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A B S T R A C T   

Temperate forests and grasslands have different drought response strategies. Trees often control their stomatal 
opening to reduce water loss to prevent hydraulic failure and ensure the sustainable above-ground biomass 
production. In contrast, grasses generally have a less strong stomatal control and maintain high photosynthesis 
and transpiration until the soil moisture gets depleted. That is when their leaves wilt and the grasslands reduce 
their aboveground green biomass. Both the increased stomatal control and the reduction in aboveground biomass 
decrease the canopy-surface conductance and decrease the exchange of water and carbon between the leaves and 
the atmosphere. Here, we study to which extent remote sensing data reflect the drought-induced reduction in 
canopy-surface conductance for forests and grasslands. We use eddy covariance observations over 63 sites across 
the northern hemisphere to infer the conductance. We identify severe droughts from low soil moisture content 
and reduced canopy-surface conductance. We further analysed how the drought response is reflected in thermal 
and optical data derived from MODIS satellite data. The results show that the land surface temperature increases 
with drought-induced reductions in canopy-surface conductance for both forests and grasslands. By contrast, the 
optical indices (e.g., the normalized difference vegetation index) show a much stronger response for grasslands as 
compared to the forests. We conclude that the different canopy-level drought response strategies of trees and 
grasses are widespread and that these different responses are reflected in remote sensing data. Hence, a com-
bination of thermal and optical satellite data should be used to monitor and study vegetation drought responses 
of forests and grasslands to ensure accurate inference on the implications on water, energy, and carbon fluxes.   

1. Introduction 

During a drought, low soil moisture availability in the root zone in 
conjunction with a high atmospheric evaporative demand triggers 
vegetation reactions (Fu et al., 2022; Lansu et al., 2020). The first 
vegetation response to drought is a strong stomatal regulation to in-
crease the water use efficiency and reduce root-zone water loss (Peters 
et al., 2018). Prolonged soil moisture drought can induce changes in the 

vegetation state, such as a decrease in the leaf pigments, the leaf water 
content, and leaf turgor and structure (Salehi-Lisar and Bakhshaye-
shan-Agdam, 2016). When the drought conditions persist even longer, 
this can result in the defoliation of the vegetation and mortality (Bro-
dribb et al., 2020; Choat et al., 2018; Senf et al., 2020). While the strong 
stomatal regulation is a rapid and reversible response, the effects on the 
vegetation structure can sometimes be irreversible. Both, the stomatal 
regulation and a change in green leaf area, impact the surface 
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conductance (Gs, the aggregated stomatal conductance of the entire 
canopy), and simultaneously affects the exchange of water and carbon 
between the leaves and the atmosphere. The exact vegetation response 
to drought and the impacts on the water, energy, and carbon balance, 
depends on the timing, intensity, and duration of the drought, as well as 
the species type and climate (Krasnova et al., 2022; O et al., 2022; 
Obladen et al., 2021; Pranindita et al., 2021; van Hateren et al., 2021). 

In temperate climates, grasslands and forests respond differently to 
drought because of their different drought response strategies (Fig. 1), 
(Zhang et al., 2016). Grasslands take the risk to lose their aboveground 
biomass, while they survive belowground (Zha et al., 2010). Trees 
cannot take this risk and therefore have to adopt a more conservative 
water-use behavior in order to survive moderate droughts. As a result, 
trees adopt a stronger stomatal regulation and increase their water use 
efficiency to decrease water loss, while grasslands generally prioritize 
high evaporation (Whitehead, 1998; Wolf et al., 2013). When grassland 
soil moisture gets depleted, their leaves wilt. This reduction in the 
aboveground biomass is directly reflected in the grassland́s appearance. 
However, due to the conservative behavior of trees, drought is not al-
ways directly reflected in the forests’ appearance (Mallick et al., 2016), 
but, the effects are sometimes visible in the following year’s growth and 
leaf area (Anderegg et al., 2015; Kannenberg et al., 2019; Schuldt et al., 
2020; Senf and Seidl, 2021). Through these different drought coping 
strategies, grasslands and forests have a different impact on evaporation, 
precipitation, heat waves, and carbon exchange during droughts (Graf 
et al., 2020; Pranindita et al., 2021; Teuling et al., 2010; Vicca et al., 
2016). A better understanding of the different drought coping strategies 
and the monitoring of the vegetation drought response can improve 
future drought monitoring as well as the development of process-based 
models. 

