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We identify generic protocols achieving optimal power extraction from a single active particle subject
to continuous feedback control under the assumption that its spatial trajectory, but not its instantaneous
self-propulsion force, is accessible to direct observation. Our Bayesian approach draws on the Onsager-
Machlup path integral formalism and is exemplified in the cases of free run-and-tumble and active
Ornstein-Uhlenbeck dynamics in one dimension. Such optimal protocols extract positive work even in
models characterized by time-symmetric positional trajectories and thus vanishing informational entropy
production rates. We argue that the theoretical bounds derived in this work are those against which the
performance of realistic active matter engines should be compared.
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Macroscopic living creatures such as horses and oxen
have been utilized by humans for millennia to do useful
work. A question of current theoretical and practical
interest is the extent to which energy can be efficiently
harvested from microscopic active systems [1–6], whose
motion is subject to non-negligible noise. The efficiency of
existing many-particle microscopic active matter engines,
such as turbines driven by the persistent motion of E. coli
bacteria in solution [7–9], is heavily limited by the
difficulty of rectifying the incoherent motion of collections
of individual swimmers with weak alignment interactions
in the bulk. Even under idealized conditions, where
individual active particles can be manipulated independ-
ently, strict upper bounds on extractable power are not well
understood, particularly when only a subset of the observ-
ables characterizing active motion are accessible to direct
observation [10–12]. Here, we present a generic framework
for the identification of protocols achieving optimal
power extraction from a single active particle under
continuous feedback control with the assumption that the
instantaneous net velocity, ẋðtÞ, but not the fluctuating
contribution originating from the self-propulsion, wðtÞ, is
observable. This is typically the case for realistic active
matter engines [1,7]. Our Bayesian approach, which draws
on the Onsager-Machlup path integral formalism [13],
applies to a generic stochastic self-propulsion process
and is illustrated in the cases of free run-and-tumble

(RnT) [14] and active Ornstein-Uhlenbeck (AOU) [15]
dynamics in one dimension.
Both models are characterized by time-symmetric posi-

tional trajectories (Supplemental Material, Sec. SI [16])
and thus vanishing informational entropy production
rates (iEPR) [24,25], defined as the Kullback-Leibler
divergence [26] per unit time of the ensemble of forward
paths and their time-reversed counterparts [27,28].
In the Markovian case, where all degrees of freedom are

observable, the iEPR is proportional to the thermodynamic
dissipation and thus provides a (loose) upper bound to the
extractable power. This relation fails to apply in the
presence of hidden states [12,29,30]. Indeed, we show
that positive average power extraction remains possible
even for vanishing iEPR upon Bayesian inference of the
hidden state (cf. [31], where it is argued that vanishing local
iEPR implies zero extractable work). Measurement-driven
protocols of the type we discuss in the following incur a
thermodynamic maintenance cost [32,33], but are not
constrained by Landauer’s principle in the same way as
equilibrium information engines [6,34].
Definition of the optimal protocol.—Consider the over-

damped Langevin equation for a generic active particle
ẋðtÞ ¼ wðtÞ þ γ−1FextðtÞ þ

ffiffiffiffiffiffiffiffi
2Dx

p
ξðtÞ, where ξðtÞ is a

white noise of unit covariance with associated diffusivity
Dx and γ denotes the viscosity. We henceforth work in units
whereby γ ¼ 1. Here, wðtÞ is a stochastic self-propulsion
velocity, which for the time being we take to be measurable
by an external observer tasked with controlling the
applied force FextðtÞ. In practice, FextðtÞ could be imple-
mented using an optical trap [34] or, for a charged active
colloid [35], through an external electric field of time-
varying magnitude and direction. Positive average work is
readily extracted by applying an FextðtÞ smaller than and
opposite to the particle’s self-propulsion [1,7,36]. Over a
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duration T this generates a noise-averaged total work by the
particle against the known external force

