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Sequences of low-energy electrical pulses can effectively terminate ventricular
fibrillation (VF) and avoid the side effects of conventional high-energy electrical
defibrillation shocks, including tissue damage, traumatic pain, and worsening of
prognosis. However, the systematic optimisation of sequences of low-energy
pulses remains a major challenge. Using 2D simulations of homogeneous cardiac
tissue and a genetic algorithm, we demonstrate the optimisation of sequences
with non-uniform pulse energies and time intervals between consecutive pulses
for efficient VF termination. We further identify model-dependent reductions of
total pacing energy ranging from ~4% to ~80% compared to reference adaptive-
deceleration pacing (ADP) protocols of equal success rate (100%).
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1 Introduction

Sudden cardiac death (SCD) accounts for an estimated 15% of worldwide mortality
(Mehra, 2007). SCD is caused by malignant tachyarrhythmias that are associated with
spatiotemporal chaos in the heart (Winfree, 1989; Davidenko et al., 1992; Gray et al., 1998;
Witkowski et al., 1998; Cherry and Fenton, 2008; Christoph et al., 2018). For a lack of a better
strategy, high-energy electric shocks are used to terminate electrical activation in the entire
heart. However, high-energy shocks have significant side-effects, including tissue damage
(Xie et al., 1997; Tereshchenko et al., 2009), traumatic pain (Godemann et al., 2004; Marcus
et al., 2011), and worsening of prognosis (Mackenzie, 2004; Poole et al., 2008; Moss et al.,
2012), indicating a significant medical need for improvement (Babbs et al., 1980).

To address this need, pacing methods have been developed that aim to replace the single
high-energy shock with a sequence of low-energy pulses. In general, these control algorithms
differ in detail in the generation of the pulse sequences and are either open or closed-loop.
Low-energy anti-fibrillation pacing (LEAP) uses a sequence of electrical pulses of constant
amplitude, duration, and period to terminate atrial and ventricular fibrillation (Fenton et al.,
2009; Luther et al., 2011; Buran et al., 2022). Using this approach in in-vivo experiments, a
pulse energy reduction of 80%–90% compared to the conventional single shock has been
achieved. However, several studies showed that the performance of pacing protocols with
equidistant pulses depends very sensitively on the choice of the pacing interval (Buran et al.,
2017; DeTal and Fenton, 2021; Lilienkamp et al., 2022a; Buran et al., 2023). As another
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example, multi-stage pacing developed by the Efimov lab employs
groups of pulses with constant amplitude and timing (Janardhan
et al., 2014).

Several numerical and experimental studies have investigated
mechanisms related to arrhythmia control and defibrillation
(Trayanova et al., 2011; Rantner et al., 2013), including the
formation of virtual electrodes (Efimov and Ripplinger, 2006),
interaction of electric fields with cardiac tissue and curved
boundaries (Pumir and Krinsky, 1999; Bittihn et al., 2012), the
unpinning of rotational waves (Pumir et al., 2007; Bittihn et al., 2008;
Bittihn et al., 2010; Shajahan et al., 2016; Boccia et al., 2017a; Boccia
et al., 2017b; tomWörden et al., 2019), the effect of pacing frequency
(Hornung et al., 2017), the electric field geometry (Otani et al., 2019)
and electrode placing (Trayanova and Chang, 2016).

Experimentally, optogenetically modified cardiac cells offer new
ways for implementing and testing alternative approaches for
defibrillation (Bruegmann et al., 2016; Hussaini et al., 2021).
Progress has also been been made combining experimental data
with numerical modelling, for example, for studying spatiotemporal
alternans patterns of cardiac excitation (Loppini et al., 2022). Recent
numerical studies have shown that pulse timing is crucial for
termination success (Steyer et al., 2023). Furthermore, chaotic
cardiac arrhythmias may exhibit self-termination (Rappel et al.,
2022), a phenomenon also seen with chaotic transients in generic
excitable media (Lilienkamp et al., 2017; Lilienkamp and Parlitz,
2018; Aron et al., 2019). The fact that transient chaos in excitable
media can in principle be terminated by very few local perturbations
(Lilienkamp and Parlitz, 2020) provides additional evidence that
low-energy defibrillation is in principle possible. And in fact, recent
studies show progress in the quest of finding better defibrillation
methods, for example, exploiting targeted manipulation of spiral
waves (DeTal et al., 2022), non-monotonous dose-response curves
(Lilienkamp et al., 2022a) and decelerated pulse trains (Lilienkamp
et al., 2022b).

In particular, the progress made with non-equidistant pulse
sequences (Lilienkamp et al., 2022b) raises the question of further
increasing termination efficiency when more complex sequences of
(local) perturbations are used. However, the systematic
experimental optimisation of such arrhythmia control algorithms
with a large parameter space is under practical and ethical
constraints not feasible. Therefore, in contrast to the above
mechanistic, hypothesis-driven studies, we formulate the control
of spatio-temporal dynamics in this study as an optimisation
problem and use a genetic algorithm (GA) to cope with the vast
landscape of possible pacing protocols spanning all combinations of
pulse counts, amplitudes, and intervals between pulses.

