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ABSTRACT: Machine learning models have gained prominence for
predicting pure-component properties, yet their application to mixture
property prediction remains relatively limited. However, the significance of
mixtures in our daily lives is undeniable, particularly in industries such as
polymer processing. This study presents a modification of the Gibbs−
Helmholtz graph neural network (GH-GNN) model for predicting weight-
based activity coefficients at infinite dilution (Ωij

∞) in polymer solutions. We
evaluate various polymer representations ranging from monomer, repeating
unit, periodic unit, and oligomer and observe that, in data-scarce scenarios of
polymer−solvent mixtures, polymer representation specifics have a reduced
impact compared to data-rich environments. Leveraging transfer learning, we
harness richer activity coefficient data from small-size systems, enhancing model accuracy and reducing prediction variability. The
modified GH-GNN model achieves remarkable prediction results in mixture interpolation and solvent extrapolation tasks having an
overall mean absolute error of 0.15, showcasing the potential of graph-neural-network-based models for property prediction of
polymer solutions. Comparative analysis with the established models UNIFAC-ZM and Entropic-FV suggests a promising avenue
for future research on the use of data-driven models for the prediction of the thermodynamic properties of polymer solutions.

■ INTRODUCTION
Polymer solutions play a vital role in today’s modern lifestyle,
with one prominent example being their use in the production
of plastics. Plastics have become a ubiquitous material,
surpassing the production volume of almost all other material
ever produced by humankind.1 Modeling the thermodynamic
behavior of polymer−solvent systems is essential for the design
and optimization of the involved industrial processes.2−4

Predictive models are of particular importance given that the
experimental determination of all polymer−solvent combina-
tions of interest at different temperatures, pressures, and
composition states is an unfeasible task. This becomes even
more important in the current transition of industry toward
more sustainable pathways. Here, screening large chemical
spaces could potentially aid in designing and selecting more
sustainable replacements for existing compounds. As shown by
a recent survey,5,6 the preference for predictive methods is also
apparent from an industrial perspective.
Activity coefficients are key for describing the phase

equilibria of nonideal solutions such as the ones involving
polymers and small-size molecules. They account for
deviations from Raoult’s law and are a function of temperature
and composition of the mixture and, of course, a function of
the chemical species involved. The dependency of activity
coefficients on pressure is often of minor importance and
hence negligible, especially in low-to medium-pressure
regimes.7 As the composition of one component in the
mixture tends to zero, the prediction of its activity coefficient

(referred to as activity coefficient at infinite dilution) becomes
harder.8 However, estimating activity coefficients at infinite
dilution is relevant for their application in environmental
studies,9 design of separation systems,10 and parametrization of
models that describe the whole composition range.11,12

Existing predictive models for polymer activity coefficients
are mostly modifications of the group contribution method
UNIFAC13 (e.g., UNIFAC-FV,14 Entropic-FV,15 and UNI-
FAC-ZM16). These methods introduced a free-volume term or
a correction in the polymer volume parameter to account for
the large differences in molecular sizes that appear in a
polymer−solvent system. However, the predictive power of
these methods is limited by the feasibility of fragmenting
chemical species into UNIFAC functional groups and, in the
case of Entropic-FV, by the requirement for accurate
knowledge of the molar volumes of the polymer and solvent.
Another predictive approach involves using COSMO-based
models.17,18 However, their reliance on expensive quantum-
chemical calculations and conformer searches hinders their
practical application for screening large chemical spaces.
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When dealing with polymer solutions, molar-based activity
coefficients (commonly denoted as γ) lack a clear definition.
This ambiguity arises from the fact that a polymer’s molecular
mass exists as a distribution rather than as a well-defined value.
Additionally, the significant difference in molecular masses
between a polymer j and a smaller sized solvent molecule i
complicates the use of the molar fraction as a concentration
unit.14 For these reasons, Patterson et al.19 proposed the use of
a weight fraction activity coefficient defined by

M

Mij ij
j

i
=

(1)

where M refers to the molar mass of the compound. The
difficulty of using γ for polymer solutions becomes evident
when examining the following expression, which is used to
determine activity coefficients at infinite dilution through
inverse gas chromatography19
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where R denotes the universal gas constant, Vg,ij
0 denotes the

specific retention volume corrected to 273.15 K, Pi
sat denotes

the vapor pressure of the solvent, Bi is the second-virial
coefficient of the solvent, Vi denotes the molar volume of
solvent, and T denotes the system’s temperature.
Notice that by introducing eqs 1 into 2, the resulting

expression becomes independent from the polymer’s molar
mass Mj and the activity coefficients at infinite dilution of a
polymer solution can be directly measured from the retention
volume

R
V M P

P B V
R T

273.15
exp

( )
ij

ij i i

i i i

g,
0 sat

sat

= ·
· ·

· ·
·

i
k
jjjjj

y
{
zzzzz

(3)

As pointed out by a recent survey, there is still a need for
further development of predictive polymer solution models.6

This paper aims to broaden the research in this direction by
extending a recently proposed model based on graph neural
networks (GNN) [referred to as the Gibbs−Helmholtz graph
neural network (GH-GNN)20] to predict infinite dilution
activity coefficients of polymer solutions, and by providing a
curated and readily accessible data set for benchmarking
models developed for this purpose. The latter addition is

particularly valuable, considering the significant lack of well-
curated data sets in polymer informatics.21−23

In the last couple of years, there has been growing interest in
using GNNs for polymer property prediction.24−31 However,
all of these works have focused on predicting properties of pure
polymers. To the best of our knowledge, no previous attempts
have been made to study the performance of GNNs for
predicting properties of polymer solutions in general, and Ωij

∞,
for polymer solutions in particular.