Eξ½Wtot½Fext�� ¼ −
Z

T

0

dt FextðtÞEξ½ẋðtÞ�

¼ −
Z

T

0

dt FextðtÞ½wðtÞ þ FextðtÞ�; ð1Þ

which constitutes the key observable of a hypothetical
experiment. Above and henceforth, Eϕ½•� is used to denote
an average with respect to the steady-state distribution of
the random variable ϕ. Wewill subsequently refer to FextðtÞ
as “the protocol.” The integrand of Eq. (1), corresponding
to the instantaneous power output, can be maximized at
each time t by applying the protocol F�

extðtÞ ¼ −wðtÞ=2.
The corresponding steady-state average power output is

lim
T→∞

Eξ½Wtot½Fext��
T

¼ w̄2

4
þ Ew½ðwðtÞ − w̄Þ2�

4
; ð2Þ

where w̄≡ Ew½wðtÞ� and we have invoked ergodicity to
convert time averages to ensemble averages. The average
power is smaller than the thermodynamic dissipation at
Fext ¼ 0, given by DxṠi ¼ Ew½w2ðtÞ� [37,38], demonstrat-
ing that the entropy production rate Ṡi provides only a loose
upper bound to the extractable power at low Reynolds
number, due to the unavoidability of viscous effects when
ẋðtÞ ≠ 0. We will henceforth refer to protocols F�

extðtÞ
achieving the maximum average power output allowed
under a particular set of constraints as optimal.
Consider now the case where the underlying dynamics of

the active particle (in the form of the full set of governing
equations) are known but the instantaneous self-propulsion
velocity wðtÞ is not accessible to direct observation, i.e., it
is a hidden variable. Naïvely, this suggests positive work
extraction is unattainable since there is no immediate
indication of which direction and magnitude should be
chosen for FextðtÞ. However, since wðtÞ can still be partially
inferred from the history of xðtÞ, positive work can be
extracted during transient periods of persistent motion. To
see this, let PðwðTÞ ¼ vjfxgT0 Þ denote the posterior prob-
ability density that the instantaneous self-propulsion veloc-
ity of the active particle at current time T equals v given a
particular spatial trajectory fxgT0 has been observed. The
expected work extracted during a time window of duration
T can be expressed as the following functional of the
generic protocol FextðtÞ,

Eξ;w½Wtot½Fext��

¼ −
Z

T

0

dt
Z

∞

−∞
dvPðvjfxgt0ÞFextðtÞ½vþ FextðtÞ�: ð3Þ

The optimal protocol F�
extðtÞ is obtained from

δEξ;w½Wtot½Fext��=δFextjF�
ext
¼ 0, whence

F�
extðTÞ ¼ −

1

2

Z
∞

−∞
dvPðvjfxgT0 Þv ¼ −

Ew½wðTÞjfxgT0 �
2

;

ð4Þ

where Ew½wðTÞjfxgT0 � denotes the posterior expectation
of the self-propulsion velocity with respect to PðvjfxgT0 Þ.
This is not to be confused with the expectation of wðTÞ
taken with respect to the corresponding prior probability
PðvÞ ¼ R DxPðvjfxgT0 ÞPðfxgT0 Þ, which we denoted w̄ and
assume to be independent of T. Substituting the optimal
force into the expression for the instantaneous power
output, the integrand in Eq. (3) gives

Eξ;w½Ẇ½F�
extðtÞ�� ¼

w̄2

4
þ Ew½ðwðTÞ − w̄ÞjfxgT0 �2

4
; ð5Þ

cf. Eq. (2). In the following, we take w̄ ¼ 0 to focus on the
nontrivial term appearing on the right-hand side of Eq. (5).
Figure 1 schematizes the feedback control described above.
Warm-up: The run-and-tumble particle.—We have

reduced the problem of identifying the optimal protocol to
the evaluation of the posterior expectation Ew½wðTÞjfxgT0 �,
Eq. (4). Now we proceed to show how this can be done
for the case of RnT motion in one dimension, ẋðtÞ ¼
νwðtÞ þ FextðtÞ þ

ffiffiffiffiffiffiffiffi
2Dx

p
ξðtÞ, whose binary internal self-

propulsion mode wðtÞ constitutes the simplest example of
a state-space amenable to nontrivial coarse graining.
In particular, let wðtÞ∈ f−1; 1g be a dimensionless

dichotomous noise with symmetric transition rate α. We
seek the posterior probability that the particle is a right self-
propeller, wðTÞ ¼ þ1, given its positional trajectory up to
the current time T, which we denote PþðTÞ ¼ P½wðTÞ ¼
þ1jfxgT0 � for compactness. The complementary probability
is denoted P−ðTÞ ¼ P½wðTÞ ¼ −1jfxgT0 �. Defining the