The surface conductance Gs is a one of the key ecophysiological 
variables in the land-atmosphere exchange of water, energy, and carbon. 
Drought-induced reductions in Gs decrease the exchange of water and 
carbon, and thereby impact local and regional weather and climate. For 
example, the reduction in evaporation decreases the evaporative cooling 
and increases the intensity of heat waves that often coincide with 
drought (Miralles et al., 2019; O et al., 2022). Furthermore, the reduc-
tion in evaporation reduces the moisture recycling and increases the 
drought risk downwind (Herrera-Estrada et al., 2019; Miralles et al., 
2019; Pranindita et al., 2021; Schumacher et al., 2019). Additionally, 
the reduction in carbon uptake significantly reduces the terrestrial car-
bon sink, and droughts can even switch forests from a carbon sink into a 

source of carbon (Ciais et al., 2005; Granier et al., 2007; Haberstroh 
et al., 2022; Mekonnen et al., 2017). Because of these major impacts of 
droughts on weather and climate, it is important to understand and 
monitor the drought-induced changes in Gs. Recent studies to the sto-
matal or surface conductance indicate that they vary with vegetation 
type and climate (De Kauwe et al., 2017; Lin et al., 2015); these studies 
have however not studied how the conductance changes during 
droughts. Several methods exist for large-scale monitoring of Gs, for 
example through parameterization of Gs from satellite-based land sur-
face temperature and vegetation indices or by using satellite data to 
scale in-situ measurements over larger areas (Nemani and Running, 
1989; Yebra et al., 2013). The representation of surface and stomatal 
conductance in land surface models has received major attention in the 
past years (De Kauwe et al., 2015; Franks et al., 2018; Oliver et al., 
2022). A better understanding of the drought-induced reductions in 
surface conductance and a better monitoring strategy can contribute to 
further improvements of land-atmosphere fluxes in land surface models. 

While the differences between the forest and grassland drought 
response strategies have been shown in site-scale studies (e.g. Teuling 
et al., 2010; Whitehead, 1998; Wolf et al., 2013; Zha et al., 2010), it is 
less clear if these contrasting mechanisms act at larger spatial scales and 
can be observed through satellite data. Therefore, we studied to which 
extent remote sensing data reflects the contrasting drought responses for 
forest and grassland. We focus on thermal infrared and optical remote 
sensing data which both play an important role in vegetation drought 
monitoring. Thermal infrared remote sensing (wavelength of 8 - 14 µm) 
is used to obtain the land surface temperature (LST) and is sensitive to 
evaporative cooling. Therefore, thermal data can be used to detect the 
changes in vegetation functioning and Gs when the vegetatiońs structure 
is not (yet) altered (Mallick et al., 2022; Mallick et al., 2018; Vicca et al., 
2016). Also thermal infrared derived indices, such as LST minus air 
temperature (LST − Ta) and the Crop Water Stress Index (CWSI) were 
successfully used to monitor plant water stress (Ekinzog et al., 2022; 
Gerhards et al., 2019; Veysi et al., 2017). Optical remote sensing mea-
sures the reflection of solar radiation by the soil and the vegetation in the 
visible, near-infrared, and shortwave infrared wavelengths. The visible 
wavelengths (0.4 - 0.7 µm) can be used to detect, amongst others, 
changes in leaf chlorophyll content during vegetation browning. The 
near-infrared wavelengths (0.7 – 1.4 µm) can be used to detect changes 
in vegetation and cell structure. Shortwave infrared wavelengths (1.3 – 
2.5 µm) are sensitive to the leaf water content and to the green leaf area. 
Vegetation indices derived from the visible and near-infrared 

Fig. 1. Visual representation of the hypothesis of this study. We hypothesise that the contrasting drought response for forests and grasslands results in different 
remote sensing signals. 
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wavelengths have therefore been used extensively in drought detection 
(Bachmair et al., 2018; Buitink et al., 2020; Buras et al., 2020; Gerhards 
et al., 2016; van Hateren et al., 2021; Vicca et al., 2016). A few 
frequently used indices include the Normalized Difference Vegetation 
Index (NDVI), the Enhanced Vegetation Index (EVI), the Near-Infrared 
Reflectance of Vegetation (NIRv), and the Structural Insensitive 
Pigment Index (SIPI). Their performance to monitor vegetation droughts 
depends, among others, on the climate, drought intensity, and the 
vegetation type, but these optical indices have generally been found to 
perform better in short vegetation than forests (Quiring and Ganesh, 
2010; Vicente-Serrano, 2007). Given the different drought response 
strategies of forests and grasslands, and the different properties of 
thermal infrared and optical remote sensing, we formulate the following 

hypothesis (Fig. 1): 

For forest, drought-induced changes in the surface conductance Gs 
are reflected in thermal infrared based data but not in optical based 
data, while for grassland, drought-induced changes in the surface 
conductance Gs are reflected in both thermal infrared and in optical 
based data. 

2. Methods 

In this study, the surface conductance Gs was calculated from eddy 
covariance site data. For drought years, years with unusual dry soil 
moisture conditions, the onset of the vegetation drought response was 

Fig. 2. Illustration of our methodology. In (a) step 1 and (b) step 2 we identify the soil moisture drought, in (c) step 3 and (d) step 4 we identify the vegetation 
drought response from in-situ observations, and in (e) step 5 we study the response in remote sensing data (the vegetation indices, VI) to the drought-induced 
reduction in the surface conductance (Gs). The details of each step are described in Section 2.4. 
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identified. The onset was defined as the moment of strongest reduction 
in Gs. Afterwards, MODIS satellite data were used to study how the 
reduction in Gs, detected from eddy covariance data, is reflected in 
remote sensing data. This was done by comparing the satellite data 
before and after the onset of vegetation drought response. This study 
includes 57 sites in the Northern Hemisphere and focusses on the sum-
mer months (May - August) of the years 2003 – 2020. 