Following natural evolution, the genetic algorithm mutates and
combines pacing sequences and evaluates their “fitness” in terms of
(high) termination probability and (low) pulse amplitudes (or
energies). Because the goal of this study is to demonstrate the
feasibility of GA optimisation of low-energy defibrillation in a
proof of principle, we use simple phenomenological models of
cardiac tissue in a homogeneous, isotropic 2D medium to avoid
excessive computational burden that would result from more
realistic modeling. This requires an appropriate selection of
cardiac-tissue models as a foundation for simulations of two-
dimensional sheets of homogeneous cardiac tissue, as well as a
simplified translation of real-life defibrillation into something a

computer can parse in reasonable amounts of time. This
simulation framework will be introduced in the following section.

2 Simulating ventricular fibrillation

In this section, we present the cardiac-tissue model(s) and
numerical integration required to study and evaluate different
pacing sequences.

2.1 Cardiac-tissue models

Cardiac-tissue models describe the electrophysiological
dynamics of the heart. The heart contracts (i.e., pumps) in
response to electrical excitation-waves propagating through its
muscle tissue in a coordinated fashion. Such waves originate in
the sinoatrial node in regular intervals to drive the heartbeat.
Because cardiac tissue constitutes an excitable medium, orderly
propagation is generally ensured: Each cell only responds to (and
propagates) incoming signals above a certain activation threshold
and then enters a temporary post-excitation refractory period where
further propagation is greatly impeded. While the former prevents
(weak) abnormal activation, the latter ensures the unidirectional
movement of the signal for the coordinated contraction of each heart
chamber. Both mechanisms are a result of ion channels permeating
cardiac muscle cells, which open and close in a predetermined
fashion upon activation. They allow for the migration of various
ion species to and from the cell’s interior, changing the net voltage
across the cell membrane in the process before eventually returning
it to its resting state.

We limited ourselves to phenomenological cardiac-tissue models
for the pacing simulations for reasons of efficiency. Such models
attempt to establish an abstract, high-level description of the
complex physics involved in cardiac electrophysiology at
manageable levels of mathematical complexity. This means they
naturally lend themselves to large-scale computer simulations and
experiments as they are usually both simpler to implement and less
demanding of computational resources. These are in contrast to
physiological models, which incorporate some (or more) of the
underlying physiological details contributing to the signal-
propagation dynamics in cardiac tissue. The incorporation of
such details usually incurs significant additional computational
cost, and we thus restricted our study to phenomenological
models to reduce overall simulation time.

A generic cardiac-tissue model is given by a reaction-diffusion
equation for the transmembrane potential u, the net voltage across a
local aggregate (continuum) of cell membranes:

∂tu � ∇ · D∇u( ) − Itot
Cm

.

A local net current Itot makes up the reaction term which may
amplify or counteract the ion-diffusion process to neighbouring cells
as governed by the diffusion tensor D. The net current consists of a
model-dependent number of contributing currents modulated by a
number of ion-channel gates whose permeabilities are represented
by a set of dimensionless gating variables. Cm is the cell-membrane
capacitance. Lastly, the u is subject to a no-flux Neumann boundary
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condition where ∇u · n̂ � 0 (with n̂ as the boundary normal) holds
everywhere on the physical boundary of the simulated tissue.

Throughout this paper, we generally refer to chaotic states of
cardiac-tissue models as fibrillation episodes in reference to the
actual medical condition of (ventricular) fibrillation which also
features chaotic electrophysiological dynamics. The simulated
control-methods used, which aim to terminate such chaotic
states, are analogously called defibrillation methods in this
context. However, it should be understood that two-dimensional
simulations of homogeneous cardiac tissue and their control by local
current injection imitating virtual electrodes represent a substantial
simplification of the real heart. Accordingly, great care must be
taken in generalising any observations and findings to the broader
medical context.

2.1.1 The Fenton-Karma model
Our first model of choice was the Fenton-Karma (FK)model

(Fenton and Karma (1998); Figure 1) for human ventricular
tissue. It offers great versatility in its behaviour through its
various high-level parameters (Fenton et al., 2002) and it can in
fact be fine-tuned to approximate the dynamics of more
complex (e.g., physiological) models as needed. Employing
multiple FK parameter sets (see Tables 1, 2) enabled us to
test any potential pacing-protocol improvements for one set
for reproducibility with others at little extra
computational cost.

The model itself features three dimensionless state variables:
the transmembrane potential (u) and two gating variables (v, w).
The gating variables govern two of the three transmembrane
currents found in this model’s net-current equation:

Itot � Ifi u, v( ) + Iso u( ) + Isi u, w( ) + Istim �x, t( ),
∂tv � 1

τv
− H uc − u( ) 1 − v( ) − 1

τv
+ H u − uc( ) v,

∂tw � 1
τw

− H uc − u( ) 1 − w( ) − 1
τw

+ H u − uc( )w,

where H denotes the standard Heaviside step-function and Istim
is an external stimulation (e.g., pacing-induced) current. τ−v (u) �
Θ(u − uv)τ−v1 + Θ(uv − u)τ−v2 is dependent on u, making it a
time constant in need of constant re-evaluation during
the integration process. The diffusion tensor D was assumed
isotropic with a scalar value of D = 0.20 mm2/ms and the
capacitance set to Cm = 1 ms. The FK model’s transmembrane
voltage u is normalised such that its resting value lies at u =
0.0 a.u. for all its parameter sets, making comparisons between
them straightforward.

2.1.2 The Bueno-Orovio-Cherry-Fenton model
The Bueno-Orovio-Cherry-Fenton (BOCF) model (Bueno-

Orovio et al. (2008); Figure 2) was our second cardiac-tissue
model of choice, which also describes the dynamics in human
ventricular tissue. Like the FK model, the BOCF model is also
capable of approximating other models on a qualitative level given
proper parameters. It features four currents and three gating
variables:

FIGURE 1
Snapshots of voltage spiral-waves for each of the three FK parameter sets.

