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Abstract. While the growth rate of atmospheric CO2 mole fractions can be measured with high accuracy, there
are still large uncertainties in its attribution to specific regions and diverse anthropogenic and natural sources and
sinks. A major source of uncertainty is the net flux of carbon dioxide from the biosphere to the atmosphere, the
net ecosystem exchange (NEE). There are two major approaches to quantifying NEE: top-down approaches that
typically use atmospheric inversions and bottom-up estimates that rely on process-based or data-driven models
or inventories. Both top-down and bottom-up approaches have known strengths and limitations. Atmospheric
inversions (e.g., those used in global carbon budgets) produce estimates of NEE that are consistent with the
atmospheric CO2 growth rate at regional and global scales but are highly uncertain at smaller scales. Bottom-
up data-driven models based on eddy-covariance measurements (e.g., FLUXCOM) match local observations of
NEE and their spatial variability but have difficulty in accurately upscaling to a reliable global estimate.

In this study, we propose combining the two approaches to produce global NEE estimates, with the goal of
capitalizing on each approach’s strengths and mitigating their limitations. We do this by constraining the data-
driven FLUXCOM model with regional estimates of NEE derived from an ensemble of atmospheric inversions
from the Global Carbon Budget 2021. To do this, we need to overcome a series of scientific and technical chal-
lenges when combining information about diverse physical variables, which are influenced by different processes
at different spatial and temporal scales. We design a modeling structure that optimizes NEE by considering both
the model’s performance at the in situ level, based on eddy-covariance measurements, and at the level of large
regions, based on atmospheric inversion estimates of NEE and their uncertainty. This resulting “dual-constraint”
data-driven flux model improves on information based on single constraints (either top down or bottom up),
producing robust locally resolved and globally consistent NEE spatio-temporal fields.

Compared to reference estimates of the global land sink from the literature, e.g., Global Carbon Budgets, our
double-constraint inferred global NEE shows a considerably smaller bias in global and tropical NEE compared
to the underlying bottom-up data-driven model estimates (i.e., single constraint). The mean seasonality of our
double-constraint inferred global NEE is also more consistent with the Global Carbon Budget and atmospheric
inversions. At the same time, our model allows for more robustly spatially resolved NEE. The improved perfor-
mance of the double-constraint model across spatial and temporal scales demonstrates the potential for adding a
top-down constraint to a bottom-up data-driven flux model.
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1 Introduction

The annual growth of carbon dioxide in the atmosphere has
been directly measured with high accuracy since 1957 (Keel-
ing et al., 1989). However, attributing changes in atmospheric
CO2 to regional fluxes and to the respective anthropogenic
and natural sources and sinks is prone to uncertainties. One
of the main sources of uncertainty is the land biosphere,
which has large uncertainties both in the human-related and
the natural flux components (Friedlingstein et al., 2022). Im-
proved understanding of processes driving variations in the
global carbon cycle requires, among other things, improved
observational constraints on the net flux of carbon dioxide
from the land surface to the atmosphere or net ecosystem ex-
change (NEE) across local, regional, and global scales (Bas-
tos et al., 2022; Ciais et al., 2022; Gaubert et al., 2019; Saeki
and Patra, 2017; Thompson et al., 2016).

Two different approaches to constrain sources and sinks of
carbon dioxide can be distinguished: top-down and bottom-
up estimates (Crisp et al., 2022; Friedlingstein et al., 2022).
Top-down approaches typically correspond to atmospheric
inversions, which infer the surface fluxes over land and ocean
based on observations of atmospheric CO2 mole fractions
based on a Bayesian inversion framework using prior esti-
mates of the flux of carbon dioxide and an atmospheric trans-
port model (Chevallier et al., 2005; Peylin et al., 2013; Crisp
et al., 2022; Ciais et al., 2022). Bottom-up approaches typi-
cally rely on in situ observations and/or remote-sensing data
combined with statistical upscaling techniques or process-
based terrestrial biosphere and land surface models to infer
local to regional or global NEE (Jung et al., 2020; Kondo
et al., 2020)

The strengths and limitations of each approach are largely
inherited from the “point of view” of the system. Top-
down approaches, using regional and global observations
and mesoscale to global-scale atmospheric transport, view
the integral of fluxes from large areas. They produce reli-
able estimates of the magnitude and variability of latitudinal
distribution of NEE, finding solutions that are in line with
the global atmospheric growth rate (Gaubert et al., 2019;
Friedlingstein et al., 2022). However, this aggregated view
can compromise the local estimates of NEE, as the system
adjusts sub-regional NEE to match the overall target, with es-
timates becoming increasingly uncertain for smaller regions
(Ciais et al., 2010). Inverse models are rarely evaluated at the
scale of individual ecosystem sites as the mismatch in spatial
scales represented is simply too large.

Bottom-up approaches include a diversity of measure-
ments, from small-scale direct observations at the leaf, plant,
plot, and ecosystem scale to remote-sensing observations of
relevant proxies (e.g., biomass, greenness) (Friedlingstein
et al., 2022; Jung et al., 2020; Kondo et al., 2020). These
approaches are sensitive to small-scale heterogeneity in the
land surface and can provide information on the local dis-
tribution and magnitude of NEE. The FLUXCOM project

(Jung et al., 2020) produced a comprehensive comparison
of data-driven bottom-up approaches for upscaling terrestrial
biosphere carbon dioxide and water fluxes based on eddy-
covariance measurements. The FLUXCOM ensemble pro-
duced consistent spatial patterns of global NEE compared
with process-based models (Jung et al., 2020), indicating that
the model ensemble captured the relevant ecosystem-level
processes. However, data-driven ecosystem-level flux mod-
els, including FLUXCOM, have a strong bias for NEE in
the tropics compared to top-down estimates (Kondo et al.,
2015; Jung et al., 2020), given that they depend on unevenly
distributed eddy-covariance observations, which are particu-
larly sparse in the tropics (Tramontana et al., 2016; Chu et al.,
2017). Furthermore, micrometeorological conditions under
the canopy in tropical forests can lead to data collection
problems at tropical towers due to low nighttime turbulence
(Hayek et al., 2018; Fu et al., 2018; Jung et al., 2020) creat-
ing an incorrect learned relationship between driver variables
and NEE. These two limitations result in global estimates
of NEE that are far from other best estimates of NEE (Jung
et al., 2020).

Previous studies have suggested that observations of at-
mospheric CO2 could provide an additional constraint to
bottom-up data-driven flux models (Jung et al., 2020; Anav
et al., 2015). However, given the mismatch in spatial scales,
processes, and uncertainties between the two approaches
(Ciais et al., 2022), even reconciling such estimates consti-
tutes a challenge (Deng et al., 2022; Friedlingstein et al.,
2022; Crisp et al., 2022; Ciais et al., 2022; Bastos et al.,
2022). The two approaches also produce a different view of
the flux, sensitive to different scales and processes of the land
surface, such as fire and inland waters (Ciais et al., 2022).
Thus, it is not trivial to constrain a bottom-up data-driven flux
model with a top-down view of atmospheric CO2. Here, we
aim to test the hypothesis, proposed in these previous studies,
that a bottom-up data-driven flux model trained with a com-
plementary constraint based on top-down atmospheric inver-
sions can improve the estimates of regional and global land
surface CO2 fluxes. To do this, we first create a data-driven
flux model analogue to a FLUXCOM member (Jung et al.,
2020) trained on the observed NEE from eddy-covariance
sites. Then, in parallel, we test the effect of adding an ad-
ditional top-down constraint to the model’s objective func-
tion used in NEE optimization. This top-down constraint is
based on the regional integrals of NEE from an ensemble
of atmospheric inversions. The addition of a top-down con-
straint to the bottom-up model requires solving a number of
technical challenges to realistically link the two very differ-
ent types of reference datasets in the objective function used
to optimize NEE. We then evaluate the ability of the double-
constrained model to estimate global and regional NEE, its
spatial variability, and its temporal variability from seasonal
to inter-annual timescales.
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2 Data

2.1 Net ecosystem exchange

The carbon fluxes included in estimates from top-down and
bottom-up approaches are not exactly the same, as described
in detail in Ciais et al. (2022). The primary observational
constraint of top-down methods is atmospheric CO2 obser-
vations, which are sensitive to nearly all carbon exchanges
between the atmosphere and land ecosystems, as well as
fluxes from inland water systems (lakes, rivers). In contrast,
eddy-covariance flux measurements reflect carbon exchange
across a smaller footprint of typically a few hundred meters,
and their location is often selected to explicitly exclude the
influence of fires and inland water systems. A meaningful
comparison between fluxes derived from each thus requires
adjusting for both fires and inland water fluxes, as also dis-
cussed in Friedlingstein et al. (2022), Ciais et al. (2022), and
Deng et al. (2022). In this study, we account for these inher-
ent differences as described in Sect. 2.3. From hereon, we
refer to “NEE” as land carbon exchanges excluding inland
water systems and fire fluxes.

