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Bosonic codes allow the encoding of a logical qubit in a single component device, utilizing the
infinitely large Hilbert space of a harmonic oscillator. In particular, the Gottesman-Kitaev-Preskill
code has recently been demonstrated to be correctable well beyond the break-even point of the
best passive encoding in the same system. Current approaches to quantum error correction (QEC)
for this system are based on protocols that use feedback, but the response is based only on the
latest measurement outcome. In our work, we use the recently proposed Feedback-GRAPE (Gra-
dient Ascent Pulse Engineering with Feedback) method to train a recurrent neural network that
provides a QEC scheme based on memory, responding in a non-Markovian way to the full history of
previous measurement outcomes, optimizing all subsequent unitary operations. This approach sig-
nificantly outperforms current strategies and paves the way for more powerful measurement-based
QEC protocols.

Introduction. The key components of quantum
computers are quantum bits or qubits, which can be
implemented in a variety of hardware platforms, such as
superconducting circuits [1–3], trapped ions [4–6], Ryd-
berg atoms [7], and photonic systems [8]. Irrespective
of the platform, quantum decoherence that arises from
relaxation and dephasing of the quantum components
represents the greatest limitation for building quantum
computers that are able to run large scale quantum
algorithms. The main objective of the current research is
the implementation of reliable quantum error correction
(QEC). Reliable QEC protocols can correct errors on
logical qubits, extending the lifetime of the logical
information stored in them far beyond the coherence
time of individual physical qubits used for encoding a
logical qubit. This can be useful for the purposes of
quantum memories, reliable quantum operations and
quantum computing in general.

The most widespread class of approaches to QEC is
represented by the the so-called stabilizer codes, where
n physical qubits are used to encode k < n logical
qubits [10–13]. This redundancy, along with the concept
of quantum entanglement, can be used to correct a
limited number of independent physical errors [14]. An
alternative to such encoding is to use systems with
continuous variables, namely bosonic systems, called
bosonic encodings [15, 16]. Unlike the qubit-based
encoding, the redundancy is achieved within a single
physical component by exploiting the infinitely large
Hilbert space of bosonic systems (i.e. quantum oscilla-
tors, such as photons in an optical cavity) to be able to
perform QEC. Bosonic codes are more hardware-efficient
as there is often only one or very few dominant decay
channels to be corrected for, and they offer exceedingly
long coherence times in the microwave range. However,
they need nonlinear elements for processing, they require
a protocol to prepare states and the overall strategies
are still less developed than for multi-qubit encoding

[17].
A variety of bosonic encodings exist, such as the

Pegg-Barnett [18], cat (and kitten) [19–24], Gottesman-
Kitaev-Preskill (GKP) [2, 17, 25–27] and binomial
[28, 29] codes, but recently the original GKP code has
received strong renewed attention. Using reinforcement
learning (RL)-based controls, Sivak et al. [3] have
demonstrated GKP error correction to achieve beyond
the so-called break-even point of the best passive en-
coding in the same system, extending the lifetime by a
factor 2. This represents by far the longest qubit lifetime
extension reached by any platform [2, 29–34]. However,
even though current approaches to QEC for this system
are based on protocols that use feedback, this is only
limited to a few operations, and the response depends
only on the latest measurement outcome.
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Figure 1. Scheme of the proposed quantum error correction
process via non-Markovian feedback. The physical system is
represented by a cavity coupled to a control qubit. The result
of each binary quantum measurement is used as input of a
neural network with memory, which responds to all the se-
quence of measurements providing the optimized parameters
to control the system.
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Figure 2. Quantum error correction feedback protocol. The scheme represents the sBs QEC protocol with the NMF approach
implemented with a RNN. On each cycle, the latest outcome of the measurement performed on the qubit is used as input for
the RNN, which keeps memory of all the previous sequence of inputs and suggests the parameters used in the subsequent gates.
The grey areas in the QEC circuit represent the duration of the dissipative dynamics [9].

Recently, Porotti et al. [35] have developed a method
for using gradient-ascent pulse engineering (GRAPE)
with feedback, known as Feedback-GRAPE, that allows
for a feedback-based optimal control with a model-based
approach. This has been demonstrated to outperform
state-of-the-art model-free RL methods in tasks like
state purification, state preparation and stabilization,
and bosonic code preparation.

In this work, we propose an advanced GKP QEC
scheme making use of a recurrent neural network (RNN),
which is able to provide an elaborate QEC strategy based
on the memory of the entire sequence of measurement
outcomes. In particular, we use Feedback-GRAPE to
train the RNN, which suggests optimized parameters of
the GKP QEC circuit based on real-time feedback from
measurements of the quantum system (Fig. 1). Thanks
to the memory of the neural network, the real-time
strategy adopted is non-Markovian and is able to boost
the theoretical performance of standard strategies via
non-Markovian feedback (NMF), increasing the logical
qubit’s lifetime by a factor higher than 2.

Theoretical background. In order to be able to coun-
teract the effect of noise in quantum devices, and thus to
correct for errors which would lead to the loss of stored
quantum information, different QEC protocols have been
developed for the GKP code in the past decades [17].
We can conveniently distinguish two classes of QEC
strategies: namely, autonomous [26] and feedback-based
[2, 3]. While the former does not include any measure-
ment, the latter relies on a feedback loop based on pro-
jective measurements of an ancillary qubit to perform
operations dependent on the measurement outcomes.
Although both approaches have advantages and disad-
vantages, feedback-based protocols have shown to have
a better performance in experiments than autonomous
QEC schemes [2, 3], naturally allowing for further exten-

sions and developments. In our work we focus entirely on
the up-to-date best optimized measurement-based proto-
col: namely, the so-called small-BIG-small (sBs) protocol
[3, 26, 36]. In particular, we adopt the implementation
used by Sivak et al. [3], since it is experimentally fea-
sible and it has been demonstrated to be more versatile
for further optimization. This protocol is based on four
elementary gates which allow for a universal control of
the cavity-qubit system: namely, the echoed conditional
displacement ˆECDqc (with complex parameter β), act-
ing as an entangling gate on both the ancillary qubit and
the cavity; the qubit rotation R̂q (with real parameters

ϕ, θ); the cavity displacement D̂c (with real parameter
α); and the cavity virtual rotation ˆV Rc (with real pa-
rameter θV R) [9]. Quantum error correction is performed
by applying an even number of half-cycles, each of which
includes the same fixed sequence of gates (see Fig. 2).
Initially, the ancilla qubit is prepared in its ground state
|g⟩, and then 4 layers of the QEC half-cycle consisting of
qubit rotation and cavity displacement are applied. At
this time, a measurement on the ancillary qubit is per-
formed, projecting its state along the z axis, returning g
(e) if projected onto its ground (excited) state |g⟩ (|e⟩).
In our work we neglect leakage errors which could get the
qubit to be in higher excited states. After the measure-
ment, the ancilla qubit is reset to its ground state just
before the next stage of control sequence takes place.