TABLE 1 Parameter values and dimensions for the three FK models.

Param. Unit FK1 FK2 FK3

D mm2/ms 0.20 0.20 0.20

Cm ms 1 1 1

τv+ ms 13.030 3.330 3.330

τv1− ms 19.6 9.0 19.6

τv2− ms 1250 8 1250

τw+ ms 800 250 870

τw− ms 40 60 41

τd a.u. 0.450 0.395 0.250

τ0 1 12.5 9.0 12.5

τr a.u.−1 33.25 33.33 33.33

τsi a.u.−1 29 29 29

K a.u.−1 10 15 10

usic a.u. 0.85 0.50 0.85

uc a.u. 0.13 0.13 0.13

uv a.u. 0.04 0.04 0.04
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Itot � Ifi u, v( ) + Iso u( ) + Isi u, w, s( ) + Istim �x, t( ),
∂tv � 1

τv
− 1 −H u − θv( )[ ] v∞ − v( ) − 1

τv
+ H u − θv( ) v,

∂tw � 1
τw

− 1 −H u − θw( )[ ] w∞ − w( ) − 1
τw

+ H u − θw( )w,
∂ts � 1

τs

1
2

1+( tanh ks u − us( )( ) − s[ ].

The model has seven time constants, mostly in its τ parameters.
Its resting potential is also normalised to 0.0 a.u. and the membrane
capacitance set to unity (ms). We similarly assumed an isotropicD =
0.30 mm2/ms as well. We used a single parameter set (see Tables 2, 3)
designed to emulate the behaviour of a much more complex
physiological model in our simulations.

2.2 Numerical implementation

We limited simulations to square, isotropic 2D tissue sheets for speed
and ease of implementation. We chose domain sizes spanning 2562 and
5122 pixels for the FK and BOCF model(s), respectively. Both had the
same discretisation parameters of Δt = 0.1 ms for the time step and
h �def .Δx � Δy � 1.0 mm for the spatial (grid) resolution.

TABLE 2 Overview of the cardiac-tissue models used in our computer simulations. The dominant periods were estimated through Fast Fourier Transforms applied
to time series produced by these models.

Model Param. set Tdom [ms] Reference

FK 1 130 Table 1, column 8 in Fenton et al. (2002)

2 157 Table 1, column 6 in Fenton et al. (2002)

3 68 Table 1, column 3 in Fenton et al. (2002)

BOCF 1 337 Table 1, column “TNNP” in Bueno-Orovio et al. (2008)

FIGURE 2
Snapshot of BOCF voltage dynamics. Area-wise, this domain is
four times larger than the one used for the FK models, and the peak
voltage of themodel’s action potential is also notably higher at approx.
1.5 a.u. in comparison.

TABLE 3 Parameter values and dimensions for the BOCF model.

Param. Unit BOCF

D mm2/ms 0.30

Cm ms 1

θv a.u. 0.3

θv
− a.u. 0.015

θw a.u. 0.015

θo a.u. 0.006

τv+ Ms 1.4506

τv1− ms 60

τv2− ms 1150

τw+ ms 280

τw1− ms 70

τw2− ms 20

τfi 1 0.11

τo1 1 6

τo2 1 6

τso1 1 43

τso2 1 0.2

τs1 ms 2.7342

τs2 ms 3

τsi 1 2.8723

τw ∞ a.u. 0.07

w∞* 1 0.94

kw
− a.u.−1 65

kso a.u.−1 2

ks a.u.−1 2.0994

uo a.u. 0

uu a.u. 1.58

uw− a.u. 0.03

uso a.u. 0.65

us a.u. 0.9087
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We discretised voltage variables with a Forward in Time, Central
in Space (FTCS) scheme, which is an explicit first-order method in
both time and space (Li et al., 2018). For the Laplacian, we used a 9-
stencil approximation (Lynch, 1992) in place of the 5-stencil at non-
vertex voltage-grid locations (i, j) to ensure a more radially
independent discretisation error for proper spiral-wave propagation.

The separate treatment of vertices in the computation of the
Laplacian is owed to our reliance on the “ghost point” method for
the enforcement of the no-flux boundary condition on the voltage
grid u (Li et al., 2018). This method extends the grid representing u
by 2 pixels along each axis (one per side for a rectangular domain),
creating a one-pixel boundary around it. Each such pixel is linked
to another specific pixel of the interior grid (either one row or
column apart) such that they both always hold the same value.
Applying FTCS and Laplace discretisations on the main part
of this extended grid then enforces the boundary condition
automatically. The 5-stencil approximation is thus needed to
compute the Laplacian on any of the interior grid’s four vertices
to avoid referencing the undefined values in any of the extension’s
four corners.

3 Modelling and evaluating pacing
protocols

2D simulations of heterogeneous cardiac tissue by themselves
lack the means to reproduce the defibrillation mechanisms of real
hearts in an emergent fashion. We therefore had to model and
introduce the qualitative properties of these mechanisms to our
simulations manually to enable the simulation of pacing protocols.
We focused on the mode of operation of low-energy pacing in
particular for the modelling process.

