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Abstract

The land carbon uptake is the main driver of interannual variations in atmospheric CO2 and
one of the least understood parts of the global carbon cycle. Meteorological factors, such as
variations in weather patterns and extreme climate events, are one of the main drivers of
interannual variations in carbon uptake by terrestrial ecosystems. However, the impact of
multi-scale meteorological events, their timing and duration on the carbon balance remains
uncertain.

In this thesis, I adapt interpretable machine learning (ML) techniques from computer
vision to investigate the role of multi-scale meteorological variability on the carbon balance
of forest ecosystems. Specifically, I use a modelling framework based on a convolutional
neural network trained on wavelet-transformed key meteorological variables to predict
ecosystem carbon and water fluxes. The eddy covariance data comes from 15 deciduous
broadleaf forest sites with a total of 112 site years. Input data for the model are meteorological
measurements filled with reanalysis data, a remote sensing variable for the state of the
ecosystem and a random walk variable for validation. The Integrated Gradients explanatory
technique provides insights into the importance of different meteorological factors, as well
as the length and timing of atmospheric events, for the anomalies in the annual carbon balance.

I can confirm that water availability is the dominant factor for local variations in carbon
balance. In addition, I show that 20-40 day long vapour pressure deficit events during the
summer are one of the most important drivers for the model to predict less annual carbon
storage. In a case study of the 2003 heatwave, the model is able to capture the legacy effects of
the heatwave on the 2004 carbon balance. Such experiments are important for understanding
the role of meteorology on ecosystem carbon uptake, and for demonstrating the potential
of interpretable machine learning methods to improve understanding of land-atmosphere
interactions.
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1
Introduction

Atmospheric CO2 continues to rise and in 2021 total anthropogenic CO2 emissions reached
10.9 ± 0.8 GtC yr−1 (Friedlingstein et al., 2022). More than 50% of these emissions are absorbed
by land (32.11%) and ocean (26.60%). In particular, the land carbon sink has significantly
slowed global warming (Shevliakova et al., 2013). As atmospheric CO2 increased over the past
few decades, terrestrial ecosystems began to store more carbon. This is due to an extension of
the growing season and increased vegetation growth, including CO2 and nitrogen fertilisation.
It is crucial to know how long this negative feedback will continue, but future projections are
highly uncertain (Friedlingstein et al., 2006). A more complete understanding of the global
carbon cycle is needed to reduce these uncertainties.

Terrestrial carbon uptake is the sum of carbon uptake through photosynthesis (Gross Primary
Production, GPP) and carbon release through various respiration processes (Total Ecosystem
Respiration, TER). The net balance is defined as net ecosystem exchange (NEE):

𝑁𝐸𝐸 = 𝑇𝐸𝑅 − 𝐺𝑃𝑃 (1.1)

The interannual variability (IAV) of the carbon cycle, driven primarily by land sink dynamics
(Piao et al., 2020), is one of the most uncertain parts of the global carbon cycle (Friedlingstein
et al., 2019). During the 1990s, the NEE IAV ranged from - 4.0 GtC yr−1 (net uptake) to + 0.3
GtC yr−1 (net emission) (Piao et al., 2020). A complex combination of climatic, ecological and
disturbance variables can explain the IAV in the NEE (Baldocchi et al., 2018). Shao et al. (2015)
showed in a large meta-analysis that biotic factors (ecological and disturbance) contributed to
57% of the variability in net ecosystem exchange, while climatic factors were associated with
the remaining 43%.

There is increasing agreement on the influence of individual climatic factors, such as
temperature or precipitation. For example, Jung et al. (2017) reported that water availability
is the dominant driver of the local IAV of GPP and TER. For the IAV of NEE, these effects are
partially compensated. However, the interactive effects of multiple climate factors were often
neglected, contributing to confusion about the dominant climate factor driving the IAV of
NEE (Piao et al., 2020).
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An important factor in climate variability is the occurrence of extreme climate events.
Extreme events can have a major impact on the carbon cycle by reducing carbon sinks or even
causing net losses in carbon stocks, thereby releasing carbon into the atmosphere (Ciais et al.,
2005). Ecosystem responses can be concurrent or lagged and often involve thresholds, with
non-linear effects on carbon fluxes and stocks. Therefore, small shifts in the frequency or
severity of climate extremes could significantly reduce carbon sinks, which could lead to
positive feedback on climate warming (Reichstein et al., 2013). Reichstein et al. (2013) defined
climate extremes in relation to the biosphere as:

"Conditions where an ecosystem function (such as carbon uptake) is higher or lower than a de-
fined extreme percentile during a defined time period and over a certain area, traceable to single or
multivariate anomalous meteorological variables."