This article is structured as follows: in the first section, we
present the modifications made to the GH-GNN model to
compute activity coefficients at an infinite dilution of polymer
solutions. We also discuss the different polymer representa-
tions studied, including (i) monomer, (ii) repeating unit, (iii)
periodic unit, and (iv) oligomer. Additionally, we explain the
transfer learning approach from small-sized systems to polymer
solutions. In the second section, we provide a detailed
description of the data set, the cleaning process, and the
splitting methods used to train and assess the models. In the
third section, we present the results for the predictions made
using different polymer representations, the impact of transfer
learning, and the performance of the modified GH-GNN
model for interpolating different mixtures and extrapolating
them to unobserved solvents. Furthermore, we compare the
modified GH-GNN model to the Entropic-FV and UNIFAC-
ZM models in terms of the prediction accuracy. Finally, in the
last section, we present the conclusions of this work along with
some recommendations for future research.

■ METHODS
Modification of the GH-GNN. The original GH-GNN

model20 uses (molecular) graphs as defined by Battaglia et al.32

containing node-, edge-, and global-level features. In these
vectorial features, information about the specific molecule is
stored regarding the atoms (node-level information), the
chemical bonds (edge-level information), and the polarity and
polarizability of the molecule (global-level information). The
solute and solvent graphs are then passed through a molecular-
level GNN and pooled to vector embeddings that are used to
create another graph that represents the mixture. In this
mixture graph, each node represents a chemical species, and
edges represent hydrogen bonding interactions. This mixture
graph is later passed through a second (mixture-level) GNN
and then pooled to a vector termed the mixture fingerprint
(MF). Finally, this fingerprint is utilized to estimate the

Figure 1. Modifications applied to the GH-GNN model20 to predict polymer solutions. In this context, the solute is a polymer, and its
representation can vary, including the corresponding monomer(s), repeating unit, periodic unit, or oligomer. The polymer’s molar mass
distribution information [ln(Mn) and/or ln(Mw)] is integrated into the polymer graph’s global-level features via concatenation. The solvent and
polymer graphs undergo distinct first message passing layers, while a shared second message passing layer processes both solvent and polymer
graphs. Subsequently, the mixture graph is constructed and processed through a mixture-level GNN, yielding the MF. This fingerprint is then
utilized to regress the parameters K ij1, and K2,ij in the Gibbs−Helmholtz-derived expression (eq 4).
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temperature-independent parameters of an expression derived
from the Gibbs−Helmholtz equation, which predicts the
activity coefficient at infinite dilution. We refer the reader to
our previous work20 for further details on the model.
In this work, we have used the same graph definition from

Battaglia et al.32 and the same node- and edge-level features as
in our previous work.20 Similarly, we constructed one graph for
the solvent and one graph for the solute (now a polymer). For
our study, the first set of questions emerges: how can we
effectively represent a polymer as a molecular graph given its
inherent polydispersity? What is the most beneficial polymer
representation? As mentioned above, a polymer cannot be
defined as a fixed molecular structure. Instead, it is usually
characterized with a measure of its polydispersity (e.g., via the
number-average molar mass Mn or the weight-average molar
mass Mw). For this reason, we have now included molecular
mass distribution information as part of the solute’s global-level
feature vector, as illustrated in Figure 1. The natural logarithm
[i.e., ln(Mn) and/or ln(Mw)] is used here for scaling purposes,
given its ability to normalize a wide range of values. It is worth
noticing that in most experimental papers reporting infinite
dilution activity coefficients of polymer solutions, only Mn
and/or Mw is reported, while in others, none of them are
mentioned. Information about the tacticity of the polymer
samples is even rarer and, therefore, not included here as part
of the modeling framework. However, as more information
regarding the polymer tacticity (i.e., the spacial arrangement of
regular units along the polymer chain) and the corresponding
activity coefficients at infinite dilution become available, it
might be relevant for predicting activity coefficients of polymer
solutions more accurately.
The polymer graph is constructed using one of the possible

representations (i.e., either the monomer(s), the repeating
unit, the periodic unit, or the oligomer). Further details on the
different polymer representations used here are given in the
next section. Once the initial solvent and polymer graphs are
constructed, they are passed through a molecular-level GNN.
In contrast to the original GH-GNN model,20 the approach
proposed here employs two distinct initial message passing
layers within the molecular-level GNN. These layers transform
the solvent and polymer graphs separately. This separation
accounts for the differing initial dimensions of the correspond-
ing global-level embeddings. However, the second message
passing layer is unique despite processing the solvent or
polymer graph (i.e., the same model parameters are used for
processing the solvent and polymer graphs). While we have
introduced this modification in the first message passing layer
of the molecular-level GNN, we have retained the same
architecture and hyperparameters as the original GH-GNN
model.20 After the second global pooling, the MF (MF in
Figure 1) is generated. This fingerprint serves as a vectorial
representation characterizing the specific polymer−solvent
mixture. This fingerprint is used to regress the activity
coefficient using two independent multilayer perceptrons for
predicting K ij1, and K2,ij in eq 4. Hence, the temperature
dependency is introduced similarly as in the original GH-GNN
model20 using eq 4 that results from integrating the Gibbs−
Helmholtz equation assuming a temperature-independent
partial molar excess enthalpy at infinite dilution hijE,∞