FIG. 1. Optimal power extraction from an active particle (here
visualized as a bacterium) with hidden self-propulsion velocity is
achieved by subjecting the latter to continuous feedback control,
whereby the magnitude and direction of the protocol FextðtÞ are
modulated according to the inferred self-propulsion velocity.
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confidence parameter Q½fxgT0 � ¼ logðPþðTÞ=P−ðTÞÞ and
using PþðTÞ þ P−ðTÞ ¼ 1, we can write

PþðTÞ ¼
eQ

1þ eQ
¼ 1

2
þ eQ − 1

2ð1þ eQÞ : ð6Þ

Equation (6) reduces to the prior probability Pðw ¼ �1Þ ¼
1=2whenQ ¼ 0. To calculate PþðTÞ viaQwe thus need to
find an expression for the ratio of the conditional path
probabilities. To do so, we first invoke Bayes’ theorem,

P½wðTÞ ¼ �1jfxgT0 � ¼
P½fxgT0 jwðTÞ ¼ �1�

2P½fxgT0 �
; ð7Þ

where we have used P½wðTÞ ¼ �1� ¼ 1=2. We can equiv-
alently write

Q½fxgT0 � ¼ log
P½fxgT0 jwðTÞ ¼ þ1�
P½fxgT0 jwðTÞ ¼ −1� ; ð8Þ

reminiscent of a stochastic entropy [28]. We now introduce
the notation for the average with respect to the distribution
of wðtÞ path probabilities conditioned on a particular final
value wðTÞ,

•ðvÞ ≡
Z

Dw • P½fwðtÞgT0 jwðTÞ ¼ v�; ð9Þ

which allows us to express the path probabilities in Eq. (8) as

P½fxgT0 jwðTÞ ¼ þ1� ¼ P½fxgT0 jfwgT0 �ðþ1Þ; ð10aÞ

P½fxgT0 jwðTÞ ¼ −1� ¼ P½fxgT0 jfwgT0 �ð−1Þ: ð10bÞ

Finally, we invoke the Onsager-Machlup path integral
form [13] of the conditional path probability in the
Stratonovich discretization

P½fxgT0 jfwgT0 � ∝ exp

�
−

1

4Dx

Z
T

0

dt ðẋcðtÞ − νwðtÞÞ2
�
;

ð11Þ

where ẋc ¼ ẋ − Fext denotes the velocity in the reference
frame where the externally imposed drift is subtracted
away. Substituting Eq. (11) into Eq. (10), combining the
resulting expressions with Eq. (8), and canceling common
wðtÞ-independent factors appearing in the numerator and
denominator, we eventually arrive at

Q½fxgT0 � ¼ log

 
exp

�
ν

2Dx

Z
T

0

dt ẋcðtÞwðtÞ
�ðþ1Þ!

− log

 
exp

�
ν

2Dx

Z
T

0

dt ẋcðtÞwðtÞ
�ð−1Þ!

; ð12Þ

where we have also used w2ðtÞ ¼ 1 for all t∈ ½0; T�. To
make further progress we exploit the identity between the
logarithm of a moment-generating function and its cumu-
lant-generating function [39,40], as well as the parity of the
cumulants (see Supplemental Material, Sec. SII [16]). This
leads to

Q½fxgT0 � ¼
X∞
n odd

Pen

2n−1n!
Yn½fxgT0 �ðþ1Þ;c; ð13Þ

with Péclet number Pe ¼ ν2=ðDxαÞ and

Yn½fxgT0 � ¼
Z

T

0

dt1…dtn
Yn
i¼1

�
ẋcðtiÞα

ν

�
wðtiÞ; ð14Þ

where the superscript c in expectations, e.g., •ðvÞ;c, denotes
the corresponding cumulant. Substituting Eq. (13) into
Eq. (6), combined with Eq. (4), returns the optimal protocol.
Computing the right-hand side of Eq. (13) is unfeasible

in general. However,Q½fxgT0 � can be computed analytically
in the low-Pe asymptotic regime. To leading order in