To identify an extreme event, the focus is first on the impact of the event on ecosystems. Then
the immediate and delayed effects of the meteorological variables have to be assigned. Frank
et al. (2015) classified the impacts of climate extremes into four categories:

• Direct, concurrent impact: windthrow caused by storm; reduced productivity or
increased mortality during drought

• Indirect, concurrent impact: loss of biomass or soil organic matter due to fire caused by
lightning or human ignition

• Direct, lagged impact: reduced productivity or growth in the year(s) following the year
of an extreme drought

• Indirect, lagged impact: increased pest- or pathogen-caused mortality following a
climate extreme

Although extreme climate events could have far-reaching consequences for terrestrial ecosys-
tems, the complex interactions are poorly understood (Frank et al., 2015). In particular,
relatively little is known about the effects of extreme events other than droughts and heat-
waves, such as heavy rainfall events, ’false springs’ or exposure to high levels of solar radiation
(Mahecha et al., 2022).

Different ecosystems respond differently to climate extremes and climate change. Forests have
large stocks of above-ground biomass carbon per square metre, making them particularly
vulnerable to extreme events. In addition, forests have a long recovery time due to the slow
regrowth of trees. Forests are potentially vulnerable to a wide range of extreme events, such
as storms, drought, heat, fire, ice storms and frost. However, on a global scale, droughts have
the greatest impact on the carbon balance of forests (Reichstein et al., 2013).

A more accurate understanding of the key meteorological drivers and the effects of the
timing and duration of meteorological events, such as climate extremes, on the carbon balance
of forest ecosystems can help to reduce uncertainties in the carbon cycle. It will also improve
the understanding of ecosystem responses to climate change.

Machine learning (ML) and deep learning (DL) are becoming increasingly popular in
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Earth system science, providing promising tools for building new data-driven models to
advance our understanding of the Earth (Reichstein et al., 2019). However, one of the major
challenges is their lack of interpretability, which is crucial for understanding the results,
improving the model or assessing physical plausibility.

In this thesis, I investigate the impact of multi-scale meteorological events on the IAV
of NEE of deciduous broadleaf forests in Europe and North America. To do this, I train an ML
model framework without any assumptions on eddy covariance data, with the goal of learning
the main features of the meteorological input data internally. I then use an explanatory
method from the field of Explainable Artificial Intelligence to identify the relevant factors
learned by the model.

Specifically, I apply a machine learning framework using deep convolutional neural networks
trained on wavelet-transformed key meteorological, remote sensing and random walk vari-
ables. I use Integrated Gradients in combination with the wavelet images to gain insight
into the importance of various meteorological factors, as well as the length and timing of
meteorological events, on the IAV of NEE.

First, I describe the dataset and explain the main methods. I then examine the perfor-
mance of the model. The results are divided into two chapters. In the first chapter, I
quantitatively investigate the main drivers of positive NEE anomalies. The second chapter
is a case study on the legacy effects of the 2003 heat wave in the Hainich forest in Germany.
Finally, I summarise the results and give an outlook on further possibilities to improve the
model framework and further experiments.



2
Fluxnet: a global network of flux

measurements

FLUXNET is a global network of eddy covariance towers. These measurement towers monitor
carbon, water and energy cycles between the biosphere and the atmosphere, as well as other
meteorological variables at the ecosystem scale. The network consists of 212 sites around the
globe (a total of 1500 site years of data up to 2014). Some eddy covariance sites have been
collecting data for several decades, making it possible to study the response of ecosystems to
climate change.

