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Inertial-range scaling exponents for both Lagrangian and Eulerian structure functions are obtained from
direct numerical simulations of isotropic turbulence in triply periodic domains at Taylor-scale Reynolds
number up to 1300. We reaffirm that transverse Eulerian scaling exponents saturate at ≈2.1 for moment
orders p ≥ 10, significantly differing from the longitudinal exponents (which are predicted to saturate at
≈7.3 for p ≥ 30 from a recent theory). The Lagrangian scaling exponents likewise saturate at ≈2 for p ≥ 8.
The saturation of Lagrangian exponents and transverse Eulerian exponents is related by the same
multifractal spectrum by utilizing the well-known frozen hypothesis to relate spatial and temporal scales.
Furthermore, this spectrum is different from the known spectra for Eulerian longitudinal exponents,
suggesting that Lagrangian intermittency is characterized solely by transverse Eulerian intermittency.
We discuss possible implications of this outlook when extending multifractal predictions to the dissipation
range, especially for Lagrangian acceleration.
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Turbulent flows in nature and engineering comprise a
hierarchy of eddies, with smaller eddies coexisting within
larger ones and extracting energy from them. To understand
the deformation and rotation of smaller eddies, the key
mechanisms driving energy transfers, it is essential to
examine the velocity increments across a smaller eddy
of size r ≪ L (say), where L is the large-eddy size [1–3].
The longitudinal velocity increment δur ¼ uðxþ rÞ − uðxÞ
corresponds to the case when the velocity component
uðxÞ is in the direction of separation r. For velocity vðxÞ
taken orthogonal to r, transverse velocity increment δvr ¼
vðxþ rÞ − vðxÞ is obtained.
The motivation to study the small eddies (and hence

velocity increments) stems from their purported universality,
postulated by Kolmogorov (1941) [1]—K41 henceforth—
which has since become the backbone of turbulence
theory andmodeling [3,4]. Building upon K41, one surmises
that moments of increments hðδurÞpi, called structure
functions, follow a universal power-law scaling in the so-
called inertial range

SpðrÞ≡ hðδurÞpi ∼ rζp ; η ≪ r ≪ L; ð1Þ

where η is the viscous cutoff scale. Establishing such a
simple scaling enables dramatic simplification in studying
a wide range of turbulent flows, and thus, structure functions
have been of persistent interest and a cornerstone of
turbulence theory [2,3,5,6]. K41 originally postulated
ζp ¼ p=3; this result is known to be exact for p ¼ 3, i.e.,
ζ3 ¼ 1, but extensive studies from [7] to [8] (and others in
between) have clearly established nonlinear deviations of ζp
from p=3 for p ≠ 3. This so-called anomalous scaling is
attributed to the intermittency of interscale energy transfer
processes (see, e.g., [2,3,5,6]).
Since turbulence can also be fundamentally explored

from a Lagrangian viewpoint [2,9–12], forceful arguments
can be similarly made for Lagrangian velocity increments
δuτ ¼ uðtþ τÞ − uðtÞ over time lag τ, measured along
fluid-particle trajectories, and Lagrangian structure func-
tions hjδuτjpi defined therefrom [13]. Extension of
Kolmogorov phenomenology to Lagrangian increments
gives

SLpðτÞ≡ hjδuτjpi ∼ τζ
L
p ; τη ≪ τ ≪ TL; ð2Þ

where the temporal inertial range is defined using TL,
the Lagrangian integral time, and τη, the timescale of
viscous dissipation [2]. Since Lagrangian trajectories
trace the underlying Eulerian field, it is natural to expect
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that a relation between Lagrangian and Eulerian exponents
can be obtained.
Using K41, one obtains ζLp ¼ p=2 [2]. However, exper-