Pe ≪ 1, only the first cumulant Y½fxgT0 �ðþ1Þ;c is required,

which in turn draws on wðtÞðþ1Þ;c ¼ wðtÞðþ1Þ ¼
exp½−2αðT − tÞ�, Supplemental Material, Sec. SII [16],
whence we find

Q½fxgT0 � ¼ Pe
Z

T

0

dt

�
αẋcðtÞ

ν

�
e−2αðT−tÞ þOðPe3Þ: ð15Þ

In order to conveniently apply the optimal protocol under
continuous feedback control, we can differentiate Eq. (15)
with respect to T and use the Leibniz integration rule
[assuming ẋcðtÞ ¼ 0 for t < 0] to obtain a differential
equation for the time evolution of Q, i.e., Q̇ðTÞ ¼
νẋcðTÞ=Dx − 2αQðTÞ. Remarkably, upon substituting for
ẋc and rescaling time by the switching rate, T 0 ¼ αT, the
Langevin equation for QðT 0Þ reads like that of a RnT
particle in a harmonic potential with self-propulsion speed
and diffusivity both equal to the Péclet number, i.e.,

dQðT 0Þ
dT 0 ¼ PewðT 0Þ − 2QðT 0Þ þ

ffiffiffiffiffiffiffiffi
2Pe

p
ξðT 0Þ: ð16Þ

We now proceed to make the connection with the rate of
work extraction. First of all, we have by combining Eqs. (4)
and (6) that the optimal protocol is given to leading order
in Q ∼ Pe by F�

extðTÞ ¼ −ðν=4ÞQþOðQ2Þ. When the
optimal protocol is applied at all times, the resulting
noise-averaged power output, Eq. (5), is given by
Eξ½ẆRnT½F�

extðtÞ�� ¼ ν2Q2ðTÞ=16þOðPe2Þ. Taking a fur-
ther expectation with respect to the dichotomous noise wðtÞ
and exploiting the mapping of the Q dynamics onto those of
a RnT particle in a harmonic potential, Eq. (16), whence
Eξ;w½Q2� ¼ ð1þ Pe=4ÞPe=2 [14], we eventually arrive at
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Eξ;w½ẆRnTðF�
extÞ� ¼

ν2

4

Pe
8
þOðPe2Þ; ð17Þ

which constitutes a tight upper bound to the average
extractable power from a RnT particle with hidden self-
propulsion velocity in the low-Pe regime. Higher moments
of the fluctuating power output under F�

ext can be computed
similarly, see Supplemental Material, Sec. SIII [16].
A boundary-update protocol.—We further introduce an

independent approach to computing the posterior proba-
bility PþðTÞ in real time. This novel “boundary-update”
protocol, described in full detail in Supplemental Material
Sec. SVI [16], both saturates the bound (17) and is
conjectured to achieve optimality for all Pe. It draws on
the conditional splitting probabilities of the RnT process,
which, to the best of our knowledge, we compute here for
the first time. These are the probabilities that a particle
initialized at x0 ∈ ½−L=2; L=2� in a given statistical super-
position of internal states exits said interval through either
the left or right boundary in either a left or right self-
propulsion state. Knowledge of the splitting statistics is
used in combination with Bayes’ theorem to update the
posterior distribution of the internal state wðtÞ each time
the particle is observed to undergo a net displacement
larger than L=2 in the reference frame where the deter-
ministic drift is subtracted away, ẋc ¼ ẋ − Fext. In the limit
L → 0, the posterior updating frequency diverges and we
conjecture that optimal inference is achieved. Figure 2
shows application of the boundary-update approach
indeed produces an average power output matching the
bounds Eqs. (17) and (2) in the low- and high-Pe limits,
respectively.

