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Magnon-mediated topological superconductivity in a quantum wire
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Many emergent phases of matter stem from the intertwined dynamics of quasiparticles. Here we show that
a topological superconducting phase emerges as the result of interactions between electrons and magnons in
a quantum wire and a helical magnet. The magnon-mediated interaction favors triplet superconductivity over
a large magnetic phase space region, and stabilizes topological superconductivity over an extended region of
chemical potentials. The superconducting gap depends exponentially on the spin-electron coupling, allowing it
to be enhanced through material engineering techniques.
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The intertwined dynamics of collective excitations under-
lies many diverse phenomena observed in condensed matter
systems. A prominent example where such interactions play
a key role is in the effective phonon-mediated attraction
between electrons, responsible for the superconducting in-
stability of simple metals at low temperatures [1]. Other
emergent phases driven by quasiparticle interactions include
the spontaneous electric polarization of ferroelectric and mul-
tiferroic materials in response to lattice distortions [2,3], the
binding between electrons and holes and their possible sub-
sequent condensation into an excitonic insulator [4,5], and
the stabilization of fractional quantum Hall states through
electron-electron interactions [6].

Many emergent phases themselves give rise to quasiparti-
cles with potentially unconventional properties. In particular,
the excitations of topologically ordered systems [7–9] such as
fractional quantum Hall systems, quantum spin liquids, and
topological superconductors [10–14], termed anyons [15,16],
have garnered much interest due to their promise in realizing
fault-tolerant quantum computing. In particular, the subclass
known as non-Abelian anyons allow for information to be
nonlocally encoded and processed in the braiding patterns of
the anyon world lines [8,9]. In topological superconductors,
non-Abelian anyons may appear in vortex cores of chiral
two-dimensional superconductors [17–23], or at the ends of
one-dimensional (1D) quantum wires [24–39]. However, to
stabilize a topological superconducting phase, the pairing
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needs to be mediated by quasiparticles carrying an intrinsic
spin structure that favors spin triplet over spin singlet pairing.

As a prominent example, magnon-mediated topological
superconductivity has recently been proposed for two-
dimensional systems with noncollinear magnetic order, such
as skyrmion crystals and helical magnets in proximity to
a two-dimensional normal metal surface [40–42]. However,
since the majority of experimental studies on topological
superconductivity is concerned with one-dimensional struc-
tures, identifying criteria for realizing magnon-mediated
topological superconductivity in one dimension is of key im-
portance. Indeed, both the superconducting and topological
phenomenology is qualitatively different in one and two di-
mensions, stemming in large part from the different symmetry
requirements necessary to realize a nontrivial topology in
different dimensions [43–45]. In particular, to stabilize topo-
logical superconductivity in 2D it is necessary to obtain a
time-reversal symmetric and fully gapped superconducting
state, while in 1D systems a topological superconducting
phase is realized by breaking time-reversal symmetry (thereby
realizing an effective single-band regime), while simulta-
neously stabilizing triplet pairing. As will be demonstrated
below, both these conditions are satisfied by the dynamical
coupling between itinerant electrons and the magnons of a
helical magnet, away from the collinear ferromagnetic and
antiferromagnetic limits.

Specifically, we here investigate superconductivity result-
ing from the coupling between a quantum wire and a helical
magnet (see Fig. 1). The magnons of the helical magnet
mediate an effective attraction between electrons of arbitrary
spin projection, thereby stabilizing unconventional triplet su-
perconductivity over a large region of phase space. The
noncollinear magnetic order induces an effective spin-orbit
coupling (SOC) and Zeeman field among the electrons, that
allows to realize an effective single-band regime over a finite
range of chemical potentials. Within the single-band regime,
the system enters a topological phase, with unpaired Majorana
bound states at each end of the wire. Crucially, both the size
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FIG. 1. Principles of magnon-mediated superconductivity.
(a) Experimental setup with a quantum wire in proximity to a
helical magnet. (b) The helical magnetic order (orange arrows)
induces an effective spin-orbit interaction and Zeeman splitting
of the electronic bands via the spin-electron coupling g. Magnon
fluctuations around the equilibrium magnetic order provide an
effective attractive interaction among the electrons (blue arrows).
(c) Due to the noncollinear magnetic structure, magnon fluctuations
mediate scattering between electrons with arbitrary spin projections
σi.

of the effective single-band regime and the superconducting
gap are increasing functions of the spin-electron coupling g.
Our proposal thereby identifies quantum wires in proximity to
helical magnets as a promising platform to realize topological
superconductivity, without the need to proximitize the wire to
a conventional superconductor. It also showcases the power of
utilizing quasiparticle interactions to realize unconventional
forms of matter.

