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Florinda Viñas Boström1, 2, ∗ and Emil Viñas Boström3, 4, †
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Triplet superconductivity arises in systems where the effective electronic attraction favors Cooper
pairs with a symmetric spin structure, as may occur in non-collinear magnetic systems. Here we
show that topological triplet superconductivity can be realized in a one-dimensional quantum wire
through the interaction with magnetic fluctuations of a helical magnet. The magnon-mediated
attraction favors triplet superconductivity over a large sector of magnetic parameters, and stabilizes
a topological phase with a superconducting gap of the order of 1 meV over an extended region of
chemical potentials.

A promising path to realize fault-tolerant quantum
computing is to utilize the excitations of topologically
ordered systems [1–3]. These excitations, generically
named anyons [4, 5], are predicted to appear across a
wide range of platforms, such as fractional quantum Hall
systems, quantum spin liquids, and topological super-
conductors [6–10]. In particular, the sub-class of exci-
tations called non-abelian anyons allow for information
to be non-locally encoded and processed in the braiding
patterns of the anyon world lines [2, 3]. In topologi-
cal superconductors, non-abelian anyons appear at the
edges or in vortex cores of chiral two-dimensional super-
conductors [11–17], and at the ends of one-dimensional
(1-D) quantum wires [18–21]. However, due to the diffi-
culties associated with realizing such phases, conclusive
evidence of topological superconductivity has not been
found in any experimental platform.

It has recently been proposed that chiral topologi-
cal superconductivity can be realized in two-dimensional
heterostructures [22–28], where itinerant electrons inter-
act with a non-collinear magnetic structure, or in chains
of magnetic atoms deposited on a conventional supercon-
ductor [29–32]. In 1-D systems, superconductors with
triplet (p-wave) pairing are known to always reside in
a topological class that can host non-trivial topological
phases [33–35]. To engineer topological superconductiv-
ity in 1-D, the dominant approach has been to com-
bine proximity-induced s-wave superconductivity with
strong spin-orbit coupling (SOC) semi-conductors and
time-reversal symmetry breaking magnetic fields [11, 36–
47]. Although straightforward in principle, this approach
is in practice associated with a number of challenges, the
most prominent being that the time-reversal breaking
field must be finely tuned such that it is large enough
to realize an effective spin-polarized regime, but small
enough not to suppresses the effective superconducting
gap [11, 19, 20]. To avoid this problem it would be desir-
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FIG. 1. Principles of magnon-mediated superconductivity. a,
Experimental setup with a quantum wire in proximity to a
helical magnet. b, The helical magnetic order (orange ar-
rows) induces an effective spin-orbit interaction and Zeeman
splitting of the electronic bands via the spin-electron cou-
pling g. Magnon fluctuations around the equilibrium mag-
netic order provide an effective attractive interaction among
the electrons. c, Due to the non-collinear magnetic structure,
the magnon fluctuations lead to scattering between electrons
with arbitrary spin projection σi.

of strength g, and the electronic spin operator is defined
by ŝi =

∑
σσ′ ĉ

†
iστσσ′ ĉiσ′ , with τ the Pauli matrix vector.

The competition between exchange and DMI stabilizes
a helical magnetic order, characterized by a propagation
vector q and a vector n̂ defining the plane of polarization.
Specifically, the magnitude of the spiral momentum is
given by

√
2 tan q = D/J , while the directions of the

momentum and polarization vectors are determined by
the normalized DMI vector D̂. Here we consider a DMI
such that the spiral momentum q lies along the wire axis
ẑ, and with n̂ parallel to q (see Fig. 1). The equilibrium
spin texture is then a spin helix, and can be written as
Si = cos(q ·ri)e1 +sin(q ·ri)e2, where the vectors eα and
n̂ define a right-handed orthonormal system [? ].

In the following the magnetic texture is assumed to be
commensurate with the electronic lattice, such that the
spin spiral is periodic over a distance La, where L is an
integer and a is the electronic lattice parameter. To de-
scribe fluctuations around the equilibrium order, the spin
operators Ŝi are expressed in terms of a set of bosonic
operators by performing a Holstein-Primakoff expansion
around the local spin axis Si [? ]. This results in a diag-
onal magnon Hamiltonian Hm =

∑
np Ωnpα

†
npαnp, where

Ωnp is the energy of a magnon with momentum p in band
n. The momentum runs over the magnetic Brillouin zone
[−π/La, π/La], and the number of magnon bands is L.

There are two main effects of the spin spiral on the
electronic structure: First, the coupling to the equilib-
rium magnetic structure Si induces an effective SOC and
Zeeman splitting of the electronic bands (see Fig. 2a).
Second, the coupling to magnon fluctuations around the

helical configuration generates an effective attractive in-
teraction among the electrons, which ultimately leads to
superconductivity. The effect of the static spin spiral can
be exactly accounted for, by diagonalizing the electronic
sub-system in presence of the spiral Si [? ? ], and re-

sults in the electron Hamiltonian He =
∑

kτ ϵkτd
†
kτdkτ .