3.1 Low-energy pacing and virtual
electrodes

Despite advances in defibrillator design, the currents and
energies involved still carry substantial risk to the patient’s long-
term health and may cause internal tissue damage or even long-term
changes in a given patient’s heart rhythm. This is the principal
motivation behind contemporary low-energy defibrillation research
(Pumir et al., 2007), which seeks to discover and study novel,
potentially less intrusive pacing approaches such as low-energy
anti-fibrillation pacing (LEAP) (Luther et al., 2011). LEAP
replaces the singular, potent mono- or biphasic shocks with a
sequence of temporally equidistant, uniformly low-amplitude
ones to lower the risk of harmful side effects to the patient.

Low-energy pacing cannot rely on overwhelming the fibrillating
signal in the heart by forcefully activating most muscle tissue; it
exploits the numerous small conductivity heterogeneities (e.g., blood
vessels, scar or fatty tissue) permeating cardiac tissue to perturb the
electric activity in the heart instead. Such a heterogeneity can
function as a local signal wave-front emitter by acting as an
anode-cathode pair (a virtual electrode) when exposed to an
electric field of sufficient strength and proper orientation. Such
locally emitted wave fronts can then interact with the fibrillating
signal in the heart by blocking its propagation through the refactory

period they induce at various locations in the affected tissue, ideally
putting an end to the fibrillation episode.

A virtual electrode’s activation threshold and response depend
on its geometry and orientation relative to the external electric field
(Bittihn et al., 2008; Bittihn et al., 2012), where higher field strengths
can generally be used to “recruit” more of these electrodes for
defibrillation purposes. Low-energy defibrillation methods
capitalise on low-threshold virtual electrodes which can trigger in
response to weaker fields, potentially disrupting a fibrillation episode
through a few periodic (in place of just a single potent one as used in
traditional defibrillation) activations and subsequent emissions at
minimal overall risk to the patient. While low-energy defibrillation
methods such as LEAP have seen success in laboratory settings, they
are still pending adoption in the medical context until further
clinical trials have fully established their overall viability.

3.2 Our simplified pacing model

A pacing protocol comprises a sequence of pacing amplitudes
and inter-pulse intervals. We preemptively reduced the
dimensionality of the protocol-optimisation space by limiting the
search to protocols of a uniform pulse length of 2.0 ms throughout
all our simulations. Similarly, we further only considered
monophasic protocols of positive amplitude(s) for our study.
Under these constraints, a monophasic N-pulse protocol
therefore featured N amplitudes and N − 1 inter-pulse intervals
for a total of 2 N − 1 parameters. We conducted our investigation
with 5-pulse protocols first, which still left us with 9 protocol
parameters to optimise.

In a defibrillation attempt based on a given protocol, we would
first apply it through randomly distributed injection sites modelling
the “recruitment” of local virtual electrodes for pacing purposes as
utilised in low-energy defibrillation approaches. We then observed
the system for a short amount of time and employed a simple binary
criterion based on the resulting peak transmembrane voltage across
the tissue domain to check for successful defibrillation afterwards: If
max(u(t)) < ucrit. = 5 × 10−2 a.u. holds across the entire tissue domain
at time t, then no further action potentials can occur and the system
is rapidly approaching its resting state. We used a global value for
ucrit. as all our cardiac-tissue models of choice featured normalised
voltages variables.

We applied pacing protocols numerically through local, time-
dependent changes in a given cardiac-tissue model’s stimulation
current Istim( �x, t) as specified by protocol parameters. The
individual areas of stimulation were chosen by randomly
distributing non-overlapping injection sites spanning 3 × 3 pixels
each (Figure 3) throughout the tissue domain. Each injection site
was further associated with a uniformly drawn modulation
coefficient between 0 and 1 which defined the (relative) local
pacing efficacy at a given site to account for the effects of non-
uniform virtual-electrode geometries and orientations in live tissue.
We chose an injection-site coverage of ~28% as an arbitrary starting
point to account for the number of virtual electrodes involved, which
translated to 2,000 and 8,000 injection sites for the FK and BOCF
model(s), respectively. Once generated, both the injection-site
locations and their respective modulation coefficients remained
constant throughout the application of a given protocol.
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The length of the post-pacing observation period was model-
dependent at a value of 5 × Tdom, where Tdom denotes the dominant
period of oscillation for a given model. While potentially chaotic systems
like the cardiac-tissue models may not conform to a single period of
oscillation, it is still possible to estimate a dominant (i.e., most prevalent
in terms of its absolute Fourier-spectrum contribution) one by means of
fast Fourier transforms (Schwaderlapp et al., 2017). This period can be
understood as something resembling a mean period of oscillation for the
wave fronts in the chaotic dynamics. As we generally want defibrillation
to occur in a reasonable time frame, we settled on this 5 × Tdom-interval
so as to enforce this criterion.

To estimate the models’ dominant periods (see Table 2), we
integrated and observed one initial condition per model over an
interval of 10 s at 120 samples per second, yielding one time-series of
1200 data points per pixel of the discretised voltage domain. The
separation of the domain into individual time-series in this step can
be justified with the spatiotemporally chaotic nature of the
dynamics, where spatial (and temporal) correlations decay over
short distances (or time intervals). We then applied a Fast Fourier
Transform to the resulting time series, computed their highest-

contributing frequencies, and subsequently averaged them to
estimate “the” dominant frequency (and therefore period) of the
given model.

We detected successful defibrillation following the post-pacing
observation period by checking whether max(u) < 0.05 a.u. held for
the resulting voltage grid. If it did, the system would be incapable of
creating further wave fronts on its own and could therefore be
considered defibrillated. We determined this threshold manually
and applied it uniformly to all our selected cardiac-tissue models
because of their common voltage ranges.