To investigate magnon-mediated superconductivity in a
quantum wire, we consider an interacting system of spins and
electrons described by the lattice Hamiltonian

H = −t
∑
〈i j〉σ

ĉ†
iσ ĉ jσ − J

∑
〈i j〉

Ŝi · Ŝ j

−
∑
〈i j〉

Di j · (Ŝi × Ŝ j ) − g
∑

i

ŝi · Ŝi. (1)

Here ĉiσ destroys an electron at site i and of spin projection σ ,
and Ŝi is the spin operator at site i for a spin of magnitude
S. The parameters t , J , and D respectively determine the
nearest-neighbor electronic hopping amplitude, the exchange
interaction, and the antisymmetric Dzyaloshinskii-Moriya in-
teraction (DMI). The spins and electrons interact via a local
spin-electron coupling of strength g, and the electronic spin
operator is defined by ŝi = ∑

σσ ′ ĉ†
iσ τσσ ′ ĉiσ ′ , with τ the Pauli

matrix vector.
The competition between exchange and DMI stabilizes a

helical magnetic order, characterized by a propagation vector
q and a vector n̂ defining the plane of polarization. Specif-
ically, the magnitude of the spiral momentum is given by
tan q = D/J , while the directions of the momentum and polar-
ization vectors are determined by the normalized DMI vector
D̂. Here we consider a DMI such that the spiral momentum q
lies along the wire axis ẑ, and with n̂ parallel to q (see Fig. 1).
The equilibrium spin texture is then a spin helix, and can be
written as Si = cos(q · ri )e1 + sin(q · ri )e2, where the vectors

eα and n̂ define a right-handed orthonormal system (see the
Supplemental Material, SM [46]).

In the following the magnetic texture is assumed to be
commensurate with the electronic lattice, such that the spin
spiral is periodic over a distance La, where L is an integer
and a is the electronic lattice parameter. To describe fluc-
tuations around the equilibrium order, the spin operators Ŝi

are expressed in terms of a set of bosonic operators by per-
forming a Holstein-Primakoff expansion around the local spin
axis Si (see the SM [46]). This results in a diagonal magnon
Hamiltonian Hm = ∑

np �npα
†
npαnp, where �np is the energy

of a magnon with momentum p in band n. The momentum
runs over the magnetic Brillouin zone [−π/La, π/La], and
the number of magnon bands is L.

There are two main effects of the spin spiral on the
electronic structure: First, the coupling to the equilibrium
magnetic structure Si induces an effective SOC and Zeeman
splitting of the electronic bands [see Fig. 2(a)]. Second, the
coupling to magnon fluctuations around the helical configu-
ration generates an effective attractive interaction among the
electrons, which ultimately leads to superconductivity. The
effect of the static spin spiral can be exactly accounted for,
by diagonalizing the electronic subsystem in presence of the
spiral Si (see the SM [46] and Ref. [47]), and results in the
electron Hamiltonian He = ∑

kτ εkτ d†
kτ

dkτ . Here τ denotes the
electronic bands, and the momentum runs over the electronic
Brillouin zone [−π/a, π/a]. The spiral shifts the minima
of the originally spin-degenerate bands to ±q/2 [Fig. 2(a)],
thereby inducing an effective Rashba SOC. This shift is in-
dependent of the value of g, and is set for any finite g by
the momentum of the spin spiral. In addition, the coupling
opens a gap of size �b = 2gS at k = 0 and k = ±π/a, acting
like an effective Zeeman field. Together these effects realize
an effective single-band regime for chemical potentials inside
the gap. The static effects of our model have been considered
within the context of so-called Yu-Shiba-Rusinov chains [48],
which give rise to a similar induced spin-orbit coupling and
Zeeman splitting of the electronic bands. However, these
earlier treatments neglect the dynamical effects of the spin-
electron interaction, which here gives rise to an intrinsic triplet
superconductivity.