2.1. Study sites 

Eddy covariance data were collected from four different sources: 
FLUXNET2015 (Pastorello et al., 2020), ICOS drought 2018 (Centre, 
2020), ICOS Warm Winter 2020 (Warm Winter et al., 2022), and 
Ameriflux (https://ameriflux.lbl.gov/). These datasets are compatible 
and are produced using the ONEFlux processing codes (Pastorello et al., 
2020). Within these datasets, all sites were selected that: [1] were sit-
uated in the Northern Hemisphere (179 sites), [2] had a grassland or 
forest land cover (113 sites), [3] had (half) hourly data available for 
sensible heat, latent heat, air temperature, air pressure, and friction 
velocity (102 sites), [4] had a vegetation drought response during the 
severe drought years (methods section 2.4, 64 sites. Note that 18 sites 
were excluded because they had no data available for drought years or 
no Gs data available for the driest day (Fig. 2), and another 20 sites were 
excluded because the vegetation drought response was not detected for 
the drought year(s)), and [5] had data available for at least one drought 
year and at least three reference years (methods section 2.4, 57 sites). 
The final data set used in this study contains 10 grassland sites and 47 
forest sites (methods section 2.4, Supplementary ). 

2.2. Eddy covariance data and calculation of Gs 

For every site, we use the half hourly (if not available: hourly), gap- 
filled, flux tower measurements of the latent heat flux (LE), sensible heat 
flux (H), gross primary productivity (GPP), friction velocity (u∗), air 
temperature (TA), relative humidity (RH), air pressure (PA), and 
incoming shortwave radiation (Rg). (Half) hourly data of LE and H were 
discarded in three cases: 1) if the fluxes had a quality label ́poor datá or 
ḿedium datá, 2) in the 48 hours after rainfall, to minimise the effect of 
soil and interception evaporation, and 3) during the most stable atmo-
spheric conditions (friction velocity u∗ < 0.1 m s− 1). RH was used to 
calculate the actual vapor pressure, and Rg and TA were used to calculate 
the partial correlation in section 3.3. LE, H, TA, and PA were used in the 
calculation of Gs. We performed the same analyses with the energy- 
balance corrected eddy covariance data, but this did not significantly 
change the detection of the onset of vegetation drought response. 

The surface conductance was computed using the Flux-Gradient 
equations (Wehr and Saleska, 2021). These equations can be used to 
derive Gs from the vapor pressure difference across the 
canopy-integrated stomata and the evaporative flux. Gs is calculated 
according to Eq. (1): 

Gs =
1

rsV
, (1)  

where Gs is the surface conductance in m s− 1, which is the reciprocal of 
surface resistance (rsV) [s m− 1]. rsV is calculated according to Eq. (2): 

rsV =
(e∗(TL) − e)

R ∗ (TA + 273.15) ∗ E
− rav, (2)  

where e∗(TL) is the saturated vapor pressure inside the leaf [Pa], and e is 
the actual vapor pressure of the air [Pa]. e∗(TL) is calculated according 
to Eq. (9) in Paw U and Gao (1988). R is the universal gas constant, TA is 
the air temperature [∘C], and E is the water vapor flux [mol m− 2s− 1]. raV 

is the aerodynamic resistance to water vapor [s m− 1]. The canopy inte-
grated leaf temperature TL is calculated using Eq. (3): 

TL =
(H ∗ raH)

ρA ∗ Cp
+ TA, (3)  

where H is the sensible heat flux [W m− 2], and raH is the aerodynamic 
resistance to heat [s m− 1]. ρA is the density of wet air [kg m− 3], calculated 
as ρA = ρA,dry + ρv [kg m− 3], where ρA,dry is the density of dry air and ρv is 
the density of water vapor. cp is the specific heat of air (1013 J kg− 1K− 1), 
and TA is the air temperature [∘C]. raH and raV are calculated according to 
Eqs. (4) and (5): 

raH = rbH + ram, (4)  

raV = rbV + ram, (5)  

where rbV and rbH are the leaf boundary layer resistances to water vapor 
and heat, respectively [s m− 1], and ram is the aerodynamic resistance for 
momentum [s m− 1] which is calculated from Eq. (6): 

ram =
u

u∗2, (6)  

where u is the wind speed [m s− 1] and u∗ is the friction velocity [m s− 1]. 
rbH can be calculated using an empirical equation based on, among 
others, the leaf area index and characteristic leave dimension. In this 
study, the calculation was attempted, but not practical because of the 
uncertainty in, and sensitivity to, this length scale of the leaves. 
Furthermore we did not use the empirical equation based on satellite 
remote sensing data, to ensure an independent assessment of Gs with 
respect to the satellite derived drought indices. Instead we assume a 
constant value of 10 s m− 1 (based on Wehr and Saleska (2021)) for all 
vegetation types. rbH however varies with vegetation characteristics and 
wind speed, and can reach values higher than 10 s m− 1. To test the effect 
of this assumption, we also analysed the values rbH = 8 and 20 s m− 1. 
These different values for rbH did not change the results significantly and 
did not affect the conclusions of the study (Supplementary Fig. S1). rbV is 
calculated following Eq. (7): 

rbV =
1
f
∗ rbH ∗

(
Sc
Pr

)2
3

, (7)  

where f is the mean stomatal ratio, Sc is the Schmidt number for water 
vapor (Sc = 0.67), and Pr is the Prandtl number for air (Pr = 0.71). f 
was set to 1, assuming all sites have amphistomatic leaves (having sto-
mata on both sides of the leaves), because it was not possible to deter-
mine the mean stomatal ratio for each site. 