A generic active particle.—Having explored the particu-
lar case of RnT motion in some detail, we now expand
our scope to a one-dimensional active particle with self-
propulsion velocity wðtÞ evolving according to a generic
(discrete- or continuous-state) stochastic process [41].
Following Eq. (4), the identification of the optimal protocol
requires us to compute the posterior expectation of the
self-propulsion velocity, which can be conveniently
expressed as

Ew½wðTÞjfxgT0 � ¼ Trv½vP½wðTÞ ¼ vjfxgT0 �� ¼
Trv

�
v · exp

�
− Pe

4

R
T
0 dt μ

σ2w
ðẋcðtÞ − wðtÞÞ2

�ðvÞ
PðvÞ

�

Trv

�
exp

�
− Pe

4

R
T
0 dt μ

σ2w
ðẋcðtÞ − wðtÞÞ2

�ðvÞ
PðvÞ

�
;

ð18Þ

with Pe ¼ σ2w=ðμDxÞ, σ2w ¼ Ew½w2�, and μ a characteristic
inverse timescale associated with the self-propulsion dy-
namics. Here, Trv denotes an integral (sum) over the
continuous (discrete) state space. We have also invoked
Bayes’ theorem to write

P½wðTÞ ¼ vjfxgT0 � ¼
PðvÞP½fxgT0 jfwðtÞgT0 �ðvÞ

P½fxðtÞgT0 �
; ð19Þ

where •ðvÞ is defined as in Eq. (9), and we have used the
normalization condition 1 ¼ TrvP½wðTÞ ¼ vjfxgT0 � to di-
vide by a factor of unity throughout, producing the same
type of cancellations of v-independent terms observed in
the RnT case. We can rewrite Eq. (18) in a compact form as

Ew½wðTÞjfxgT0 � ¼
Trv
h
v · eL½fxgT0 ;v�PðvÞ

i
Trv½eL½fxgT0 ;v�PðvÞ�

ð20Þ

by introducing the cumulant-generating function

L½fxgT0 ; v� ¼
X∞
n¼1

ð−PeÞn
22nn!

�Z
T

0

dt
μ

σ2w
ðẋcðtÞ − wðtÞÞ2

�
nðvÞ;c

:

ð21Þ
If no further assumptions can be made regarding the
process wðtÞ, one can now truncate the sum and substitute
the resulting expression into Eq. (20) to obtain, by invoking
Eq. (4) and recalling Ew½w� ¼ 0, the optimal protocol in the
asymptotic case Pe ≪ 1,

FIG. 2. Average power extracted from a RnT particle with
hidden self-propulsion velocity upon application of the boun-
dary-update protocol, the numerical implementation of which is
discussed in detail in Supplemental Material, Sec. SVI [16]. The
extractable power, which is positive for all Pe, asymptotically
approaches that of a situation where the internal state is known,
Eq. (2), as Pe → ∞ and is in excellent agreement with the
theoretical bound in the low-Pe limit, Eq. (17).
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F�
extðTÞ ¼ Trv

�
v
Pe
8

Z
T

0

dt
μ

σ2w

�
w2ðtÞðvÞ;c

− 2ẋcðtÞwðtÞðvÞ;c
�
PðvÞ

�
: ð22Þ

The form of Eq. (22) matches the RnT result, Eq. (15),
except for the appearance of a term depending on the

second-order cumulant w2ðtÞðvÞ;c, which was absent in the
RnT case due to the norm of the self-propulsion velocity
being constant. The correlation functions of the hidden
state wðtÞ in Eq. (22) can be reconstructed from observable
trajectories (see Supplemental Material, Sec. SV [16]),
allowing us to relax a posteriori the requirement that the
equations governing the dynamics of wðtÞ be known, and to
extract work even in this case.
In Supplemental Material, Sec. SIV [16], we apply the

general result obtained above to the specific case of a one-
dimensional AOU process, the simplest canonical active
particle model with a continuous self-propulsion state [15].
We find the average extractable power from an AOU
particle with hidden self-propulsion velocity in the low-
Pe asymptote is bound above by