The QEC task presented can be described as a quan-
tum observable Markov decision process (a physical appli-
cation of hidden Markov models and partially observable
Markov decision processes) [37–40], since it is not pos-
sible to (experimentally) access the full quantum state
during the process: the only available information is the
outcome of the projective measurements of the ancillary
qubit entangled with the oscillator. However, each obser-
vation alone is insufficient to determine the best param-
eters’ set for the applied gates in the following QEC cy-
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Figure 3. Logical qubit’s lifetime extension. (a) Comparison
of the logical state |+ZL⟩ time evolution (dots: average over
multiple trajectories, continuous faded lines: sampled trajec-
tories averaged over the batch-size) for the standard sBs pro-
tocol and the NMF approach advocated in this work. The
inset shows the results obtained with NMF for |−YL⟩ and
|−XL⟩. (b) Lifetime of average channel fidelity for four imple-
mentations of the sBs protocol: autonomous, standard, MF
and NMF. The results are obtained for fixed time intervals of
each cycle (Fig. 2) and different noise levels (characterized by
decoherence times T1, T2, Ts) [9]. (c) QEC after injection of
a displacement error: difference between the NMF strategy
and the standard sBs protocol, after averaging over 1032 tra-
jectories.

cle. Therefore, we adopt a RNN to integrate information
over time, effectively building an internal representation
(or belief state) that approximates the full state of the
system. In fact, this capability of RNNs has been often
exploited in different complex tasks like natural language
processing, time series prediction, and many others with
applications to scientific problems [41–45]. As a result

of the solution adopted, the QEC strategy proposed be-
comes dependent also on all the past observations: in this
sense the strategy is non-Markovian.
We implement a realistic simulation of the collective

entangled dynamics of the cavity and the ancilla qubit,
with fixed time dynamics (Fig. 2) and full cycle duration
τcycle. This allows us to compute with high fidelity the
probability that a sequence of measurement outcomes is
obtained, which is used to train the neural network re-
sulting in a model-aware agent. We call mi (with i ∈ N)
the binary measurement outcome on the ancilla qubit
entangled with the cavity in the half-cycle i, so that
mi ∈ {g, e}. The full sequence of measurement outcomes
is contained in the vector m = (m0,m1, . . . ,mN ), and
P (m) is the probability of the full trajectory to occur.
In order to extend the logical qubit’s lifetime, our goal
is to maximize a return function R that we choose to be
the fidelity of the final density matrix with respect to the
initial state: namely, R = F(ρZL

, ρ(T )), with F(σ, ρ) =
[Tr{(

√
σ̂ρ̂

√
σ̂)1/2}]2. Since we deal with probabilistic se-

quence of outcomes, we have to maximize the weighted-
average cumulative return ⟨R(m)⟩m =

∑
m P (m) R(m)

over all the possible trajectories, according to their cor-
responding probability given. This is performed using
automatic differentiation of the expression

∂⟨R(m)⟩m
∂θ

=
〈∂R(m)

∂θ
+R(m)

∂ lnPθ(m)

∂θ

〉
m

, (1)

in order to compute gradients through the multi-step
dynamics. While the first term on the rhs of Eq. (1) is
straightforward, the second one is essential to include
the dependence of the probability of each trajectory
on the parameters vector θ of the RNN, as described
in Ref. [35]. The solution provides us with the best
weights and biases for the RNN to be used to suggest
the optimal QEC strategy.

Results. In our numerical simulations we include the
dissipative dynamics via the solution of the Lindblad
master equation to simulate an approximation of realistic
experimental dynamics, using experimental parameters
from Ref. [3], including the qubit measurement and reset
time as well as the delay for the application of each gate
[9]. The training is performed on a fixed initial logical
state (|ZL⟩) with trajectories of 10 full QEC cycles,
in the presence of high noise level [9]. The evaluation
of the strategy has been performed on 1000 full QEC
cycles, thus extending the time to a much longer range
than the one used for the training of the neural network
agent itself, and on different noise levels.
In Fig. 3(a), we show the results of QEC with low

noise level (with values from the experiment in Ref. [3])
averaged over more than 500 total trajectories for a logi-
cal qubit |+ZL⟩, both with the standard sBs protocol [3]
(see [9]) and with our non-Markovian-feedback approach.
The lifetime more than doubles with the use of NMF:
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in fact it increases from TZ(std.)/τcycle = 3.5 × 102 to
TZ(NFM)/τcycle = 7.5 × 102. Moreover, the learned op-
timal strategy also generalizes to any initial logical qubit
state without re-training, maximizing each correspond-
ing Pauli operator expectation value and extending the
qubit’s lifetime. Indeed, a comparable result is obtained
(inset of Fig. 3(a)) using the same neural network with
the initial logical state |−XL⟩, while for the |−YL⟩ we
get a lower value of T−Y (NMF)/τcycle = 3.9×102, which
is an expected feature of the square GKP code [2, 3].
Moreover, we show that a non-Markovian-feedback
strategy based on a RNN is necessary to boost the
performance of QEC. In fact, an instantaneous Marko-
vian feedback (MF) implemented with a feed-forward
neural network, which is capable of providing distinct
parameters’ values according to the latest measurement
output only, performs comparably with the standard
approach with no feedback (Fig. 3(b)). These results
hold even for very different noise levels: from the low
noise in Ref. [3] to the higher noise of the experiment in
Ref. [2], as well as in the presence of imperfect gates [9].

In addition, we notice that our NMF approach con-
siderably outperforms other approaches, including the
autonomous QEC scheme which has a shorter protocol
duration [9]. Apparently, measurement based protocols
are not intrinsically outperforming the autonomous
one under all circumstances, but they become strongly
advantageous when memory is exploited, as in our
scheme. We also compare the standard and the NMF
sBs protocols in their ability to correct deliberately
injected errors (Fig. 3(c)): by injecting displacement
errors to the initial | + ZL⟩ state before QEC, we
compare the ability of the two methods to recover the
initial logical information, namely the expectation value
of the logical Pauli operator ZL. The plot in Fig. 3(c)
shows that the performance difference of our approach
and the standard sBs is always positive, confirming that
our approach allows to reach higher values in a shorter
time compared to the standard QEC strategy.