3.3 Defining protocol-performance metrics

We defined two performance metrics for pacing protocols:
pacing cost (PC) and termination ratio (TR). PC measures the
theoretical cost in applying a protocol based on its pulse
amplitudes (analogous to energy; Figure 4), with lower values
being preferred. A given protocol’s TR is an estimate of its
efficacy in terminating (i.e., defibrillating) simulated episodes of

FIGURE 3
Sketch of the pacing model. Non-overlapping injection sites (green) are distributed across the voltage domain (right panel). Each site has a random
efficacy coefficient to modulate the amplitude(s) of the pacing protocol to be applied (left panel). This emulates the effects of different heterogeneity
geometries on a local level.

FIGURE 4
Sketch of the pacing-cost metric. The square of each pulse amplitude is integrated over its respective duration, and the sum over all pulses then
yields the total cost. The squaring is done to penalise protocols with overly potent singular pulses.
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fibrillation; it ranges in value from 0 (completely ineffective) to 1
(peak efficacy).

While PC can be computed at negligible cost for a given protocol,
its TR value needs to be estimated by sampling the protocol’s
defibrillation efficacy through computationally expensive
simulations. We conducted the sampling process through a series
of defibrillation simulations involving a predetermined set of
10 model-dependent initial conditions (ICs) representing
fibrillation states. This process was repeated a predetermined
number of times to account for the influence of different injection-
site distributions (e.g., 5 distributions each, amounting to 5 × 10
samples per protocol). The TR value was then set to the resulting
success (i.e., defibrillation) ratio among these samples. Two videos
demonstrating a successful and failed termination attempt,
respectively, are provided as Supplementary Material.

It should be noted that fibrillation episodes in our cardiac-tissue
models of choice are of an inherently transient nature (Strain and
Greenside, 1998; Lilienkamp et al., 2017; Lilienkamp and Parlitz,
2018; Aron et al., 2019) such that any chaotic trajectory ultimately
converges to a steady (i.e., “defibrillated”) state of its own, and this
also applies to the general post-pacing (i.e., perturbation) state of
such an episode. As the mean transient time for this transition grows
exponentially with the physical domain size to which the dynamics
are confined, our choice of sufficiently short post-pacing observation
periods kept potential biases in our TR estimates through such “self-
terminated” fibrillation episodes to a minimum.

3.4 Choosing reference protocols

We needed reference points to gauge prospective pacing-
optimisation results. To that end, we consulted the adaptive
(spectrum-guided) deceleration pacing (ADP) scheme (Lilienkamp
et al., 2022b) to derive an “optimal” set of reference protocols.

ADP protocols feature pulses of uniform strength and duration
in a decelerating fashion: the resting period between two consecutive
excitations grows after each pulse. Such protocols serve as a rather
strict point of comparison as they have been shown to outperform
LEAP analogues at lower overall PC in simulations of homogeneous
2D cardiac tissue (Lilienkamp et al., 2022b).

The pulse timings are derived through the Fourier spectrum
of a given cardiac-tissue model: a sufficiently long (10 s) time-
series of appropriate temporal resolution (10 ms) is first used to
establish the spectrum and the cumulative integral of its squared
absolute-value up to a given cutoff frequency. Partitioning this
(normalised) integral equally according to the desired number of
pulses then yields the corresponding inter-pulse periods
(Figure 5).

The resulting ADP protocol retains one degree of freedom in its
uniform pulse-amplitudes. We thus evaluated the TR of each
model’s ADP protocol over multiple amplitude values to establish
the corresponding PC thresholds for 90%, 95%, 99%, and 100% TR
in a dose-response curve (Figure 6), yielding four reference protocols
per model (Table 4).

FIGURE 5
The average (squared, absolute-value) Fourier spectrum (red) and the resulting ADP inter-pulse frequencies (orange) as derived from the spectrum
integral (blue) for each cardiac-tissue model (rows).
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4 Designing a genetic algorithm

The restriction to 5-pulse pacing protocols left us with 9 degrees of
freedom (5 pulse amplitudes and 4 intervals) for optimisation.We chose
to use a genetic algorithm (GA) to circumvent the potential workload a
brute-force approach would have entailed, whichmeant we had to agree
on a suitable implementation for our optimisation purposes.

4.1 General structure

GAs attempt to emulate the evolutionary process in nature to
improve upon known solutions to a problem with a measurable
performance metric. While there is no definitive canonical GA, the
most general approach works as follows (Eiben and Smith, 2015):

1. Take members from the current “population” of known solutions
2. Apply operators like mutation and/or crossover to generate new

potential solutions
3. Assimilate the new solutions into the population

In our case, “solution” refers to a concrete pacing protocol. Each
consecutive iteration of this scheme is called a generation.

What exactly each step entails is up to a given implementation
and usually tailored to a specific problem. Despite this freedom, our

particular implementation had to ensure an appropriate degree of
population diversity and ergodicity (i.e., the algorithm’s ability to
access a significant fraction of the optimisation landscape)
throughout the generations: An overemphasis on population
diversity would have yielded what is basically a directionless
random search, and neglecting it entirely would have promoted
strict elitism by favouring a restrictively narrow class of solutions
instead. Either of these two cases would have compromised our GA’s
efficacy in finding better pacing protocols.