imental and numerical studies again show nonlinear devia-
tions from this prediction [14–17]. Several attempts have
been made [18–20] to quantify these deviations in terms
of Eulerian intermittency, but they remain deficient for at
least two reasons. First, the temporal scaling range in
turbulence is substantially more restrictive than spatial
scaling range [2,3], making it difficult to robustly extract
the Lagrangian scaling exponents. Second, past attempts
have overwhelmingly focused on characterizing
Lagrangian intermittency from longitudinal Eulerian inter-
mittency, assuming that longitudinal and transverse expo-
nents are identical, despite counterevidence [21–26].
In this Letter, presenting new data from direct numerical

simulations (DNSs) of isotropic turbulence at higher
Reynolds numbers, we address both these challenges.
We extract both Lagrangian and Eulerian scaling expo-
nents. Our Eulerian results reaffirm recent results [8].
We then demonstrate an excellent correspondence between
Lagrangian exponents and transverse Eulerian exponents,
using as basis the same multifractal spectrum; this is
different from the multifractal spectrum for longitudinal
exponents, whose use in the past has failed to explain
Lagrangian intermittency [14–17,27].
Direct numerical simulations.—The description of

DNSs is necessarily brief here because they have been
described in many recent works [28–33]. The simulations
correspond to the canonical setup of forced stationary
isotropic turbulence in a triply periodic domain and are
carried out using the highly accurate Fourier pseudospectral
methods in space and second-order Runge-Kutta integra-
tion in time; the large scales are numerically forced to
achieve statistical stationarity [34,35]. A key feature of the
present data is that we have achieved a wide range of
Taylor-scale Reynolds number Rλ, going from 140 to 1300
(on grids of up to 12 2883 points) while maintaining
excellent small-scale resolution [29,36]. For Lagrangian
statistics, a large population of fluid particles is tracked
together with the Eulerian field. For Rλ ≤ 650, up to 64M
particles are tracked for each case, whereas for Rλ ¼ 1300,
256M particles are tracked (with M ¼ 10242) [37–39],
providing ample statistics for convergence.
Saturation of transverse exponents.—Anomalous scaling

confers upon each moment order a separate and independent
significance, instead of a mutual dependence (such as
ζp ¼ p=3 based on K41). Multifractals have enjoyed con-
siderable success in describing this behavior [3,6], but lack
any direct connection to Navier-Stokes equations. Further,
recent DNS at high Rλ have shown noticeable departures
of ζp from multifractal predictions for high orders [8].
Instead, starting from Navier-Stokes equations, a recent
theory [40] was able to provide an improved prediction
for ζp. Additionally, this theory also predicts that

longitudinal exponents saturate with the moment order,
i.e., limp→∞ζp → constant.
Recall that the transverse exponents are defined by the

relation Strp ∼ rζ
tr
p , where StrpðrÞ≡ hjδvrjpi. (Absolute values

are taken as the odd moments are zero from symmetry.)
Multifractal models based on phenomenological consid-
erations do not differentiate between longitudinal and
transverse exponents, i.e., ζtr2p ¼ ζ2p, and general argu-
ments have also been advanced to the same end [41,42].
However, several studies have persistently pointed out that
the two sets of exponents are different [21–26]; recent work
at high Rλ [8] has confirmed the differences, also showing
that transverse exponents saturate: ζtr∞ ≈ 2.1 for p ≥ 10.
Incidentally, this saturation is very different from ζ∞ ≈ 7.3
(for p ≥ 30) predicted for longitudinal exponents in [40].
These findings are summarized in Fig. 1, showing the

longitudinal and transverse exponents. Also included are
K41 prediction, multifractal results [43,44], and the result
from [40]. Important considerations go into establishing the
reliability of high-order exponents with respect to statistical
convergence, adequacy of grid resolution, and Rλ depend-
ence. This discussion can be found in [8] and will not
be repeated here. Instead, we focus on ζtrp, which clearly
depart from ζp and saturate for p ≥ 10. The implication of
different longitudinal and transverse exponents for small-
scale universality is discussed later; we first demonstrate
how ζtrp is directly related to the Lagrangian exponents.
Lagrangian exponents from DNS.—Robust extraction

of scaling exponents requires sufficient scale separation
to allow a proper inertial range to exist. The Eulerian
spatial scale separation for the highest Rλ ¼ 1300 is L=η ≈
2500 [8], while the temporal range is TL=τK ≈ 105 [45],
thus making it inherently difficult to obtain a proper
Lagrangian inertial range [46,47]. This difficulty is high-
lighted in Fig. 2, which shows the log local slope of SLpðτÞ