We now analyze the strategy discovered by the RNN
with non-Markovian feedback, showing how memory is
exploited to outperform QEC. In Fig. 4 we present one
case of a trajectory for the initial logical state ZL with
noisy dynamics and fixed post-selected measurement
outcomes that we prescribe (sequence of outcomes: 10
g, 10 e and 10 g). This allows us to track the values of
the 15 parameters optimized with the NMF approach
in an easily interpretable situation of subsequent g and
e measurement outcomes. For most of the parameters
we can notice that the initial values are relatively close
to the standard one (represented by dashed lines) [3],
and then they evolve over time with an alternating
exponential-like behavior according to the previous
measurement outcomes.

We also find that our optimal strategy has the same
probability of the qubit to be found in the ground state

(a) (b)

(c) (d)

(f)

(h)

(e)

(g)

Figure 4. Optimized non-Markovian parameters. (a) Mea-
surement probabilities for a given QEC trajectory, with fixed
measurement outcomes. The value g (e) corresponds to an
outcome indicating the ancilla qubit state in |g⟩ (|e⟩). The
dashed line indicates the probability 0.9. (b) Virtual rota-
tion angle applied at the end of each QEC cycle. The verti-
cal shaded area represents the cycle’s timestep at which the
measurement m = e is obtained and the virtual rotation is
applied. (c)-(h) Parameters entering the 4 layers of the QEC
cycle in Fig. 2 suggested by the RNN. The vertical shaded ar-
eas represent the cycles in which the RNN is given the e mea-
surement as input. The dashed horizontal lines are a guide
for the eyes indicating the corresponding constant values of
the standard sBs protocol.

g after the measurement, p(g) ≈ 0.9, as in the standard
approach (see Fig. 4(a)). This observation is important
because as explained in Ref. [3] this is experimentally
desirable when implementing the sBs measurement-
based protocol. Other strategies that we found, instead,
occasionally exhibit a longer lifetime in some conditions,
but they are less generalizable to different noise levels
and show a low probability p(g) averaged over time,
thus becoming less auspicable for an experimental
implementation. We present more systematic results for
other agents, the Markovian-feedback strategy, as well
as for biased-noise gates and different dynamics in the
Supplemental Material [9].
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Conclusion. In this work, we have proposed a complex
measurement-based QEC scheme for GKP codes based
on non-Markovian feedback. In particular, we have used
a recurrent neural network implemented in the QEC
circuit in order to optimize all the QEC operations based
on the full history of previous measurement outcomes.
We have also shown that our QEC scheme remarkably
outperforms current autonomous (without feedback)
and measurement-based (with Markovian feedback)
QEC strategies in different conditions of noise level and
dynamics. To reach this result we have used the recently
proposed Feedback-GRAPE [35] (Gradient Ascent Pulse
Engineering with Feedback) method to train the RNN
exploiting a model-based approach.
More generally, our work demonstrates the power of
optimizing feedback protocols in the shape of variational
quantum circuits [46–48] with in-sequence discrete
measurements. We additionally envision the possi-
bility to extend this non-Markovian approach to any
measurement-based QEC strategy for the other bosonic
codes, with the model-based approach enabled by the
Feedback-GRAPE algorithm.
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THE GKP CODE

In contrast to multi-qubit encoding, where the logical qubit information is stored into many physical qubits allowing
to implement fault-tolerant operations and to correct for quantum decoherence errors, bosonic codes exploit the
theoretically infinite Hilbert space of Fock states of a bosonic system. There are different bosonic codes which we can
consider, including the Pegg-Barnett [1], cat (kitten) [2], Gottesman-Kitaev-Preskill (GKP) [3–7] and binomial [8, 9]
code. In this work, we consider a single-mode GKP state encoding a single logical qubit.

In the superconducting circuit platform, these codes can be physically realized using an optical superconducting
cavity, coupled to an ancilla transmon qubit and a readout resonator. The ancillary qubit is entangled with the
cavity state and is used to control the bosonic code itself. In the case of measurement-based quantum error correction
(QEC) protocols, projective measurements are performed on the qubit in order to extract weakly information from
the cavity, without destroying the encoded logical state.

q/ π

4

p/
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|0L⟩ |1L⟩

q/ π
420−4 −2
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Gottesmann-Kitaev-Preskill logical states

Figure S1. Wigner functions of the GKP physical code for the logical qubits 0L and 1L, respectively. The two logical grid
states differ only by a displacement of

√
π along q.

Pauli operators and stabilizers

Here we describe the theoretical framework to define and characterize the GKP codes, focusing on the case of a
cavity with one single oscillator mode. We start defining the cavity displacement operator

D̂(ζ) = eζâ
†−ζ∗â, (1)

where â(â†) is the bosonic annihilation (creation) operator.
There are two stabilizers, ŜX = X̂2

L = D̂(2α) and ŜZ = Ẑ2
L = D̂(2β), which define the entire GKP codespace spanned

by the two logical states |0L⟩ and |1L⟩, i.e.: C =
〈
|0L⟩, |1L⟩

〉
. Every state in C can be written as a linear combination

of this two logical states (which form a basis) and is a simultaneous eigenstate of both the stabilizers with eigenvalue
+1, as the stabilizers also commute with each other. This physically means that every logical qubit is characterized
by the periodicity 2α and 2β in the {q, p} phase-space.
The logical Pauli operators are instead defined as X̂L = D̂(α) and ẐL = D̂(β), such that their eigenstates are the
logical states ±X (| ±XL⟩) and ±Z (| ±ZL⟩), respectively. The operator ẐL is used to define the basis logical states:
|+ZL⟩ = |0L⟩ and | −ZL⟩ = |1L⟩. Physically, the eigenstates of the logical Pauli operators with opposite eigenvalues

ar
X

iv
:2

31
2.

07
39

1v
1 

 [
qu

an
t-

ph
] 

 1
2 

D
ec

 2
02

3



2

are transformed into each other with the application of a displacement D̂(α) or D̂β, respectively. For this reason, the
Wigner function of a logical state in this encoding is characterized by dots forming a periodic lattice, which is why
the GKP code is also referred to as the grid code [Fig. S1].