The price for using a heuristic lies in the abundance of
parameters introduced; these are called hyperparameters to
distinguish them from those pertaining to the underlying
optimisation problem (i.e., the pacing protocols in the context of
this study) itself. GA performance is closely tied to proper
hyperparameter fine-tuning, which can be an arduous process
depending on the hyperparameter count of a given GA. What
follows in the next few subsections are the details of our (“the”)
GA, including its hyperparameters and our attempt to account for
their potential influence on GA performance.

4.2 Mutation and crossover

In a given generation of the GA, there is a fixed chance (defined
by the probability of mutation hyperparameter) that a mutation

FIGURE 6
ADP protocol dose-response curves for our cardiac-tissue models (bottom) with a separate detailed view of the high-TR region (top). Dots mark
each model’s PC thresholds at TR values of 90%, 95%, 99%, and 100%, respectively. Each curve was sampled at 101 equidistant amplitude values with 105

termination attempts across 10 initial conditions.
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operator will be consulted to generate a new protocol. When this
happens, the protocol to be mutated is drawn randomly from the
population and receives exactly one change in one of its parameters
(Figure 7). The change in question is a replacement operation where
the parameter’s value is replaced by one drawn from a pre-defined
interval in a uniform fashion. Each type of protocol parameter (e.g.,
amplitudes or recovery intervals) has its ownmutation interval, and
they all constitute hyperparameters as well.

This particular mutation operator may introduce drastic (in a
relative sense) change to a given parameter as it employs
replacement instead of scaling. However, implementing it in this
way stood to ensure a consistent driving force for ergodicity and
should—in theory—have allowed for the traversal of local optima at
any point during the population’s “evolution.” This mutation
operator retains full access to the entire optimisation space no
matter the state of the population, which may not always be the
case for scaling approaches.

Should random chance decide against mutation as a means to
generating a new protocol, the GA defaults to a crossover operator
instead. This operator generates two new protocols instead of one:
The crossing of two random protocols begins with the selection of a
random pulse number, excluding the final pulse to guarantee the
results will not be two identical copies of the input protocols. Then,
the two “parents” are split and recombined into two new protocols at
the cutoff point defined by said pulse number (Figure 8).

“Parent” protocols are always drawn in a random, uniform
fashion from the current population without replacement. This
uniform approach should imply that no selection pressure is
present in the choice of source protocols itself. Less selectivity in
this context usually means greater ergodicity at the potential cost of
convergence speed, but we could justify this choice with the high-
dimensional nature of the protocol-optimisation landscape (and
thus inherent difficulty in its traversal) at hand.

4.3 Selection mechanism

The GA uses a percentile-based selection process to decide
whether a given protocol is to be introduced to the population or
discarded: By comparing the performance metrics of the candidate
(i.e., its PC and TR values) to those of the existing population, it first
establishes the would-be percentile rankings for both. If and only if
both rankings are sufficiently high, the protocol then passes
selection. The two acceptance percentile thresholds to be cleared
are both hyperparameters.

An accepted protocol replaces an existing one in the population,
keeping the population size (another hyperparameter) constant. The

TABLE 4 ADP reference protocols. Each model has one sequence of pulse
periods in-between consecutive pulses as derived from its Fourier spectrum.
For eachmodel, the protocols’ uniform amplitudes were determined according
to four pre-defined TR thresholds by consulting their respective dose-response
curves (Figure 6).

Model Cutoff [Hz] Inter-p.
periods [ms]

TR [%] PC [a.u.]

FK1 15 104 123 150 220 90 1.78

95 2.18

99 3.46

100 9.60

FK2 15 109 140 174 235 90 0.50

95 0.60

99 0.86

100 3.14

FK3 33 53 64 70 82 90 0.30

95 0.32

99 0.52

100 9.60

BOCF 6 285 316 356 466 90 0.68

95 0.76

99 1.04

100 3.14

FIGURE 7
Sketch of the mutation operator. A random protocol parameter (top) is selected and replaced with a randomly chosen value from a pre-defined
interval (bottom). As we only considered protocols of constant pulse length, the GA implementations only ever mutated either amplitudes or recovery
intervals.
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GA determines the candidate for replacement in a two-stage process:
First, it sorts the population by one metric (PC or TR) and then by
the other. This establishes a ranking where the first metric of choice
serves as the principal determinant of overall protocol fitness, while
the second one is effectively a tie-breaker. The protocol at the
bottom of this ranking is consequently replaced by the accepted
protocol.

This assimilation scheme is biased by design, as it implicitly
weighs the metric chosen for the first sorting more than the other.
This ensures that even protocols excelling in one particular metric
(potentially at the cost of the other) may still be subject to timely
replacement. This is desirable behaviour as the selection process is
percentile-based and accounts for both metrics, meaning outliers of
this kind could reasonably skew the optimisation process. Avoiding
this scenario should therefore counteract premature convergence.
By alternating the order of metrics every time it consults such a
ranking for replacement, the GA can apply this bias to either metric
more or less equally.

5 Results

With a heuristic and reference protocols in hand, we ran
computer simulations to study the GA’s viability for uncovering
protocol-performance optimisation potential across our four
cardiac-tissue models of choice.

5.1 Improvements over ADP protocols

Across all four models, our top GA-optimised protocols
outperformed their ADP equivalents in terms of PC efficiency only
at TR values of 99% and above (Figure 9) with some GA
hyperparameter sets. At 100% TR, peak GA-mediated performance-
gains across all hyperparameter sets were highest (Table 5), with, e.g.,
the FK3 ADP-protocol permitting a ~80% reduction in PC through its
top GA counterpart. Comparatively, the BOCF model only saw
improvements of ~24% over its ADP reference at peak efficacy.