Negative values of Gs were omitted. Daily mean Gs was calculated if 
at least 50% of the (half) hourly values were available. For the analyses, 
we gap-filled the Gs time series by calculating the 21-day rolling median 
Gs value. 

2.3. Satellite data and calculation of the vegetation indices 

Remote sensing data were available from the Version 6.1 MODIS 
products MOD09GA (Vermote and Wolfe, 2021b), MYD09GA (Vermote 
and Wolfe, 2021a), MOD11A1 (Wan et al., 2021b), and MYD11A1 (Wan 
et al., 2021a). These data are collected by the Terra (MOD) and Aqua 
(MYD) satellites. For both satellites the daytime observations were used 
(around 10:30 for Terra and 13:30 for Aqua). For each product, the 
quality label was used to remove the cloudy data. The data have a spatial 
resolution of 500 m (MOD and MYD09GA) and 1 km (MOD and 
MYD11A1). 

For MODIS band 1 (NIR), 2 (Red), and 3 (Blue), mean daily values 
were calculated from both Terra and Aqua data, and either Terra or 
Aqua data were used when only one of them was available. For land 
surface temperature (LST), MODIS Aqua data were used, because the 
afternoon overpass time is better able to capture drought stress. 
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However, when Aqua data were not available, MODIS Terra data were 
used, which were first adjusted using a linear regression between the 
Aqua and Terra data. Afterwards, seven different optical and thermal 
infrared indices were calculated (Table 1). The results of the NDVI and 
LST are presented in the main text, and the other indices are presented in 
the supplementary information. 

The 500 × 500 m and 1 × 1 km spatial resolution of the MODIS 
data was not always representative for the flux tower footprint. The size, 
location, and shape of flux tower footprints change continuously, driven 
by changes in surface roughness, wind direction and wind speed (Kong 
et al., 2022), while the same one MODIS pixel was used over time. Be-
sides these dynamics over time, some sites have a mixed land cover in 
the satellite data, which is only partly representative for the flux tower 
land cover. Satellite products with a higher spatial resolution could 
however not be used because of their low temporal resolution (Landsat 
series) or limited time coverage and lack of thermal infrared bands 
(Sentinel-2). 

2.4. Methodology 

The methodology consisted of five steps: in step 1 and 2 the soil 
moisture droughts were identified based on reanalysis data, in step 3 and 
4 the vegetation drought response was analysed based on in-situ ob-
servations, and in step 5 the remote sensing indices were used to study 
the drought response in satellite data (Fig. 2). 

Step 1 Find the three driest years. 

For every site, the three driest years were identified for the total 
study period of 2003 – 2020 (summer months only) (Fig. 2a). The driest 
years were the three years with the lowest minimum summer soil 
moisture content in the upper 1 m of the soil (weighted mean over ERA5- 
Land reanalysis soil moisture layer 1, 2, and 3) (Muñoz Sabater, 2019, 
accessed January 2020). We use the ERA5-Land soil moisture data as a 
generic and generally available indicator for soil moisture droughts. For 
most sites, the eddy covariance data did not span the full study period of 
2003 – 2020. Therefore, sites were discarded when no eddy covariance 
data were available for the three driest years. 

Step 2 Determine the timing of soil moisture drought. 

For every of the three driest years from step 1, the day of the 
strongest soil moisture drought was determined (Fig. 2b). This was the 
day with the lowest soil moisture value. 

Step 3 Analyse the vegetation drought response. 

For each of the three driest years, the vegetation drought response 
was analysed (Fig. 2c). Low soil moisture content is often accompanied 

by sunny and warm weather conditions, which enhance plant produc-
tivity as long as vegetation is not water-limited (Jolly et al., 2005). In 
this study, we were only interested in those severe droughts when the 
vegetation experienced a water deficit, identified through a low Gs. 
Therefore, we compared Gs during the day of the strongest soil moisture 
drought with the mean Gs for years without a soil moisture drought 
(Fig. 2c). Specifically, we tested if Gs for the drought years was at least 
0.0025 m s− 1 below the mean Gs for years without a soil moisture 
drought. This absolute value of 0.0025 m s− 1 was introduced to remove 
sites from the data set that always had very low Gs, i.e. the sites (mostly 
grassland sites) that were always water-limited during the summer 
season (the season with a very low absolute soil moisture content and 
low year-to-year variability in Gs). Each year with a vegetation drought 
response is now referred to as a ́drought yeaŕ and each other year is a 
ŕeference yeaŕ. These reference years thus include years without a soil 
moisture drought, years when the soil moisture drought was not severe 
enough to trigger vegetation reactions, and sites where the vegetation 
was similarly affected by reduced Gs during both drought years and 
non-drought years. Each site was included in the analyses that contained 
data for at least one drought year and at least three reference years. The 
final dataset after filtering contained 10 grassland sites with 13 
droughts, and 47 forest sites with 80 droughts. 