T K
K

T
ln ( )ij ij

ij
1,

2,= +
(4)

where K ij1, and K2,ij are temperature-independent parameters
for the specific solvent i and polymer j. The parameter K2,ij in
eq 4 holds the same value in both the original20 and modified
GH-GNN models, specifically equating to the ratio K2,ij =
hijE,∞/R. In contrast, the parameter K ij1, in eq 4 now takes on
the role of the logarithmic weight-based activity coefficient at
infinite dilution, as the temperature of the system approaches
infinity. Consequently, the corresponding parameters of the
original20 and modified GH-GNN models are interconnected
through the relationship K M M Kln( / )ij j i ij1, 1,= + .
Polymer Representations. The first challenge in polymer

informatics is to generate machine-readable representations of
the polymer itself.21,22 This challenge becomes particularly
important when employing machine learning techniques for
predicting polymer properties.33 In contrast to small
molecules, polymers lack well-defined structures. In the
literature, three main polymer representations stand-out: the
monomer(s) which is a small-size molecule from which the
polymer is synthesized, the repeating unit which refers to the
section of the polymer chain that is repeated periodically
depending on the degree of polymerization, and an oligomer of
fixed size representing certain part of the polymer chain. These
representations have been systematically studied and compared
for predicting the polymer’s glass-transition temperature.33 Of
these three representations, the monomer has historically been
more commonly utilized in the context of polymer solutions.
This becomes evident in the early works on UNIFAC-based
group contribution methods,14−16 and it is still used in other
polymer-property prediction tasks.30 However, the monomer
representation lacks essential information about polymer
bonding and periodicity. As a result, there has been a growing
shift toward utilizing repeating units or oligomers as more
comprehensive representations for predicting polymer proper-
ties.17,18,23,25,27,29

In the context of GNNs, translating the chosen polymer
representative molecule (e.g., monomer, repeating unit, or
oligomer) into a molecular graph is crucial. Certain polymer
representations offer distinct advantages over others. For
instance, a single monomer can result in multiple polymers
depending on the polymerization process, as discussed
elsewhere.33 This becomes evident in cases such as the buta-
1,3-diene monomer, which can polymerize into either
polyethylene or poly(but-1-ene). As a consequence, the
monomer representation may not capture the uniqueness of
a polymer. Similarly, the repeating unit representation might
also fall short in capturing a polymer uniquely. This concern is
exemplified by instances such as poly(vinyl alcohol) and
polyethylene glycol, both of which yield the same graph for
their repeating units, as discussed elsewhere.27

In response to these challenges, recent advances have
introduced alternative polymer graph representations. One
such approach, termed the periodic polymer graph,27 extends
the traditional repeating unit representation. It involves adding
an additional edge that connects the two polymerization points
within the repeating unit. This enhancement ensures a unique
representation of polymers, encapsulating both bonding and
periodicity information. Antoniuk et al.27 have reported an
overall increase in accuracy when periodic graphs are used
compared to the repeating unit graphs. Similarly, an analogous
concept has been explored in a separate study,26 where
molecular graphs representing polymers were enriched by
incorporating weighted edges connecting polymerization sites.
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These edges are assigned weights based on the probability of
occurrence within the polymer chain. This augmentation offers
an enhanced representation not only for homopolymers but
also for copolymers with varying repeating unit compositions.
For the scope of this work, we have concentrated on
homopolymers, which consist of polymer chains composed
of a single repeating unit. As a result, we examined the
performance of the periodic unit representation alongside the
common monomer, repeating unit, and oligomer representa-
tions (see Figure 2).

When the oligomer representation is utilized, a critical
question emerges: which polymerization degree should be
chosen? While previous studies have examined oligomers of
sizes two or three,17 recent research33 highlighted the
convergence behavior of molecular fingerprints from synthetic
polymers. This is shown in Figure 3 by using the Tanimoto
and Dice similarities for some random polymers considered in
this work.

In these plots, the fingerprint similarity between oligomers
of contiguous sizes is calculated (e.g., similarity between the
oligomers of sizes 2 and 3, 3 and 4, 4 and 5, and so on). Tao et
al.33 decided to use oligomers of size 16 as a trade-off between
similarity convergence and computational efficiency. However,
as can be observed in Figure 3, the Tanimoto similarity of the
oligomers converges to one already at size 6. In comparison,
the Dice similarity converges to one at a slower rate.

