem equipped with a 470 nm LED module (Zeiss) and 
filter sets 38 HE (Zeiss, excitation 470/40  nm, dichroic 
mirror 495  nm, emission 525/50   nm). Images were 
captured using an iXon Ultra CCD camera (Andor 
Technology, Belfast, UK). Chip alignment and multi-
image time series acquisition was performed using 
the Zeiss ZEN 2012 software. Images were analyzed as 
previously described in [26].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12934‑ 023‑ 02237‑5.

Additional file 1: Additional parameters and trap distributions.

Additional file 2: Movie S1. Dynamics of GFP expression, diffusion and 
binding for different trap patterns. Montage of three wells, each with 
different trap pattern density, as explained in Fig. 8. Expression originates 
from immobilized DNA at ~150 µm from the left side of the well. Scale bar 
100 µm. Images were acquired every 3 minutes.
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