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In this short note, we prove a G–equivariant generalisation of

McDuff–Segal’s group completion theorem for finite groups G.
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1 Introduction

Let G be a finite group. In order to state the theorem, we will need a few pieces

of terminology:

Notation 1.1. In this note, two kinds of ring localisations will feature and we

define and relate them here. Let R ∈ CAlg(SpG) and S = {SH}H≤G be a

G–subset of the zeroth equivariant homotopy Mackey functor π0R of R. That

is, for any H ≤ G, S satisfies ResG
H SG ⊆ SH ⊆ πH

0 R. Now for any A ∈

CAlg(SpG), we define

Map
S−1

CAlg(SpG)
(R, A) and Map

S−1
G

CAlg(SpG)
(R, A)
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to be subcomponents of MapCAlg(SpG)
(R, A) of commutative algebra maps

R → A which send elements in S to units in π0A and send elements in SG

to units in πG
0 A, respectively. By general theory (cf. [Nik17, Appen. A] for

example), we know that the latter mapping space is corepresented by a tele-

scopic localisation S−1
G R of R against elements in SG ⊆ πG

0 R. In particular, we

have that π∗S−1
G R ∼= S−1

G π∗R.

On the other hand, since the former mapping space is corepresentable by

presentability, we write the corepresenting objects as LS−1 R. In general, this

need not be given by a nice formula in terms of a telescopic localisation since

we need to invert different sets of elements at different subgroups H ≤ G that

do not all come from restricting elements from SG (ie. the inclusion ResG
H SG ⊆

SH might be proper), and so π∗LS−1 R need not admit a nice description as a

Mackey functor with elements in S inverted. However, since maps R → A

which invert S must necessarily invert SG, we do have an inclusion

MapS−1

CAlg(SpG)
(R,−) −֒→ Map

S−1
G

CAlg(SpG)
(R,−)

Thus, this inclusion is induced by a canonical comparison map in CAlg(SpG)

S−1
G R −→ LS−1 R. (1)

Notation 1.2. We write CMon(SG) for the category of commutative monoid

objects in G–spaces. An object M ∈ CMon(SG) consists of E∞–monoids

MH for every subgroup H ≤ G and the restriction map MH → MK associ-

ated to a subconjugation K ≤ H is a map of E∞–monoids. This implies that

SG[M] := Σ∞
G,+M ∈ CAlg(SpG) (see for instance Observation 2.1). We write

πM ⊆ π0SG[M] for the image of the Hurewicz map on the equivariant homo-

topy groups π0M → π0Ω∞
G SG[M] = π0SG[M]. This is clearly a G–subset in

the sense defined above.

For a more highly structured input, let CMonG(SG) be the category of G–

commutative monoid G–spaces. An object M ∈ CMonG(SG) consists of the

data above together with “equivariant addition” maps ⊕H/K : MK → MH for

every K ≤ H satisfying double–coset formulas. Put differently, CMonG(SG)

are G–semi–Mackey functors valued in spaces, to emphasise the semiadditivity

- but not additivity - of the situation, following [CMN+20]. Furthermore, we

will also write CAlgG(SpG) for the G–commutative ring objects in G–spectra,

ie. those E∞–rings equipped with multiplicative norms. More details on all

these in §2.
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We are now ready to state the theorem of this note:

Theorem 1.3. Let M ∈ CMon(SG) be a commutative monoid G–space.

(i) The group completion map M → ΩBM induces an equivalence in CAlg(SpG)

L(πM)−1SG[M]
≃

−−→ SG[ΩBM]

(ii) Moreover, if M even had the structure of a G–commutative monoid G–space

- ie. M ∈ CMonG(SG) - then SG[ΩBM] ≃ L(πM)−1SG[M] refines to a G–

commutative ring object. In other words, it lifts to an object in CAlgG(SpG).

Furthermore, in this case, the canonical map from (1)

(πG
M)−1

SG[M] −→ L(πM)−1SG[M] ≃ SG[ΩBM]

is an equivalence so that we have the expected localisation effect on homotopy

groups, ie. π∗SG[ΩBM] ∼= (πG
M)−1π∗SG[M].