FIG. 1. Inertial-range scaling exponents for longitudinal and
transverse Eulerian structure functions, the former from [8,40]
and the latter from the present data (consistent with [8]). Various
theoretical predictions [1,40,43,44] are also shown. The trans-
verse exponents depart from all predictions and saturate.
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at various Rλ, for p ¼ 2 and 4 in top and bottom panels,
respectively; although there is a suggestion of a plateau for
the fourth order, the local slopes of the curves are still
changing with Rλ. This is in contrast to the corresponding
Eulerian result for p ¼ 2, shown in Fig. 3, where a clear
inertial range emerges with Rλ.
Because of this difficulty, Lagrangian exponents cannot

be directly extracted even at the highest Rλ available.
However, by using extended self-similarity [48], we can
obtain the exponents with respect to the second order [17].
Figure 4 shows the ratio of local slope of SLpðτÞ to that
of SL2 ðτÞ. Evidently, a conspicuous plateau emerges for
different orders in the same scaling range, seemingly

independent of Rλ. Thus, we can extract the ratios ζLp=ζL2 ,
which also was the practice in earlier works [15–17]. The
justification for using ζL2 as the reference comes from the
expectation SL2 ∼ hϵiτ [2]; since the mean dissipation
appears linearly, the result ζL2 ¼ 1 is free of intermittency
(akin to ζ3 ¼ 1 for Eulerian exponents [49]).
Extending the procedure in Fig. 4, the ratios ζLp=ζL2

are extracted for up to p ¼ 10 and shown in Fig. 5.
We also include earlier results from both experiments
and DNS [15–17,20], obtained at comparatively lower Rλ.
Overall, the current results at higher Rλ are in excellent
agreement with prior results (which had larger error bars).
A remarkable result, endemic to all cases, is that the
Lagrangian exponents saturate for p≳ 8, similar to the
transverse Eulerian exponents in Fig. 1. The data in Fig. 5
are also compared with various predictions, which we
discuss next.
The multifractal framework.—Evidently, the data in

Fig. 5 strongly deviate from K41. Following [3,19], we

FIG. 2. Local slopes for second- (top panel) and fourth-order
(bottom panel) Lagrangian structure functions at various Rλ.

FIG. 3. Local slopes for the Eulerian second-order structure
functions at different Rλ. In contrast to Lagrangian data in Fig. 2,
a clear inertial range emerges with Reynolds number.

FIG. 4. Ratio of local slope for pth order Lagrangian structure
function to second order, for p ¼ 3–5, at Rλ ¼ 1300 (solid lines)
and Rλ ¼ 650 (dashed lines).

FIG. 5. Lagrangian scaling exponents and comparison with
prior results and various multifractal models. The prediction
from the transverse exponents is shown by the green curve
(marked in legend by T) that saturates for large p.
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will consider the well-known multifractal model for relat-
ing Eulerian and Lagrangian exponents. The key concept in
multifractals is that the (Eulerian) velocity increment δur
over a scale r is Hölder continuous, i.e., δur ∼ rh, where h
is the local Hölder exponent with the multifractal spectrum
DðhÞ [3,50]. From this local scaling, Eulerian structure
functions are readily derived by integrating over all
possible h, as hðδurÞpi ∼