Step 4 Determine the onset of vegetation drought response. 

For every drought year, we identified the day with the strongest 
vegetation drought response. This was the day with the strongest 
reduction in Gs over time (Fig. 2d). 

We calculate ΔGs as the change in Gs over time, as ΔGs,t =

Gs, (t:(t+21)) − Gs, ((t− 21):t), where Gs is the 21-day rolling median Gs. 
Negative values for ΔGs,t indicate that Gs decreased during the investi-
gated weeks surrounding time t, and the most negative value of ΔGs 

indicated the period with the strongest reduction in Gs. The onset of the 
vegetation drought response was defined as the day with the most 
negative ΔGs before the strongest soil moisture drought (Fig. 2d). We 
assume that the strongest reduction in Gs is a response to the severe 
drought, however, it could also reflect for example logging or mowing 
rather than a drought response. Given the high number of sites, we do 
not forsee an effect of site-scale land-cover changes on our conclusions. 

Step 5 Determine the response in remote sensing data. 

For every drought year, we studied if the reduction in Gs was re-
flected in the optical and thermal infrared satellite indices (VI) (Fig. 2e). 
Therefore, we calculated the change in satellite data over time, the ΔVI. 
The ΔVI was calculated in a similar way as ΔGs: ΔVIt = VI(t:(t+21)) −

VI((t− 21):t), where t is the day of the onset of vegetation drought response 
(as calculated in step 4). A negative ΔVI indicated that the satellite index 
reduced at the onset of vegetation drought response, while a positive 

Table 1 
Satellite data and indices used to analyse the vegetation drought response. The NDVI and LST (in bold) are the main focus of this manuscript, and the other indices are 
presented in the supplementary materials. LSTmin and LSTmax are the site-specific minimum and maximum LST in the studied time series.   

Index Name Formula Refs. 

Optical indices NDVI Normalized Difference Vegetation Index 
NDVI =

(NIR − Red)
(NIR + Red) Kriegler et al. (1969) 

EVI Enhanced Vegetation Index EVI = 2.5 ∗
NIR − Red

NIR + 6∗Red − 7.5∗Blue + 1 Huete and Liu (1994) 

NIRv Near-infrared reflectance of vegetation NIRv = NDVI ∗NIR 
Badgley et al. (2017) 

SIPI Structural Insensitive Photochemical Index SIPI =
NIR − Blue
NIR − Red Penuelas et al. (1995) 

Thermal infrared indices LST Land Surface Temperature  Jackson et al. (1977) 
LST − Ta LST minus in-situ measured air temperature  

Jackson et al. (1977) 
CWSI Crop Water Stress Index CWSI =

LST − LSTmin

LSTmax − LSTmin  
Veysi et al. (2017)  
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ΔVI indicated that the satellite index increased at the onset of vegetation 
drought response. 

2.5. Sensitivity tests 

We tested the sensitivity of our results to the different choices in the 
methodology. First, we calculated the mean soil moisture over only layer 
1 and 2 of ERA5-Land (0 − 30 cm), and we used soil moisture data to 
select the four driest years instead of the three driest years (step 1). 
Using the 0 − 30 cm reflects the water availability better for sites with 
low rooting depths. Second, we tested the effect of a different threshold 
value to remove sites that always have low Gs during the summer season 
(threshold values of 0, 0.001, 0.005, and 0.01 m s− 1, step 3). Third, we 
calculated the 14-day and 28-day rolling median Gs and 14-day and 28- 
day time interval to calculate ΔGs (step 3 and 4). A different drought 
selection, threshold value, or moving window did occasionally changed 
the results for individual sites, but did not change the results and 
conclusion of the study (Supplementary Figs. 2–4). 

3. Results 

3.1. Land-atmosphere exchange of water, energy, and carbon during 
drought 

Eddy covariance data for all 93 severe droughts in 57 sites showed 
that the strong reduction in Gs was accompanied by a reduction in the 
latent heat flux for forests (evaporation), an increase in the sensible heat 
flux, and a reduction in the vegetation carbon uptake (Fig. 3). This in-
dicates that the drought-induced reduction of Gs reduced the land- 
atmosphere exchange of carbon and increased the sensible heat flux. 
For more than half of the grassland droughts, the latent heat increased at 
the onset of vegetation drought response. This increase in latent heat 
flux, despite the reduction in surface conductance, likely reflects the 
higher atmospheric vapor pressure deficit during drought. Do note that 
the latent heat flux and sensible heat flux were used to calculate Gs, and 
Gs is therefore not independent of the water and energy fluxes. 