2.2 Eddy-covariance site-level data

This study uses the same in situ data as used in the FLUX-
COM system in Jung et al. (2020) and Tramontana et al.
(2016) (see the supplement from Tramontana et al., 2016
for a full list of included sites). The data-driven flux mod-
els are trained using meteorological observations and NEE
data collected by globally distributed eddy-covariance tow-
ers in the La Thuile synthesis dataset of the and Car-
boAfrica network (Valentini et al., 2014) FLUXNET net-
work (https://fluxnet.fluxdata.org/data/la-thuile-dataset/, last
access: 15 May 2022). Following Tramontana et al. (2016),
driver variables are created using a set of remotely sensed
and meteorological data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) data (http://daac.ornl.
gov/MODIS/, last access: 15 May 2022) and the Euro-
pean Center for Medium-Range Weather Forecasting ERA5
atmospheric reanalysis dataset (https://www.ecmwf.int/en/
forecasts/dataset/ecmwf-reanalysis-v5, last access: 15 May
2022) (Table A2). At tower locations, the meteorological
data are derived from the FLUXNET towers using ERA5
data for gap-filling following Tramontana et al. (2016), while
the global dataset uses only ERA5 data. See Tramontana
et al. (2016) for a full discussion of the handling of mete-
orological data. Furthermore, the FLUXCOM-RS+METEO
V1 NEE ensemble data using ERA5 meteorological forcing
from Jung et al. (2020) were used to generate the regional
sparse linear models described below.

2.3 Atmospheric inversions

Atmospheric inversions use observed CO2 mole fraction
from in situ measurement stations and flask network, or

satellite retrievals of total column CO2 (XCO2), with esti-
mates of the non-biogenic fluxes to infer the exchange of
carbon between the land, oceans, and atmosphere. The land–
atmosphere fluxes from atmosphere inversions correspond
better to net biome productivity, or the total regional gain
or loss of carbon from all processes, i.e., including the sig-
nal from fires and other disturbances, land use change and
management, and river evasion (Ciais et al., 2022).

For the top-down constraint (referred to as “atmospheric”),
we use the estimates of the land–atmosphere exchange from
five models from the ensemble of atmospheric inversions
from the Global Climate Budget (Friedlingstein et al., 2022,
GCB2022) as described in Table 1. See Friedlingstein et al.
(2022) for a full discussion of inversion systems. Only at-
mospheric inversions based on surface observations are used
since they cover the study period used here, i.e., 2001–2017
(Table 1). All inversion results were provided on a common
1°× 1° lat–long grid and monthly temporal resolution.

The inversion estimates as provided by Friedlingstein et al.
(2022) have been adjusted to rectify small differences in pre-
scribed fossil fuel emissions, cement production, carbonation
fluxes, and lateral riverine CO2 transport. We further sub-
tracted fire emissions for each individual inversions at grid
cell level. For the fire emission adjustment, we used the grid-
ded fire fluxes from CAMS Global Fire Assimilation Sys-
tem (GFAS) (Di Giuseppe et al., 2018) without additional
adjustment, which is consistent with the CarbonTracker Eu-
rope treatment of fire. The resulting fluxes thus represent
land ecosystem carbon exchange excluding inland waters and
fires, comparable with NEE estimates based on upscale of
eddy-covariance measurements.

While pixel-level NEE estimated by atmospheric inver-
sions are known to be under-constrained (Ciais et al., 2010;
Kaminski and Heimann, 2001) and are unlikely to provide
robust constraints of NEE to train our model, atmospheric
inversions produce reliable estimates of the magnitude and
variability of latitudinal distribution of NEE, finding solu-
tions that are in line with the global atmospheric growth rate
(Gaubert et al., 2019). Therefore, we aggregate the NEE from
the inversions by a set of 18 very large regions consistent
with the regions in the Regional Carbon Cycle Assessment
and Processes-2 (RECCAP2) project (Tian et al., 2018). This
aggregation leverages the growing consensus about the mag-
nitude of global NEE from atmospheric inversions (Gaubert
et al., 2019) allowing for a “global” constraint from a set of
smaller regional constraints which cover the land surface.

Note that the ensemble of inversions used here is not the
source of the land sink estimate of the GCB2022, which is
calculated as the residual land sink derived from other ma-
jor independent terms in the global carbon budget (emissions
from fossil fuels and industry (EFF)+ emissions from land
use change (ELUC)− the ocean sink (Socean)− atmospheric
growth rate (GATM)), and used here as reference for the
global evaluation of our NEE estimates.
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Table 1. Atmospheric inversions from the Global Climate Project 2022 (Friedlingstein et al., 2022), respective period covered, and original
references.

Inversion Version Date range Reference

CAMS v21r1 1979–2021 Chevallier et al. (2005)
CarbonTracker Europe (CTE) v21r1 2001–2021 van der Laan-Luijkx et al. (2017)
Jena Carboscope (sEXTocNEET) v2022 1957–2021 Rödenbeck et al. (2003, 2018)
UoE in situ v6.1b 2001–2021 Feng et al. (2016), Palmer et al. (2019)
NISMON-CO2 v2022.1 1990–2021 Niwa et al. (2022)

3 Methods

This study is based on two models, illustrated in Fig. 1:
a bottom-up data-driven model that upscales NEE from
eddy-covariance measurements using a neural network with
remote-sensing and meteorological predictors (hereafter re-
ferred to as the EC model) and a single objective function
(training term 1 in Fig. 1), similar to the FLUXCOM model
(Jung et al., 2019), and a model that uses the same neural
network structure but uses a dual-objective function, which
includes training term 1 (as in the EC model) and a sec-
ond training term (training term 2) based on top-down re-
gional constraint based on atmospheric inversions (hereafter
referred to as the EC-ATM model). The optimization of NEE
by EC-ATM is challenged by the spatial, temporal, and phys-
ical units mismatch between the two training terms: training
term 1 is based on daily in situ NEE from eddy covariance
(in g C m−2 d−1) and training term 2 is based on monthly
NEE integrated over very large regions from atmospheric
inversions (in Pg C per month). In order to link effectively
across scales in the training of EC-ATM, we connect the neu-
ral network with a pre-computed statistical model that acts
as a “bridge” between site-level NEE and regional integrals,
allowing the neural network to learn efficiently from both
bottom-up and top-down data streams.

In this section, we first present a description of the pre-
dictors used for NEE upscale (referred to as driver data
(Sect. 3.1), then a description of the single- and double-
constraint EC and EC-ATM models (Sect. 3.2 and 3.3), in-
cluding the statistical approach proposed to bridge across
scales in EC-ATM (Sect. 3.3), then we discuss the training
approach for each model (Sect. 3.4) and finally the post hoc
analysis performed (Sect. 3.5).

3.1 Model driver data

We use the driver variables from the FLUXCOM-
RS+METEO with ERA5 forcing ensemble as in Jung et al.
(2020), i.e., enhanced vegetation index (EVI), fraction of ab-
sorbed photosynthetically active radiation (fAPAR), daytime
land surface temperature (LSTday), nighttime land surface
temperature (LSTnight), the medium infrared reflectance band
(MIR), Normalized Difference Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI), extracted for

each site and globally from MODIS, and the ERA5 variables
of incoming global radiation (Rg), top-of-atmosphere poten-
tial radiation (Rpot), water availability index (WAI), and air
temperature (Tair). The full set of drivers were constructed
following Jung et al. (2020) and Tramontana et al. (2016); see
Appendix Table A2 for the driver formulation. These vari-
ables are computed globally and stored by plant functional
type (PFT) derived from the MODIS Land Cover Type yearly
L3 global 500 m dataset collection 5 (Friedl et al., 2010) and
are reconstructed here by the percentage of the component
PFTs in each pixel following the approach in Jung et al.
(2019) and Tramontana et al. (2016). Two drivers, WAI and
Tair, are used at daily time step, while the other eight are con-
structed from the mean seasonal cycle (MSC) signal across
the component variables. All are used at a 0.5° spatial reso-
lution.

3.2 EC model description

The bottom-up data-driven flux model takes as input observa-
tions of meteorological and remotely sensed drivers at a loca-
tion, available from either eddy-covariance towers or satellite
platforms, and outputs an inference of the NEE for that loca-
tion. This bottom-up model consists of a feed-forward neural
network or a set of fully connected network layers, which
we train using the standard gradient-based backpropagation
algorithm (Kelley, 1960). The fully connected layers consist
of nodes or “neurons”, which are exposed to the output of
all neurons in the previous layer. Nonlinearity is introduced
by passing each node output through a nonlinear activation
function. Our network is a set of three fully connected lay-
ers with the Rectified Linear Unit (ReLU) activation func-
tion (Agarap, 2019). We provide a detailed illustration of the
model architecture in Appendix Fig. B1.