In this work, we chose an oligomer of size 10 to ensure that
the Tanimoto similarity of all polymers considered has
converged to one and that the Dice similarity has reached a
value of 0.95. For calculating the Tanimoto similarity, Morgan
binary fingerprints were used with a radius of 4 and a bit-size of
2048. In the case of the Dice similarity, the count-based
Morgan fingerprint was used with a radius of 4. These
calculations were carried-out using RDKit.34

A random forest model trained on the Morgan binary
fingerprints was used as a baseline for comparison to the
modified GH-GNN model studied in this work. Regarding the
random forest model, the polymer and solvent fingerprints
were concatenated along with the temperature and polymer
distribution information to obtain the vectorial representation
of the specific mixture at the given conditions.
Transfer Learning. Transfer learning is a valuable

technique that involves two key stages: pretraining on a
distinct data set, followed by fine-tuning using the target data
set. This approach leverages the benefits of the initial training
on a larger and contextually relevant data set to enhance the
model’s performance on the specific task of interest. Through
this process, the model’s parameters are better initialized,
enabling it to transfer valuable insights gained from the first
task to the second. As a result, the accuracy of the model and
applicability for the specific prediction task are substantially

Figure 2. Polymer representations used in this work exemplified by
polybutadiene: monomer, repeating unit, periodic unit, and oligomer
of size 10. Notice that the edge information between the graph of the
monomer and the graph of the repeating unit will be different
according to the different distribution of single and double bonds.

Figure 3. Heatmaps displaying the convergence similarity of oligomers with varying degrees of polymerization. The color of the heatmap indicates
the similarity score, with a value of 1 representing the highest similarity. Tanimoto similarity scores were calculated using Morgan binary
fingerprints of radius 4 and size 2048, while Dice similarity scores were computed using Morgan count-based fingerprints of radius 4. The degree of
polymerization of 10 is highlighted as this is the chosen size for the oligomer representations in this study.
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improved. This transfer of generalities allows the model to
capture underlying patterns and relationships present in the
initial data set, which can then be adapted to enhance its
predictive capabilities for the target data set. Several successful
applications of transfer learning for thermodynamic property
prediction of solutions have been reported in the litera-
ture.20,35,36

In this study, we explore the impact of transfer learning by
initially pretraining the modified GH-GNN model on the
DECHEMA data set, which was also utilized in our previous
publication.20 This data set comprises 40,219 experimental
activity coefficient values at infinite dilution for mixtures
involving small-size molecules. To ensure consistent pretrain-
ing, we first calculated the weight-based activity coefficients at
infinite dilution, denoted as Ωij

∞, from the original γij∞ values
using eq 1. The same data splitting (based on chemical classes)
reported in the original publication20 was used here for
pretraining the model and validating its pretrained perform-
ance. The model was pretrained during 200 epochs until the
validation loss converged. The pretraining convergence plots
are available in the Supporting Information. After the
pretraining, we fine-tuned the model on the polymer data set
of this work.

■ DATA SETS
Data Source. The data set employed in this study

comprises Ωij
∞ values for binary mixtures of polymers and

small-size solvents. These values were derived from inverse gas
chromatography measurements reported in the scientific
literature. The data set was originally collected in volume
XIV of the DECHEMA Chemistry Data Series.37 For this
study, our analysis centered exclusively on homopolymers,
which constitute the majority of the data available in the
aforementioned collection. We have corrected several errors
present in the original data collection (see Supporting
Information for a detailed description of the corrections) and
have carefully collected SMILES strings for all solvents and
polymers present in the data set. This includes the SMILES
representation of the monomer(s), repeating units, periodic
units, and repeating units with polymerization points from
which the oligomers’ SMILES can be generated for different
degrees of polymerization. The SMILES containing the
polymerization points uses a “*” for indicating the connection
points. For example, the SMILES “C*C�CC*” represents the
depicted repeating unit of polybutadiene in Figure 2. The data
points that do not report any information about the polymer
molar mass distribution of the samples used were discarded.
Repeated measurements were averaged to obtain a single point
to account for the uncertainty in the data. However, similar to
the case of IDACs for small-size systems, a rigorous estimation
of the experimental data uncertainty is difficult due to the lack
of reported compound purities and standard deviation of
replicate measurements in most of the literature (e.g., in
volume XIV of the DECHEMA Chemistry Data Series37).
However, some uncertainty estimations of weight-based
IDACs can be found in the literature. Belusso et al.38 has
reported uncertainties to the reported measurements properly.
They reported an averaged relative uncertainty of Ω∞ of 9.5%.
Similarly, Sadowski et al.39 and Doman ́ska and Żołek-
Tryznowska40 have reported an uncertainty of around 5%,
and Wang et al.,41 an average uncertainty of 3.7%. Uncertainty
estimation of ln Ω∞ has been reported as 2.5% by Sørensen et
al.42

The curated data set consists of 48 distinct homopolymers
and 150 solvents. Some of the measurements report number-
average molecular mass Mn, some other report the weight-
average molecular mass Mw, and some report both. We have
then created three distinct data sets (Mn data set, Mw data set
and Mn/Mw data set) to study the influence of the different
molar mass distribution descriptors on the prediction of Ωij

∞.
The number of points, distinct polymers, and distinct solvents
on each data set is shown in Table 1. The percentage of

polymer−solvent observations in each data set compared to all
possible combinations of the corresponding polymers and
solvents is also indicated. It is important to mention that for all
three data sets, over 77% of the observations are associated
with the top 8 most popular polymers within each data set.
Similarly, approximately 50% of the observations correspond
to the top 15 most popular solvents (Supporting Information).