Eddy covariance is a direct (in situ) flux measurement technique. It is based on the physical
understanding of eddies moving air parcels. At time t, an eddy moves an air parcel containing
different gases downwards at a certain speed. Then, at time t+1, another eddy moves an
air parcel upwards at a certain speed. If the speed and gas concentrations of the parcel are
known, the vertical flux can be estimated. An eddy covariance system consists of an ultrasonic
anemometer and an infrared gas analyser. It measures high frequency (10-20 Hz) wind and
scalar data (e.g. CO2, H2O, temperature). Eddy covariance provides estimates of the net
exchange of a scalar source footprint area extending up to hundreds of metres around the
point (Pastorello et al., 2020).

All data are quality controlled and processed through the same data pipeline, ensuring
consistency and comparability between sites (Pastorello et al., 2020). Each site is assigned
to a specific ecosystem type, also known as a plant functional type (PFT), based on the
International Geosphere-Biosphere Programme (IGBP) definition. PFTs are a system for
classifying plants with similar responses to the environment.

2.1. Sites
In addition to FLUXNET2015 (Pastorello et al., 2020), I use the Warm Winter 2020 dataset
from the ICOS network (Warm Winter 2020 Team, & ICOS Ecosystem Thematic Centre) and
the AmeriFlux FLUXNET dataset from the AmeriFlux Management Project. ICOS is the
European and AmeriFlux is the American eddy covariance network. Both datasets provide
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additional data for the period 2015 - 2020. I select 15 PFT deciduous broadleaf forest (DBF)
sites (Tab. 2.1) with a total of 112 site years between 2000 and 2020. Eight sites are located
in North America (NA) and seven are in Europe (EU). For each site I select net ecosystem
exchange (NEE), latent heat (LE) and several meteorological variables (2.2) at daily resolution.

Table 2.1: List of selected deciduous broadleaf forest sites with their climatic variables,
number of siteyears and citations. The number of siteyears describes the number of siteyears

included in the dataset for this thesis.

Site_id MAT (°C) MAP (mm) Siteyears Citation
CA-Oas 0.34 428.53 10 https://doi.org/10.18140/FLX/1440043

DE-Hai 8.3 720.0 11 https://doi.org/10.18160/2G60-ZHAK

DE-Lnf 6.96 894.6 2 https://doi.org/10.18140/FLX/1440150

DK-Sor 8.2 660.0 4 https://doi.org/10.18160/2G60-ZHAK

FR-Fon 10.2 720.0 9 https://doi.org/10.18160/2G60-ZHAK

FR-Hes 9.2 820.0 5 https://doi.org/10.18160/2G60-ZHAK

IT-Ro1 15.15 876.2 2 https://doi.org/10.18140/FLX/1440174

IT-Ro2 15.15 876.2 2 https://doi.org/10.18140/FLX/1440175

US-Ha1 6.62 1071.0 5 https://doi.org/10.18140/FLX/1440071

US-MMS 10.85 1032.0 19 https://doi.org/10.17190/AMF/1854369

US-MOz 12.11 986.0 13 https://doi.org/10.17190/AMF/1854370

US-Oho 10.1 849.0 4 https://doi.org/10.18140/FLX/1440088

US-UMB 5.83 803.0 14 https://doi.org/10.18140/FLX/1440093

US-UMd 5.83 803.0 6 https://doi.org/10.18140/FLX/1440101

US-WCr 4.02 787.0 6 https://doi.org/10.18140/FLX/1440095

I choose the input meteorological variables to describe the main meteorological characteristics
as water availability (P, VPD and RH), temperature (TA, VPD) and radiation (SW_IN, NETRAD,
SW_IN_P). Soil moisture, as an additional variable to describe soil water availability, could
not be included, since it is not available for most of the FLUXNET sites. To allow the model to
distinguish between spring and autumn, I also calculate the derivative of SW_IN_POT. The
target variable for the model is LE as well as NEE. NEE is the difference between the total
ecosystem respiration and the gross primary production. It describes the carbon flux between
the ecosystem and the atmosphere. LE is the heat absorbed or released by water during a
phase transition and is therefore a proxy for the water flux between the ecosystem and the
atmosphere. The water and carbon cycles are strongly coupled through the stomata of plants.
Thus, the prediction of both variables should add a physical constraint to the model.