The bottom-up model (EC model) is trained using an ob-
jective function with one term which compares the model’s
inference of NEE and the observed NEE at the eddy-
covariance site. The EC model is run and trained only on
data from eddy-covariance towers and co-located pixels. The
EC model is identical to an ensemble member of the FLUX-
COM system (Jung et al., 2020; Tramontana et al., 2016). For
each experimental run we train the EC model independently
(Fig. 1, red lines), to provide a paired test of the impact of
the additional atmospheric constraint.
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Figure 1. The EC model considers only the first term of the objective function (red lines). The EC-ATM model consists of the bottom-
up data-driven flux model (red lines) plus an additional constraint derived from atmospheric inversions (orange lines). In the first training
pass, the neural network takes meteorological observations from eddy-covariance towers, along with remotely sensed (RS) data to create
an inference of NEE, which is compared with the observed NEE in the first term of the objective function. In the second training pass,
the neural network takes meteorological and RS variables at pre-selected pixels for each region. The inferred NEE at these pixels is fed
into the regional bridge models to create inferences of regional NEE, which are compared with the regional integrals from an ensemble of
atmospheric inversions. For global inference the neural network takes global meteorological data from ERA5 along with RS data to estimate
NEE for all land pixels (green lines).

3.3 EC-ATM model description

To improve regional and global upscaling performance, this
study builds a second model (EC-ATM model), starting with
the same bottom-up model, to which we add a second term
to the objective function comparing the NEE output, inferred
at regional scale using the regional models, with the integrals
of regional NEE from an ensemble of atmospheric inversions
(Fig. 1, orange lines). To rule out effects of parameter initial-
ization, we use the same initial state for the EC and EC-ATM
neural networks.

Statistical bridge models

When calculating the atmospheric term of the objective func-
tion, running the bottom-up model for every land pixel and
fully calculating the global integral of NEE is too compu-
tationally intensive to train a data-driven model in a reason-
able time frame. This study solves this problem by using pre-
computed statistical models to calculate fast approximations
of the regional integral based on a limited number of pixels
for each region. We build this set of bridge models from the
FLUXCOM RS+METEO NEE results (Jung et al., 2020) by
finding stable linear relationships between the NEE at fixed
spatial locations within the region with the regional integral
of NEE in the same time period.

The bridge models are created using least absolute shrink-
age and selection operator (Lasso) regression. Lasso regres-

sion extends ordinary least squares (OLS) regression by
adding a term to the objective function (Eq. 1) where N is
the number of observations, P is the number of indepen-
dent variables, and y is the dependent variable. This term
is a weighted `1 norm, or the mean of the absolute values
of the parameters of the linear model β, times the weighting
term α. This additional term has the effect of driving some
weights to zero as α is increased (Tibshirani, 1996).

Minimize :
N∑
i=1

(
yi −

P∑
j=1

xijβj

)2

+α

P∑
j=1

∣∣βj ∣∣ (1)

The dependent variable for the Lasso regression is the re-
gional integral of the monthly ensemble mean NEE derived
from the global NEE data from the FLUXCOM intercompar-
ison, specifically the RS+METEO setup (Jung et al., 2020).
The regional integrals are calculated as the sum of NEE for
all non-zero pixels p ∈ Pt in the region for time steps t in all
times T (Eq. 2). The independent variables are the per-pixel
monthly mean values of NEE, p ∈ Pt , for time step t . Us-
ing this formulation, the spatial logic of the regression is to
find a stable set of weights relating the NEE at geographic
locations within the region to the regional integral of NEE.
This logic is then extended using Lasso regression (Eq. 3),
where the reduction of weights in the model to zero creates a
sparse solution. This can be interpreted as discovering a sub-
set of geographic locations whose NEE values are minimally
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sufficient to produce a high-quality estimate of the regional
NEE from the FLUXCOM RS+METEO results. This qual-
ity is quantified as the R2 value of the NEE inferred by the
sparse Lasso model regressed against the regional integrals
of NEE. The FLUXCOM RS+METEO data are thereafter
only used for model evaluation.

NEEt =
P∑
p=0

NEEtp (2)

Minimize :
T∑
t=0

(
NEEt −

Ps∑
p=0

NEEtpβp

)2

+α

Ps∑
p=1

∣∣βp∣∣ (3)

The full set of independent variables, or pixels in the re-
gion, are reduced to improve the stability of the regression
and to test the reliability of the technique by way of random-
ized trials. The reduced set of candidate pixels, p ∈ Ps , for
region s ∈ Sr , is selected using stratified random sampling
from a set of clusters generated using dynamic time warp-
ing (DTW) (Tormene et al., 2008) as a metric of similar-
ity, followed by spectral clustering. DTW is a method for
comparing two time series that finds a minimum distance be-
tween them by allowing non-aligned time steps to be paired
in the distance calculation as a similarity metric. This reduc-
tion attempts to reduce the number of candidate spatial lo-
cations while preserving the variance of the region. For each
region a threshold of 0.95 R2 is set, and the training loop
iterates, reducing the α term and increasing the number of
non-zero weights in the region until the correlation thresh-
old is reached using the training set. This result is tested us-
ing k-fold cross-validation. These resulting minimal set of
spatial locations are the “contributing” pixels for the region.
The locations of the contributing pixels and the correspond-
ing weights and biases of the regional linear model constitute
the statistical bridge model that will be used in model train-
ing.

The robustness of the sparse linear model was tested by
1000 runs with random stratified sampling within the dis-
covered classes. The output shows stable spatial locations of
contributing pixels within each region. A representative heat
map of contributing pixels (Fig. B2), where the pixel value
shows the log-scaled number of inclusions of that location
in an iteration of the Lasso regions, shows that the Lasso ap-
proach repeatedly finds similar pixel locations and will select
spatial neighbors if the most advantageous pixels are not in-
cluded in the randomization.

The stability of these spatial regimes indicate that there
is a statistical link at the spatial resolution of the analysis
between the contributing pixels and the regional integral of
the EC model. The contributing pixels cover the range of the
PFTs in the region (Fig. B3). The EC and EC-ATM mod-
els receive no PFT information during training, and the in-
cluded PFT breakdown is based on the majority class at 0.5°
resolution, not the available PFT information at the eddy-

covariance sites, which is specific to the footprint of the EC
tower.

3.4 Model training

Each data-driven flux model is trained using a 10-fold cross-
validation scheme, splitting the eddy-covariance observa-
tions by site into 10 equal subsets or “folds”, holding out
one fold per training cycle for validation, creating 10 model
members. The composition of the folds is the same as those
in Tramontana et al. (2016) for comparability. For the atmo-
spheric inversion training data used by the EC-ATM model,
2 random years from the full 18-year set are held out for val-
idation. There are insufficient years available for a fully in-
dependent set of test years outside the training and validation
folds. We use the residual land sink from the CGB22 as inde-
pendent data to test the model at global scale. Comparisons
with the atmospheric inversions in results below are the same
inversion data that are used in training. The reported results
are for the ensemble mean across the 10 folds or members.
For both the EC and EC-ATM models, the ensemble mem-
bers are the data-driven flux model with the weights from
the epoch with the best validation result for that fold. These
members are used for a full forward run across the period
2001–2017. The results discussed below are calculated from
these forward runs. Except for the very small number of pix-
els considered by the sparse linear models, these data are not
considered during the training of the model. Unless other-
wise stated, the results of the EC or EC-ATM model refer to
the ensemble mean across the 10 members.

3.4.1 EC model training

At each training step, the EC model neural network f with
parameters ω is run for a set of driver variables from eddy-
covariance towers, and co-located RS measurements xbatch
over a randomized subset of times and towers selected from
all training observations (Eq. 4). The resulting inferences,
N̂EE, are used to calculate the first term in the objective
function, the loss at the EC tower locations, LEC, which is
the mean squared error (MSE) between the N̂EE and the
observed NEE at the tower locations in the training batch
NEEobs (Eq. 5).

N̂EE= f (ω,xbatch) (4)
LEC =MSE

(
NEEobs, N̂EE

)
(5)

3.4.2 EC-ATM model training

The EC-ATM model has two constraints. The first, LEC, is
based on EC tower observations of NEE and driver variables
measured at the EC tower sites and co-located RS data. This
term is identical to the objective function of the EC model
described above.

To create the second constraint, LATM, at each training
step the EC-ATM model neural network f with parameters
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ω is run for a set of meteorological and RS driver variables
collected at the “contributing” pixel locations in each region
r in all regions R, for all days d ∈D in months m, notated
xd,r (Eq. 6). These monthly values N̂EEr are then used to
run the statistical bridge model for region r , with parameters
(2r ,br ), which produces an inference of the monthly integral
of NEE for the month m and region r (Eq. 7).

N̂EEr =
1
D

D∑
d=1

f
(
ω,xd,r

)
(6)

N̂EEm,r = N̂EEr ·2r + br (7)

This regional monthly estimate, N̂EEr,m, is compared us-
ing the `3 norm with inversion-based estimates from inver-
sions a ∈ A of regional NEE, ar,m, producing the monthly
regional loss Lr,m (Eq. 8). The `3 norm was chosen because
it improved the interannual variability (IAV) of the final NEE
estimates.