The electron-magnon interaction is found by expressing
the spin-electron coupling [the last term in Eq. (1)] in terms
of the magnon and band electron operators. Due to the non-
collinear structure of the spin spiral, the coupling has a
nontrivial spin structure [see Fig. 1(c)], and in general gives
rise to magnon-mediated scattering between electrons with
arbitrary spin projections. An effective electron-electron in-
teraction is obtained by integrating out the magnons within
a finite-temperature functional integral formulation (see the
SM [46]). The effective interaction U τ3τ4

τ1τ2
(k, k′) implicitly de-

pends on the magnetic structure via the spin-electron coupling
g, the spiral momentum q, and the transformation matrices
used to diagonalize the magnon and electron subsystems. In
the static limit the superconducting gap �ττ ′

k is determined
via the linearized gap equation

�
τ1τ2
k =

∑
k′τ3τ4

U τ3τ4
τ1τ2

(k, k′)

(∑
τ

tanh(βξk′τ )

2ξk′τ

)
�

τ3τ4
k′ , (2)
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FIG. 2. Parameter dependence of magnon-mediated superconductivity. (a) Electronic band structure for a spin-electron coupling g =
150 meV and a spiral momentum q = π/3a. (b) Electronic band structure around k = 0 for a spin-electron coupling g = 150 meV and
spiral momenta q = 0.44π/a (green), q = 0.5π/a (gray), and q = 0.57π/a (blue). The red-dashed line indicates the chemical potential
μ = −1.4 eV. (c) Symmetry of the dominant superconducting gap as a function of spin-electron coupling g and spiral momentum q, for a
chemical potential μ = −1.4 eV. (d) Magnitude of the dominant superconducting gap as a function of spin-electron coupling g and spiral
momentum q, for a chemical potential μ = −1.4 eV. The gray-dashed lines indicate the positions of the van Hove singularities. In all panels
the spin length is S = 1, the electronic hopping is t = 1 eV, and the exchange interaction is J = 10 meV.

where β = 1/(kBT ) is the inverse temperature, and ξk = εk −
μ. The gap equation can be viewed as an eigenvalue problem
for the susceptibility matrix χτ3τ4

τ1τ2
(k, k′), implicitly defined

by the right-hand side of Eq. (2), and superconductivity is
signaled by the largest eigenvalue of this matrix exceeding
unity [49].

On the mean-field level the electronic Hamiltonian is of
the Bogoliubov-de Gennes (BdG) form, and can be written
as H = ∑

k �
†
kHk�k with Hk as a 4 × 4 matrix (see the

SM [46]). The gap �ττ ′ can be decomposed into four compo-
nents, given by the singlet gap �s = (�du − �ud )/2 and the
triplet gaps �u = �uu, �d = �dd , and �p = (�du + �ud )/2.
The subscripts u and d refer to the band index τ , which can
be viewed as an effective spin index, where u (d) denotes the
upper (lower) band or effective spin up (down). Due to the
fermionic nature of the electronic operators, the singlet and
triplet gaps are even and odd functions of k, respectively.

We begin with analyzing how the symmetry of the domi-
nant superconducting gap depends on the spiral momentum
q, the spin-electron coupling g, and the chemical potential
μ. For parameters such that the energy difference εu(kFu) −
εd (kFd ) � �, with kFτ the Fermi momentum in band τ , and
� a typical magnon energy, Cooper pairs will predominantly
form from states within the same band. In this regime, the gap
function becomes diagonal in the band indexes. At tempera-
tures below 10 K, the pairing interaction is highly restricted
to the Fermi surface, which for a 1D system consists of
the points ±kFτ . Restricting the gap equation to the Fermi
surface, and neglecting contributions from interband scatter-
ing, Eq. (2) reduces to a 2 × 2 matrix problem and can be
solved analytically (see the SM [46]). The eigenvalues of the
susceptibility matrix are λs = χ (kF , kF ) + χ (kF ,−kF ) and
λp = χ (kF , kF ) − χ (kF ,−kF ), for singlet and triplet pairing,
respectively. These solutions show that the sign of the term
χ (kF ,−kF ), accounting for scattering between the points kF

and −kF , determines the symmetry of the dominant gap.
Since only triplet pairing is consistent with the symmetry of
intraband Cooper pairs, a consistent superconducting solution

requires λp > λs. When εu(kFu) − εd (kFd ) � �, interband
scattering becomes important, and the dominant supercon-
ducting gap is expected to have s-wave symmetry.