R
h r

phþ3−DðhÞdh. Using steep-
est-descent argument for r ≪ L gives

ζp ¼ inf
h
½phþ 3 −DðhÞ�: ð3Þ

The Lagrangian extension of multifractals relies on the
phenomenological assumption that spatial and temporal
separations are interchangeable: r ∼ τδur, akin to frozen
flow hypothesis, with δur ∼ δuτ [19]. This stipulation gives
δuτ ∼ τh=ð1−hÞ, resulting in the Lagrangian exponents

ζLp ¼ inf
h

�
phþ 3 −DðhÞ

1 − h

�

: ð4Þ

Thus, Lagrangian exponents can be directly predicted
using the Eulerian multifractal spectrum DðhÞ. Since past
works have predominantly focused on Eulerian longi-
tudinal exponents, with the implicit assumption that trans-
verse exponents are same, the DðhÞ of the longitudinal
exponents has been used to infer Lagrangian exponents.
However, such predictions do not work, as we see next.
The Lagrangian exponents can be computed from Eq. (4)

by using Eulerian multifractal spectrum DðhÞ from Eq. (3).
The DðhÞ corresponding to the Eulerian multifractal
models shown in Fig. 1 are plotted in Fig. 6. They are
obtained from ζp by taking a Legendre transform to invert
the relations [3], giving

DðhÞ ¼ inf
p
½phþ 3 − ζp�: ð5Þ

For reference, the DðhÞ for She-Leveque model is [44]

DðhÞ ¼ 1þ c1ðh − h�Þ − c2ðh − h�Þ logðh − h�Þ; ð6Þ

where h� ¼ 1=9, c1 ¼ c2ð1þ log log γ − log γÞ and c2 ¼
3= log γ, with γ ¼ 3=2. That for the Sreenivasan-Yakhot
result of ζp ¼ ζ∞p=ðpþ βÞ [40] is

DðhÞ ¼ 3 − ζ∞ − βhþ 2
ffiffiffiffiffiffiffiffiffiffiffi
ζ∞βh

p
; ð7Þ

where ζ∞ ≈ 7.3 and β ¼ 3ζ∞ − 3. The result for p model
can be found in [43].
In Fig. 6, in addition to the DðhÞ from these known

Eulerian cases, we also utilize Eq. (5) to numerically obtain
the DðhÞ for transverse exponents (with ζtrp ≈ 2.1 for
p ≥ 10, as shown in Fig. 1). Note, since the DðhÞ for
ζtrp is obtained numerically, the inversion formula in Eq. (5)
can only provide the concave hull [3]—which is what we
plot in Fig. 6. The saturation value of exponents is reflected
in the corresponding DðhÞ curve for h ¼ 0, as Dð0Þ ¼
3 − ζ∞ (≈0.9 for ζtr∞ ≈ 2.1). Note, h < 0 is not allowed
in the multifractal framework [3]; the p model and
She-Leveque results respectively correspond to hmin ¼
1
3
log2ð0.7Þ ≈ 0.172 [43] and hmin ¼ h� ¼ 1

9
[44], which

preclude saturation. The Sreenivasan-Yakhot result [40]
predicts saturation for longitudinal exponents at ζ∞ ≈ 7.3,
giving Dð0Þ ¼ 3–7.3 ¼ −4.3 (not shown in Fig. 6).
Lagrangian exponents from the transverse multifractal

spectrum.—As we saw, none of the multifractal predictions
for Lagrangian exponents using Eulerian longitudinal
exponents agree with the data. In contrast, the prediction
corresponding to transverse Eulerian exponent (green dot-
dashed line in Fig. 5) closely follows the measured results,
particularly capturing the saturation at high orders. Note,
the predicted saturation value ζL∞ ≈ 2.1, is the same for both
transverse Eulerian and Lagrangian exponents, The actual
Lagrangian data saturate at a very slightly smaller value.
We believe this minor difference (of only 5%) stems from
the fact that even at Rλ ¼ 1300, the temporal inertial range
is underdeveloped, and the intermittency-free result of
ζL2 ¼ 1 is not unambiguously realized. Since Lagrangian
exponents shown in Fig. 5 are extracted as ratios ζLp=ζL2 ,
this minor discrepancy in the saturation values could be
explained by small departures from the expectation of
ζL2 ¼ 1. Given this and also possible statistical uncertainties
(at highest orders), the close correspondence between the
transverse Eulerian exponents and Lagrangian exponents is
quite remarkable.
It is worth noting that Lagrangian exponents saturate