Lr,m = 3

√√√√ 1
A

A∑
a=1

∣∣NEEa,r,m− N̂EEr,m
∣∣3 (8)

This Lr,m term is normalized by the range (Eq. 9) of the
regional NEE from atmospheric inversions A for that month
ranger,m (Eq. 10). This reduces the weight of the loss where
the atmospheric inversion ensemble has a higher uncertainty.
The weighted losses are averaged for all months in M creat-
ing a regional loss term LATM,r . The area-weighted average
of the regional losses creates an atmospheric loss term LATM
(Eq. 11). The normalization by the range of the inversions
accounts for the uncertainty between the inversion systems.
It acts to reduce the weight of the error term in proportion to
this relative uncertainty for each step.

ranger,m =max
(
NEEA,r,m

)
−min

(
NEEA,r,m

)
(9)

LATM,r =
1
M

M∑
m=1

(
Lr,m

1+ ranger,m

)
(10)

LATM =

R∑
r=1

LATM,r ×
land arear

land areaglobe
(11)

The two terms of the objective function, LEC and LATM
are combined using an empirically learned weighting scheme
(Kendall et al., 2018), which learns the appropriate relative
weights for the set of losses. To do this, the method adds a pa-
rameter to the learned weights of the data-driven model that
estimates the task-dependent, homoscedastic uncertainty for
each of the different terms of the objective function, which
is dependent on the inherent noise in the data, rather than
the scale or quality of the inputs. This term is an estimate
of the variance of the error term for each component loss
of the objective function over all training steps. For the EC-
ATM model these parameters, σ 2

EC and σ 2
ATM, are added to

the model training weights and updated by the regular back-
propagation step of the neural network training. The σ 2

LOSS

parameter is used to create a weighting term wLOSS (Eq. 12)
and a regularization term sLOSS (Eq. 12) for each component
term of the objective function, LOSS ∈ [EC,ATM]. These
are then combined to provide a learned estimate of the to-
tal loss, balanced by the learned uncertainty of the terms
(Eq. 14).

The total loss of the EC-ATM model is then calculated as
follows:

wEC =
1

2σ 2
EC
, wATM =

1
2σ 2

ATM
, (12)

sEC = log
√
σ 2

EC, sATM = log
√
σ 2

ATM, (13)
Ltotal = (wEC×LEC)+ (wATM×LATM)+ sEC+ sATM. (14)

3.5 Post hoc analysis

After training any specific model, we carefully checked the
validity of our assumptions, and the appropriateness of us-
ing bridge models. A known limitation of this method is the
instability caused by large changes in the learned spatial pat-
tern of NEE during training. These changes can lead to a de-
coupling between the model response and the NEE data from
FLUXCOM RS+METEO V1 underlying the bridge models.
This means the LATM is reduced, while the difference be-
tween the full integral of inferred NEE moves away from the
inversion estimate. This decoupling destabilizes the learning
process because the regional integral of NEE that is encoded
in the regional bridge model is no longer valid for the output
of the model being trained. This leads to a situation where
certain random states of model initialization create unrealis-
tic model results. We conduct a post-hoc test of the relation-
ship between the regional sparse linear bridge models and
the calculated integrals by applying the regional sparse lin-
ear models over the contributing pixel locations within the
output of our training runs. This allows us to diagnose these
changes in the learned spatial pattern of NEE during training.

3.6 One-against-many inversion sensitivity analysis

We assume that the spread across the inversion estimates of
regional NEE at each training set allows for improved NEE
constraints by providing a measure of their uncertainty. In or-
der to evaluate how the EC-ATM NEE estimates depend on
this uncertainty constraint, we performed a sensitivity anal-
ysis where we trained several models with the atmospheric
constraint coming from either one inversion (zero spread),
two randomly selected inversions, or three randomly selected
inversions, in addition to the standard setup with five inver-
sions. The goal of this analysis is to evaluate how NEE from
the EC-ATM model trained with these limited subsets differs
from NEE calculated using the full ensemble of inversions.
This allows us to better understand how our use of an ensem-
ble of inversions in training, and the uncertainty normaliza-
tion strategy influence the use of information in the model.
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4 Results

4.1 Mean annual fluxes and inter-annual variability

We first compare the global NEE estimates from the EC
and the EC-ATM models (Fig. 2) with the residual es-
timate of the land sink from the Global Carbon Bud-
get (GCB22) (Friedlingstein et al., 2022). The addition
of an atmospheric constraint to a data-driven flux model
(i.e., the EC-ATM model) leads to a global estimate of NEE
(−3.14± 1.75 Pg C yr−1 (±1σ )) that is closer to the current
best estimates from GCB22 (−2.99± 0.9 Pg C yr−1 (±1σ ))
than the model only based on eddy-covariance flux data (EC
model, −20.28± 1.75 Pg C yr−1). The GCB22 estimate rep-
resents an independent view of the sink magnitude as it is cal-
culated from as the residual of other major independent terms
in the global carbon budget (EFF+ELUC− Socean−GATM)
which are not used in our approach. Moreover, it agrees well
with estimates of the land sink from other recent studies (Ta-
ble C1). The EC-ATM annual mean NEE has an RMSE of
0.91 Pg C yr−1 (compared to GCB22) for the period 2001–
2017, compared to an RMSE of 17.32 Pg C yr−1 for the EC
model. The EC model estimates are consistent with the orig-
inal FLUXCOM RS+METEO V1 estimates (Jung et al.,
2020) (Fig. 2, yellow line).

The GCB22 results are not available at the RECCAP2 re-
gional level, so to assess the performance of the models at re-
gional scale we use the ensemble of atmospheric inversions
for comparison. We acknowledge that the estimates are not
fully independent, since they are based on the same data used
to train our model, but we expect our training approach (see
Sect. 3.4 above) to make NEE estimates from the EC-ATM
model sufficiently distinct from the ensemble mean of atmo-
spheric inversions that is not used in directly the training.

Figure 2b shows that the mean anomaly of NEE estimated
by the EC-ATM model largely captures the sign of the at-
mospheric inversion and GCB22 anomalies, but the IAV is
still underestimated by both the EC-ATM and EC models,
which is a persistent issue with the FLUXCOM approach
(see Jung et al., 2020 for full discussion) as well as a general
issue with statistical learning. The EC-ATM annual mean is
strongly correlated with the detrended standardized annual
anomalies of the atmospheric inversion ensemble mean (R2

of 0.67), producing very similar results to the FLUXCOM
RS+METEO results (Fig. 2b).

In annual regional results (Table 2), the EC-ATM model
generally outperforms the EC and FLUXCOM RS+METEO
models in the tropics, with more mixed results in the extrat-
ropical regions. There is an improvement in RMSE for most
regions. The RMSE for Brazil improves over the FLUX-
COM RS+METEO, going from 3.89 to 0.13 Pg C yr−1, and
Europe improves from 0.68 to 0.21 Pg C yr−1. The EC-ATM
model appears to have lower performance for boreal regions
compared with FLUXCOM. Both Canada (CAN) and Rus-
sia (RUS) have higher RMSE compared with the inversion

ensemble mean (0.63 Pg C yr−1 for the EC-ATM compared
with 0.18 Pg C yr−1 for FLUXCOM in RUS). The correla-
tion does not show clear or systematic improvement. The
Pearson’s R for most regions are largely similar (see re-
sult for the USA, Equatorial Africa (EQAF), and Southeast
Asia (SEAS)). This is consistent with the overall low per-
formance in capturing the IAV signal with data-driven flux
models. Of note is the fact that while the boreal regions have
higher errors, they have stronger correlations (0.53 Pg C yr−1

for the EC-ATM compared with −0.41 Pg C yr−1 for the EC
in RUS), indicating a larger magnitude of error but better es-
timation of the monthly ecosystem dynamics.

4.2 Monthly and seasonal variability

We evaluate the performance of the EC and EC-ATM mod-
els in capturing the overall temporal variability in NEE
by estimating the normalized Nash–Sutcliffe model effi-
ciency (nNSE) metric for regional monthly NEE values
over all years (2001–2017) (Fig. 3). Normalized Nash–
Sutcliffe model efficiency is a transformation of standard
Nash–Sutcliffe metric, which assesses the predictive skill of
a model in regard to a reference set of values, in this in-
stance, the monthly regional integrals of the atmospheric in-
version ensemble. The normalization transforms the range of
the metric from (−∞,1) to (0,1). An nNSE of 1.0 repre-
sents perfect skill where the EC-ATM or EC perfectly repro-
duce this reference. An nNSE of 0 represents no skill. An
nNSE of 0.5 is where the model predicts the reference better
than repeating the annual regional mean integrals of the at-
mospheric inversion ensemble. Figure 3 shows that in almost
all regions the EC-ATM model is better able to predict the
atmospheric inversions than the EC model.