Logical qubit states

The values of the complex code parameters α and β, which enter the definition of the Pauli operators and stabilizers,
are not unique, but they are constrained by a relation according to anti-/commutation relation of the logical operators:

α∗β − αβ∗ = iπ , (2)

or

α∗β − αβ∗ = 2iπ , (3)

respectively. We choose here the condition for which the logical operators anti-commute. We can now define the
logical qubits encoding |0L⟩ = |+ ZL⟩ and |1L⟩ = | − ZL⟩ as [6]

|0L⟩ =
∑

j

|2j√π⟩Q , (4)

|1L⟩ =
∑

j

|(2j + 1)
√
π⟩Q , (5)

with the eigenstates of the position operator Q̂ = i(β∗â− βâ†)/
√
π, or equivalently

|0L⟩ = N
∑

k,l

e−iπkl|2kα+ lβ⟩ , (6)

|1L⟩ = N
∑

k,l

e−iπ(kl+l/2)|(2k + 1)α+ lβ⟩ , (7)

using a linear combination of the coherent states of the cavity oscillator, N being a normalization coefficient.
Since the anti-commutation relation is the only constrain over the two parameters of the code, it is possible to define
GKP codes that have different symmetries in the phase space according to the values of α and β, such as the square,
rectangular and hexagonal code. For the square code, characterized by a square lattice periodicity of the Wigner
function, we have α =

√
π/2 and β = iα. Therefore α is the unitary lattice displacement along the q̂ direction, while

β is the corresponding one along p̂. The rectangular code is generalized as α = l
√

π/2, β = i
√
π/2/l, where l is a

free scaling parameter, while the hexagonal code has α =
√

π/
√
3 and β = e2iπ/3

√
π/

√
3.

In this work, we have focused entirely on the square GKP code.

Finite-energy GKP code

The ideal GKP logical qubit encoding as described in the previous section, however, is not physical since it requires
an infinite combination of coherent states and therefore an infinite amount of photons and energy to be implemented.
Thus, a real finite-energy GKP code can be described by truncating the number of coherent states up to a maximum
value M : physically this corresponds to considering a finite-size grid in phase space instead of an infinite periodic
lattice, as represented in Fig. S1. Mathematically, this can be described by a convolution of a gaussian envelope with
the ideal logical state in Eqs. (6) and (7):

|µ̃L⟩ ∝ e−∆2â†â|µL⟩ , (8)

with µ = 0, 1 for the corresponding logical qubit states. The ideal limit is obtained for ∆ → 0.
As we can notice, the gaussian envelope introduces a cut-off both in real and phase space, as well as in the Hilbert
space of Fock states, providing an upper limit to the actual number of photons involved. Therefore, it is possible to
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accurately simulate the dynamics of a finite-energy GKP code imposing a large but finite number of Fock states to
be considered. In our work we adopted an upper limit of the Fock space of Nmax = 100.
However, the main consequence of this is that the GKP code is no longer invariant under discrete translations, but
only approximately and within a few translations: therefore, one additional challenge of QEC is to keep the grid
centered in phase space around the (q, p) = (0, 0) point.
It is also possible to introduce finite-energy or approximate Pauli operators and stabilizers, in order to normalize them
to the GKP finite energy [6]: however, we did not use such operators, but rather the standard definition provided in
the previous section.

GKP QUANTUM ERROR CORRECTION

Dynamics, noise and errors of the GKP code

In order to be able to counteract the effect of photons’ dissipation in the quantum cavity by acting and applying
controls on it, the cavity itself is coupled to a two-level system that acts as control qubit. However, the qubit that is
adopted as ancilla is also affected by quantum noise, namely relaxation, dephasing and leakage events. The former two
are responsible for the decoherence of the qubit, while the latter is the most harmful error and is due to the excitation
to higher levels in an actual multi-level system. A protocol must be developed to correct for these additional qubit
errors that would affect the cavity after entanglement, as these errors (especially the leakage error) can be the most
detrimental to GKP coding. A readout resonator completes the hardware setup that enables the measurement of
the ancilla qubit: a strong measurement of the qubit in this configuration is reflected into a weak measurement of
the cavity so that the logical quantum information contained therein is not destroyed. In our treatment we will not
consider the qubit leakage and the associated errors, as well as SPAM errors: this would have equal impact on all the
measurement-based protocols and would not significantly affect the results from a quantitative point of view. In fact,
in an experimental setup such as the one in Ref. [10], the probability of a leakage error is pleak. < 0.01, and it can be
reset in the same way as the excited qubit state.

We consider the ground state of the ancillary qubit |g⟩ =

(
1
0

)
, so that the Pauli operators σ̂− = (σ̂x − iσ̂y) /2

and σ̂+ = (σ̂x + iσ̂y) /2 act as creation and annihilation ladder operators, respectively. We define the dissipator of a

damping operator Â applied to the density matrix ρ̂ as

D[Â]ρ̂ = Âρ̂Â† −
(
Â†Âρ̂+ ρ̂Â†Â

)
/2 , (9)

in order to be able to write the time evolution of the density matrix with the Lindblad master equation for the
cavity-ancilla system in the following form:

˙̂ρ = −i
[
Ĥ, ρ̂

]
+D[â/Ts]ρ̂+D[σ̂+/T1]ρ̂+D[σ̂z/2Tϕ]ρ̂ , (10)

where Ts is the cavity relaxation time due to dissipation, T1 is the qubit time for relaxation, while Tϕ =
1

1/T1 + 1/T2
,

T2 being the qubit dephasing time. The Hamiltonian of the system is Ĥ, and it includes a coupling and a Kerr term:

Ĥ =
1

2
χâ†âσ̂z +

1

2
K

(
â†â

)2
, (11)

where χ is the first order dispersive shift term and K is the Kerr constant. Since the dynamics generated by the
Hamiltonian is used to model the pulses to give rise to the gates of the QEC circuit [5], in our work we neglected
its contribution to the dynamics in Eq.(9) because we adopted perfect instantaneous parameterized gates followed by
idling dissipative dynamics, without modelling the electromagnetic pulses.

For the purpose of quantum error correction, we can add projective quantum measurements on the ancillary qubit,
which act as weak (syndrome) measurement on the cavity state providing information on whether an error has
occurred [10]. Since the quantum measurements have an intrinsically statistical nature, we stochastically sample the
measurement’s outcome with a Monte-Carlo algorithm. The density matrix of the full quantum system (cavity and
ancilla) after a measurement is

ρ̂(t+) =
∑

m=±1

rm P̂m ρ̂(t−) P̂
†
m , (12)
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with the sampling algorithm

rm =

{
1, if pm > s

0, otherwise
(13)

where s ∈ [0, 1] is sampled from a uniform distribution, pm = Tr{P̂mρ̂P̂ †
m} is the probability of measurement m ∈

{g, e}, and P̂m = 1̂c ⊗ |m⟩q⟨m| is the projection operator onto the |m⟩ qubit state. Here we introduced the subscripts
q and c to indicate the qubit and the cavity, respectively.
The Lindblad master equation (9) including the discrete stochastic measurements (12) becomes overall probabilistic.
Moreover, we notice that both of them define the evolution of the density matrix immediately after the measurement
ρ̂(t+) in a Markovian way, as they only depend on the density matrix ρ̂(t−) at the step immediately before.