Eξ;w½ẆAOUðF�
extÞ� ¼

σ2w
4

Pe
16

þOðPe2Þ; ð23Þ

and further compute the second moment of the power
output distribution (Supplemental Material, Sec. SIII [16]).
Langevin dynamics: High-Pe asymptotics.—When the

dynamics of wðtÞ are described by a Langevin process,
Eq. (18) also allows us to explore the high-Pe asymptote
through a saddle-point expansion. For the particular case of
the AOU process (as defined in Supplemental Material,
Sec. SIV [16]), we can write, using the Onsager-Machlup
form of P½fwgT0 �,

exp

�
−
Pe
4

Z
T

0

dt
μ

σ2w
ðẋcðtÞ − wðtÞÞ2

�ðvÞ

∝
Z

Dwe−N ½wðtÞ;fxgT
0
�δ½wðTÞ − v�; ð24Þ

with the actionlike functional

N ½wðtÞ; fxgT0 � ¼ μ

Z
T

0

dt

�
Pe

�
ẋcðtÞ − wðtÞ

2σw

�
2

þ
�
ẇðtÞ=μþ wðtÞ

2σw

�
2
�
; ð25Þ

which combines a “potential” term (prefactor Pe), penal-
izing departures from wðtÞ ¼ ẋc, and a “kinetic” term (unit
prefactor) penalizing changes in wðtÞ that are exceedingly
fast or slow compared to the characteristic inverse timescale
μ of the self-propulsion dynamics. Even at high Pe, the

second term cannot be ignored since the boundary con-
dition wðTÞ ¼ v in general prevents wðtÞ ¼ ẋcðtÞ from
being an accessible trajectory for the functional integral.
We define w�ðt; vÞ as the path that minimizes Eq. (25),
δN ½w�=δwjw� ¼ 0, whence

mẅ�ðtÞ ¼ μ2ðw�ðtÞ − ẋcðtÞÞ þ μ2mw�ðtÞ; ð26Þ

with m ¼ 1=Pe and boundary condition w�ðTÞ ¼ v.
Equation (26) is purposefully arranged to resemble the
Newtonian dynamics of a particle of mass m in an un-
stable, time-dependent harmonic potential Vðw�; tÞ ¼
−½μ2ðẋcðtÞ − w�Þ2=2þmμ2w�2=2�. Remarkably, the high-
Pe limit corresponds to the overdamped limit of Eq. (26),
whereby m → 0 and the potential term dominates. For
m ≪ 1, Eq. (26) is solved by combining an exponential
ansatz with the particular solution w�ðt;vÞ ¼ ẋcðtÞþOðmÞ,
whence

w�ðtÞ ¼ ẋcðtÞ þ ðv − ẋcðTÞÞe
ffiffiffiffiffi
1þm
m

p
μðt−TÞ þOðmÞ: ð27Þ

Noting the second functional derivative of N is indepen-
dent of wðtÞ, we perform a change of variables wðtÞ →
δwðtÞ þ w�ðt; vÞ in the functional integral, Eq. (24), to
rewrite Eq. (18) exactly as

Ew½wðTÞjfxgT0 � ¼
R
dv v · e−N ½w�ðt;vÞ;fxgT

0
��PðvÞR

dv e−N ½w�ðt;vÞ;fxgT
0
��PðvÞ : ð28Þ

Substituting Eq. (27) into Eq. (25) we thus have, to leading
order in large Pe,

N ½w�ðtÞ� ¼
ffiffiffiffiffi
Pe

p

8

��
v − ẋcðTÞ

σw

�
2

þO
	
Pe−

1
2


�
; ð29Þ

which draws only on the potential term. Further substitut-
ing Eq. (29) into Eq. (28) and performing all the resulting
Gaussian integrals in closed form, we arrive at the follow-
ing expression for the posterior expectation of the self-
propulsion velocity at high Pe:

Ew½wðTÞjfxgT0 � ¼
�
1 −

4ffiffiffiffiffi
Pe

p
�
ẋcðTÞ þOðPe−1Þ: ð30Þ

In other words, the prior distribution P½w� weakly biases
our posterior estimation Ew½wðTÞjfxgT0 � away from ẋcðTÞ
and towards the prior expectation Ew½wðTÞ� ¼ 0. Using
Eq. (5), the high-Pe asymptotic average power output,
having applied the optimal protocol, is thus given by