Here τ denotes the electronic bands, and the momentum
runs over the electronic Brillouin zone [−π/a, π/a]. The
spiral shifts the minima of the originally spin-degenerate
bands to ±q/2 (Fig. 2a), thereby inducing an effective
Rashba SOC. This shift is independent of the value of
g, and is set for any finite g by the momentum of the
spin spiral. In addition, the coupling opens a gap of size
∆b = 2gS at k = 0 and k = ±π/a, acting like an effective
Zeeman field. Together these effects realize an effective
single-band regime for chemical potentials inside the gap.

The electron-magnon interaction is found by express-
ing the spin-electron coupling (the last term in Eq. 1)
in terms of the magnon and band electron operators.
Due to the non-collinear structure of the spin spiral, the
coupling has a non-trivial spin structure (see Fig. 1c),
and in general gives rise to magnon-mediated scattering
between electrons with arbitrary spin projections. An
effective electron-electron interaction is obtained by in-
tegrating out the magnons within a finite temperature
functional integral formulation [? ]. The effective in-
teraction Uτ3τ4

τ1τ2 (k, k′) implicitly depends on the magnetic
structure via the spin-electron coupling g, the spiral mo-
mentum q, and the transformation matrices used to di-
agonalize the magnon and electron sub-systems. In the
static limit the superconducting gap ∆ττ ′

k is determined
via the linearized gap equation

∆τ1τ2
k =

∑
k′τ3τ4

Uτ3τ4
τ1τ2 (k, k′)

(∑
τ

tanh(βξk′τ )

2ξk′τ

)
∆τ3τ4

k′ , (2)

where β = 1/(kBT ) is the inverse temperature, and
ξk = ϵk−µ. The gap equation can be viewed as an eigen-
value problem for the subsecptibility matrix χτ3τ4

τ1τ2(k, k′),
implicitly defined by the right hand side of Eq. 2, and
superconductivity is signaled by the largest eigenvalue of
this matrix exceeding unity.

On the mean-field level the electronic Hamiltonian is of
the Bogoliubov-de Gennes (BdG) form, and can be writ-

ten as H =
∑

k Φ†
kHkΦk with Hk as a 4 × 4 matrix [?

]. The gap ∆ττ ′ can be decomposed into four compo-
nents, given by the singlet gap ∆s = (∆du − ∆ud)/2
and the triplet gaps ∆u = ∆uu, ∆d = ∆dd, and ∆p =
(∆du +∆ud)/2. The subscripts u and d refer to the band
index τ , which can be viewed as an effective spin index,
where u (d) denotes the upper (lower) band or effective
spin up (down). Due to the fermionic nature of the elec-
tronic operators, the singlet and triplet gaps are even and
odd functions of k, respectively.

We begin with analyzing how the symmetry of the
dominant superconducting gap depends on the spiral mo-

FIG. 1. Principles of magnon-mediated superconductivity. a,
Experimental setup with a quantum wire in proximity to a
helical magnet. b, The helical magnetic order (orange ar-
rows) induces an effective spin-orbit interaction and Zeeman
splitting of the electronic bands via the spin-electron coupling
g. Magnon fluctuations around the equilibrium magnetic or-
der provide an effective attractive interaction among the elec-
trons (blue arrows). c, Due to the non-collinear magnetic
structure, magnon fluctuations mediate scattering between
electrons with arbitrary spin projections σi.

able to find a protocol for topological superconductivity
where the spin-polarized regime and the superconducting
gap both are increasing functions of some control param-
eter.

To address this challenge, we here propose a platform
to stabilize triplet superconductivity by coupling a quan-
tum wire to a helical magnet (see Fig. 1). The non-
collinear magnetic order induces an effective SOC and
Zeeman field among the electrons (see Fig. 2), thereby
realizing an effective single-band regime. The magnon
excitations of the helical magnet further mediate an effec-
tive attractive interaction between the electrons, which
stabilizes triplet superconductivity with a superconduct-

ar
X

iv
:2

31
2.

02
65

5v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  5
 D

ec
 2

02
3



2

ing gap of the order of 1 meV over a large portion of the
magnetic phase space. Within the effective single-band
regime, the system enters a topological phase, with un-
paired Majorana bound states at each end of the wire.
Crucially, both the size of the effective single-band regime
and the superconducting gap are increasing functions of
the spin-electron coupling g. Our proposal thereby iden-
tifies quantum wires in proximity to helical magnets as a
promising platform to explore topological superconduc-
tivity in 1-D.

To investigate magnon-mediated superconductivity in
a quantum wire, we consider an interacting system of
spins and electrons described by the lattice Hamiltonian

H = − t
∑
⟨ij⟩σ

ĉ†iσ ĉjσ − J
∑
⟨ij⟩

Ŝi · Ŝj (1)

−
∑
⟨ij⟩

Dij · (Ŝi × Ŝj) − g
∑
i

ŝi · Ŝi.