3.2. Drought years in satellite data 

The soil moisture anomaly got more negative during the growing 
season with the strongest negative anomaly in August for both the forest 
and grassland sites (Fig. 4a, b). The onset of vegetation drought response 
was most often in mid-June to early-August for both forest and grassland 

sites, with the mean occurrence around middle July (forest) and the first 
week of July (grassland) (Fig. 4c, d). The onset of vegetation drought 
response was on average 40 days (forest) and 44 days (grassland) before 
the day of the strongest soil moisture drought. 

The LST and NDVI had a contrasting response for forest and grass-
land sites. In the severe drought years, LST was substantially higher as 
compared to the reference years for both forest and grassland sites 
(Fig. 4e, f). On average, the median LST anomaly during drought years 
was + 1.2∘C (grassland) and + 1.0∘C (forest) in May and June, and + 3.
4∘C (grassland) and + 2.3∘C (forest) in July and August. High LST was 
also observed before and after the onset of vegetation drought response. 
The NDVI had different responses for forest and grassland sites (Fig. 4g, 
h). For the forest sites, the site-to-site variability and the anomalies were 
small. Furthermore, the median forest NDVI anomaly was marginally 
positive in May (+ 0.010), while it was negative in August ( − 0.012). 
On the contrary, in the grassland sites, the median drought anomaly was 
much larger in August ( − 0.057) and negative during most of the sea-
son. The site-to-site variability in NDVI anomaly in grassland was larger 
than for forest sites, and the number of grassland droughts in our dataset 
is much lower compared to the number of forest droughts. Therefore, the 
NDVI anomalies for grassland were less often statistically significantly 
from zero for a similar or larger anomaly value. 

Other thermal indices, the LST − TA and CWSI, showed a similar 
anomaly in drought years as the LST (Supplementary Fig. 5a-d). For both 
forests and grasslands, LST − TA and CWSI had a positive anomaly 
during the drought years for most of the growing season. Other optical 
indices, the EVI, NIRv, and SIPI, showed a similar response as the NDVI 
(Supplementary Fig. 5e-j). The absolute anomalies in all optical indices 
is larger for grasslands than for forests throughout most of the summer 
season. On average, the median absolute anomalies throughout the 
growing season in are 13 − 17 times higher for grassland sites compared 
to forest sites. Also, the spatial variability in anomalies is larger for 
grassland sites compared to forest sites, the median standard deviation 
of the anomalies throughout the growing season is 1.6 − 2 times higher 
for grassland sites compared to forest sites. 

Fig. 4 shows how thermal and optical data reflected drought years. 
The figure reflects that the optical indices show a stronger response to 
grassland droughts than to forest droughts, while the response in ther-
mal data and indices is comparable for forests and grasslands. This 
supports our hypothesis that drought-induced changes in forest and 
grassland Gs have a contrasting response in the satellite data. To further 
study this hypothesis, we focus on the weeks before and after the onset of 
the vegetation drought response. For all drought years, we calculated 

Fig. 3. Land-atmosphere exchange of water, energy, and carbon during drought. A reduction in (a) surface conductance (Gs) impacts the fluxes of (b) 
evaporation (LE), (c) sensible heat (H), and (d) and gross primary productivity (GPP). Data for 93 droughts in 57 eddy covariance sites (47 forest sites and 10 
grassland sites). The values are calculated as the mean value in the three weeks before minus three weeks after the onset of vegetation drought response for each 
individual drought event. The boxes show the 25th − 75th percentile over the droughts at all forest and grassland sites, and the lines represent the 5th − 95th 

percentile range. A ∗ indicate that the change is significantly different from zero at p ≤ 0.05. 
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the change in the remote sensing data between the three weeks before 
and after the onset of the vegetation drought response. 

3.3. The onset of vegetation drought response in satellite data 

The surface conductance Gs decreased at the onset of the vegetation 

drought response (Fig. 5a). This was by construction, because the onset 
of vegetation drought response was defined as the day with strongest 
reduction in Gs. The magnitude of the reduction in Gs was lower for 
forest sites ( − 0.007 ± 0.006 m s− 1) compared to grassland sites ( −
0.037 ± 0.036 m s− 1). At the onset of the vegetation drought response, 

ΔLST was positive; the LST increased during the weeks when Gs 

Fig. 4. Composite of drought anomalies in remote sensing data across all sites. The median difference in the soil moisture content for the drought years and reference 
years for (a) forest sites and (b) grassland sites. The timing of the onset of the vegetation drought response for all droughts detected at all (c) forest sites and (d) 
grassland sites. (e-h) Median differences in the drought years and reference years for the (e-f) land surface temperature (LST), and (g-h) normalized difference 
vegetation index (NDVI). For each of the 47 forest sites and 10 grassland sites, the mean satellite signal over all drought years is compared to the mean signal over all 
reference years. The numbers indicate the median anomaly for each calendar month, the shaded areas represent the inter-quartile range of responses, and a thick line 
indicates that the anomaly is significantly different from zero (p ≤ 0.05). 
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decreased (Fig. 5b). The mean increase in LST was of similar magnitude 
for forest (3.1∘C) and grassland (3.5∘C) sites. The mean ΔNDVI was 
slightly positive for forest sites, but negative grassland sites (Fig. 5c). 
The mean increase in forest NDVI was not significant (0.007), while the 
NDVI showed a significant decrease for grassland sites ( − 0.048). For 
forest sites, ΔNDVI was negative for 61% of the severe droughts at all 
sites, while for grasslands, ΔNDVI was negative for 73% of the severe 
droughts. Fig. 5 also includes the Δ-values for the similar period in the 
reference years. For Gs and NDVI, the reference responses were centred 
around zero. This indicates that, overall, we expect no strong con-
founding effects of seasonality in the results. For LST, ΔLST was positive 
during reference years, which shows the effect of seasonality. The in-
crease in LST in reference year (0.9∘C) is however much smaller than the 
mean increase in drought years (3.2∘C). 