Likely due to excessive selection pressure maximising the
termination rate, most GA populations approached a PC-TR
saturation curve that falls beneath the respective ADP dose-
response, implying overall worse PC efficiency at comparable TR.
The GA’s “catching up” to overall ADP-protocol performance at
higher TR values may have been owed to the asymptotic nature of
the ADP dose-response curves (Figure 6): There, a TR approaching
100% demands disproportionally higher PC, enlarging the
optimisation space for discovering potentially more efficient
alternatives by means of GA optimisation.

In contrast, the GA achieved consistent performance gains (up
to ~80% PC reductions at peak TR) within the initial populations for
each model. This indicates that the overall heuristic does, in fact,
operate as expected in optimising a given protocol population
toward more efficient pacing schemes.

5.2 Population-convergence behaviour and
robustness

We identified three recurring convergence patterns in the populations’
mean performance metrics, PC and TR, over the hundreds of GA
evaluations conducted (Figure 10): asymptotic, rebounding asymptotic,
and quasi-linear convergence. While asymptotic convergence was
the most common, its rebounding variant could be seen as evidence
that the GA is not a fully “greedy” algorithm and should be capable
of navigating local optima to some extent.

Metric convergence behaviour was stable under different initial
populations (Figure 11) for all models. A direct link between
hyperparameters and metric convergence is difficult to establish,
however, since our two population-initialisation schemes likely
influenced the outcome to some degree. As we only employed one of
these initialisation methods for a given model, we lack the means to
compare the two and adequately quantify this potential bias after the fact.

The substantial PC and TR standard-deviations for some
populations in Figures 9, 11 show that not every hyperparameter
combination managed to fully converge within the allotted 104

generations. Fully converged data points cluster chiefly along an

FIGURE 8
Sketch of the crossover operator. Given two randomly chosen source protocols (top, columns), a random pulse (the third one in this case) beyond
the first is chosen as the cutoff point for the mergers of the resulting partial protocols (colour-coded). This results in two new protocols for selection
(bottom).
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implied saturation curve along the TR axis where the lower end of
PC values lie; while this could be an indicator that the GA is
principally operating in the correct direction of the PC-TR
optimisation plane, the question remains whether these partially
converged GA setups would have yielded superior results than those
of their more rapidly converging counterparts eventually.

5.3 Emerging protocol patterns

We could not identify any overarching, reproducible protocol
patterns among the GA-optimised top performers. Even reruns
using the same initial population and GA hyperparameters would
yield different protocol structures due to statistical variance alone
(Figure 12).

Our GA-mediated protocols likely fall into one of potentially
many fine-grained local minima, past any generalisable structures of
note. This could also tie in with the GA’s overall incentive to
optimise toward a (mathematically strictly optimal) TR of 100%,
which may overemphasise overly specific protocols to the possible
detriment of generalisable, similarly high-performing (e.g., ~90%
TR) patterns.

6 Summary and discussion

With a grasp of the GA’s overall performance and optimisation
efficacy, we can now put our results in the larger context of our goal
of protocol-performance optimisation and identify potential
avenues for improvement and future research into this topic.

FIGURE 9
Overview of the GA-optimised populations for a single initial population (grey marker) per model (rows). These populations (comprising
50 protocols each) only differed in their choices of GA hyperparameters and are compared by their mean PC and TR values. Error bars indicate each
metric’s standard deviation. Lastly, dashed red lines show the performance of ADP protocols at a given PC value.
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TABLE 5 GA-mediated improvements over ADP and initial-population (pop.) protocols. Rows of protocols outperformed (ormatched) by GA-optimised solutions in
both metrics are highlighted in grey.

Model Pop. Protocol PC [a.u.] ΔGA [%] TR [%] ΔGA [p. p.]

FK1 1 Best of pop. GA 3.32 100

Best of init. pop. 16.90 −80 100 +0

ADP @ 90% TR 1.78 +87 90 +10

@ 95% 2.18 +52 95 +5

@ 99% 3.46 −4 99 +1

@ 100% 9.60 −65 100 +0

2 3.00 100

14.40 −79 100 +0

1.78 +69 90 +10

2.18 +38 95 +5

3.46 −13 99 +1

9.60 −69 100 +0

FK2 1 Best of pop. GA 1.02 100

Best of init. pop. 3.60 −72 100 +0

ADP @ 90% TR 0.50 +104 90 +10

@ 95% 0.60 +70 95 +5

@ 99% 0.86 +19 99 +1

@ 100% 3.14 −68 100 +0

2 0.98 100

3.60 −73 100 +0

0.50 +96 90 +10

0.60 +63 95 +5

0.86 +14 99 +1

3.14 −69 100 +0

FK3 1 Best of pop. GA 1.90 100

Best of init. pop. 8.82 −78 100 +0

ADP @ 90% TR 0.30 +533 90 +10

@ 95% 0.32 +494 95 +5

@ 99% 0.52 +265 99 +1

@ 100% 9.60 −80 100 +0

2 1.88 100

9.38 −80 100 +0

0.30 +527 90 +10

0.32 +488 95 +5

0.52 +262 99 +1

9.60 −80 100 +0

(Continued on following page)
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We successfully established pacing-protocol optimisation
potential between ~4% and ~80% over our similarly effective
(in terms of TR) ADP reference protocols (Table 5). While we
have managed to improve on our GA’s initial populations on the
order of ~80% overall PC reduction at peak TR, the overall
lacklustre comparison to otherwise high-performing ADP
protocols (Figure 9) shows room for improvement in the
general optimisation heuristic. There may also be
generalisable protocol patterns to be discovered within the
realm of close-to-peak-efficacy (~90% and above) protocols
as a whole.