We emphasise again the point from Notation 1.1 that part (i) says noth-

ing about how the homotopy Mackey functor of SG[ΩBM] looks like. It

only says that SG[ΩBM] satisfies a universal property defined in terms of

πM ⊆ π0SG[M]. We feel that the main force of the result lies in the highly

structured setting of part (ii) where this result gives a formula for the homol-

ogy of ΩBM in terms of that of M with respect to any Mackey functor coeffi-

cients, a commonly considered instance being Bredon homology. In this case

for example, we obtain

HG
∗ (ΩBM; HZ) ∼= HG

∗ (M; HZ)[(πG
0 M)−1]

where Z is the constant Mackey functor associated to the trivial G–action on Z.

In the body of the paper, however, we isolate a condition on πM we call torsion

extension (cf. Condition 3.1) which ensures that the different localisations from

Notation 1.1 agree even in the absence of the norms. This might be usable and

useful in specific cases of M. We expect this kind of result to be helpful in

making equivariant computational analyses of group completions in the same

way that the nonequivariant version is a computational staple.

Example 1.4. G–commutative monoid G–spaces, for which the localisation for-

mula of Theorem 1.3 (ii) holds, are in abundant supply. One fertile source

is small semiadditive ∞–categories equipped with G–actions, ie. objects in
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Fun(BG, Cat⊕∞). If C were one such instance, then {ChH}H≤G assembles to

a G–commutative monoid G–category. In other words, it is an object in

MackG(Cat⊕∞) (cf. [BGS20, §8] for an explanation of this). Then taking the

groupoid core yields a G–commutative monoid G–space {(ChH)≃}H≤G ∈

CMonG(SG). Concrete examples belonging to this template include equipping

the trivial G–action on categories like finitely generated projective R–modules

ProjR for R ∈ CRing or perfect A–modules PerfA for A ∈ CAlg(Sp). These

yield the objects in CMonG(SG)

{Map(BH, Proj≃R )}H≤G {Map(BH, Perf≃A)}H≤G

the group completions of which give the so–called Swan equivariant K–

theories. Another interesting source of semiadditive categories equipped with

G–actions come from finite Galois extensions of fields K ⊆ L. In this case,

the G–Galois action on Vectfd
L yields the G–commutative monoid G–space

{(Vectfd
LH )≃}H≤G.

As far as we know, the theorem cannot be directly deduced from the classical

group completion theorem. However, the method of proof will be a direct

adaptation of that of Nikolaus via ring localisations in his [Nik17, Thm. 1].

The first part of the theorem will require only standard ∞–category theory,

whereas in the more highly structured second part of Theorem 1.3 we will

need the language of G–categories in order to discuss G–commutative rings

succintly. While we were not able to find this equivariant group completion

theorem written in the literature, it is probably known or at least expected

among experts. We very much welcome a reference to where this result might

have previously appeared and give the appropriate credits.

Lastly, a few words on organisation: we will briefly record some founda-

tional materials in §2 to orient the reader who might not be familiar with the

formalism of G–categories; in §3, we give a proof of Theorem 1.3. We will end

with some remarks on how norms and localisations managed to interplay well

in our situation and how this result fits in with the nonequivariant group com-

pletion theorem. Along the way, we will explain how geometric fixed points

turn the mysterious localisation LS−1 R into something familiar.
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2 Some preliminaries

We begin with the following observation, which requires no theory of G–

categories:

Observation 2.1. The left adjoint in the adjunction

SG SpG

SG [−]

Ω∞
G

refines to a symmetric monoidal functor with the cartesian symmetric

monoidal structure on SG and the tensor product of G–spectra on SpG. Hence,

applying the functor CAlg(−) we obtain an adjunction

CMon(SG) ≃ CAlg(S×
G ) CAlg(Sp⊗

G)
SG [−]

Ω∞
G

(2)

Now, to set the stage for our discussions about the multiplicative norms,

we collect here some basics on G–categories. The reader uninsterested in this

refinement can skip right away to the proof of the first part of Theorem 1.3 in

the next section.

We have chosen to travel light in this document and so we will refrain from

giving a self–contained exposition of the required theory on G–categories.