Eξ;w½ẆAOUðF�
extÞ� ¼

σ2w
4

�
1 −

8ffiffiffiffiffi
Pe

p
�
þOðPe−1Þ: ð31Þ
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Conclusion.—We have identified generic continuous
feedback protocols achieving maximum average power
extraction from active particles with a (zero-mean) hidden
self-propulsion state. These optimal protocols can be
written in closed form in the asymptotes Pe ≪ 1 and
Pe ≫ 1, and provide upper bounds to the average extract-
able work by any such protocol (cf. [6]), e.g., Eqs. (17),
(23), and (31). These bounds are those against which the
performance of autonomous active matter engines, which
typically do not have access to the self-propulsion states
of the individual constituent particles [1,2], should be
compared. Furthermore, our “boundary-update” approach
enables work extraction in experimental settings where
real-time particle tracking is unfeasible, since only the
detection of first-passage events is required for its
implementation.
The optimal protocol is generally non-Markovian.

However, this difficulty can be circumvented at Pe ≪ 1
by embedding the dynamics in a higher dimensional phase
space [42], e.g., via the auxiliary dynamics in Eq. (16).
Analogously to equilibrium information engines [6,34], the
thermodynamic cost of operating the feedback control can
be identified with the increase in the total entropy pro-
duction rate upon expanding the phase space to include
such auxiliary variables [17]. In an idealized situation
where the operating temperature of the measurement device
is arbitrary, and can thus be chosen to be arbitrarily small,
the associated dissipation is negligible [34]. The unique
utility of information engines operating on active particles
arises from their nonvanishing efficiency even when
the measurement device and the particle are coupled to
the same heat bath [6]. Future work will characterize the
efficiency of the optimal protocols in this case.
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field effect on charged brownian swimmers, Physica
(Amsterdam) 442A, 321 (2016).

[36] C. Roberts and Z. Zhen, Run-and-tumble motion in a linear
ratchet potential: Analytic solution, power extraction,
and first-passage properties, Phys. Rev. E 108, 014139
(2023).

[37] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[38] L. Cocconi, R. Garcia-Millan, Z. Zhen, B. Buturca, and G.
Pruessner, Entropy production in exactly solvable systems,
Entropy 22, 1252 (2020).

[39] M. Le Bellac, Quantum and Statistical Field Theory
(Clarendon Press, New York, 1991).

[40] M. Bothe, L. Cocconi, Z. Zhen, and G. Pruessner, Particle
entity in the Doi-Peliti and response field formalisms,
J. Phys. 56, 175002 (2023).

[41] L. Caprini, A. R. Sprenger, H. Löwen, and R. Wittmann,
The parental active model: A unifying stochastic description
of self-propulsion, J. Chem. Phys. 156, 071102 (2022).

[42] S. A. Loos and S. H. Klapp, Fokker-Planck equations for
time-delayed systems via Markovian embedding, J. Stat.
Phys. 177, 95 (2019).

PHYSICAL REVIEW LETTERS 131, 188301 (2023)

188301-7

https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1146/annurev-conmatphys-031720-032419
https://doi.org/10.1146/annurev-conmatphys-031720-032419
https://doi.org/10.1103/PhysRevX.11.021057
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1103/PhysRevLett.115.250602
https://doi.org/10.1103/PhysRevLett.115.250602
https://doi.org/10.1103/PhysRevE.105.L042601
https://doi.org/10.1103/PhysRevLett.126.080601
https://doi.org/10.1103/PhysRevLett.129.220601
https://doi.org/10.1103/PhysRevLett.131.057101
https://doi.org/10.1016/j.physa.2015.08.051
https://doi.org/10.1016/j.physa.2015.08.051
https://doi.org/10.1103/PhysRevE.108.014139
https://doi.org/10.1103/PhysRevE.108.014139
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.3390/e22111252
https://doi.org/10.1088/1751-8121/acc498
https://doi.org/10.1063/5.0084213
https://doi.org/10.1007/s10955-019-02359-4
https://doi.org/10.1007/s10955-019-02359-4