Here ĉiσ destroys an electron at site i and of spin projec-
tion σ, and Ŝi is the spin operator at site i for a spin of
magnitude S. The parameters t, J , and D respectively
determine the nearest-neighbor electronic hopping am-
plitude, the exchange interaction, and the antisymmet-
ric Dzyaloshinskii-Moriya interaction (DMI). The spins
and electrons interact via a local spin-electron coupling
of strength g, and the electronic spin operator is defined
by ŝi =

∑
σσ′ ĉ

†
iστσσ′ ĉiσ′ , with τ the Pauli matrix vector.

The competition between exchange and DMI stabilizes
a helical magnetic order, characterized by a propagation
vector q and a vector n̂ defining the plane of polarization.
Specifically, the magnitude of the spiral momentum is
given by

√
2 tan q = D/J , while the directions of the

momentum and polarization vectors are determined by
the normalized DMI vector D̂. Here we consider a DMI
such that the spiral momentum q lies along the wire axis
ẑ, and with n̂ parallel to q (see Fig. 1). The equilibrium
spin texture is then a spin helix, and can be written as
Si = cos(q ·ri)e1 +sin(q ·ri)e2, where the vectors eα and
n̂ define a right-handed orthonormal system [48].

In the following the magnetic texture is assumed to be
commensurate with the electronic lattice, such that the
spin spiral is periodic over a distance La, where L is an
integer and a is the electronic lattice parameter. To de-
scribe fluctuations around the equilibrium order, the spin
operators Ŝi are expressed in terms of a set of bosonic
operators by performing a Holstein-Primakoff expansion
around the local spin axis Si [48]. This results in a diag-
onal magnon Hamiltonian Hm =

∑
np Ωnpα

†
npαnp, where

Ωnp is the energy of a magnon with momentum p in band
n. The momentum runs over the magnetic Brillouin zone
[−π/La, π/La], and the number of magnon bands is L.

There are two main effects of the spin spiral on the
electronic structure: First, the coupling to the equilib-
rium magnetic structure Si induces an effective SOC and
Zeeman splitting of the electronic bands (see Fig. 2a).

Second, the coupling to magnon fluctuations around the
helical configuration generates an effective attractive in-
teraction among the electrons, which ultimately leads to
superconductivity. The effect of the static spin spiral can
be exactly accounted for, by diagonalizing the electronic
sub-system in presence of the spiral Si [48, 49], and re-

sults in the electron Hamiltonian He =
∑

kτ ϵkτd
†
kτdkτ .

Here τ denotes the electronic bands, and the momentum
runs over the electronic Brillouin zone [−π/a, π/a]. The
spiral shifts the minima of the originally spin-degenerate
bands to ±q/2 (Fig. 2a), thereby inducing an effective
Rashba SOC. This shift is independent of the value of
g, and is set for any finite g by the momentum of the
spin spiral. In addition, the coupling opens a gap of size
∆b = 2gS at k = 0 and k = ±π/a, acting like an effective
Zeeman field. Together these effects realize an effective
single-band regime for chemical potentials inside the gap.

The electron-magnon interaction is found by express-
ing the spin-electron coupling (the last term in Eq. 1) in
terms of the magnon and band electron operators. Due
to the non-collinear structure of the spin spiral, the cou-
pling has a non-trivial spin structure (see Fig. 1c), and
in general gives rise to magnon-mediated scattering be-
tween electrons with arbitrary spin projections. An effec-
tive electron-electron interaction is obtained by integrat-
ing out the magnons within a finite temperature func-
tional integral formulation [48]. The effective interaction
Uτ3τ4
τ1τ2 (k, k′) implicitly depends on the magnetic structure

via the spin-electron coupling g, the spiral momentum q,
and the transformation matrices used to diagonalize the
magnon and electron sub-systems. In the static limit
the superconducting gap ∆ττ ′

k is determined via the lin-
earized gap equation

∆τ1τ2
k =

∑
k′τ3τ4

Uτ3τ4
τ1τ2 (k, k′)

(∑
τ

tanh(βξk′τ )

2ξk′τ

)
∆τ3τ4

k′ , (2)

where β = 1/(kBT ) is the inverse temperature, and
ξk = ϵk−µ. The gap equation can be viewed as an eigen-
value problem for the susceptibility matrix χτ3τ4

τ1τ2(k, k′),
implicitly defined by the right hand side of Eq. 2, and
superconductivity is signaled by the largest eigenvalue of
this matrix exceeding unity.

On the mean-field level the electronic Hamiltonian is
of the Bogoliubov-de Gennes (BdG) form, and can be

written as H =
∑

k Φ†
kHkΦk with Hk as a 4 × 4 ma-

trix [48]. The gap ∆ττ ′ can be decomposed into four com-
ponents, given by the singlet gap ∆s = (∆du − ∆ud)/2
and the triplet gaps ∆u = ∆uu, ∆d = ∆dd, and ∆p =
(∆du +∆ud)/2. The subscripts u and d refer to the band
index τ , which can be viewed as an effective spin index,
where u (d) denotes the upper (lower) band or effective
spin up (down). Due to the fermionic nature of the elec-
tronic operators, the singlet and triplet gaps are even and
odd functions of k, respectively.