For the original sources of these materials, we refer the reader to [BDG+16;

Nar17; Sha22], and a one–stop survey of G–categories can be found for ex-

ample in [Hil22, Chap. 1]. In short, a G–category is an object in Cat∞,G :=

Fun(O
op
G , Cat∞) and we will use the underline notation D to denote a G–

category and DG/H for its value at G/H ∈ O
op
G . Important examples include

the G–category of G–spaces {SG : G/H 7→ SH} and of genuine G–spectra

{SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG : G/H 7→ SpH}.
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Lemma 2.2. The G–adjunction SG[−] : SG ⇋ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG : Ω∞
G induces a G–adjunction

SG[−] : CMonG(SG) ⇄ CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) : Ω∞
G

Proof. We know by [Nar17, §3] that the map SG[−] := Σ∞
+ refines to a G–

symmetric monoidal functor SG[−] : S
×
G −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

⊗
G . This means that Ω∞

G canoni-

cally refines to a G–lax symmetric monoidal structure. Hence applying CAlgG

on both sides and using that CAlgG(S
×
G ) ≃ CMonG(SG) we get the desired

adjunction.

Construction 2.3 (Equivariant group completions). If we write B for the sus-

pension in the category CMon(S) (which is very different from the suspension

on the underlying space!), then we know that we have the adjunction

CMon(S) CGrp(S)
ΩB

so that ΩB implements the group completion functor on CMon(S). In fact,

as slickly explained in [CDH+20, Prop. 3.3.5], ΩB always implements group

completions in any semiadditive category with pullbacks and pushouts. We

can then cofreely make this into a G–adjunction of G–categories

CofreeG

(
CMon(S)

)
CofreeG

(
CGrp(S)

)ΩB
(3)

Here for an ordinary ∞–category C, CofreeG(C) ∈ Cat∞,G is the G–category

given by {G/H 7→ Fun(O
op
H , C)}H≤G (cf. [Nar17, Def. 1.10] for instance, where

the notation was just an underline instead of the word “cofree”). In this nota-

tion, the G–category of G–spaces is therefore given by SG = CofreeG(S). Both

G–categories in the adjunction are G–semiadditive, and so in particular ΩB

preserves G–biproducts. Now by [Nar17, Thm. 2.32], if C admits finite limits,

then

CMonG(CofreeG(C)) ≃ MackG(C) ≃ MackG(CMon(C))

Using this, we can then apply CMonG(−) to the adjunction (3) to get a G–

adjunction

CMonG(SG) CGrpG(SG)
ΩB

Concretely, this implements group completion pointwise, and this is what we

mean by the equivariant group completion.
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For the next construction, we use the notation Fin∗G for the G–category

of finite pointed G–sets. That is, it is the G–category {G/H 7→ Fin∗H :=

Fun(BH, Fin∗)}. Nardin used this to give a definition of G–symmetric

monoidal categories in [Nar17, §3] much like the nonequivariant situation

from [Lur17]. See also [NS22] for a more recent treatment. Suffice to say, in

this setting, a G–symmetric monoidal category is a G–category D⊗ equipped

with a map to Fin∗G satisfying appropriate cocartesianness and G–operadic

conditions, and G–commutative ring objects are then G–inert sections to this

map.

Construction 2.4 (Forgetting norms). First note that we have an adjunction

i : ∗ ⇋ O
op
G : p

where i is the inclusion of G/G, which is an initial object in O
op
G . Hence, ap-

plying Fun(−, Cat∞) we obtain an adjunction of (∞, 2)–categories

p∗ : Cat∞ ⇋ Cat∞,G : i∗

Since p∗(C) = constG(C) := C × O
op
G and i∗(D) = DG/G := evG/GD, we see

that

FunG

(
constG(C),D

)
≃ Fun

(
C,DG/G

)
(4)

In particular, the fully faithful functor of 1–categories Fin∗ → Fin∗G :=

Fun(BG, Fin∗) given by n 7→ ∐
n G/G induces a G–functor

q : constG(Fin∗) −→ Fin∗G :: (n, G/H) 7→
n

∐ H/H

Therefore, for a G–symmetric monoidal category D⊗ ∈ CMonG(Cat∞,G), us-

ing the adjunction (4) again, we obtain the map

CAlgG(D
⊗) := Fun

inert
G (Fin∗G,D⊗)

q∗

−−→ Funinert(Fin∗,D⊗
G/G) =: CAlg(D⊗

G )

Here Fun
inert
G denotes the G–inert sections of D⊗ → Fin∗G and similarly for

Funinert. We have used that FunG(constG(Fin∗),D
⊗)×FunG(constG(Fin∗),Fin∗G)

{q}

is equivalent to Fun(Fin∗,D⊗
G/G)×Fun(Fin∗ ,Fin∗G) {q} by (4) to analyse the target.