The data sets primarily comprise synthetic thermoplastics,
but some rubbers and resins are also included. The complete
list of polymers is available in the GitHub repository. The data
distribution of the covered temperatures, and Mn and Mw
values for each data set is available in the Supporting
Information. It is important to note that due to the challenge
of obtaining uncertainty estimations for each data point in the
database, we have not explicitly incorporated experimental
uncertainty into this work, apart from the previously
mentioned averaging of repeated measurements. However, if
uncertainty estimations for individual data points become
accessible, then they could be leveraged to assign weights to
each data point in the loss function during training, reflecting
their respective uncertainty levels.
Data Splitting. Each of the three data sets was split to

evaluate the models’ performance in two tasks: interpolation
among mixtures and extrapolation to new solvents. In the
interpolation task, the model is trained on a subset of
polymer−solvent mixtures and tested on distinct polymer−
solvent combinations, where the individual polymers and
solvents are seen during training but in different combinations.
On the other hand, in the extrapolation task, the model is
tested on polymer−solvent combinations that include solvents
not encountered during training, allowing an assessment of its
ability to handle unseen solvents.

For testing interpolation, first, the random selection of a
subset of polymer−solvent mixtures (90% of all unique
combinations) is selected to form the training set. The
remaining mixtures formed the test set. To ensure the test set
only contains interpolation cases, any mixture containing an
unseen polymer or solvent is reassigned to the training set. To
ensure a robust estimation of the models’ performance, 10

Table 1. Information on the Three Distinct Data Sets Used
in This Worka

data set

information Mn Mw Mn/Mw

no. points 2532 2763 1666
polymers 42 28 22
solvents 137 122 107
% observed 10.71 16.04 16.19

aMn refers to the number average molecular mass and Mw refers to the
weight average molecular mass. The percentage of polymer−solvent
observations compared with all possible combinations of the given
polymers and solvents is also indicated.
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independent splits are performed using different random seeds,
and they are later used to train/test the models. The reported
performance metrics correspond to the average performance
across the 10 splits, unless stated otherwise. The proportion of
training points was kept on average as 90.5% for all three data
sets (i.e., for the Mn, Mw and Mn/Mw data sets).
For testing extrapolation, first a list of unique solvents is

formed. Then, a random selection of (90%) of the unique
solvents is carried out. The training set is composed of all
polymer−solvent mixtures containing any of these solvents,
while the testing set comprises the remaining unique mixtures
not included in the training set. This ensures that only
polymer−solvent combinations in which the solvent has not
been seen during training are included in the test set, enabling
the evaluation of extrapolation performance. Similar to the
interpolation case, the models are evaluated using 10
independent splits with different random seeds, and the
reported metrics are the averages across these 10 splits. The
average proportion of training points for all three data sets (i.e.,
Mn, Mw, and Mn/Mw) was on average 88.9%.

■ RESULTS AND DISCUSSION
Polymer Representations. To determine the preferable

polymer representation for enhancing model accuracy, we
assessed the performance of the modified GH-GNN model
(without pretraining) through the interpolation task. The
results are depicted in Figure 4, showcasing the mean absolute

error (MAE) achieved for the test set. Each marker represents
the average, while the error bars correspond to the standard
deviation, computed across the 10 different splits of the data.
These outcomes are presented for the three distinct data sets.
On two (Mw and Mn/Mw) out of the three data sets, the
monomer representation shows the lowest MAE on average.
On the Mn data set, the periodic unit representation achieved
on average the lowest MAE.
However, we could not observe a statistically significant

disparity among the polymer representations for the Ωij
∞ case

studied here based on model’s accuracy. This is shown by the

overlapping error bars across all polymer representations for
each data set. This contrasts with the findings of Antoniuk et
al.,27 who noted an overall superior performance with the
periodic unit in comparison to the repeating unit. However,
several significant distinctions should be acknowledged: first,
the study by Antoniuk et al.27 solely addressed property
predictions for pure polymers, whereas the Ωij

∞ property
explored here is dependent upon both the solvent and the
polymer. This can reduce the overall influence of the polymer
representation on the final prediction. Second, the outcomes
presented by Antoniuk et al.27 were derived from a single,
randomly selected test set. In contrast, we considered ten
different randomly selected test sets, leading to the availability
of error bars in our case that can help assess the statistical
significance of the different representations. Third, and perhaps
the most important, while Antoniuk et al.27 constructed their
models using 9935 distinct homopolymers, our study
encompasses only 48 homopolymers. This suggests that in
low-data regimes, the precise polymer representation might not
be as significant for the model accuracy as in higher data
regimes. This is of course subject to the default drawbacks of
some polymer representations, as explained already in the
Methods section. It also highlights the scarcity of polymer-
solution data compared with pure polymer data. The same lack
of statistical significance for the performance of different
polymer representations is observed in the case of the baseline
random forest model trained on Morgan binary fingerprints
and the pretrained and fine-tuned GH-GNN model in both
interpolation and extrapolation tasks (see Supporting In-
formation).

The limited number of points and polymers in the present
data set makes it difficult to elucidate the default drawbacks of
the monomer and repeating unit representations that are
explained in the Methods section. Regarding the main
drawback of the monomer representation (i.e., a single
monomer representing different polymers), the data set only
contains the case of polyethylene and polyethylene low-density
polymers sharing the same monomer structure. While these
two polymers indeed share the same basic chemical structure,
their molecular arrangements differ from each other due to
different degrees of branching. Capturing these differences
remains a challenge for the polymer representations studied in
this work. Similarly, the main drawback of the repeating unit
(i.e., single repeating unit representing different polymers)
cannot be observed, as all polymers considered here have
different repeating unit representations. Based on the
theoretical advantages and the similarity in the model’s
accuracy, we have chosen the periodic unit representation in
the following analyses.