This qualitative analysis is in good agreement with the
numerical solution of Eq. (2), showing that the dominant
superconducting gap has triplet symmetry over a large frac-
tion of the phase diagram [see Fig. 2(c)]. Only in regions
where εu(kFu) − εd (kFd ) � �, such as close to the ferromag-
netic limit q = 0, or when both kFτ are close to the band
edges (around kFτ = 0), does the dominant gap have singlet
symmetry. In the strict ferromagnetic limit, this result can
be established analytically (see the SM [46]), by noting that
ferromagnetic magnons only scatter electrons with opposite
spins. That such a large portion of the phase diagram is
dominated by triplet pairing follows from the fact that sin-
glet pairing requires interband scattering. For kFd �= kFu, such
scattering results in Cooper pairs with a finite center-of-mass
momentum kFu − kFd ∼ q, which strongly suppresses singlet
pairing at finite q [50]. With increasing q, intraband magnon
scattering therefore quickly becomes the dominant pairing
mechanism, resulting in a gap with triplet symmetry. We note
that in the antiferromagnetic limit q = π , an effective gap
opens between the electronic bands, and only triplet pairing
is possible.

We now analyze how the magnitude of the dominant su-
perconducting gap depends on the magnetic parameters. In
the regime εu(kFu) − εd (kFd ) � �, where interband scatter-
ing can be neglected, the zero temperature mean-field gap
is given by � = 2�e−1/(ρFU ) (see the SM [46]). Here ρF is
the electronic density of states (DOS) at the Fermi level, and
U = U (k, k) − U (k,−k) the effective pairing interaction in
the triplet sector. Since U ∼ g2/�, the superconducting gap is
expected to increase exponentially with the spin-electron cou-
pling. To estimate �, we note that for an approximately linear
dispersion, the electronic DOS tends to the constant ρ0 =
1/(4πt ), while close to a band edge at energy ε0 van Hove
singularities of the form ρ(ε) = ρ0

√
t/(ε − ε0) develop. Ap-

proximating U with its value in the ferromagnetic limit,
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U = 4g2S/�, the dimensionless coupling strength is λeff =
ρFU ≈ g2S/(πt�). For the typical values S = 1, t = 1 eV
and � = 10 meV, a spin-electron coupling of g = 100 meV
gives a gap of � ∼ 1 meV, with significant enhancements
expected at the van Hove singularities.

The magnitude of the superconducting gap is also obtained
from a numerical solution of Eq. (2), whose largest eigenvalue
λ is related to the gap by � = 2�e−1/λ. The magnitude of
� is shown in Fig. 2(d), and is found to generally increase
with g as anticipated above. However, it also displays a clear
nonmonotonic behavior with g, which can be attributed to the
variation of the electronic DOS with the magnetic parameters.
In particular, a gap between the upper and lower bands opens
at k = 0 as a function of g, whose position varies with the
spiral momentum q [see Fig. 2(b)]. For constant chemical
potential, as assumed in Figs. 2(c) and 2(d), the DOS at the
Fermi level therefore changes both with g and q, and is signif-
icantly enhanced at the van Hove singularities forming at the
band edges. The diagonal lines in Fig. 2(d), emanating from
q ≈ π/(2a), trace the van Hove singularities as a function of
g. The overall magnitude of the gap, of order � ∼ 1 meV, is
in line with the estimate above.

We now investigate the topological phases of the super-
conducting wire. In the effective single-band limit, where
the chemical potential lies inside the band gap, the BdG
Hamiltonian maps directly onto the Hamiltonian of the Kitaev
chain [44]. This system is known to permit a topologically
nontrivial phase with unpaired Majorana bound states ap-
pearing at each end of the quantum wire. Since the effective
single-band limit of the model discussed here can be con-
nected to the Kitaev model by continuously deforming the
dispersion and gap function, its topological phase diagram is
identical to the Kitaev model [26] (also see the SM [46]). It
can be constructed by counting the number of intersections N
between a line at constant chemical potential and the disper-
sion, with the topological index given by Z2 = (N/2) mod 2.