The main insight from our findings thus concerns the idea that
optimisation toward a 100% success rate may be overly restrictive as
far as protocol-pattern discoverability is concerned, and an
equivalence (in terms of protocol fitness) among TRs above
~90% may present a worthwhile avenue of investigation in the
future.

The GA implementation was based on mutation and crossover
operators with percentile-based selection for the assimilation of new
protocols into a given population. It proved consistently capable of
significantly improving all models’ initial protocol-populations, but
the lack of recurrently emerging protocol patterns leaves us without
concrete insight into the general properties and patterns of an
efficient pacing protocol.

We used only four cardiac-tissue models: Three FK and one
BOCF, along with arbitrarily selected parameter sets. Each model
was considered in isolation, while cross-optimisation could perhaps
have helped guide the optimisation toward more general protocol
structures. While we managed to replicate some of the GA’s
behaviour across these individual models, this was done using
simplified two-dimensional simulations of fibrillation on square
sheets of tissue only. Naturally, more realistic geometries along
with physiological cardiac-tissue models might yield results more
immediately applicable to traditional experimental settings.

Our pacing model was based on homogeneous cardiac tissue
with randomly distributed, square-shaped injection sites serving as
an abstraction of local tissue heterogeneities responsible for emitting
wave fronts when exposed to potent electric fields as utilised by
LEAP. The number of sites, their sizes, and their shape(s) were all set
to rather arbitrary values for simplicity’s sake, leaving yet another
potential avenue for further investigation as to their effect(s) on GA
performance. Perhaps more sophisticated site-distribution
algorithms beyond random placement could help mimic real
heterogeneity distributions more closely in this context, but the
indirect implementation of virtual electrodes through the simulation

TABLE 5 (Continued) GA-mediated improvements over ADP and initial-population (pop.) protocols. Rows of protocols outperformed (or matched) by GA-
optimised solutions in both metrics are highlighted in grey.

Model Pop. Protocol PC [a.u.] ΔGA [%] TR [%] ΔGA [p. p.]

BOCF 1 Best of pop. GA 2.40 100

Best of init. pop. 3.82 −37 10 +90

ADP @ 90% TR 0.68 +253 90 +10

@ 95% 0.76 +216 95 +5

@ 99% 1.04 +131 99 +1

@ 100% 3.14 −24 100 +0

2 3.00 100

15.02 −80 100 +0

0.68 +341 90 +10

0.76 +295 95 +5

1.04 +188 99 +1

3.14 −4 100 +0

FIGURE 10
Samples for each of the three recurring metric-performance
patterns we observed over the course of the GA evaluations. Only PC
examples are shown because TR convergence generally exhibited
similar patterns (albeit mirrored horizontally).
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FIGURE 11
Comparison of population convergence under different initial populations (columns) as well as models (rows). Each final population consisted of
50 pacing protocols and is placed according to its mean PC and TR values. Error bars indicate the corresponding standard deviations.

FIGURE 12
Five examples of top GA-optimised protocols for two FK models (rows). These protocols had the highest TR with the lowest PC among their
respective populations. Said populations were generated by a single 104-generation application of our GA using one set of hyperparameters and initial
population per model.
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of actual heterogeneous tissue domains may also be worth
considering.

Lastly, the particular GA setup we employed is merely one of
many possible alternatives, and others may prove yet more effective
at optimising pacing protocols. We used either mutation or
crossover to generate one or two new protocols in a given
generation and selected the respective source protocol(s) entirely
randomly every time, which deviates from the more “canonical”
approach (phrased in the context of pacing protocols) of using, e.g.,
tournament selection (Blickle and Thiele, 1996) to evolve the
protocol population.

The next step in computer-aided pacing optimisation could
entail the cross-optimisation with multiple models, fitness
equivalence of TR values beyond ~90%, transition to three-
dimensional simulations, more sophisticated pacing models, the
testing of alternative GA implementations, or a combination thereof.
We established a foothold in pacing optimisation through the
outline of this paper, but more work into studying the GA, its
behaviour, and its shortcomings is needed before considerable time
and effort is spent working with, e.g., physiological models in more
complex geometries beyond square sheets of cardiac tissue.

Other popular heuristics like simulated annealing (Ingber, 1993)
may also warrant investigation for their efficacy in protocol
optimisation based on our pacing model. It would at the very
least be pertinent to compare their results to our GA’s, especially
in light of the convergence issues we have uncovered over the course
of the GA-based optimisation effort.

Further optimisation of anti-fibrillation control may be achieved
by proper timing of the application of the pulse sequence, as it has
recently been shown that the timing of single-shock termination has
a significant influence on the probability of success (Ji et al., 2017;
Steyer et al., 2023).

We can conclude this paper with a successful foray into pacing-
protocol optimisation where we showcased the optimisation
capabilities of a simple genetic algorithm for randomised
protocol populations, as well as substantial pacing-energy
reductions over ADP protocols at 100% sucess rate. In the
process, we identified multiple avenues of investigation for future
projects; said projects could focus on general improvements to the
GA design for better protocols or taking the simulations to a more
realistic level to better facilitate their translation into experiments on
live cardiac tissue for verification purposes.
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