Furthermore, by looking at the error bars in Figure 4, it is
noteworthy that the performance variability of the modified
GH-GNN is greater for the Mn data set compared to the
remaining two. This particular data set covers a broader binary
chemical space compared with the others. Specifically, it
includes approximately 35 and 10−15% more polymers and
solvents, respectively. The same trend in performance
variability can be observed in the case of the random forest
model and the pretrained and fine-tuned GH-GNN model (see
Supporting Information). On average, the model trained with
both Mn and Mw achieves lower errors compared to the models
trained using only the individual polymer distribution
information. However, the difference in performance is within
the error bars. Hence, no significant difference can be observed

Figure 4. Performance of the modified GH-GNN model (without
pretraining) according to the MAE on the test set for the
interpolation task. The markers and the error bars show the average
and standard deviation, respectively, across the 10 splits. The results
are shown for the 3 different data sets (i.e., Mn, Mw, and Mn/Mw)
using the four different polymer representations.
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between the models using these different characterizations of
the polymer distributions.
Transfer Learning. Incorporating transfer learning sig-

nificantly enhanced the prediction accuracy of the modified
GH-GNN model. To visually present this improvement, Figure
5 displays the absolute error density achieved by the modified

GH-GNN models. This figure compares the performance
between the model with pretraining (indicated as “pss” for
pretrained in small systems) and the model without
pretraining, both utilizing the periodic unit representation for
the interpolation task. Additionally, the performance of the
random forest baseline is provided for reference.

Across all data sets, the GNN-based models consistently
outperform the random forest baseline. This observation
underscores the efficacy of graph molecular and mixture
representations in capturing data patterns, leading to more
accurate predictions compared with traditional molecular
fingerprints. Incorporating transfer learning resulted in a
reduction of the averaged MAE for the modified GH-GNN
model, by 23.5, 13.3, and 13.3% for the Mn, Mw, and Mn/Mw
data sets, respectively (cf. Table 2). This reduction highlights
the effectiveness of transfer learning as a versatile tool
applicable to diverse scenarios characterized by data scarcity,
specifically in the prediction of the activity coefficients of
polymer solutions. In addition to the improvements in
accuracy, the introduction of transfer learning led to a
significant reduction in prediction variability within the GH-
GNN model. This reduction becomes evident when
contrasting the standard deviation values between the GH-
GNN (pss) model and the GH-GNN model trained directly
on the data, as presented in Table 2. This observation
underscores that transfer learning not only enhances model
accuracy but also improves the consistency and, therefore,
reliability of the predictions. This is a paramount point when
designing models intended for industrial applications.

Remarkably, even though molar mass distribution informa-
tion is absent for small-size systems, pretraining facilitates an
enriched grasp of solute and solvent chemical structures and
their corresponding activity coefficient values. This outcome
underscores that transfer learning can be used to effectively
leverage available information on small-size systems to improve
the prediction of properties of polymer solutions.
Discrete Interpolation. Table 2 includes the performance

of the studied models in the task of interpolating within the
polymer−solvent space defined by the data considered in this
work. The random forest model achieves the poorest
performance among the three models compared here. The
modified GH-GNN model reduces the interpolation error
consistently across all three data sets compared to that of the
baseline. Furthermore, it reduces the prediction variability for
doing interpolation as indicated by the standard deviation
values in Table 2. This suggests that the modified GH-GNN
model is able to achieve more consistent predictions despite
the data on which the model was trained compared to the use
of molecular fingerprints and relatively simple predictors. The
performance and prediction consistency of the GH-GNN
model for interpolation increase in practically all data sets
when using transfer learning. We could not observe a
significant advantage between the models using the number-
average molar mass (Mn), the weight-average molar mass (Mw)
or both. In all cases, the model achieves a similar performance
for interpolation.

It is interesting to note that, during interpolation, the GH-
GNN (pss) model achieves a similar MAE when predicting
lnΩij

∞ of polymer solutions as the one that the original GH-
GNN model20 achieves when predicting small-size systems
(i.e., around 0.13). This phenomenon may be attributed to the
inherent limitations posed by the experimental uncertainty of
logarithmic activity coefficients, which is estimated to lie within

Figure 5. Absolute error density obtained from the random forest, the
modified GH-GNN (GH-GNN) and the pretrained and fine-tuned
modified GH-GNN [GH-GNN (pss)] models trained using the
periodic unit. The results are shown for the interpolation task and are
averaged across the 10 splits by using the test set.
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the range of 0.1−0.2.43 However, it is important to emphasize
that this estimation of experimental uncertainty is rather
generalized, and therefore, any conclusions drawn from this
observation should be approached with caution.
Solvent Extrapolation. Additionally, in Table 2, the

models’ performance when extrapolating to previously unseen
solvents is shown. An interesting observation emerges from
comparing the, for instance, GH-GNN model’s average
performance between interpolation and extrapolation scenar-
ios. Notably, not only does accuracy diminish during
extrapolation but also the prediction variability, indicated by
the increase in standard deviation, becomes more pronounced.
This phenomenon aligns with expectations, as extrapolating to
new solvents within polymer−solvent mixtures presents a more
challenging task compared to interpolating among known
chemical species. This can be confirmed, by the fact that
interpolation can even be approached (with remarkable
accuracy) using matrix or tensor completion techniques that
do not need explicit chemical structure insights.43−45

The same accuracy reduction from interpolation to
extrapolation can be consistently observed in the case of the
GH-GNN (pss) model. Furthermore, both modified GH-
GNN models outperform the baseline model when extrapolat-
ing to other solvents, suggesting that the GNN-based models
are more accurate not only when performing within the
mixture space on which they were developed but also when
extrapolating to unknown chemical species. Similar to the
interpolation case, transfer learning consistently increases the
accuracy and prediction reliability.