Physical gates

To implement the small-BIG-small QEC protocol as represented in Fig. 2 in the main text following Ref. [10], we
adopted a set of universal physical gates acting on the cavity [the cavity virtual rotation ˆV Rc(θV R) and the cavity
displacement D̂c(α)], on the ancillary qubit [the the qubit rotation R̂q(ϕ, θ)], and on both [the echoed conditional

displacement ˆECDqc(β)]. For these gates we adopt the definition given in Ref. [11], with the echoed conditional
displacement defined as

ˆECDqc(β) = D̂(β/2)⊗ σ̂− + D̂(−β/2)⊗ σ̂+ , (14)

where β ∈ C. The operators σ̂± are acting on the ancillary qubit, while the displacement D̂ acting on the cavity is
defined as

D̂c(β) = exp{βâ† − β∗â} . (15)

The ancillary qubit rotation is given by

R̂q(ϕ, θ) = exp
{
− i

θ

2
(σ̂x cosϕ+ σ̂y sinϕ)

}
. (16)

The cavity virtual rotation that allows to rotate the q and p axis in phase space is given by

ˆV Rc(θV R) = exp{iθV Râ
†â} . (17)

This is used in order to keep the same fixed parameters in the QEC circuit without swapping between real and complex
parameters’ values.

small-BIG-small QEC protocol

In order to perform QEC we adopted the so-called small-BIG-small (sBs) protocol with measurement-based feedback
as described in Ref. [10]. In order to simulate the realistic dynamics we modelled the circuit with perfect instantaneous
gates followed by idling dissipative dynamics solving the Lindblad master equation (9), neglecting the Hamiltonian’s
dynamics. As a consequence, the feedback coming from the measurement, which is used in the experiments to reset
the ancilla and to determine the correct angle for the cavity virtual rotation gate, is not neede here in our modeling.
For the time dynamics during the QEC circuit, we considered a realistic model based on experiment in Ref. [10]:
namely, we assumed a total duration τcycle = 10 µs, so that the half-cycle shown in Fig. S2 will have a duration of
5 µs. The absolute and relative times of each step are shown in Table S1.

The initial condition of the QEC protocol comprises a cavity with a prepared GKP code, and an ancillary transmon
qubit set in its ground state, |g⟩. The sBs standard protocol consists of 4 layers of qubit ancilla rotation and echoed
conditional displacement, which entangles the cavity and the qubit states (Fig. S2). In the fourth layer the entangling
gate is replaced by a simple displacement gate acting on the cavity. Then, a projective measurement (POVM) takes
place on the ancillary qubit, which projects its state onto either the ground (|g⟩) or the excited (|e⟩) state. After that,
the qubit is reset to its ground state and a virtual rotation is applied on the cavity, in order to switch between the
position and momentum space variables. We notice here that we did not include the Hamiltonian dynamics in the
time evolution, and the reset is performed numerically and not with gates or pulses. As a consequence, the feedback
that is usually applied in experiments for the qubit reset and to compensate the Hamiltonian dynamics in the cavity
virtual rotation does not apply to our numerical simulations.
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Figure S2. Scheme showing the half-cycle measurement-based sBs QEC protocol as adopted in the main paper and shown in
Fig. 2, with the dynamics represented by the shaded grey areas, with the time indicated in units of the full QEC cycle.

Dynamics Duration time (µs) Duration time (τcycle)
Entering cycle 0.1 µs 0.01
Layer 1 0.5 µs 0.05
Layer 2 0.7 µs 0.07
Layer 3 0.3 µs 0.03
Layer 4 0.1 µs 0.01
Measurement and reset 2.3 µs 0.23
Virtual rotation and idling 1 µs 0.1

Table S1. Time duration of the dissipative dynamics in half QEC cycle shown in Fig. S2.

FEEDBACK-GRAPE OPTIMIZATION WITH NON-MARKOVIAN FEEDBACK

Feedback-GRAPE

Feedback-GRAPE is an algorithm recently developed by Porotti et. al [12] for Gradient Ascent Pulse Engineering
(GRAPE) with feedback. It works for a quantum system with feedback that is subject to repeated strong pro-
jective measurements at times t1,t2,..., tN with the corresponding measurement results mj, j ∈ [1, N ]. The task of

Feedback-GRAPE is to find the accurate feedback control functions F j
θ (mj) for all possible measurement results

mj = {m1,m2,...,mj}, as a feedback strategy parameterized with the trainable parameters θ that are optimized by

gradient ascent. It is assumed that F j
θ is differentiable with respect to θ, which can be provided by a neural network or

alternatively a lookup table. In order to optimize them, the task would be to to maximize a cumulative total reward
R (this is called return in the nomenclature of reinforcement learning). In a state preparation task, for example, this

could be the final fidelity with respect to a target state σ̂, R(m) =

(
tr
√√

σ̂ρ̂(T |m)
√
σ̂

)2

, where m represents a

particular measurement sequence, which would finally be averaged over all possible sequences of measurement results
to yield R̄ = ⟨R(m)⟩m. For strong projective qubit measurements, as used in the present work, however, the proba-

bilities P for the different measurement results themselves depend on all controls F j
θ that were applied in the previous

time intervals, which must be taken into account when analyzing the gradients with respect to θ. Thus

⟨R(m)⟩m =
∑

m

P (m)R(m) , (18)

where P (m) is the probability for measurement outcomes m. Thus, when evaluating ∂⟨R(m)⟩m/∂θ, we will get two
contributions,

∂[R(m)P (m)]

∂θ
= P (m)

∂R(m)

∂θ
+R(m)

∂P (m)

∂θ
. (19)

To enable stochastic sampling of the second term, we rewrite it using

∂P (m)

∂θ
= P (m)

∂ lnP (m)

∂θ
, (20)
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which leads to

∂ ⟨R(m)⟩m
∂θ

=

〈
∂R(m)

∂θ

〉

m

+

〈
R(m)

∂ lnPθ(m)

∂θ

〉

m

, (21)

where the Pθ(m), with the explicit parameter dependence θ represents the probability of getting the full sequence of
measurement outcomes m = (m1,m2, . . .). The log-likelihood term can be conveniently computed as the cumulative
sum over each trajectory. The gradients can then be taken for a batch of trajectories.

Numerical implementation

The feedback-GRAPE algorithm relies on a gradient-based optimization: therefore we used TensorFlow to
implement automatic differentiation through the whole multi-step dynamics, allowing for an efficient setup which can
run in parallel on a GPU to speed up the calculations. Moreover, in order to numerically simulate the dissipative
dynamics of the system, we developed a custom TensorFlow time-evolution simulator implementing the Runge-Kutta-4
algorithm, which can be run in parallel also on a GPU.