The mean seasonal cycle (MSC) of the global NEE esti-
mated by the EC-ATM model shows a clear adjustment to-
wards the atmospheric inversion ensemble mean and away
from the estimates from the EC model and FLUXCOM
RS+METEO results, consistent with the rationale to use
a double-constraint approach (Fig. 4). In extratropical re-
gions (e.g., EU in Fig. 4) the MSC of the EC-ATM is very
close to the FLUXCOM RS+METEO and inversion en-
semble mean results. But globally and in tropical regions
the MSC shows a meaningful improvement (Table 3). The
range of the global MSC (3.66 Pg C) is closer to the atmo-
spheric inversion ensemble mean (3.88 Pg C) compared with
2.24 Pg C in the EC model (Fig. 4). The EC-ATM MSC has
an RMSE of 0.13 Pg C compared with 1.54 Pg C for FLUX-
COM RS+METEO and 1.5 Pg C for the EC model. The sea-
sonality of the EC-ATM inferred flux is also closer to that of
the atmospheric inversion ensemble mean, although the EC-
ATM model appears to underestimate the source during the
Northern Hemisphere winter and conversely overestimate it
in the Northern Hemisphere early spring (Appendix Fig. C1).

The EC-ATM model shows an improvement in the global
RMSE of monthly NEE from 1.54 Pg C per month for the EC
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Figure 2. Panel (a) is the global annual NEE (in Pg C yr−1). The blue line is the EC-ATM ensemble mean across the 10 members. The blue
shaded area is the EC-ATM uncertainty across the ensemble (±1σ ). The green line is the EC ensemble mean across the 10 members. The
green shaded area is the EC-ATM uncertainty across the ensemble (±1σ ). The red line is the ensemble mean of the atmospheric inversions.
The individual inversions are shown in dotted lines. The black line is the GCP22 residual land sink. The grey shaded area is the published
GCB22 uncertainly. The yellow line is the ensemble mean of FLUXCOM RS+METEO V1. Panel (b) is the annual mean across 2001–
2017. Panel (c) shows the detrended anomalies (in Pg C yr−1). Panel (d) shows the magnitude of IAV, estimated as the standard deviation of
detrended annual anomalies. The bars on the EC and EC-ATM bars indicate the spread of IAV across the 10 members.

mean to 0.13 Pg C per month for the EC-ATM model mean
(Fig. 3). The regional monthly performance of the EC-ATM
model shows improvements in both the monthly time series
and MSC for almost all regions (Table 3). In extratropical
regions the improvements are small. The EC-ATM NEE for
Canada (CAN) has a monthly Pearson’s R of 0.991 com-
pared with 0.969 for the EC model, and 0.949 for FLUX-
COM RS+METEO. However, in tropical regions the change
is much larger. The EC-ATM NEE for Brazil (BRA) has a
monthly Pearson’s R of 0.787 compared with 0.028 for the
EC model and 0.040 for FLUXCOM. Regions where the EC
or FLUXCOM outperform the EC-ATM results are all in re-
gions where all three models perform very similarly.

In Appendix Fig. C1 impact of the atmospheric informa-
tion on the seasonality of the MSC is quite clear. In tropical
regions (e.g., Central America (CAM), South Asia (SAS),

BRA) the EC-ATM result has a very different seasonality
than the EC and FLUXCOM RS+METEO results, includ-
ing different ranges and means. The correspondence between
the inversion ensemble mean and EC-ATM MSC is close,
but the differences reflect the balance between eddy covari-
ance and atmospheric information during model training, and
the higher uncertainty between inversions in tropical regions.
The difference between the EC model MSC and the FLUX-
COM RS+METEO MSC can be attributed to different initial
model states. The EC model is an analog for a member of
the FLUXCOM RS+METEO ensemble, the mean of which
is used here for comparison. In the extratropical regions, the
estimates of NEE MSC by EC and EC-ATM are very similar
in range and seasonality.

These results indicate that additional atmospheric con-
straints are indeed reflected in the EC-ATM model at sea-
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Table 2. Results of annual NEE aggregated by regions. Pearson’s correlation coefficient (R) of the annual integral of NEE from the inversion
ensemble mean with the machine-learned model estimates from EC-ATM, EC, and FLUXCOM. The final row is the Pearson’s R and
RMSE globally for the three models compared with the GCB22 results. Values are given in units of Pg C yr−1. Bold numbers denote the
best-performing model by region and metric. Country and region abbreviations are expanded in Appendix Table A1.

Pearson’s R – annual RMSE

EC-ATM EC FLUXCOM V1 EC-ATM EC FLUXCOM V1

GLOBAL 0.280 0.054 0.080 0.7502 16.8872 17.3236

USA 0.502 0.519 0.543 0.2303 0.8030 1.0836
CAN 0.325 −0.463 −0.236 0.3970 0.3747 0.0627
CAM –0.067 −0.085 −0.149 0.2236 0.6598 0.7898
NSA −0.360 –0.140 −0.253 0.0969 1.7467 1.4909
BRA 0.358 0.221 0.186 0.1319 3.8447 3.8912
SSA −0.037 −0.094 0.007 0.2021 1.9080 1.8467
EU −0.068 0.187 0.191 0.2074 0.6336 0.6805
NAF 0.557 0.616 0.694 0.1900 0.4362 0.2438
EQAF 0.749 0.725 0.740 0.3876 2.8844 2.8576
SAF 0.780 0.734 0.621 0.1352 0.5242 1.0036
RUS 0.534 −0.353 −0.409 0.6273 1.1558 0.1809
CAS −0.379 −0.258 –0.167 0.1326 0.7133 0.0759
MIDE 0.254 0.405 0.442 0.2277 0.5117 0.1585
CHN 0.084 0.297 0.292 0.1103 1.0917 0.8059
KAJ 0.185 0.173 0.216 0.0147 0.0798 0.1167
SAS 0.262 0.066 0.039 0.1384 0.9604 0.3685
SEAS −0.227 −0.263 –0.221 0.4350 2.0118 2.0409
OCE 0.499 0.599 0.508 0.4094 0.3703 0.1037

GCB22 0.303 0.115 0.138 0.914 17.316 17.228

Table 3. Results of monthly NEE aggregated by region: Pearson’s R and RMSE of the monthly time series of regional and global integrals
over the period 2001–2017 and the corresponding monthly NEE from atmospheric inversions, the Pearson’s R of the regional and global
mean seasonal cycle (MSC) of NEE, the RMSE of the MSC relative to the inversion mean, and the model MSC. FLUXCOM refers to the
RS+METEO V1 product (Jung et al., 2020). Bold numbers denote the best-performing model by region and metric. Country and region
abbreviations are expanded in Appendix Table A1.

Pearson’s R – monthly integrals RMSE – monthly integrals Pearson’s R – MSC RMSE – MSC

EC-ATM EC FLUXCOM EC-ATM EC FLUXCOM EC-ATM EC FLUXCOM EC-ATM EC FLUXCOM

GLOBAL 0.991 0.969 0.976 0.176 1.502 1.542 0.996 0.976 0.982 0.125 1.496 1.537

USA 0.989 0.971 0.974 0.036 0.090 0.105 0.998 0.979 0.982 0.022 0.086 0.101
CAN 0.991 0.949 0.974 0.048 0.083 0.049 0.997 0.958 0.981 0.044 0.080 0.045
CAM 0.658 0.557 0.607 0.022 0.061 0.071 0.861 0.685 0.751 0.020 0.060 0.070
NSA 0.133 −0.007 −0.023 0.018 0.148 0.127 0.197 −0.072 −0.080 0.012 0.147 0.126
BRA 0.787 −0.028 0.040 0.055 0.354 0.350 0.893 −0.051 0.024 0.043 0.352 0.348
SSA 0.751 0.388 0.387 0.032 0.176 0.173 0.869 0.431 0.431 0.025 0.175 0.172
EU 0.988 0.986 0.989 0.034 0.059 0.061 0.997 0.994 0.997 0.026 0.055 0.058
NAF 0.929 0.809 0.902 0.031 0.058 0.033 0.959 0.834 0.926 0.027 0.056 0.030
EQAF 0.675 0.186 0.253 0.057 0.251 0.247 0.783 0.173 0.248 0.046 0.249 0.245
SAF 0.920 0.600 0.665 0.037 0.102 0.117 0.982 0.628 0.698 0.025 0.099 0.114
RUS 0.993 0.931 0.970 0.074 0.225 0.138 0.999 0.939 0.977 0.059 0.220 0.130
CAS 0.936 0.835 0.655 0.039 0.069 0.054 0.957 0.856 0.698 0.036 0.067 0.052
MIDE 0.913 0.882 0.919 0.025 0.046 0.020 0.926 0.893 0.931 0.025 0.046 0.019
CHN 0.969 0.973 0.973 0.035 0.104 0.073 0.987 0.990 0.990 0.025 0.101 0.070
KAJ 0.962 0.937 0.939 0.004 0.009 0.012 0.984 0.960 0.959 0.003 0.008 0.011
SAS 0.803 0.184 0.607 0.028 0.111 0.046 0.896 0.208 0.680 0.020 0.109 0.042
SEAS 0.273 0.204 0.204 0.050 0.173 0.174 0.436 0.312 0.300 0.042 0.170 0.172
OCE 0.199 0.223 0.240 0.044 0.047 0.036 0.289 0.263 0.310 0.037 0.041 0.030
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Figure 3. Normalized Nash–Sutcliffe model efficiency over all re-
gions ordered by EC-ATM performance. An nNSE of 1.0 repre-
sents perfect skill where the EC-ATM or EC perfectly reproduce
the monthly regional integrals of the atmospheric inversion ensem-
ble. An nNSE of 0 represents no skill. An nNSE of 0.5 is where the
model predicts the reference better than repeating the annual mean
of the atmospheric inversion ensemble.

sonal and continental scales, i.e., the scales where atmo-
spheric data are most informative.