We begin with analyzing how the symmetry of the
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FIG. 2. Parameter dependence of magnon-induced superconductivity. a, Electronic band structure for a spin-electron
coupling of strength g = 150 meV and a spiral momentum q = π/3a. b, Electronic band structure around k = 0 for a spin-
electron coupling of strength g = 150 meV and spiral momenta q = 0.44π/a (green), q = 0.5π/a (gray) and q = 0.57π/a (blue).
The red dashed line indicates the chemical potential at µ = −1.4 eV. c, Symmetry of the dominant superconducting gap as
a function of spin electron coupling g and spiral momentum q, for a chemical potential µ = −1.4 eV. d, Magnitude of the
superconducting gap as a function of spin electron coupling g and spiral momentum q, for a chemical potential µ = −1.4 eV.
The grey dashed lines indicate the position of the van Hove singularities. In all panels the spin length is S = 1, the electronic
hopping is t = 1 eV, and the exchange interaction is J = 10 meV.

mentum q, the spin-electron coupling g, and the chem-
ical potential µ. For parameters such that the energy
difference ϵu(kFu) − ϵd(kFd) ≫ Ω, with kFτ the Fermi
momentum in band τ , and Ω a typical magnon energy,
Cooper pairs will predominantly form from states within
the same band. In this regime, the gap function becomes
diagonal in the band indexes. At temperatures below 10
K, the pairing interaction is highly restricted to the Fermi
surface, which for a 1-D system consists of the points
±kFτ . Restricting the gap equation to the Fermi sur-
face, and neglecting contributions from inter-band scat-
tering, Eq. 2 reduces to a 2 × 2 matrix problem and can
be solved analytically [? ]. The eigenvalues of the sus-
ceptibility matrix are λs = χ(kF , kF ) + χ(kF ,−kF ) and
λp = χ(kF , kF )−χ(kF ,−kF ), for singlet and triplet pair-
ing, respectively. These solutions show that the sign of
the term χ(kF ,−kF ), accounting for scattering between
the points kF and −kF , determines the symmetry of the
dominant gap. Since only triplet pairing is consistent
with the symmetry of intra-band Cooper pairs, a consis-
tent superconducting solution requires λp > λs. When
ϵu(kFu) − ϵd(kFd) ≲ Ω, inter-band scattering becomes
important, and the dominant superconducting gap is ex-
pected to have s-wave symmetry.

This qualitative analysis is in good agreement with the
numerical solution of Eq. 2, showing that the dominant
superconducting gap has triplet symmetry over a large
fraction of the phase diagram (see Fig. 2b). Only in re-
gions where ϵu(kFu) − ϵd(kFd) ≲ Ω, such as close to the
ferromagnetic limit q = 0, or when both kFτ are close to
the band edges (around kFτ = 0), does the dominant gap
have singlet symmetry. In the strict ferromagnetic limit,
this result can be established analytically [? ], by noting

that ferromagnetic magnons only scatter electrons with
opposite spins. That such a large portion of the phase
diagram is dominated by triplet pairing follows from the
fact that singlet pairing requires inter-band scattering.
For kFd ̸= kFu, such scattering results in Cooper pairs
with a finite center-of-mass momentum kFu − kFd ∼ q,
which strongly suppresses singlet pairing at finite q [36].
With increasing q, intra-band magnon scattering there-
fore quickly becomes the dominant pairing mechanism,
resulting in a gap with triplet symmetry. We note that in
the antiferromagnetic limit q = π, an effective gap opens
between the electronic bands, and only triplet pairing is
possible.

We now analyze how the magnitude of the dominant
superconducting gap depends on the magnetic parame-
ters. In the regime ϵu(kFu) − ϵd(kFd) ≫ Ω, where inter-
band scattering can be neglected, the zero temperature
mean-field gap is given by ∆ = 2Ωe−1/(ρFU) [? ]. Here
ρF is the electronic density of states (DOS) at the Fermi
level, and U = U(k, k) − U(k,−k) the effective pairing
interaction in the triplet sector. Since U ∼ g2/Ω, the su-
perconducting gap is expected to increase exponentially
with the spin-electron coupling. To estimate ∆, we note
that for an approximately linear dispersion, the electronic
DOS tends to the constant ρ0 = 1/(4πt), while close to a
band edge at energy ϵ0 van Hove singularities of the form
ρ(ϵ) = ρ0

√
t/(ϵ− ϵ0) develop. Approximating U with its

value in the ferromagnetic limit, U = 4g2S/Ω, the dimen-
sionless coupling strength is λeff = ρFU ≈ g2S/(πtΩ).
For the typical values S = 1, t = 1 eV and Ω = 10 meV,
a spin-electron coupling of g = 100 meV gives a gap of
∆ ∼ 1 meV, with significant enhancements expected at
the van Hove singularities.