An increase in LST can reflect a decrease in the evaporative fraction 
(a decrease in Gs) (Mallick et al., 2022), but an increase in LST can also 
reflect an increase in incoming shortwave radiation or air temperature 
(Panwar and Kleidon, 2022). For each site, we calculated the partial 
correlation between the rolling median LST and Gs, that accounted for 
air temperature and incoming radiation. We did this to test if the in-
crease in LST was correlated to the decrease in Gs, or only to the changes 
in temperature and radiation. The partial correlation was calculated for 
the 6 weeks centred around the onset of the vegetation drought 
response. For 58 out of 90 droughts (64 %), the LST significantly 
increased with decreasing Gs, also when accounting for temperature and 
radiation. This confirms that for most sites, the LST reflects 
drought-induced reductions in Gs. Land cover, and meteorological and 
climate variables did not explain why some sites had a small or a 
non-significant correlation between LST and Gs. The results, as pre-
sented in Fig. 5, were not different between sites with or without a 
significant partial correlation between LST and Gs. 

Most other thermal infrared and optical indices had a similar result 
as the LST and NDVI (Supplementary Fig. 6). The CWSI, which was 
calculated from the LST, had a very similar response to the reduction in 
Gs as the LST: it increased at the onset of vegetation drought response for 
both forest and grassland sites (Supplementary Fig. 6b). The LST − Ta 

showed no clear response. For both forest and grassland sites, the ΔLST 
− Ta was more positive during the vegetation drought onset compared to 

reference years (Supplementary Fig. 6c). However, there was a large 
variability in the response, and for 33 % of the grassland sites and 54 % 
of the forest sites, the LST − Ta decreased at the onset of vegetation 
drought response. LST based indices are considered to be a better indi-
cator of vegetation drought stress, because they are less sensitive to 
meteorological variables (Neinavaz et al., 2021). On the other hand, Ta 

increases with LST and therefore, their difference does not go beyond a 
high limit. The spatial mismatch between the satellite measurements of 
LST and the ground measurement of Ta might explain the weak and 
variable response of LST − Ta to changes in canopy conductance in this 
study. Other optical indices, the EVI, NIRv, and SIPI responded similarly 
as the NDVI (Supplementary Fig.d-f). The EVI and NIRv decreased 
during the onset of vegetation drought response, and the absolute 
decrease was larger for grassland sites compared to forest sites. The SIPI 
did not reflect any change for forests and increased for grassland sites. 
This indicated that for forests, no or only minor changes could be 
detected in the structure and greenness of the vegetation. 

4. Discussion 

The current analysis revealed that the different drought response 
strategies of forest and grassland are reflected in the satellite data. For 
both forest and grassland sites, LST increased at the timing of drought- 
induced reductions in Gs. During drought, persistent water stress in 
combination with high vapor pressure deficit and radiative heating, 
triggers a decline in Gs and evaporative fraction (Grossiord et al., 2020). 
This leads to a further increase in vapor pressure deficit within vegeta-
tion, and an increase in sensible heat flux, air temperature, and the LST 
(Mallick et al., 2022). For the forest sites, the reduction in Gs was 
accompanied by a minor reduction in NDVI and other optical indices. 
This confirms that most forest sites had a strong stomatal regulation to 
reduce water loss, while there were no significant changes in their 
canopy structure and greenness. For the grassland sites, the decrease in 
Gs was accompanied by a strong reduction in the NDVI and strong 
changes in other optical indices. This reflects that the decrease in 
grassland Gs was (partly) regulated by a decrease in the grassland́s green 
leaf area. The marginally negative forest NDVI anomaly at the end of the 
summer (Fig. 4) and slight decrease in NDVI at the onset of drought 

Fig. 5. The onset of vegetation drought response reflected in satellite data. (a) Changes in the surface conductance Gs at the onset of the vegetation drought response 
from in-situ eddy covariance data. Changes in (b) land surface temperature (LST), and (c) normalized difference vegetation index (NDVI) derived from satellite data. 
The values are calculated as the mean value in the three weeks before minus three weeks after the onset of vegetation drought response for each individual drought 
event. For comparison, the figure includes the respective differences calculated with the same days of the drought year, but for the reference years, in light green and 
light blue. The boxes show the 25th − 75th percentile over the droughts at all forest and grassland sites, and the lines represent the 5th − 95th percentile range. A ∗
indicates that the change is significantly different from zero at p ≤ 0.05. 
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response for 60 % of the sites (Fig. 5) also indicates the possibility of 
change in forest color or structure (e.g. leaf angle) to some extent during 
the course of the severe droughts. Here, we attribute the differences 
between forest and grassland sites to their different drought coping 
strategies. The results might, however, be confounded by the effect of 
different climate regimes and drought characteristics. For example, most 
forest sites lie in mesic regions, while the grassland sites are equally 
spread over arid and mesic regions. We tested our research hypothesis 
on arid (aridity index > 1) and mesic (aridity index < 1) sites separately, 
but this did not change the results and conclusion of our study. 
Furthermore, we only analysed severe droughts and excluded sites 
(mostly grassland sites) that were always water-limited during the dry 
season. Our results do therefore not reflect the grassland and forest 
response to regular dry conditions. 