Figure 4 shows the following two selected regions:
(1) Brazil, which is representative of tropical regions with
sparse EC observations and potential systematic bias in the
EC data, and (2) Europe, which is representative of extrat-
ropical regions with a dense EC network. In Brazil, the EC-
ATM model mean shows closer temporal evolution and mag-
nitude of the MSC to the mean of the atmospheric inver-
sions, than the EC model estimates. At a monthly time step,
the correlation of the EC-ATM with the atmospheric inver-
sions is largely similar with the FLUXCOM RS+METEO
V1 (0.99 and 0.98, respectively), only out-performing it in
some tropical regions, such as BRA, EQAF, and Southwest
South America (SSA). The results in Europe are very simi-
lar for the EC, EC-ATM, and FLUXCOM models, with all
three producing a MSC very close (RMSEs of 0.055, 0.026,
0.058 Pg C per month respectively) to the ensemble mean of
the atmospheric inversions. Overall, the EC-ATM shows a
persistent improvement in the RMSE of the MSC (relative to
the inversion mean) across almost all regions (Table 3).

4.3 Spatial variability

The spatial patterns of mean annual NEE estimated by the
EC-ATM model are considerably different from those esti-
mated by the EC model (Fig. 5). Specifically, the EC model
estimates a strong mean annual sink across the tropics, while
the EC-ATM model estimates more heterogeneous patterns,
with sources and sinks across the tropical regions. For ex-

ample, in the Amazon, the EC model estimates a strong sink
of more than 1.5 Tg C yr−1 per pixel, while the mean of the
atmosphere inversions shows a weak and rather homoge-
neous source of around 0.1–0.2 Tg C yr−1 per pixel, and the
EC-ATM model infers a mixed pattern of strong sinks and
sources. The noisy pattern in the Amazon basin estimated
by the EC-ATM model may indicate some instability of the
model or an amplification of the limited signal coming from
the low density of eddy-covariance sites. In tropical Africa,
the EC-ATM model shows an annual source while both the
EC model and the atmospheric inversions estimate a moder-
ate to strong sink.

It should be noted that there is a known large disagree-
ment between atmospheric inversions in the tropical regions
and the location of sources and sinks varies strongly across
atmospheric inversion models (Friedlingstein et al., 2022;
Gaubert et al., 2019; Palmer et al., 2019). The integration of
bottom-up constraints in a unified model (EC-ATM) is not
likely to resolve these spatial differences across top-down
estimates but rather to achieve NEE that is in between top-
down and bottom-up approaches, as exemplified by the pat-
terns in Fig. 5.

Similar to the results of global IAV, the EC-ATM and
EC model estimates display much weaker year-to-year vari-
ability in annual NEE compared to the mean of inversions
(Fig. 5). While atmospheric inversions estimate IAV of about
0.5–0.8 Tg C yr−1 in many tropical pixels, eastern North
America, and western Eurasia, the EC and the EC-ATM
models does not exceed 0.38 and 0.42 Tg C yr−1, respec-
tively. This difference highlights the difficulty that both the
EC and EC-ATM models have in capturing the magnitude
of the interannual variability, as also shown in Jung et al.
(2020).

We further evaluate the spatial distribution of NEE for 4
selected months representative of different seasons: January,
April, July, and October (Fig. 6). The distribution of the EC-
ATM mean monthly flux from years 2001 to 2017 shows the
reduced flux in the tropics throughout the year (red regions
in the right column). The EC model estimates a stronger sink
than the EC-ATM model in the tropical regions and over the
whole year and especially during the wet season (October).
On the contrary, the EC-ATM model indicates a stronger sink
in the Northern Hemisphere during boreal summer (North
America, Europe, northern Eurasia in July), and in semi-arid
regions in Southern Africa and Oceania during most of the
year.

The spatial distribution of mean annual and monthly NEE
estimated by the EC-ATM model is largely consistent with
that estimated by the EC model, while reducing the tropi-
cal sink. EC-ATM shows some irregularities in the spatial
patterns where there is insufficient information in either the
eddy-covariance data or atmospheric inversions to robustly
localize the NEE.

We then compare the monthly pixel-level correlation be-
tween NEE estimated by the EC and EC-ATM models and by
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Figure 4. Mean seasonal cycle of ensemble mean of monthly NEE (Pg C per month) for a representative tropical region (Brazil, BRA),
extratropical region (Europe, EU), and the globe for the years 2001–2017. The solid line shows the ensemble mean, and the shaded region is
the mean± the ensemble standard deviation.

Figure 5. Mean (a–c) and standard deviation (d–f) of the ensemble mean annual NEE from the EC-ATM and EC models compared to the
ensemble mean of the atmospheric inversions. Panels (b)–(c) show the per-pixel mean of the annual NEE. Panels (d)–(f) show the per-pixel
standard deviation of the annual NEE (in Tg C m−2 yr−1).

the atmospheric inversions (Fig. 7). Note that pixel-level esti-
mates of NEE by atmospheric inversions are not expected to
be robust. Nevertheless, this analysis allows us to better un-
derstand how the EC-ATM model learns spatiotemporal vari-
ability in NEE. We find that both the EC-ATM and EC mod-

els correlate well with the inversion mean in the extratropics
where both products are better constrained by observations,
with temporal correlations greater than 0.5. In the tropics, the
EC model has a negative correlation with the inversion mean
in the tropics (ca.−0.4), while the EC-ATM model estimates
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Figure 6. Monthly mean fluxes for 2001–2017 for 4 selected months. The left column shows the EC model results, the middle column shows
EC-ATM model results, and the right column shows the difference between them (EC-ATM−EC).

Figure 7. Spatial patterns of the per-pixel temporal correlation (Pearson’s R) between EC-ATM and EC monthly NEE and the atmospheric
inversion monthly mean (a, b) and FLUXCOM RS+METEO V1 monthly results (Jung et al., 2020) (c, d). Panels (a–b) and (c–d) show the
difference between the EC-ATM and EC correlation.

weak but positive correlations with the inversion mean (ca.
0.2–0.4). While there is low confidence in atmospheric in-
versions’ estimates at the pixel level; nevertheless, this result
shows that including regionally aggregated top-down con-
straints in the EC-ATM model results in changes to the tem-

poral variability also at pixel level (where EC-ATM pixel-
level variability departs from FLUXCOM RS+METEO V1,
lower-right panel in Fig. 7). This demonstrates that the model
is not simply learning a bias correction but a new pattern of
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land flux that incorporates some but not all of the information
in the atmospheric inversions.

4.4 In situ model comparison

The comparison of EC and EC-ATM modeled NEE at the
eddy-covariance sites (Fig. 8) shows that the EC-ATM and
EC models have a similar RMSE with observed NEE glob-
ally. Both the EC and EC-ATM model RMSE performances
of 1.349 and 1.321 g C m−2 d−1, respectively, are similar to
the median results of RMSE for NEE using the setup in Tra-
montana et al. (2016) of 1.298 g C m−2 d−1. The optimiza-
tion of the model hyperparameters (i.e., number of neurons,
learning rate) for EC-ATM performance based on the large-
scale top-down constraints may lead to a slight underperfor-
mance when these are also applied in the EC model.

The RMSE of inferred NEE at the eddy-covariance tower
level for the EC and EC-ATM models is very similar across
tower sites globally, and by the PFT that is most represented
in the pixel, or majority PFT. A breakdown of tower per-
formance by the pixel-majority PFT is available in the Ap-
pendix C2. This may indicate that, for the majority of tower
sites, the information of regional NEE by atmospheric inver-
sions acts as a complementary constraint, improving, albeit
very slightly, the EC-ATM model estimates of NEE across
the full set of eddy-covariance observations considered here.