Intuitively, the functor q∗ forgets the norm structures on a G–commutative ring

object in D and so we will also denote it by fgt in the sequel.
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3 Proof of the theorem

Armed with the preliminaries, we can now give the proof of the theorem. We

break it up into parts (i) and (ii). We emphasise again that the theory of G–

categories is not required in the first part.

Proof of Theorem 1.3 (i). The proof is exactly the same as that of [Nik17, Thm. 1].

To wit, we first claim that ΩBM ∈ CMon(SG) satisfies the following universal

property: for every X ∈ CMon(SG), the map

MapCMon(SG)
(ΩBM, X) → Map

(π0 M)−1

CMon(SG)
(M, X)

induced by η : M → ΩBM is an equivalence, where Map
(π0 M)−1

CMon(SG)
⊆

MapCMon(SG)
means the subcomponents of maps where π0M is sent to ele-

ments that admit additive inverses in π0X. The map lands in this subcom-

ponent since ΩBM is group complete. To prove the claim, define X× as the

pullback in CMon(SG)

X× X

(π0X)× π0X

i

y

Now consider the commuting diagram

MapCMon(SG)
(ΩBM, X) Map

(π0 M)−1

CMon(SG)
(M, X)

MapCMon(SG)
(ΩBM, X×) MapCMon(SG)

(M, X×)

η∗

i∗

η∗

i∗

The left vertical i∗ is an equivalence since ΩBM is group complete and (−)×

is the right adjoint to the inclusion CGrp(SG) ⊆ CMon(SG); the bottom η∗ is

an equivalence since X× is group complete and ΩBM is the group completion

of M by Construction 2.3; the right vertical i∗ is an equivalence because maps

in Map(π0 M)−1
are precisely those that land in X× by definition. Therefore, all

in all, the top horizontal η∗ is also an equivalence, as claimed.
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Now by the adjunction (2), for any A ∈ CAlg(SpG), we have

MapCAlg(SpG)
(SG[ΩBM], A) ≃ MapCMon(SG)

(ΩBM, Ω∞
G A)

≃ Map
(π0 M)−1

CMon(SG)
(M, Ω∞

G A)

≃ Map
(πM)−1

CAlg(SpG)
(SG[M], A)

(5)

where the second equivalence is by the claim above. By Notation 1.1,

SG[ΩBM] computes L(πM)−1SG[M] , as desired.

We now turn to the task of refining to normed structures when the input is

more highly structured, ie. when M ∈ CMonG(SG). Before that, it would be

useful to formulate the following intermediate notion together with a couple

of easy consequences which would help us identify the homotopy groups of

the abstract localisation we have so far.

Condition 3.1 (Torsion extensions). Let R ∈ CAlg(SpG) and S ⊆ π0R be a G–

subset of the zeroth equivariant homotopy groups of R. We say that S satisfies

the torsion extension condition if for any H ≤ G, the inclusion ResG
H SG ⊆ SH

is a torsion extension, ie. for any a ∈ SH, there exists a r ∈ πH
0 R such that

r · a ∈ ResG
H SG.

Remark 3.2. Since this is just an intermediate notion, we have not invested too

much time in choosing a satisfying name. The reason for this choice was an

analogy in the case of modules: if I ⊆ J ⊆ R are R–submodules satisfying

the analogous condition, then J/I is a torsion R–module. In any case, the next

three lemmas should clarify our interest in this condition.

Lemma 3.3. If R ∈ CAlg(SpG) and S ⊆ π0R is a multiplicatively closed G–subset

satisfying Condition 3.1, then the canonical map S−1
G R −→ LS−1 R from (1) is an

equivalence.

Proof. Fix H ≤ G and A ∈ CAlg(SpH). As explained in Notation 1.1, the

canonical map induces an inclusion of subcomponents

Map
S−1

CAlg(SpH)
(ResG

H R, A) −֒→ Map
(ResG

H SG)
−1

CAlg(SpH)
(ResG

H R, A)

Hence all we have to do is to show that all components in the target are hit.