This study generalised the tree and grassland drought responses, 
however, there is no uniform drought response across species and sites. 
For example, different drought adaptation strategies exist between tree 
species, such as a stronger stomatal regulation for leaves versus needles 
(Wolf et al., 2013), or a higher sensitivity of Norway spruce to drought 
compared to pine because of their different rooting depths (Schuldt 
et al., 2020; Treml et al., 2021). For grasslands, the degree of stomatal 
control also varies with species (Signarbieux and Feller, 2011). In our 
study, some sites have a weak satellite response while they experience a 
strong reduction in Gs, while other sites show an increase in satellite 
indices when a decrease was expected. The different forest leaf types 
explained part of the variability in the forest NDVI response: for nee-
dleleaf sites, the ΔNDVI at the onset of vegetation drought response was 
slightly positive (ΔNDVI = 0.002), while the NDVI decreased for 
broadleaf sites (ΔNDVI = − 0.009) (Supplementary Fig. 7). However, 
for both forest types, the decrease at the onset of drought response is 
lower than the change in reference years. Meteorological or climate 
variables did not explain the variability in Gs or satellite-based drought 
response. 

In this study, we assign the presence and absence of a satellite signal 
to the canopy-scale vegetation drought response. However, the absence 
of a NDVI signal in forest can also be related to the saturation of the 
remote sensing signal in forests (Huang et al., 2021), rather than the 
absence of a visible vegetation drought response. Independent of 
whether it is related to the forest drought strategy, or to the saturation of 
the remote sensing signal, this study confirms and explains that optical 
indices such as the NDVI or NIRv do not or only weakly reflect drought 
stress in temperate forests (Bachmair et al., 2018; Hoek van Dijke et al., 
2019; Vicca et al., 2016; Xu et al., 2018; Zhang et al., 2016). This makes 
optical vegetation indices less suitable to study the forest drought stress 
and drought-related changes in water, energy, and carbon fluxes. On the 
other hand, LST and CWSI increased at the onset of vegetation drought 
response for both forest and grassland sites which demonstrates their 
suitability for drought stress monitoring. 

Recently launched satellites and upcoming missions provide a great 
opportunity for global assessments of vegetation drought stress. These 
future missions include new sun-induced fluorescence missions (FLEX), 
high spatial resolution thermal missions (LSTM, Trishna, and SBG), and 
hyperspectral missions (EnMAP and CHIME). These satellite sensors for 
example allow for studying specific narrow waveband measurements 
that reflect the xanthophyll pigments (PRI indices, Gamon et al. (1992)) 
or the abundance of chlorophyll (CARI indices, Kim et al., 1994), and 
high resolution assessment of sun-induced fluorescence (Cao et al., 
2021) and land surface temperature. Using the different satellite data in 
a synergistic way (Berger et al., 2022) will improve future assessments of 
the vegetation drought response of forests and grasslands. Furthermore, 
the high resolution satellite data, in combination with high quality flux 
measurements across the Earth́s surface, provides the opportunity to 
further enhance the understanding of how satellite data reflect the 
vegetation drought response, as well as the drought-related changes in 
water, energy, and carbon fluxes for different ecosystems and plant 
functional types. 

5. Conclusions 

In our study we investigated how the different drought response 
strategies of temperate forests and grasslands are reflected in remote 
sensing data. In summary, we found that:  

1 For forests, at the timing of drought-induced reduction in Gs, the LST 
increased. However, the response in the NDVI and other optical 
indices was only minor, or even absent for 40% of the forest sites. 
This likely reflects the treeś strong stomatal control to reduce water 
loss during severe droughts. 

2 For grasslands, the drought-induced reduction in Gs was accompa-
nied by a strong response in the NDVI and other optical indices. This 
reflects that the decline in Gs was partly regulated by a reduction in 
green biomass. Similar to the forest sites, the reduction in Gs was 
accompanied by an increase in LST. 

These results indicate that contrasting forest and grassland drought 
response strategies are found over large regions. The combination of 
optical and thermal remote sensing can be employed to further improve 
the understanding of large-scale vegetation drought responses in 
different climates and plant functional types, and this could help to 
improve the drought predictive responses in land surface models. 
Furthermore, we conclude that a different satellite monitoring strategy 
is required to monitor the vegetation drought response and to ensure 
accurate inference on the implications for land-atmosphere fluxes of 
water, energy, and carbon. 
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