At individual tower sites the EC-ATM model can learn dif-
ferent responses than the EC model. At tower BR-Ji2 (see
Fig. 9a) the EC and EC-ATM models show very similar skill
in capturing variability of NEE measurements, with both es-
timating a smaller sink compared to the tower observations.
At BR-Ma2 (see Fig. 9b), the EC-ATM model learns an over-
all smaller sink, compared with the EC model and tower ob-
servations, increasing the bias relative to NEE measurements
at the tower site compared with the EC. This demonstrates
that the information from the atmospheric constraint can act
as a non-complementary constraint. Here it reduces the accu-
racy of the EC-ATM model at the EC tower level as it learns
the smaller regional tropical sink from the atmospheric infor-
mation.

5 Discussion

In this study, we aimed to evaluate the hypothesis that
combining top-down and bottom-up estimates of land–
atmosphere carbon fluxes could contribute to improve the
estimates of regional and global land carbon sinks (Jung
et al., 2020; Anav et al., 2015). To do this, we created a
data-driven flux model trained on the observed NEE from
eddy-covariance sites. Then, in parallel, we tested the effect
of adding an additional top-down constraint based on the re-
gional integrals of NEE from an ensemble of atmospheric
inversions to the model’s objective function used in NEE
optimization. Our results show that adding regional atmo-
spheric constraints to a bottom-up data-driven flux model im-

proves NEE estimates from monthly to inter-annual and lo-
cal to global scales. This approach minimizes the limitations
of both top-down and bottom-up systems. It yields a model
that preserves the local, small-scale view of the bottom-up
approach while bringing the regional and globally integrated
results in line with other best estimates of NEE.

At the global annual level the EC-ATM results show much
closer correspondence with the GCPB22 residual land sink
(Fig. 2). This indicates that the EC-ATM model, which runs
at the pixel level with no additional larger spatial or tempo-
ral context, has learned a new response from the drivers at
the ecosystem level, leading to a more realistic global inte-
gral of NEE. This demonstrates the efficiency of the atmo-
spheric constraint, and its ability to appropriately transmit
information from the region down to the ecosystem level.
At the monthly regional level, the EC-ATM outperforms the
EC and FLUXCOM RS+METEO V1 results in Pearson’s R
and RMSE (see Table 3). The EC-ATM model improves the
seasonal pattern and magnitude of the MSC across regions
(see Fig. C1) when compared with other the EC model and
FLUXCOM. This indicates that the additional information
does not create a simple global or regional bias-correction
term, but rather a more complex constraint that varies ef-
fectively in both space and time. This is also evident in the
correction at some tower locations (Fig. 9). The difference
between the observed and inferred NEE by the EC and EC-
ATM models at specific EC towers demonstrates that the at-
mospheric information acts locally during training and can
provide both complementary and non-complementary infor-
mation to the constraint from eddy covariance.

The impact of the complementary or non-complementary
function of the combined constraints in the final model can
be seen in the differences between tropical and extratropical
regions. In general, the EC, EC-ATM, and FLUXCOM re-
sults are quite similar in extratropical region, especially in
the northern extratropics where the eddy-covariance network
is dense and the eddy-covariance data collection method
is more robust, and the atmospheric inversions have lower
uncertainty (see USA and EU data in Tables 2 and 3 and
Fig. C1). Here, the two constraints are providing comple-
mentary information, and the eddy-covariance data appears
sufficient. In tropical regions, where the eddy-covariance
record is sparse, eddy-covariance measurements are more
prone to error, and the inversions are more uncertain, the EC-
ATM model learns a temporally and spatially dependent mix-
ing of the two constraints, which may or may not work in a
complementary way. The results for Brazil (BRA) show that
the EC-ATM model has corrected its response at the annual
and seasonal time frame, but spatially (Figs. 7, 5) we see that
the spatial and temporal distribution of NEE is different both
from the inversion ensemble and FLUXCOM RS+METEO
V1.

We note that this approach only partly resolved some of
the weaknesses of data-driven models. The EC-ATM shows
very limited improvement relative to the EC model and the
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Figure 8. Comparison of inference of daily NEE from the EC-ATM and EC models with corresponding tower observations, across the whole
set of available eddy-covariance observations. The x axes show the eddy-covariance observations (in g C m−2 d−1), the y axes show the NEE
EC-ATM and NEE EC (in g C m−2 d−1). The blue and green lines are the line of best fit for the EC-ATM and EC results respectively, and
the dotted line is the x = y line.

Figure 9. Comparison of EC and EC-ATM model output at two Brazilian eddy-covariance sites. The y axes are the NEE EC-ATM and
NEE EC (in g C m−2 d−1), the x axes are the eddy-covariance observations (in g C m−2 d−1). The dotted black line is the x = y line. The
blue and green lines are the line of best fit for the EC-ATM and EC results, respectively. This figure shows the different learned response
in the EC-ATM model (blue) from the atmospheric constraint at a tower location compared with the EC model and the tower observations.
Panel (a) shows where the learned response is similar. Panel (b) shows where the atmospheric constraint was not complementary with the
eddy-covariance constraint, and the model has a larger bias than the EC model when compared with tower observations.

FLUXCOM RS+METEO V1 (Jung et al., 2020) in reducing
the underestimation of NEE IAV magnitude, compared with
atmospheric inversions and the land sink from global carbon
budgets (Friedlingstein et al., 2022). This may be due to the
fact that the optimization of the neural network and formula-
tion of the driver variables is the same as used in FLUXCOM
RS+METEO V1. Specifically, the driver variables in both the
EC and EC-ATM models are largely based on mean season
cycles of the underlying remotely sensed data (Table A2) or
data derived from seasonal metrics, such as the minimum and
range of the mean season cycle of water availability. This
limits the amount of information available for the EC or EC-
ATM model to learn about the IAV component of the signal.

Moreover, the magnitude of IAV is small compared to the
seasonality of NEE. Therefore, since we optimize fluxes at
sub-annual timescales (daily for training term 1 and monthly
for training term 2), the EC-ATM model may tend to opti-
mize for the signal with larger contribution to the objective
function, i.e., the seasonal variability, rather than IAV.

Another reason for the IAV underestimation in both EC
and EC-ATM models might be missing information in the
training set, for example due to the fact that semi-arid tropical
regions, where the NEE is strongly impacted by climate vari-
ance and that account for a very large portion of IAV in the
global land sink (Ahlström et al., 2015; Poulter et al., 2014),
are under-represented in the FLUXNET network. We expect
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the regional top-down constraint by atmospheric inversions
to partly improve this, but atmospheric inversions tend to as-
sign less IAV to the tropical semi-arid regions than land sur-
face models used in global carbon budgets (Piao et al., 2020)
and also tend to infer lower sensitivity of NEE IAV to tropical
water and temperature variability (Wang et al., 2022).

While model structure could contribute to this issues, ex-
periments (not shown) with varying architecture (number
of neurons, number of layers, layer connectivity), activation
functions, and loss terms of the EC and EC-ATM models
were not successful in reducing the bias in the magnitude
of NEE IAV. We also conducted sensitivity experiments on
the objective function both structurally and in its formula-
tion. Structurally, the number of regions included in the at-
mospheric term at each step and the number of months in-
cluded at each step were varied. The best results, as indicated
in the methods, was considering a full year for each region at
each training step.

5.1 Uncertainty in top-down constraints

The sparsity of observations concerns not only the
FLUXNET network but also the network of atmospheric
monitoring sites used by atmospheric inversions. Given the
small number of tropical observations considered in top-
down constraints and the inherited uncertainty from priors
and transport models, which are not directly managed by the
system in this study (Baker et al., 2006), the EC-ATM model
result might still be prone to large uncertainties in the tropics.
Here, we discuss the handling of uncertainty in the EC-ATM
model in more detail.

The system presented in this study is still dependent on the
priors and transport models in the underlying atmospheric in-
versions and is still subject to the underlying uncertainty of
these data, particularly in the tropics where both bottom-up
and top-down systems lack sufficient observations. During
training, the EC-ATM model tries to account for uncertain-
ties in two ways: the error between the inference and the in-
version data is normalized in the loss atmospheric loss term
by the spread of the inversion estimates by time and region,
which reflects uncertainty across inversion models (Eq. 10);
additionally, the model learns to weight the objective term
relative to the estimated uncertainty in the atmospheric loss
term, which should tend to reduce the weight where there
is larger systematic disagreement between inversion systems
(Eq. 12).

We perform a “one-against-many” sensitivity analysis,
where we trained several models with the atmospheric con-
straint coming from either one inversion (zero spread), two
randomly selected inversions, or three randomly selected in-
versions. This analysis, shown in the Appendix (Figs. C3,
C4, C5) allows us to evaluate how the specific inversion NEE
estimates interact with the loss mixing scheme in the model
training. In extratropical regions where the eddy-covariance
and atmospheric observations are dense, the specific inver-

sion NEE trained on does not critically influence the model
response. There is strong correspondence between all EC-
ATM instances with individual or smaller groups of inver-
sions and the full inversion ensemble mean. In tropical re-
gions, there is definite movement towards the specific inver-
sion NEE trained on (the dotted lines in Figs. C3, C4, and
C5). This response is balanced against the model initializa-
tion and the learned weighting scheme during training. At the
global level there is a closer agreement between the trained
models and the target inversions, as the relative noise of the
tropical regions is dampened by the more consistent extrat-
ropical regions. As additional inversions are added, there is a
tendency for EC-ATM NEE to move closer to the inversion
mean, as the target for optimization contains a larger amount
of NEE values from the ensemble of inversions. This analy-
sis demonstrates that the EC-ATM model inherits the uncer-
tainty from the ensemble of atmospheric inversions, with the
largest uncertainty remaining in the tropical regions where
the available observations for both top-down and bottom-up
approaches are lacking.