FIG. 2. Parameter dependence of magnon-mediated superconductivity. a, Electronic band structure for a spin-electron coupling
g = 150 meV and a spiral momentum q = π/3a. b, Electronic band structure around k = 0 for a spin-electron coupling
g = 150 meV and spiral momenta q = 0.44π/a (green), q = 0.5π/a (gray) and q = 0.57π/a (blue). The red dashed line
indicates the chemical potential µ = −1.4 eV. c, Symmetry of the dominant superconducting gap as a function of spin-electron
coupling g and spiral momentum q, for a chemical potential µ = −1.4 eV. d, Magnitude of the dominant superconducting gap
as a function of spin-electron coupling g and spiral momentum q, for a chemical potential µ = −1.4 eV. The gray dashed lines
indicate the positions of the van Hove singularities. In all panels the spin length is S = 1, the electronic hopping is t = 1 eV,
and the exchange interaction is J = 10 meV.

dominant superconducting gap depends on the spiral mo-
mentum q, the spin-electron coupling g, and the chemical
potential µ. For parameters such that the energy differ-
ence ϵu(kFu)−ϵd(kFd) ≫ Ω, with kFτ the Fermi momen-
tum in band τ , and Ω a typical magnon energy, Cooper
pairs will predominantly form from states within the
same band. In this regime, the gap function becomes di-
agonal in the band indexes. At temperatures below 10 K,
the pairing interaction is highly restricted to the Fermi
surface, which for a 1-D system consists of the points
±kFτ . Restricting the gap equation to the Fermi sur-
face, and neglecting contributions from inter-band scat-
tering, Eq. 2 reduces to a 2 × 2 matrix problem and can
be solved analytically [48]. The eigenvalues of the sus-
ceptibility matrix are λs = χ(kF , kF ) + χ(kF ,−kF ) and
λp = χ(kF , kF )−χ(kF ,−kF ), for singlet and triplet pair-
ing, respectively. These solutions show that the sign of
the term χ(kF ,−kF ), accounting for scattering between
the points kF and −kF , determines the symmetry of the
dominant gap. Since only triplet pairing is consistent
with the symmetry of intra-band Cooper pairs, a consis-
tent superconducting solution requires λp > λs. When
ϵu(kFu) − ϵd(kFd) ≲ Ω, inter-band scattering becomes
important, and the dominant superconducting gap is ex-
pected to have s-wave symmetry.

This qualitative analysis is in good agreement with the
numerical solution of Eq. 2, showing that the dominant
superconducting gap has triplet symmetry over a large
fraction of the phase diagram (see Fig. 2b). Only in re-
gions where ϵu(kFu) − ϵd(kFd) ≲ Ω, such as close to the
ferromagnetic limit q = 0, or when both kFτ are close to
the band edges (around kFτ = 0), does the dominant gap
have singlet symmetry. In the strict ferromagnetic limit,

this result can be established analytically [48], by noting
that ferromagnetic magnons only scatter electrons with
opposite spins. That such a large portion of the phase
diagram is dominated by triplet pairing follows from the
fact that singlet pairing requires inter-band scattering.
For kFd ̸= kFu, such scattering results in Cooper pairs
with a finite center-of-mass momentum kFu − kFd ∼ q,
which strongly suppresses singlet pairing at finite q [50].
With increasing q, intra-band magnon scattering there-
fore quickly becomes the dominant pairing mechanism,
resulting in a gap with triplet symmetry. We note that in
the antiferromagnetic limit q = π, an effective gap opens
between the electronic bands, and only triplet pairing is
possible.

We now analyze how the magnitude of the dominant
superconducting gap depends on the magnetic parame-
ters. In the regime ϵu(kFu) − ϵd(kFd) ≫ Ω, where inter-
band scattering can be neglected, the zero temperature
mean-field gap is given by ∆ = 2Ωe−1/(ρFU) [48]. Here
ρF is the electronic density of states (DOS) at the Fermi
level, and U = U(k, k) − U(k,−k) the effective pairing
interaction in the triplet sector. Since U ∼ g2/Ω, the su-
perconducting gap is expected to increase exponentially
with the spin-electron coupling. To estimate ∆, we note
that for an approximately linear dispersion, the electronic
DOS tends to the constant ρ0 = 1/(4πt), while close to a
band edge at energy ϵ0 van Hove singularities of the form
ρ(ϵ) = ρ0

√
t/(ϵ− ϵ0) develop. Approximating U with its

value in the ferromagnetic limit, U = 4g2S/Ω, the dimen-
sionless coupling strength is λeff = ρFU ≈ g2S/(πtΩ).
For the typical values S = 1, t = 1 eV and Ω = 10 meV,
a spin-electron coupling of g = 100 meV gives a gap of
∆ ∼ 1 meV, with significant enhancements expected at
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the van Hove singularities.