For illustration, the parity performance is shown in Figure 6
for the Mw data set. The parity points were obtained as the
average prediction across the 10 models generated with the 10
different splits (in an ensemble learning fashion). Only systems
in the test set are included. This means that if an observation
has appeared, for instance, in four of the ten test sets, the final
prediction is given as the average of the corresponding four
models. All models were trained using the periodic unit
representation. The first observation is that an ensemble model
is able to improve the prediction accuracy of ln Ωij

∞ compared

Table 2. MAE and Coefficient of Determination (R2) Achieved by the Models During Interpolation and Extrapolationa

interpolation extrapolation

MAE ↓ Mn Mw Mn/Mw Mn Mw Mn/Mw

random forest 0.27 (0.07) 0.22 (0.03) 0.27 (0.07) 0.26 (0.07) 0.31 (0.05) 0.24 (0.08)
GH-GNN 0.17 (0.03) 0.15 (0.02) 0.15 (0.02) 0.24 (0.14) 0.26 (0.06) 0.18 (0.06)
GH-GNN (pss) 0.13 (0.02) 0.13 (0.02) 0.13 (0.03) 0.15 (0.05) 0.20 (0.07) 0.15 (0.05)

interpolation extrapolation

R2 ↑ Mn Mw Mn/Mw Mn Mw Mn/Mw

random forest 0.72 (0.13) 0.79 (0.05) 0.69(0.17) 0.63 (0.23) 0.45 (0.35) 0.66 (0.15)
GH-GNN 0.90 (0.04) 0.91 (0.03) 0.92 (0.03) 0.66 (0.46) 0.64 (0.18) 0.86 (0.08)
GH-GNN (pss) 0.94 (0.02) 0.94 (0.01) 0.94 (0.03) 0.90 (0.09) 0.81 (0.14) 0.89 (0.07)

aThe results are shown as the average performance across the 10 splits. The standard deviation is shown in between parentheses. The periodic unit
polymer representation was used for all models. The arrow denotes what is “better” performance for each metric. The best average performance is
shown in bold. The pre-trained and fine-tuned model is denoted by “pss”.

Figure 6. Parity performance achieved by the models in the extrapolation task on the Mw data set. The parity points are obtained as the average
prediction across the 10 models generated with the 10 different splits (in an ensemble learning fashion). Only systems in the test set are included.
The MAE and coefficient of determination (R2) are also given for the ensemble model. All models were trained using the periodic unit
representation.
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to a single model, as shown elsewhere46,47 for the prediction of
ln γij∞. Specifically, the MAE of the GH-GNN model (pss)
reduced from 0.20 to 0.17 for the ensemble prediction. Second,
it is apparent that the spread of the parity points is significantly
reduced in the case of the modified GH-GNN model
compared to the random forest, and is even reduced further
in the case of the GH-GNN (pss) model achieving an R2 of
0.85. This performance on solvent extrapolation is remarkable.
However, as shown in our previous work,20 the estimation of
the extrapolation performance should also consider an
“extrapolation degree” metric (such as the Tanimoto
indicator20) to account for the level of difficulty when
extrapolating to a different solvent. It can be expected that as
the extrapolation involves more distinct chemical species, the
model performance will diminish.
Phenomenological Models Comparison. The accuracy

of the GH-GNN model was assessed by comparing it with the
reported accuracy of the phenomenological models UNIFAC-
ZM16 and Entropic-FV,15 as reported in the literature.48 The
evaluation was based on the mean absolute percentage error
(MAPE) of predicted Ωij

∞ values. For the GH-GNN
predictions, we used the ensemble of pretrained and fine-
tuned models for the extrapolation task and using the periodic
unit representation. Only data points within the test set were
included in the comparison. This implies that the GH-GNN
model has not encountered the particular polymer−solvent
combinations used here for a model comparison during its
training. Furthermore, in the results presented for extrap-
olation, none of the solvents involved in the mixtures were part
of any training combination. The Mn data set was given
preference, if the test point was not part of the Mn data set,
then the comparison was performed using the models trained
on the Mw data set, and similarly for the Mn/Mw data set in
case the test point was neither part of the Mw data set. Table 3
shows the results of the comparison in the cases of GH-GNN
interpolation and extrapolation.

In the case of the phenomenological models, we utilized
results obtained with temperature-dependent group contribu-
tion parameters, as these parameters were found to yield
superior model performance.48 The comparison was con-
ducted separately for athermal and polar systems, as well as
systems involving hydrogen-bonding association, as outlined
by Pappa et al.48 For the athermal case, the systems included
polyethylene, polyethylene low-density, and polyisobutylene,
along with linear, branched, and cyclic alkanes. In the case of
polar systems, poly(ethyl methacrylate), poly(methyl acrylate),

poly(methyl methacrylate), poly(n-butyl methacrylate), poly-
(vinyl acetate), polybutadiene, and polystyrene were examined,
with ketones, esters, chlorinated hydrocarbons, benzene, and
toluene as solvents. Regarding systems with associations, the
set comprised poly(ethylene oxide), poly(methyl methacry-
late), polybutadiene, and polystyrene, interacting with
monohydroxy alcohols and acetic acid. Table 3 shows the
performance comparison. A detailed description of the
comparison for all systems studied here is provided in the
Supporting Information.