for slightly smaller p than for transverse Eulerian expo-
nents. This readily follows from Eqs. (3) and (4) as a
kinematic effect. For Eulerian exponents, ζ3 ¼ 1 is exact,
corresponding to h ≈ 1

3
, DðhÞ ≈ 3, which conforms to the

intermittency-free K41 result [3]. This gives ζL2 ¼ 1 as the

FIG. 6. The multifractal spectra for various models. The vertical
dashed lines at 1

3
log2ð0.7Þð≈0.17Þ and 1

9
mark the minimum h

allowed for p model [43] and She-Leveque [44], respectively,
which preclude saturation; whereas Dðh ¼ 0Þ ≈ 3 − 2.1 ¼ 0.9
marks saturation for transverse exponents at ζtr∞ ≈ 2.1.
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corresponding Lagrangian result for h ≈ 1
3
, DðhÞ ≈ 3. This

argument can be extended to higher orders to show that
Lagrangian exponents at order p correspond to transverse
exponents at order 3p=2. Thus, it follows that Lagrangian
exponents saturate at smaller p. A similar correspondence
can also be provided for other Lagrangian statistics, for
instance, the second moment of acceleration (the temporal
velocity gradient) corresponds to the third moment of
spatial velocity gradients [2,27].
Discussion.—Two significant results emerge from our

work: (a) scaling exponents saturate for both transverse
Eulerian and Lagrangian structure functions, and (b) the
saturation of Lagrangian exponents is characterized solely
by the transverse Eulerian exponents (and not the longi-
tudinal, as previously believed). Given that the transverse
exponents are smaller for large p, this seems reasonable
from the steepest-descent argument [3].
The saturation of scaling exponents is extreme form of

anomalous behavior, but is not uncommon; it holds for
Burgers equation [51] and passive scalar turbulence [52–54].
However, its prevalence in velocity field has become
apparent only recently [8,40]. The theory of [40] predicts
that Eulerian longitudinal exponents saturate as well,
although at very high moment orders that cannot be yet
validated. In contrast, both transverse Eulerian exponents
and Lagrangian exponents saturate and at the same value
of ≈2. Further, using a simple physical correspondence
based on frozen flow hypothesis, they are related through
the same multifractal spectrum (which differs from
known spectrum for longitudinal Eulerian exponents).
Interestingly, the saturation exponent of 2 implies a fractal
codimension of 1 [3,6], suggesting that the saturation likely
comes from localized (very) thin vortex filaments, which
are known to be prevalent at the smallest scales [34,36,55].
Our results also bring forth some important questions.

First is the extension of the multifractals from inertial to
dissipative range, i.e., describing the scaling of velocity
gradients. Such an extension relies on the phenomenologi-
cal criterion that the local Reynolds number, describing the
dissipative cutoff, is unity, i.e., δurr=ν ¼ 1 [3,40,56]. As
highlighted in recent works [36,57], this is valid for
longitudinal increments, but not for transverse increments,
essentially because of how vorticity and strain rate interact
in turbulence. It can thus be expected that the extension of
multifractals to dissipation range works for longitudinal
velocity gradients, but not for transverse velocity gradients.
Since the current results suggest that Lagrangian intermit-
tency is linked to transverse Eulerian intermittency, it
follows that the extension to acceleration statistics would
be an issue, as confirmed by our recent studies [27,58]. In
addition, acceleration components are strongly correlated
in turbulence [58,59], which is a feature of Navier-Stokes
dynamics that is not accounted for by multifractals.
A second question concerns the meaning of universality

given the longitudinal and transverse exponents behave

differently. One strategy could be to consider a joint
multifractal spectrum for longitudinal and transverse incre-
ments. It might be possible to set appropriate conditions
on both to enable the inertial-range universality and the
transition from the inertial to dissipation range. Essentially,
addressing the discrepancy between longitudinal and trans-
verse intermittency presents a critical and pressing problem
in turbulence theory.