Even though the implementation of a look-up table containing the optimal parameters for a given measurement
outcomes sequence would be optimal and easier to implement, this would however be limiting as the number of
parameters of the look-up table increase exponentially with the number of QEC cycles, and therefore with time,
as shown in [12]. Therefore, when evaluating trajectories with many cycles the effective memory of the look-up
table and its performance would be limited. For this reason, we adopted a recurrent neural network (RNN, whose
hyperparameters are shown in Table S2) which can be used to suggest parameters even at time scales much longer
than the ones used for training. In fact, the RNN responds in a non-Markovian way to the measurement outcomes,
building an internal representation (or belief state) of the state of the quantum system. However, the update of the
RNN’s hidden state only depends on the current state and the current measurement outcome, making this update
itself Markovian. For comparison we also used a feed-forward neural network (FNN), whose hyperparameters are
provided in Table S3. In this latter case, however, the response is not subject to memory and therefore Markovian,
as it will be explained in the results’ section.

Parameter Value
RNN cell GRU
Neurons [10, 256, 256, 15]
Input shape [batch size,1,1]
RNN cell activation tanh
Dense layers activation tanh
Initializer Random Uniform
Initial bias 0.01

Table S2. Hyperparameters of the RNN used, with batch size = 6. The core of the network is the memory provided by the
Gated Recurrent Unit (GRU) in the first layer of the neural network.

Parameter Value
Neurons [256, 256, 15]
Input shape [batch size,1,1]
Dense layers activation tanh
Initializer Random Uniform
Initial bias 0.01

Table S3. Hyperparameters of the FNN used, with batch size = 8.

The training of the RNN to suggest the gates parameters from scratch was not successful: therefore we provided as
initial values the optimal parameters θi used in Ref. [10] (Table S4), allowing the neural network to provide at each
step corrections δθi, applying to the gates the final values θi + δθi. The gates’ parameters which are suggested are
in total 15 for each cycle: the rotation angles ϕ and θ of the qubit rotations of each layer, the real and imaginary
part of the ECD, β′ and β′′, respectively, in layers 1-3, and the virtual rotation angle θV R. The range allowed for
the corrections δθi is [−2, 2], except for the virtual rotation for which δθV R ∈ [−1, 1]. We decided not to change the
parameter of the displacement gate in layer 4 of the QEC cycle, as its value α contains crucial information about the
geometry and the symmetry of the grid code, which could be affected if modifications were allowed.
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Gate Parameter L1 L2 L3 L4

R̂q ϕ π/2 0 0 π/2

R̂q θ π/2 −π/2 π/2 −π/2
ˆECDqc β 0.2i

√
2π 0.2i -

Table S4. Parameters’ values optimized for a single half-cycle derived from [10]: qubit rotation (R̂q(ϕ, θ)), echoed conditional

displacement ( ˆECDqc(β)), cavity virtual rotation ( ˆV Rc(θV R)).

RNN-agent training

For the agent to be included in the QEC scheme as in Fig. 2 of the main text, we adopted a recurrent neural-network
(RNN) with 10 Gated Recurrent Units (GRU) cells [13], and 2 hidden layers (256, 256), with an activation function
f = tanh() in each layer (Table S2). The training was performed over 1000 epochs, with different batch-sizes (6 and
8 for the sBs optimization) for the Monte-Carlo sampling of the measurements giving rise to different trajectories,
and collecting the gradient from each of them and applying it to the same network. The learning rate was set to
lr = 10−4, the biases were all randomly initialized within the range [−0.1, 0.1].
For every optimization, multiple agents were trained in parallel in different parallel environments: the best performing
agent was then evaluated and post-selected according to the best performance, namely the longer lifetime achieved.
For the reward function to maximize we used the fidelity of the final state density matrix ρ̂ = ρ̂(T ) with respect to
the target σ̂, which is the initial state (σ̂ = ρ̂(0)):

F [ρ̂, σ̂] =

[
Tr

(√√
σ̂ρ̂

√
σ̂

)]2
, (22)

which for pure target (initial) states is equivalent to

F [ρ̂, σ̂] =
[
Tr

(√
σ̂ρ̂

)]2
. (23)

Figure S3. Training of the RNN for the NMF QEC strategy. Plot of the final infidelity (1 − F , F being the fidelity between

the final and the initial state) and the Pauli Z expectation value ⟨Ẑ⟩ as a function of the epoch number during the training
with Feedabck-GRAPE. The final fidelity F has been used as a reward for the agent (see text).

An example of the training of a RNN for the optimization of 15 parameters of the sBs QEC protocol is shown in
Fig. S3 for the initial state | + ZL⟩: the training has been performed over 1000 epochs for trajectories of 10 full sBs
QEC cycles, including 2 measurements each. In blue we show the behavior of the infidelity (defined as 1−F , F being
the fidelity) with respect to the initial state as a function of the training epoch. The dark straight line represents the
running average over 40 data points, while the light blue line corresponds to the raw data. The red lines, instead,
represent the running average and the raw data of the logical Pauli Z expectation value, respectively. Since the initial
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state is the logical |ZL⟩, the maximization of the fidelity via QEC after 10 cycles (or, equivalently, the minimization
of the infidelity) corresponds to the maximization of the expectation value of the logical Pauli Z, which is the actual
goal of QEC to preserve the logical information contained in it. However, the opposite is not true: maximizing the
logical corresponding Pauli Z, in fact, does not lead to maximal fidelity to the initial state, and is not generalizable to
other logical states, which is possible using the fidelity, as shown later. We can also notice that the minimum fidelity
is already reached after around 300 epochs, so that in principle the results could have been comparable with a shorter
training. However, we decided to opt for a longer training in order for the agent to learn a proper strategy which also
minimizes the probability of a drop of logical information, as shown in the Pauli Z expectation value around epoch
1000, in a sort of over-fitting to the problem.

ADDITIONAL NUMERICAL RESULTS

Autonomous quantum error correction

Recently it has been shown in an experiment that it is possible to perform autonomous quantum error correction
on the GKP code with the sBs protocol, resulting in a longer qubit’s lifetime with respect to the vanilla measurement-
based sBs protocol [14]. We considered the autonomous QEC scheme as represented in Fig. S4, realistically reducing
the time dynamics for the reset from 0.23 to 0.08 expressed in units of the full measurement-based QEC cycle,
τcycle. As a consequence, the duration of half-cycle for the autonomous QEC will be 0.35 instead of 0.50 as for the
measurement-based QEC half-cycle. This value has been used as a realistic estimate resulting from the absence of
the measurement process. As a consequence, the ancillary qubit reset happens in the autonomous QEC ≈ 43% more
times than for the measurement-based sBs protocol.