Our results also show the potential for a confounding ef-
fect from the training process. The EC-ATM model is a
learned statistical response between the drivers and the train-
ing data. There are mismatches between the EC-ATM infer-
ence of NEE and the atmospheric data used for the top-down
constraint. The atmospheric inversion NEE data, despite be-
ing adjusted for fossil fuel, fire, and riverine fluxes, still
implicitly includes disturbance and trade fluxes, along with
other flux components that are not seen by eddy-covariance
measurements and are not accounted for in our model. This
means that in reducing the loss terms (Eq. 14), these flux
components are implicitly incorporated into the EC-ATM in-
ference, although the model lacks the necessary process in-
formation that is not included in the drivers. Furthermore,
given the statistical nature of the network used and the train-
ing process, the data-driven model should not be considered
an analog for a process-based model, where individual terms
can be more easily backed out. Training using our double
constraint should become less confounded as more additional
spatially explicit flux components become available. How-
ever, despite these data mismatches, training a data-driven
flux model using a dual constraint does create a useful esti-
mate of the NEE at multiple scales.

6 Outlook and conclusions

Our study aimed to demonstrate that adding an atmospheric
top-down constraint can positively impact the evolution of a
bottom-up data-driven flux model during training, leading to
meaningful improvement in local to global NEE estimates.
The study demonstrated the positive impact of regional at-
mospheric information on the training of a well-established
data-driven flux model (Jung et al., 2020) and the applica-
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bility of using observational constraints of NEE at different
spatial scales.

In this study, we combined regional integrals of NEE
from atmospheric inversions with in situ NEE from eddy-
covariance measurements. We note, however, that these
could be multiple data streams at different scales (tempo-
ral, spatial) or in different formats (grid, point). Incorpo-
rating these different data streams would require different
model formulations, potentially including neural network ar-
chitecture and objective functions, as well as data-driven or
physics-based bridge models to create the link from the data-
driven flux model to these new data.

This multi-scale approach proposed here may allow us to
leverage large volumes of additional data for constraining a
data-driven flux model. By substituting a physical model for
the statistical bridge model used here, a double-constraint
data-driven flux model could generate an inference of NEE
across diverse temporal and spatial scales. Because, unlike
the statistical bridge models, these additional data could vary
with the local meteorology, covering a range of biomes, the
data-driven flux model would see a more diverse training set.
This could improve the performance of the data-driven flux
model by learning from a more representative distribution of
the driver variables across the land surface. In the future, this
logic could be used for a variety of datasets, for example by
pairing the archive of eddy-covariance observations with tall-
tower observations of the mole fraction of CO2 or with novel
“flux towers in the sky” (Schimel et al., 2019) estimates from
satellite retrievals of total column CO2 (XCO2).

Appendix A: Data

Table A1. RECCAP2 region ID, names, and abbreviations.

ID Region Abbreviation

0 United States USA
1 Canada CAN
2 Central America CAM
3 Northern South America NSA
4 Brazil BRA
5 Southwest South America SSA
6 Europe EU
7 Northern Africa NAF
8 Equatorial Africa EQAF
9 Southern Africa SAF
10 Russia RUS
11 Central Asia CAS
12 Mideast MIDE
13 China CHN
14 Korea and Japan KAJ
15 South Asia SAS
16 Southeast Asia SEAS
17 Oceania OCE
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Figure A1. RECCAP2 regions.

Table A2. Driver variables used for the data-driven EC and EC-ATM models and the calculation of the drivers from the base variables
above. The global dataset uses only the MODIS and ERA5 data, while the data used at the eddy-covariance sites also uses meteorological
observations from the tower instruments. See Tramontana et al. (2016) for a full discussion.

Name Variable MSC calculation Source
period

WAI2 Water availability index Calculated from a water balance model
derived from MODIS variables (see
Tramontana et al., 2016, Supplement S3,
for a full model description)

MSC_EVIRpot Mean season cycle(EVI×Rg) 2001–2012 MODIS (EVI), ERA5 (Rg)

MSC_FparLST Mean season cycle(fAPAR×LSTday) 2001–2012 MODIS

MIN_MSC_NDWI Min(mean season cycle(NDWI)) 2001–2012 MODIS

AMP_Band4 Amplitude(band 4 reflectance) MODIS

MSC_LST_Night Mean season cycle(LSTnight) 2001–2012 MODIS

Rg_VIMSC Mean season cycle(NDVI)×Rpot 2001–2012 MODIS (NDVI), ERA5 (Rg)

AMP_MSC_NDVI Amplitude(mean season cycle(NDVI)) 2001–2012 MODIS

Tair Air temperature 2001–2012 ERA5

AMP_MSC_WAI Amplitude(mean season cycle(WAI)) 2001–2012 ERA5

All variables are daily values for 2000–2017 at 0.5° spatial resolution.
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Appendix B: Technical implementation

Table B1. Hyperparameters for reported EC and EC-ATM model
runs.

Input shape 10
Latent dimension 32
Learning rate 0.003
EC batch 10 000

Figure B1. Model architecture showing that the model is a feed-
forward neural network or a set of fully connected network layers.
The fully connected layers consist of nodes or “neurons”, which are
exposed to the output of all neurons in the previous layer. Nonlinear-
ity is introduced by passing each node output through a nonlinear
activation function. Our network is a set of three fully connected
layers with the ReLU activation function (Agarap, 2019).

Figure B2. Robustness of contribution pixel selection. A heat map
of pixel inclusion in the sparse linear model using Lasso regression
is shown. Values represent the log-scaled number of pixel inclu-
sions in the non-zero set of parameters across 500 regressions using
a randomized subset of the data. Pixels that are most often included
provide a more important constraint on the calculation of a region-
ally summed NEE, minimizing Eq. (1).

Figure B3. The representation of PFTs across all contributing pix-
els in all regions. All PFTs are the majority type per pixel. This
image shows the relative number of times a certain PFT is included
in the optimal set of contributing pixels that construct a regional in-
tegral of NEE when selecting from all global land pixels. The black
outlines show the proportion of that majority PFT type globally. A
per-region analysis of PFT inclusion is available in Appendix B4.
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Figure B4. Regional composition of PFT in contributing pixels.
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Appendix C: Results

Table C1. Estimates of NEE from land from recent studies.

Study Land sink mean (Pg C yr−1) IAV magnitude Period

Crisp et al. (2022), 2022 −2.2 0.6 2000–2009

Friedlingstein et al. (2022) −2.91 0.81 2000–2017

Gaubert et al. (2019) Northern extratropics: −2.17 Northern extratropics: 0.36 2004–2014
Tropics+ southern extratropics: −0.06 Tropics+ southern extratropics: 0.11

Ruehr et al. (2023) −3.1 0.6 2010–2019

Figure C1. MSC of the ensemble mean of all regions (in Pg C per month). The solid line is the ensemble mean, and the shaded region is the
mean± the ensemble standard deviation.
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Figure C2. Scatterplots of eddy-covariance NEE (x axis) and inferred NEE (y axis) by PFT and model (ATM-EC, EC).
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Figure C3. The MSC results for the “one-against-many” training runs. A separate EC-ATM model was trained for each individual inversion
system to test the impact of the full ensemble and loss normalization in the full study. The solid lines are the EC-ATM models trained using
the named inversion system, and the dotted lines are MSC of the inversion system regional and global integrals. For all panels, the x axis is
the yearly cycle, while the y axis is Pg C per month.
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Figure C4. The MSC results for the “one-against-many” training runs, with EC-ATM models optimized against two inversion systems. The
solid lines are the EC-ATM models trained using the named pair of inversion systems, and the dotted lines are MSC of the named pair’s
mean regional and global integrals. For all panels, the x axis is the yearly cycle, while the y axis is Pg C per month.
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Figure C5. The MSC results for the “one-against-many” training runs, with an EC-ATM model optimized against three inversion systems.
The solid line is the EC-ATM model trained using the named set of inversion systems, and the dotted line is the MSC of the named set’s
mean regional and global integrals. For all panels, the x axis is the yearly cycle, while the y axis is Pg C per month.
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Data availability. Inversion data are available at https://doi.org/
10.18160/7AH8-K1X4 (Luijkx et al., 2023). EC-ATM ensemble
mean NEE data are available at https://doi.org/10.5281/zenodo.
10454297 (Upton et al., 2024). NISMON-CO data are available at
https://doi.org/10.17595/20201127.001 (Niwa, 2020).
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