The magnitude of the superconducting gap is also ob-
tained from a numerical solution of Eq. 2, whose largest
eigenvalue λ is related to the gap by ∆ = 2Ωe−1/λ. The
magnitude of ∆ is shown in Fig. 2d, and is found to gen-
erally increase with g as anticipated above. However,
it also displays a clear non-monotonic behavior with g,
which can be attributed to the variation of the electronic
DOS with the magnetic parameters. In particular, a gap
between the upper and lowers bands opens at k = 0 as a
function of g, whose position varies with the spiral mo-
mentum q (see Fig. 2b). For constant chemical potential,
as assumed in Figs. 2c and 2d, the DOS at the Fermi level
therefore changes both with g and q, and is significantly
enhanced at the van Hove singularities forming at the
band edges. The diagonal lines in Fig. 2d, emanating
from q ≈ π/(2a), trace the van Hove singularities as a
function of g. The overall magnitude of the gap, of order
∆ ∼ 1 meV, is in line with the estimate above.

We now investigate the topological phases of the su-
perconducting wire. In the effective single-band limit,
where the chemical potential lies inside the band gap,
the BdG Hamiltonian maps directly onto the Hamilto-
nian of the Kitaev chain [34]. This system is known to
permit a topologically non-trivial phase with unpaired
Majorana bound states appearing at each end of the
quantum wire. Since the effective single-band limit of
the model discussed here can be connected to the Kitaev
model by continuously deforming the dispersion and gap
function, its topological phase diagram is identical to the
Kitaev model [20, 48]. It can be constructed by counting
the number of intersections N between a line at constant
chemical potential and the dispersion, with the topolog-
ical index given by Z2 = (N/2) mod 2.

To obtain the topological phase diagram of the full two-
band model, we first consider the case where ∆u ̸= 0 and
∆d ̸= 0 but ∆s = ∆p = 0. In this limit, the model cor-
responds to two independent copies of the Kiteav model,
and a Z2 invariant can be defined separately for each
band. Denoting these invariants by Zd and Zu, the Z2

index of the full system is given by ZdZu. Since adding fi-
nite inter-band pairings cannot close the superconducting
gap, the full two-band model is continuously connected
to the ∆s = ∆p = 0 limit, and for ∆u ̸= 0 and ∆d ̸= 0
the phase diagram can be constructed by counting the
number of times N a line at constant chemical poten-
tial crosses the bands ϵkτ (with Z2 = (N/2) mod 2, see
Fig. 3). For g = 0 the system is always in a trivial regime,
while for g ̸= 0 two regions with non-trivial topology
grow out of the upper and lower band edges. The size
of these regions increase linearly with the magnitude of
g. We note the in the antiferromagnetic limit the system
is always in the trivial phase, since there is no effective
single-band regime in this case.

Our results demonstrate that topological superconduc-
tivity is stabilized whenever the quantum wire is in an
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The magnitude of the superconducting gap is also ob-
tained from a numerical solution of Eq. 2, whose largest
eigenvalue λ is related to the gap by ∆ = 2Ωe−1/λ. The
magnitude of ∆ is shown in Fig. 2d, and is found to gen-
erally increase with g as anticipated above. However,
it also displays a clear non-monotonic behavior with g,
which can be attributed to the variation of the electronic
DOS with the magnetic parameters. In particular, a gap
between the upper and lowers bands opens at k = 0 as a
function of g, whose position varies with the spiral mo-
mentum q (see Fig. 2b). For constant chemical potential,
as assumed in Figs. 2c and 2d, the DOS at the Fermi level
therefore changes both with g and q, and is significantly
enhanced at the van Hove singularities forming at the
band edges. The diagonal lines in Fig. 2d, emanating
from q ≈ π/(2a), trace the van Hove singularities as a
function of g. The overall magnitude of the gap, of order
∆ ∼ 1 meV, is in line with the estimate above.

We now investigate the topological phases of the super-
conducting wire. In the effective single-band limit, where
the chemical potential lies inside the band gap, the BdG
Hamiltonian maps directly onto the Hamiltonian of the
Kitaev chain [22]. This system is known to permit a
topologically non-trivial phase with unpaired Majorana
bound states appearing at each end of the quantum wire.
Since the effective single-band limit of the model dis-
cussed here can be connected to the Kitaev model by
continuously deforming the dispersion and gap function,
its topological phase diagram is identical to the Kitaev
model [15? ]. It can be constructed by counting the num-
ber of intersections N between a line at constant chemical
potential and the dispersion, with the topological index
given by Z2 = (N/2) mod 2.