Figure S4. Autonomous QEC scheme. Scheme of the half-cycle sBs autonomous QEC, without measurements. The ancillary
qubit is still reset after layer 4. The grey vertical strips represent the dynamics duration referred to the length of a full standard
QEC as in Fig. 2: the summation returns 0.35 instead of 0.5 because the dynamics for the qubit reset has been reduced from
0.23 to 0.08 due to the absence of the measurement and readout. This means that a full cycle of the autonomous QEC lasts
0.7 of the measurement-feedback one including measurements.

Average channel fidelity: evaluation and lifetime

The average trajectories of the Pauli operators’ expectation values, which are shown e.g. in Fig. 3(a) in the main
text, are calculated from 6 × 85 (for NMF approach) and 8 × 64 (for the standard protocol) raw trajectories, where
the first number is the batch-size of the sampling and the second number is the repetition number for each of them.
In Fig. S5 we show these raw trajectories (from which Fig.3(a) is derived) which already contain the average over the
batch-size. The standard deviation shown in the plots is calculated on these trajectories as well.

It is also interesting and insightful to have a look at the behavior of the state fidelity during the QEC process. In
fact, our neural-network agents are given as a reward, i.e. function to maximize, the final fidelity F of the density
matrix of the state with respect to the initial state | + ZL⟩, as defined in Eq. (23). However, in order to evaluate
the QEC performance, the different agents and their strategies are evaluated on the logical qubits’ lifetime, namely
calculating the time-evolution and the decay rate of the logical Pauli operators. In Fig. S6 we show the fidelity as a
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Figure S5. Trajectories’ sampling. Trajectories (each of them averaged over a batch of sampled trajectories) of the logical
Pauli operator expectation value as a function of time, when applying the standard and the NMF protocol, respectively. For
the standard strategy the value −⟨Ẑ⟩ is shown for better readability.

function of the QEC cycle number for different logical states for the standard and the best NMF strategies. Similarly
to the case of the logical lifetime, even the fidelity remains higher over time with the time-dependent approach with
memory compared with the standard sBs protocol.

Figure S6. Time evolution of the fidelity of the GKP code with respect to the initial state when performing QEC according to
the sBs protocol without (standard) and with non-Markovian feedback. The values displayed refer to different initial logical
states, namely ZL, −XL and −YL.

The average channel fidelity shown in Fig. 3(b) in the main text, as well as the ones in Fig. S7, are computed as

the average lifetime T =
3

1
T−X

+ 1
T−Y

+ 1
TZ

, since T−X = TX and T−Y = TY hold. In this way we also verify that

TX = TZ within the variation due to the sampling of a limited number of trajectories (500+).
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RNN agents and post-selection

The results shown for the NMF approach have been obtained by training multiple (20) RNN agents, evaluating all
of them and post-selecting the one which was offering the highest performance in terms of logical lifetime’s extension.
The results shown in the main text were obtained with the best agent among the ones trained using the dynamics
shown in Fig. 2 and high noise level, with an initial physical GKP state |ZL⟩ with ∆ = 0.2.
We will discuss about the generalizability of these agents in the following sections. However, as it was evident even
from the main results, the agent trained with given dynamics and noise still outperforms the standard strategy just as
well even for different circuit duration and noise level. Despite this, we also evaluated in the same conditions another
agent based on the same RNN model, that we called NMF2, which was post-selected after training on a simplified
dynamics (as depicted in Fig. S8) and high noise level. Its performance is shown in Fig. S7 in comparison with all
other strategies shown also in Fig. 3(b) in the main text. As it is visible, it outperforms by a factor ≈ 1.7 even the
other RNN with NMF in the low noise level. However, this gain decreases for medium noise and at high noise it
even fails to perform even just as well the standard sBs protocol. The reason of this reduced generalizability is found
in the different probability distribution of the ancillary measurements’ outcomes (Fig. S10), as discussed in the next
sections. For this reason, and because of its lower adaptability to a real experimental setup, we decided to discard
this strategy from the main results.

Figure S7. Average channel fidelity of different strategies. Comparison of the average lifetime for different strategies and noise
levels as defined in Table S5.

Generalization to different noise levels

In our work we considered three different noise levels, reflecting real values of recent experiments: namely, in our
numerical results we simulated the dissipative dynamics of the cavity, given by the cavity relaxation time (Ts), and
the qubit relaxation (T1) and dephasing (T2). For the high noise level we used the values in Ref. [5], while for the low
level we referred to the more recent Ref. [10]. The medium noise level was obtained by simply doubling the times of
the high level. These values are represented in Table S5, with the times expressed in units of duration of a full sBs
QEC cycle, which similarly to Ref. [10] we set to τcycle = 10 µs.

Noise level Ts/τcycle T1/τcycle T2/τcycle
Low [10] 61 28 23.8
Medium 49 10 12
High [5] 24.5 5 6

Table S5. Noise levels. Table of the components’ lifetimes used for the dynamics, in units of a full standard sBs cycle’s duration,
provided in Fig. 2, which is τcycle = 10 µs. Ts is the cavity relaxation time, T1 and T2 are the ancillary qubit’s relaxation and
dephasing times, respectively.
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In particular, as we can notice in Fig. 3(b) of the main text and in Fig. S7, the logical qubit’s lifetime decreases
as the noise level increases, but the ratio is not linear: in fact, by doubling the components’ lifetime from high to
medium, the GKP code’s lifetime increases by a factor higher than 2. In particular, this value depends on the strategy
adopted: by decreasing the noise, the standard strategy increases by a factor ≈ 4, while the NMF approach provides
an improvement of almost a factor ≈ 6.

Generalization to different dynamics

One strength of our NMF approach based on recurrent neural network is its versatility and generalizability to
different noise and dynamics, which proves the presence of an underlying common feature for the quantum error
correction of the GKP code. In fact, the same neural network agent trained for a given dynamics model and noise
level, can perform just as well for a different combination of dynamics and noise, even if subtle remarks have to be
raised.
As an example, we considered a simplified dynamics scheme considering instantaneous measurement and qubit reset,
and equal time duration of each layer of the sBs protocol, as shown in Fig. S8. In particular, we compared the
standard protocol, as well as two RNN with non-Markovian feedback, namely NMF and NMF2 (this latter described
in the previous section): the former was trained on the original dynamics of Fig. S2, while the latter on the simple
dynamics of Fig. S8 (and both on high noise level). The lifetime of the ZL logical state is shown in Fig. S9 for the
different strategies and for three different noise levels (as described in Table S5). As we can notice, both the NMF
strategies outperform the standard protocol, confirming that the memory is a widespread advantage for improving
QEC, independent of the circuit dynamics. However, we also do observe that the agent trained with the same circuit
dynamics outperforms the standard strategy by almost a factor ≈ 10. The reason can be found in the specific
characteristics of this circuit, where the measurement ratio is higher (because the overall cycle duration is lower) and
no dissipation is present during measurement and reset. This leads to a better error correctability, which makes not
useful to have a high probability to measure the ancillary qubit in its ground state g, unlike in the realistic case.
As a consequence, the agent trained on this simplified dynamics, NMF2, optimized the parameters of the gates in
disregard of the measurement outcome, as it is visible in the section on the strategy analysis. In fact, as the noise
level increases, the advantage of such an approach becomes less evident: with high noise, the NMF2 outperforms the
standard strategy by a factor ≈ 4. This behavior is similar for the evaluation on a realistic dynamics (see Fig. S7),
even though in that case the NMF2 agent is failing even to perform as good as the standard strategy in the high noise
conditions.