So suppose ϕ : ResG
H R → A inverts elements in ResG

H SG and let a ∈ SH. By
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hypothesis, there exists a r ∈ πH
0 R such that r · a ∈ ResG

H SG. Since ϕ inverts

r · a, it must have inverted a too. Therefore, since a was arbitrary, we see that

ϕ must have inverted all of SH as required.

Lemma 3.4. Let R ∈ CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) be a G–commutative ring object and S ⊆ π0R

be a G–subset that is closed under the norms. Then S satisfies Condition 3.1.

Proof. Fix H ≤ G and let a ∈ SH. We want to show that there is an r ∈ πH
0 R

such that r · a ∈ ResG
H SG. For this, consider NG

Ha ∈ πG
0 R which is in fact in

SG ⊆ πG
0 R by hypothesis. Then by the norm double coset formula, we get

ResG
H NG

Ha = ∏
g∈H\G/H

NH
Hg∩Hg∗ ResH

H∩Hg a ∈ ResG
H SG

where a is a factor on the right (ie. when g = e), whence the claim.

Lemma 3.5. If M ∈ CMonG(SG) is a G–commutative monoid G–space, then πM ⊆

π0SG[M] is closed under the norms.

Proof. First of all, by Lemma 2.2 we know SG[M] refines to a G–commutative

ring object. Now fix H ≤ G and suppose we have n ∈ πH
0 M with associated el-

ement n ∈ πH
0 SG[M]. Thus by definition the normed element NG

Hn ∈ πG
0 SG[M]

is given by

SG = NG
HSH

NG
Hn

−−→ NG
H ResG

H SG[M] ≃ SG[∏
G/H

ResG
H M]

S[⊕G/H]
−−−−→ SG[M]

Here ⊕G/H : ∏G/H ResG
H M → M is the G–semiadditivity adjunction counit of

an object M ∈ CMonG(SG). The middle equivalence is since SG[∏
G
H −] ≃

NG
HSH[−] from the G–symmetric monoidality of the functor SG[−] from

Lemma 2.2

Now, the natural transformation (−) ⇒ Ω∞
G SG(−) from Lemma 2.2 together

with the adjunction counit ∏
G
H ResG

H M
⊕G/H
−−−→ M yield the commuting diagram

∗ Ω∞
G SG

∏
G
H ResG

H M Ω∞
G SG[∏

G
H ResG

H M] ≃ Ω∞
G NG

H ResG
H SG[M]

M Ω∞
G SG[M]

n Ω∞
G NG

Hn

⊕G/H Ω∞
G SG [⊕G/H]
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This implies that the normed up element NG
Hn ∈ πG

0 SG[M] already came from

the element ⊕G/Hn ∈ πG
0 M and so πM ⊆ π0SG[M] is closed under norms.

We now cash in all the work we have done to complete the proof of the

theorem.

Proof of Theorem 1.3 (ii). The main point is that we have commuting squares

CMonG(SG) CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
⊗
G)

CMon(SG) CAlg(Sp⊗
G)

SG [−]

fgt

Ω∞
G

fgt

SG [−]

Ω∞
G

gotten by using the G–lax symmetric monoidality of the adjunction SG[−] ⊣

Ω∞
G from Lemma 2.2 together with the fact that the forgetful functor is imple-

mented by precomposition by Construction 2.4. In fact, for this proof we only

need that the (SG[−], fgt) square commutes. Thus, if M ∈ CMonG(SG) so

that ΩBM is again in CMonG(SG) by Construction 2.3, then SG[ΩBM] - which

is equivalent to L(πM)−1SG[M] by part (i) of the theorem - naturally refines to

the structure of an object in CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
⊗
G), ie. it canonically attains the multi-

plicative norms. The final statement of part (ii) is then a direct combination of

Lemmas 3.3 to 3.5.

Remark 3.6. The norm closure of the subset πM ⊆ π0SG[M] from Lemma 3.5

should have indicated why the localisation (πM)−1SG[M] even had a chance

of attaining the multiplicative norms. In general, a localisation on a G–

commutative ring need not refine again to a G–commutative ring, as is well

documented for instance in [HH13]. Nonetheless, the norm closure of a mul-

tiplicative subset is a necessary and sufficient condition for the localisation to

refine to the structure of a G–commutative ring. This can be deduced for ex-

ample from [QS22, Lem. 5.27].