Across all three system types, the GH-GNN (pss) model
consistently achieved a lower MAPE in comparison to that of
the phenomenological models. Nevertheless, it is important to
note that the evaluation encompassed a limited set of data
points, as outlined in Table 3. Consequently, any conclusions
drawn from this comparison should be approached with
caution, serving more as a stimulus for the potential directions
of future research. It is also important to conduct this
comparison with an awareness of the structurally distinct
architectures of the different models. The UNIFAC-based
models rely on pure-compound and binary interaction
parameters of the groups within the mixture, whereas the
GH-GNN model maintains a (significantly larger) fixed set of
parameters regardless of the specific mixture being predicted.
This structural difference prevents predictions for systems that
cannot be fragmented into UNIFAC groups or where
parameters are simply not available when using UNIFAC-
based methods, while the GH-GNN model is structurally
limited by the atomic and bond features involved during the
model developing. A study of the applicability domain of the
GH-GNN model can be performed similarly to the original
publication20 using chemical classes or molecular similarity
metrics. In line with this perspective, we hope to showcase the
possibilities that machine learning, including GNN-based
models, offers for advancing the field of polymer solution
thermodynamic modeling.

■ CONCLUSIONS
Machine learning models are significantly more prevalent in
predicting properties of pure components compared with
predicting properties of mixtures. Nonetheless, it is important
to acknowledge the undeniable significance of mixtures in our
everyday lives. Specifically, modeling the thermodynamic
behavior of polymer−solvent mixtures is of high relevance
when designing and optimizing polymer industrial processes.
In this work, we have proposed a simple modification of the
GH-GNN model20 for predicting activity coefficients at infinite
dilution of polymer solutions Ωij

∞. The performance of this
modified GH-GNN model was studied using a data set of
experimentally determined Ωij

∞ values. The performance of
different polymer representations (including monomer(s),
repeating unit, periodic unit, and oligomer) was evaluated in
terms of prediction accuracy. The finding suggests that in low-
data regimes, such in the case of polymer−solvent mixtures,
the exact polymer representation is less influential than in
regimes of large data availability. However, the intrinsic
drawbacks of some representations are undeniable and should
be considered despite the amount of data at hand. The curated
data set used here augmented with the corresponding SMILES
of all solvents and polymers (with all considered representa-
tions) is provided as a benchmark to incentive research in this
direction.

Table 3. Comparison between the Pre-Trained and fine-
tuned GH-GNN Model and the Phenomenological Models
UNIFAC-ZM16 and Entropic-FV15 According to the MAPE
of Ωij

∞a

systems no. points UNIFAC-ZM Entropic-FV GH-GNN (pss)

Interpolation
athermal 51 12.0 10.3 9.5
polar 66 22.2 11.8 8.7
associated 21 27.9 33.8 16.4

Extrapolation
athermal 53 11.1 9.3 4.0
polar 66 22.6 11.2 6.4
associated 21 27.9 33.8 22.3

aBest performance is shown in bold.
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Moreover, transfer learning was used to leverage the more
abundant activity coefficient data available for small-size
systems compared to the data analogous in polymer solutions.
As a result, not only a significant increase in the model’s
accuracy was observed but also a reduction in the predictions
variability. This suggests that transfer learning is also useful for
increasing the consistency, and hence reliability, of the
predictions. The proposed modified GH-GNN model achieved
remarkable performance in both interpolation and extrap-
olation tasks, opening the realm of using recent advances in
machine learning for polymer mixture property prediction.
Finally, a comparison between the modified GH-GNN model
and the UNIFAC-ZM16 and Entropic-FV15 models was
provided showing promising potential in the case of the
proposed GNN-based model.
The inclusion of copolymers as part of the training and

evaluation of the models is left as a future research direction.
Furthermore, the generalization of GH-GNN to multi-
component systems can be directly implemented in the
current framework considering that a single molecular-level
GNN is able to process all molecular graphs, and a single
mixture-GNN is able to process the mixture graph despite the
number of nodes and edges. Nonetheless, the best approach
for incorporating mixture composition remains an unresolved
question. Moreover, studying the performance of COSMO-
based models in comparison with machine learning-based
models in the context of polymer solutions remains an open
question. Capturing more complex polymer distributions that
cannot be completely characterized by a single average molar
mass metric is still a challenge. This is specially important in
the case of biobased polymers like lignin involving much more
complex molar mass distributions.49 However, the future role
of this type of biopolymeric materials is envisioned to become
increasingly important in the context of biorefineries.
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L. F.; Vesovic, V. Industrial requirements for thermodynamic and
transport properties: 2020. Ind. Eng. Chem. Res. 2021, 60, 4987−5013.
(6) De Hemptinne, J.-C.; Kontogeorgis, G. M.; Dohrn, R.;
Economou, I. G.; Ten Kate, A.; Kuitunen, S.; Fele Žilnik, L.; De
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