To obtain the topological phase diagram of the full two-
band model, we first consider the case where ∆u ̸= 0 and
∆d ̸= 0 but ∆s = ∆p = 0. In this limit, the model cor-
responds to two independent copies of the Kiteav model,
and a Z2 invariant can be defined separately for each
band. Denoting these invariants by Zd and Zu, the Z2

index of the full system is given by ZdZu. Since adding fi-
nite inter-band pairings cannot close the superconducting
gap, the full two-band model is continuously connected
to the ∆s = ∆p = 0 limit, and for ∆u ̸= 0 and ∆d ̸= 0
the phase diagram can be constructed by counting the
number of times N a line at constant chemical poten-
tial crosses the bands ϵkτ (with Z2 = (N/2) mod 2, see
Fig. 3). For g = 0 the system is always in a trivial regime,
while for g ̸= 0 two regions with non-trivial topology
grow out of the upper and lower band edges. The size
of these regions increase linearly with the magnitude of
g. We note the in the antiferromagnetic limit the system
is always in the trivial phase, since there is no effective
single-band regime in this case.

Our results demonstrate that topological superconduc-
tivity is stabilized whenever the quantum wire is in an
effective single-band regime. Such a regime can be ex-

FIG. 3. Topological phase diagram of magnon-mediated su-
perconductivity as a function of spin-electron coupling g and
chemical potential µ. The magnetic spiral has a wave length
L = 8 and momentum q = π/(4a). The light regions show the
trivial phase, while the dark regions correspond to a topologi-
cal phase. The spin length is S = 1 and the electronic hopping
t = 1 eV.

perimentally realized by placing the chemical potential
inside the k = 0 or k = ±π/a band gap ∆b, induced
by the coupling to the spiral. Magnon scattering fur-
ther opens a superconducting gap ∆, whose magnitude
is shown in Fig. 2c and is approximately determined by
the product g2ρF /Ω. To favor topological superconduc-
tivity, it is desirable to find a system with a large g and
ρF , but a small Ω (however not too small, since Ω sets
the upper limit of ∆).

To realize the model of Eq. 1, several strategies are
possible. The most straightforward is to consider a quan-
tum wire in proximity to a helical magnet, as illustrated
in Fig. 1. In this case, the wire could consist either of
a simple metal, or a lightly doped or gate tuned semi-
conductor (such as InAs [37, 38]), with a single active
and largely uncorrelated band. For the helical magnet,
it is preferable to use a material with a short spiral wave
length (λ ∼ 10 nm), low magnon energy and large spin
length, such as MnGe, MnSi or NiI2 [39, 40]. To max-
imize g, it is desirable to use a wire geometry where as
much as possible of the wire is strongly coupled to the
magnet. Estimating g for a general interface is hard, but
based on earlier work it is expected that g ∼ 10−100 meV
can be achieved [41]. An alternative strategy is to con-
sider a quasi-one-dimensional multi-band system [42, 43],
where the magnetic order and itinerant electrons co-exist
within the same material. In this case the spin-electron
coupling is effectively the Hund’s coupling J , potentially
leading to large effective g on the order of 1 eV. However,
since such multi-band systems are typically strongly cor-
related, Eq. 1 should in this case be supplemented with
additional interaction terms.

We have demonstrated that magnon fluctuations of a
helical magnet can mediate triplet superconductivity in

FIG. 3. Topological phase diagram of magnon-mediated su-
perconductivity as a function of spin-electron coupling g and
chemical potential µ. The magnetic spiral has a wave length
L = 8 and momentum q = π/(4a). The light regions show the
trivial phase, while the dark regions correspond to a topologi-
cal phase. The spin length is S = 1 and the electronic hopping
t = 1 eV.

effective single-band regime. Such a regime can be ex-
perimentally realized by placing the chemical potential
inside the k = 0 or k = ±π/a band gap ∆b, induced
by the coupling to the spiral. Magnon scattering fur-
ther opens a superconducting gap ∆, whose magnitude
is shown in Fig. 2c and is approximately determined by
the product g2ρF /Ω. To favor topological superconduc-
tivity, it is desirable to find a system with a large g and
ρF , but a small Ω (however not too small, since Ω sets
the upper limit of ∆).

To realize the model of Eq. 1, several strategies are
possible. The most straightforward is to consider a quan-
tum wire in proximity to a helical magnet, as illustrated
in Fig. 1. In this case, the wire could consist either of
a simple metal, or a lightly doped or gate tuned semi-
conductor (such as InAs [51, 52]), with a single active
and largely uncorrelated band. For the helical magnet,
it is preferable to use a material with a short spiral wave
length (λ ∼ 10 nm), low magnon energy and large spin
length, such as MnGe, MnSi or NiI2 [53, 54]. To max-
imize g, it is desirable to use a wire geometry where as
much as possible of the wire is strongly coupled to the
magnet. Estimating g for a general interface is hard, but
based on earlier work it is expected that g ∼ 10−100 meV
can be achieved [55–58].