We gratefully acknowledge discussions with Victor
Yakhot and sustained collaboration with P. K. Yeung. We
also gratefully acknowledge the Gauss Centre for
Supercomputing e.V. [60] for providing computing time
on the supercomputers JUQUEEN and JUWELS at Jülich
Supercomputing Centre (JSC), where the simulations
reported in this Letter were primarily performed.
Computations were also supported partially by the super-
computing resources under the Blue Water project at the
National Center for Supercomputing Applications at the
University of Illinois (Urbana-Champaign).

*Corresponding author: dhawal.buaria@nyu.edu
[1] A. N. Kolmogorov, The local structure of turbulence in an

incompressible fluid for very large Reynolds numbers,
Dokl. Akad. Nauk SSSR 30, 299 (1941).

[2] A. S. Monin and A.M. Yaglom, Statistical Fluid Mechanics
(MIT Press, Cambridge, MA, 1975), Vol. 2.

[3] U. Frisch, Turbulence: The Legacy of Kolmogorov
(Cambridge University Press, Cambridge, England, 1995).

[4] S. B. Pope, Turbulent Flows (Cambridge University Press,
Cambridge, England, 2000).

[5] A. N. Kolmogorov, A refinement of previous hypotheses
concerning the local structure of turbulence in a viscous
incompressible fluid at high Reynolds number, J. Fluid
Mech. 13, 82 (1962).

[6] K. R. Sreenivasan and R. A. Antonia, The phenomenology
of small-scale turbulence, Annu. Rev. Fluid Mech. 29, 435
(1997).

[7] C.W. Van Atta and J. Park, Statistical self-similarity and
inertial subrange turbulence, in Statistical Models and Tur-
bulence: Proceedings of a Symposium held at the University
of California, San Diego (La Jolla) July 15–21, 1971
(Springer, New York, 2005), pp. 402–426.

[8] K. P. Iyer, K. R. Sreenivasan, and P. K. Yeung, Scaling
exponents saturate in three-dimensional isotropic turbu-
lence, Phys. Rev. Fluids 5, 054605 (2020).

[9] J. C. Wyngaard, Atmospheric turbulence, Annu. Rev. Fluid
Mech. 24, 205 (1992).

[10] B. L. Sawford, Turbulent relative dispersion, Annu. Rev.
Fluid Mech. 33, 289 (2001).

[11] G. Falkovich, K. Gawędzki, and M. Vergassola, Particles
and fields in fluid turbulence, Rev. Mod. Phys. 73, 913
(2001).

[12] F. Toschi and E. Bodenschatz, Lagrangian properties of
particles in turbulence, Annu. Rev. Fluid Mech. 41, 375
(2009).

PHYSICAL REVIEW LETTERS 131, 204001 (2023)

204001-5

https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1103/PhysRevFluids.5.054605
https://doi.org/10.1146/annurev.fl.24.010192.001225
https://doi.org/10.1146/annurev.fl.24.010192.001225
https://doi.org/10.1146/annurev.fluid.33.1.289
https://doi.org/10.1146/annurev.fluid.33.1.289
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1146/annurev.fluid.010908.165210
https://doi.org/10.1146/annurev.fluid.010908.165210


[13] Absolute value is taken for Lagrangian increments since the
odd moments are otherwise zero.

[14] B. L. Sawford, P. K. Yeung, M. S. Borgas, P. Vedula, A. L.
Porta, A. M. Crawford, and E. Bodenschatz, Conditional
and unconditional acceleration statistics in turbulence, Phys.
Fluids 15, 3478 (2003).
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