As we have remarked in Notation 1.1, the abstract localisation LS−1 R has no

reason to have a nice description in general. Notwithstanding, it does interact

well with the geometric fixed points, and we end this note with some expla-

nations regarding this as well as how this fits Theorem 1.3 with the classical

group completion theorem.

11



Observation 3.7. Let S ⊆ π0R be a multiplicative G–subset for some R ∈

CAlg(SpG). Recall that we have a lax symmetric monoidal Bousfield local-

isation ΦG : SpG ⇋ Sp : ΞG which then induces a Bousfield localisation

ΦG : CAlg(SpG) ⇋ CAlg(Sp) : ΞG. Here for X ∈ Sp, ΞGX is the G–spectrum

such that (ΞGX)G ≃ X and (ΞGX)H ≃ 0 for H � G. Classically, this is also

written as ẼP ⊗ X where P is the proper family of subgroups of G. We claim

that the resulting equivalence MapCAlg(SpG)
(R, ΞG A) ≃ MapCAlg(Sp)(Φ

GR, A)

restricts to an equivalence

Map
S−1

CAlg(SpG)
(R, ΞG A) ≃ Map

(ΦGSG)
−1

CAlg(Sp)
(ΦGR, A)

To see this, since ΦGΞG ≃ id, we know ΦG induces an inclusion

Map
S−1

CAlg(SpG)
(R, ΞG A) −֒→ Map

(ΦGSG)
−1

CAlg(Sp)
(ΦGR, A)

To see that this is even an equivalence, suppose we have ϕ : ΦGR → A which

inverts ΦGSG ⊆ π0ΦGR. The adjoint ϕ : R → ΞG A is given by the composite

ϕ : R
η

−−→ ΞGΦGR
ΞG ϕ
−−→ ΞG A

where the adjunction unit η is a map of E∞–rings and sends elements in SG

to elements in ΦGSG. Therefore, ϕ must invert all elements in SG. More-

over, since for H � G, (ΞG A)H are equivalent to the zero rings, the maps

ResG
H ϕ : ResG

H R → ResG
H ΞG A ≃ 0 send everything to units for trivial reasons,

and so in total ϕ indeed inverts elements in S as was to be shown.

Proposition 3.8. Let R ∈ CAlg(SpG) and let S ⊆ π0R be a multiplica-

tive subset. Then the canonical map ΦGR → ΦG LS−1 R induces an equivalence

(ΦGSG)
−1ΦGR ≃ ΦG LS−1 R.

Proof. Let A ∈ CAlg(Sp). Then

MapCAlg(Sp)(Φ
G LS−1 R, A) ≃ MapCAlg(SpG)

(LS−1 R, ΞG A)

≃ Map
S−1

CAlg(SpG)
(R, ΞG A)

≃ Map
(ΦGSG)

−1

CAlg(Sp)
(ΦGR, A)

≃ MapCAlg(Sp)((Φ
GSG)

−1ΦGR, A)

where the third equivalence is by Observation 3.7.
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Remark 3.9. Let M ∈ CMon(SG). We claim that ΦGπG
M = πMG ⊆ π0S[MG]

where πMG is the image of the nonequivariant Hurewicz map π0MG →

π0S[MG]. Given this, we see by Proposition 3.8 that

ΦG(π−1
M SG[M]) ≃ (πMG)−1

S[MG]

and so applying ΦG reduces Theorem 1.3 (i) to the classical group completion

theorem formulated for example in [Nik17, Thm. 1]. To prove the claim, we

want to show that the inclusion ΦGπG
M ⊆ πMG is surjective. We know that

there is a commuting square

SG SpG

S Sp

SG [−]

(−)G
ΦG

S

which yields a commuting square

πG
0 M = π0 MapSG

(∗, M) πG
0 SG[M] = π0 MapModSpG

(SG[M])

(
SG[M], SG[M]

)

π0(MG) = π0 MapS (∗, MG) π0S[MG] = π0 MapModSp(S[MG])

(
S[MG], S[MG]

)

SG [−]

∼= ΦG

S[−]

This implies that ΦGπG
M ⊆ πMG is surjective, as desired.
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