To obtain the topological phase diagram of the full two-
band model, we first consider the case where �u �= 0 and
�d �= 0 but �s = �p = 0. In this limit, the model corre-
sponds to two independent copies of the Kitaev model, and a
Z2 invariant can be defined separately for each band. Denoting
these invariants by Zd and Zu, the Z2 index of the full system
is given by Zd Zu. Since adding finite interband pairings cannot
close the superconducting gap, the full two-band model is
continuously connected to the �s = �p = 0 limit, and for
�u �= 0 and �d �= 0 the phase diagram can be constructed by
counting the number of times N a line at constant chemical
potential crosses the bands εkτ [with Z2 = (N/2) mod 2, see
Fig. 3]. For g = 0 the system is always in a trivial regime,
while for g �= 0 two regions with nontrivial topology grow out
of the upper and lower band edges. The size of these regions
increase linearly with the magnitude of g. We note that in
the antiferromagnetic limit the system is always in the trivial
phase, since there is no effective single-band regime in this
case.

Our results demonstrate that topological superconductivity
is stabilized whenever the quantum wire is in an effective
single-band regime. Such a regime can be experimentally
realized by placing the chemical potential inside the k = 0 or

FIG. 3. Topological phase diagram of magnon-mediated super-
conductivity as a function of spin-electron coupling g and chemical
potential μ. The magnetic spiral has a wave length L = 8 and mo-
mentum q = π/(4a). The light regions show the trivial phase, while
the dark regions correspond to a topological phase. The spin length
is S = 1 and the electronic hopping t = 1 eV.

k = ±π/a band gap �b, induced by the coupling to the spiral.
Magnon scattering further opens a superconducting gap �,
whose magnitude is shown in Fig. 2(c) and is approximately
determined by the product g2ρF /�. To favor topological su-
perconductivity, it is desirable to find a system with a large g
and ρF , but a small � (however, not too small, since � sets
the upper limit of �).

To realize the model of Eq. (1), several strategies are
possible. The most straightforward is to consider a quan-
tum wire in proximity to a helical magnet, as illustrated in
Fig. 1. In this case, the wire could consist either of a simple
metal, or a lightly doped or gate tuned semiconductor (such
as InAs [51,52]), with a single active and largely uncorre-
lated band. For the helical magnet, it is preferable to use a
material with a short spiral wave length (λ ∼ 10 nm), low
magnon energy, and large spin length, such as MnGe, MnSi or
NiI2 [53,54]. To maximize g, it is desirable to use a wire geom-
etry where as much as possible of the wire is strongly coupled
to the magnet. Estimating g for a general interface is hard, but
based on earlier studies it is expected that g ∼ 10 − 100 meV
can be achieved [55–58]. An alternative strategy is to consider
a quasi-one-dimensional multiband system [59,60], where the
magnetic order and itinerant electrons coexist within the same
material. In this case the spin-electron coupling is effectively
the Hund’s coupling J , potentially leading to large effective g
on the order of 1 eV. However, since such multiband systems
are typically strongly correlated, Eq. (1) should in this case be
supplemented with additional interaction terms.

We have demonstrated that magnon fluctuations of a
helical magnet can mediate triplet superconductivity in a
proximate quantum wire. As the induced band gap and super-
conducting gap both increase with the spin-electron coupling
g, various material engineering techniques such as wire ge-
ometry optimization, microstructuring, or cavity-enhanced
light-matter couplings can be employed to maximize its
value [51,61–64]. We expect that, utilizing such strate-
gies, an effective coupling exceeding g ≈ 50 meV can be
achieved, allowing our protocol to surpass present state-
of-the-art experiments with a topological superconducting
gap of the order � ∼ 0.1 meV [39]. Compared to the
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conventional scheme of generating 1D topological super-
conductivity combining proximity-induced superconductivity
with large Rashba spin-orbit coupling and external magnetic
fields, the main advantage of our proposal is the absence of
fine tuning conditions.

The present model is a simplified description of a real
quantum wire, and in reality effects coming from repulsive
electron-electron interactions, disorder, and a more complex
band structure should be included [65]. While the former
is expected to compete with the magnon-mediated attrac-
tion, the later could result in a larger DOS at the Fermi
level, thereby enhancing superconductivity. Another route to

connect the present model with more realistic experimental
setups is through the study of the corresponding system with
open boundary conditions. In conclusion, our results identify
quantum wires in proximity to noncollinear magnets as a
promising platform to explore topological superconductivity
in 1D.
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