Figure S8. Simplified dynamics QEC scheme. Scheme representing the sBs QEC protocol similarly to Fig. 2, with a simpler
dynamics scheme, represented by the grey vertical strips. In this case, we adopted a constant duration of the dynamics of each
layer, and instantaneous measurement and reset (i.e.: no time evolution for the measurement and the ancillary qubit reset).

Strategy analysis

We analyze here more in detail the strategies that the different RNNs find when trained in different conditions.
In particular, we observe that all the recurrent neural networks show a characteristic time dependence of the output
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Figure S9. Comparison of the lifetimes of the ZL state for different sBs protocols with the dynamics simulation in Fig. S8. The
standard sBs protocol uses the constant optimal gates’ parameters, while NMF and NMF2 use the non-Markovian-feedback
approach, and they were trained on different dynamics (see text).

parameters, which behaves as an exponential saturation to a certain value. This is true for both sequences of g as well
as e measurements’ outcomes, but with different saturation levels. Due to this behavior, we can fit the parameters’
values after a g/e qubit’s measurement’s outcome as

πg/e(t− t) = πe/g(0)(t = t) e−γg/e(t−t) + π∞
g/e

(
1− e−γg/e(t−t)

)
, (24)

where t is the first time-step at which the sequence of identical g/e measurements started, t is the current time-
step, π∞

g/e is the saturation level for a theoretical infinite number of consecutive g/e measurements’ outcomes, γg/e
is the parameter decay rate for consecutive g/e measurements. The initial value of one parameter for the very first
step is π0(0). Then, if we have consecutive g measurements’ outcomes, the neural network adjusts the outputs to
πg(t) = π0(0) e−γgt + π∞

g (1− e−γgt). Ideally, if we measure only g on the ancillary qubit, we would end up with
the values πg(t → ∞) = π∞

g . If we get a sequence of 5 times g we will get the parameter πg(5) = π(0) e−5γg +

π∞
g

(
1− e−5γg

)
≈ π∞

g . However, if we get a measure e after a sequence of 5 times g, then the next parameter’s value
will be πe(1) = πg(5) e

−γe + π∞
e (1− e−γe), where πg(5) was the last value used for the g measurement, as calculated

before. All in all, however, we realize that the most important term of this expression which determines whether
a strategy is failing in QEC or not, is the saturation value π∞

g/e, even if the time dependence with an exponential
saturation is necessary to outperform. Moreover, it is important to notice that the optimal parameters’ choice for a
given experimental setup (circuit duration and noise level) is not unique, as there is some degree of freedom due to
symmetry in the choice of the rotation angles and conditional displacement’s parameters.
Another relevant aspect to be analyzed is the probability measurement’s outcome determined by the noise level and,
in particular, by the parameters’ values chosen. We can then compare the strategy of the NMF shown in Fig. 4 in
the main text, and the one NMF2 in Fig. S10: despite having different signs in the exponential saturation behavior,
which is part of the degree of freedom mentioned above, the main difference is the amplitude of those values. This is
reflected into the measurement’s probability as shown in the top left panel of Fig. S10 and Fig. 4 in the main text:
while the NMF strategy returns a probability for the g measurement p(g) = 0.9 constant as long as g are indeed
measured, for the NMF2 this probability drops to p(g) ≈ 0.3, making more frequent the measurement of the qubit
in the |e⟩ state. Although this has no negative consequence here, except the limitation of generalizability to very
different noise levels, this can be detrimental in experiments, where it has been shown that increasing the probability
to measure e can lead to more errors [10].
When using a feed-forward neural network, instead, the output parameters can only assume three possible values, as
there is no memory and therefore only a Markovian response: namely, π0 as initial value, πg in case of g measurement
outcome, and πe in case of e measurement (Fig. S11). Moreover, as we can notice, the values πg and πe assume
symmetrically opposite values with respect to the initial value π0.
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(a) (b)

(c) (d)

(f)

(h)

(e)

(g)

Figure S10. Optimized time-dependent parameters for the RNN of the NMF2 approach, evaluated with the dynamics in Fig. S2
with low noise rate. The plot corresponds to the one in Fig. 4 for NMF, fixed deterministic measurements’ outcome.

Biased-noise gates QEC

We show here that the optimized memory-feedback QEC strategy for the sBs protocol used so far modeling perfect
gates, can be generalized also to the case of gates with biased errors constant in time. In particular, we choose the
random biased errors for the gates’ parameters as shown in Table S6.
Comparing the Pauli expectation value ⟨Ẑ⟩ as a function of time for the optimized and the standard sBs proto-

Gate Parameter Biased error

R̂q ϕ1 + 0.05

R̂q ϕ2 - 0.03

R̂q ϕ3 - 0.06

R̂q ϕ4 + 0.04

R̂q θ1 - 0.03

R̂q θ2 + 0.05

R̂q θ3 + 0.06

R̂q θ4 +0.04

ECD̂qc β1 + 0.06 - 0.04 i

ECD̂qc β2 + 0.04 - 0.02 i

ECD̂qc β3 + 0.04 - 0.05 i

Table S6. Biased errors on gates’ parameters. List of the biased errors for each parameter of the gates used in the circuit in
Fig. 2 for the test of biased noise gates.

col, given the initial state | + ZL⟩ and applying periodically the QEC cycles, we notice that the lifetime decreases
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(a) (b)

(c) (d)

(f)

(h)

(e)

(g)

Figure S11. Optimized time-dependent parameters for the feedback agent based on feed-forward neural network without
memory (MF), evaluated with the dynamics in Fig. S2 with low noise rate. The plot corresponds to the one in Fig. 4 for NMF,
fixed deterministic measurements’ outcome.

with respect to the case of perfect gates, as expected (Fig. S12). However, the optimized strategy has a lifetime
TZ(NMF)/τcycle = 3.3 × 102, while the standard one is TZ(standard)/τcycle = 1.6 × 102, i.e. a factor 2 smaller,
similarly to the case of perfect gates.
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