We have demonstrated that magnon fluctuations of a
helical magnet can mediate triplet superconductivity in
a proximate quantum wire. As the induced band gap
and superconducting gap both increase with the spin-
electron coupling g, various material engineering tech-
niques such as wire geometry optimization, microstruc-
turing or cavity-enhanced light-matter couplings can be
employed to maximize its value [51, 59–62]. We ex-
pect that, utilizing such strategies, an effective cou-
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pling exceeding g ≈ 50 meV can be achieved, allowing
our protocol to surpass present state-of-the-art experi-
ments with a topological superconducting gap of the or-
der ∆ ∼ 0.1 meV [47]. The present model is a simplified
description of a real quantum wire, and in reality effects
coming from repulsive electron-electron interactions, dis-
order and a more complex band structure should be in-
cluded [63]. While the former is expected to compete
with the magnon-mediated attraction, the later could re-
sult in a larger DOS at the Fermi level, thereby enhanc-
ing superconductivity. In conclusion, our results identify
quantum wires in proximity to non-collinear magnets as
a promising platform to explore topological superconduc-
tivity in 1-D.
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[43] M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon,
M. Leijnse, K. Flensberg, J. Nyg̊ard, P. Krogstrup, and
C. M. Marcus, Science 354, 1557–1562 (2016).

mailto:florinda.vinas_bostrom@ftf.lth.se
mailto:emil.bostrom@mpsd.mpg.de
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://dx.doi.org/10.1016/s0003-4916(02)00018-0
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1007/bf02727953
http://dx.doi.org/10.1007/bf02727953
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1088/0034-4885/80/1/016502
http://dx.doi.org/10.1088/0034-4885/80/1/016502
http://dx.doi.org/10.1126/science.aaz5601
http://dx.doi.org/10.1126/science.aaz5601
http://dx.doi.org/10.1038/s41567-020-1019-1
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.88.180503
http://dx.doi.org/10.1103/PhysRevB.88.180503
http://dx.doi.org/ 10.1103/PhysRevLett.116.257003
http://dx.doi.org/10.1038/s41467-017-02192-x
http://dx.doi.org/10.1038/s41467-017-02192-x
http://dx.doi.org/10.1126/sciadv.aav6600
http://dx.doi.org/10.1126/sciadv.aav6600
http://dx.doi.org/10.1126/science.aaw8419
http://dx.doi.org/ 10.1038/s41586-020-2989-y
http://dx.doi.org/10.1103/PhysRevB.82.180516
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1038/s41578-018-0003-1
http://dx.doi.org/10.1038/s41578-018-0003-1
http://dx.doi.org/ 10.1103/PhysRevB.93.224505
http://dx.doi.org/ 10.1103/PhysRevB.93.224505
http://dx.doi.org/10.1103/PhysRevB.100.064504
http://dx.doi.org/10.1103/PhysRevB.100.064504
http://dx.doi.org/ 10.1103/PhysRevB.102.180504
http://dx.doi.org/ 10.1103/PhysRevB.102.180504
http://dx.doi.org/10.1103/PhysRevB.104.214501
http://dx.doi.org/10.1103/PhysRevB.104.214501
http://dx.doi.org/10.1103/PhysRevResearch.4.L032025
http://dx.doi.org/10.1103/PhysRevResearch.4.L032025
http://dx.doi.org/10.1103/PhysRevLett.130.156002
http://dx.doi.org/10.1103/PhysRevLett.130.156002
http://arxiv.org/abs/arXiv:2309.07211
http://dx.doi.org/10.1126/science.1259327
http://dx.doi.org/10.1103/PhysRevB.105.165415
http://dx.doi.org/ 10.1038/s41467-023-38369-w
http://dx.doi.org/ 10.1038/s41467-023-38369-w
http://arxiv.org/abs/2308.07961
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1070/1063-7869/44/10s/s29
http://dx.doi.org/ 10.1103/RevModPhys.88.035005
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/ 10.1038/nphys1915
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1103/PhysRevLett.110.126406
http://dx.doi.org/ 10.1038/nature17162
http://dx.doi.org/10.1126/science.aaf3961


6

[44] F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T.
O’Farrell, H. J. Suominen, A. Fornieri, T. Wang, G. C.
Gardner, C. Thomas, A. T. Hatke, P. Krogstrup, M. J.
Manfra, K. Flensberg, and C. M. Marcus, Phys. Rev.
Lett. 119, 136803 (2017).

[45] H. Zhang, D. E. Liu, M. Wimmer, and L. P.
Kouwenhoven, Nature Communications 10 (2019),
10.1038/s41467-019-13133-1.

[46] E. Prada, P. San-Jose, M. W. A. de Moor, A. Geresdi,
E. J. H. Lee, J. Klinovaja, D. Loss, J. Nyg̊ard, R. Aguado,
and L. P. Kouwenhoven, Nature Reviews Physics 2,
575–594 (2020).

[47] M. Aghaee et al. (Microsoft Quantum), Phys. Rev. B
107, 245423 (2023).

[48] “See supplemental material at [url will be inserted by
publisher] for additional details on the diagonalization
of the magnon and electron sub-systems, the derivation
of the electron-magnon interaction, the derivation of the
effective electron-electron interaction, the derivation of
the gap equation, and an extended discussion of the Z2

topological invariant of the superconducting system.”.
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