Despite the same PFT, there are significant differences in climatic or static variables be-
tween the sites (Figure 2.1). For example, CA-Oas in Canada is the driest and coldest site with
a mean annual precipitation (MAP) of 428.53 mm and a mean annual temperature (MAT) of
0.34 °C. The Harvard Forest EMS Tower site in NA has the highest MAP (1071.00 mm) and
the Italian sites Roccarespampani one and two are the warmest with MAT of 15.15 °C. The
climatic variables are also fed into the model to inform it of the climatic conditions of the site.

https://doi.org/10.18140/FLX/1440043
https://doi.org/10.18160/2G60-ZHAK
https://doi.org/10.18140/FLX/1440150
https://doi.org/10.18160/2G60-ZHAK
https://doi.org/10.18160/2G60-ZHAK
https://doi.org/10.18160/2G60-ZHAK
https://doi.org/10.18140/FLX/1440174
https://doi.org/10.18140/FLX/1440175
https://doi.org/10.18140/FLX/1440071
https://doi.org/10.17190/AMF/1854369
https://doi.org/10.17190/AMF/1854370
https://doi.org/10.18140/FLX/1440088
https://doi.org/10.18140/FLX/1440093
https://doi.org/10.18140/FLX/1440101
https://doi.org/10.18140/FLX/1440095


2.2. Enhanced Vegetation Index 6

Table 2.2: List of the selected FLUXNET variable basenames, descriptions and units. PA to
WS are meteorological variables. NEE and LE are the carbon and water fluxes between the

atmosphere and the ecosystem.

Basename Description Unit
PA Atmospheric pressure kPa
TA Air temperature °C
VPD Vapor pressure deficit hPa
P Precipitation mm d−1

RH Relative humidity %
SW_IN Shortwave radiation, incoming W m−2

SW_IN_POT Shortwave radiation, incoming,
potential (top of atmosphere)

W m−2

D_SW_IN_POT Derivative of SW_IN_POT W m−2

NETRAD Net radiation W m−2

WS Wind speed m s−1

NEE Net Ecosystem Exchange gC m−2 d−1

LE Latent heat flux W m−2

Forests absorb carbon from the atmosphere through photosynthesis. Carbon is released
through autotrophic plant respiration and respiration by heterotrophic microorganisms (e.g.
decomposition). A typical annual cycle of NEE is shown in Figure 2.2. In winter, from
December to February, photosynthesis is dormant and thus NEE is positive. The forest
releases more carbon into the atmosphere than it absorbs. With the start of the growing
season in spring and the development of leaves, photosynthesis begins. When carbon uptake
exceeds respiration, NEE becomes negative and the ecosystem stores more carbon than it
emits. NEE reaches its minimum in midsummer and then increases again.

Figure 2.3 shows the distribution of the annual NEE sum (NEEyr, annual sum over daily
NEE values). Almost all siteyears exhibit a negative sum of NEE fluxes indicating a carbon
sink function of the ecosystem with a mean value of about -375 gC m−2 y−1. Ecosystems are
growing.

2.2. Enhanced Vegetation Index
I use the enhanced vegetation index (EVI, Huete et al. (2002)) remote sensing variable as an
additional feature to meteorology. The EVI is an optimised vegetation index designed to have
improved sensitivity in high biomass regions such as forests. Other vegetation indices such
as the normalised difference vegetation index (NDVI) are close to saturation in these regions.
EVI is a state variable of the ecosystem. It provides the model information about phenology
and the sensitivity of ecosystems to meteorological events. I use a dataset that provides daily
EVI values for 338 flux sites between 2000 and 2020 (Walther et al., 2022).
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Figure 2.1: Distribution of the selected DBF sites across mean temperature and precipitation.
The colours and size of the marker indicate the number of siteyears.
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Figure 2.2: Annual cycle of NEE in 2007 in Hainich Forest, Germany.
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Figure 2.3: NEEyr distribution of all 112 selected siteyears.

2.3. Gap Filling
The quality and completeness of the feature and target data is very important for data-driven
learning. To ensure the quality for the target data (NEE and LE) I use the NEE Quality Flags
(QC) from Jung et al. (2023). QC describes the quality of daily NEE values based on several
factors. A QC of one corresponds to high quality data, while a QC of zero corresponds to low
quality data. I have removed all years with more than ten consecutive days with a QC of zero
from the data. The meteorological measurements from the FLUXNET sites contain gaps of
various sizes. Precipitation in particular is a major problem. Precipitation time series are
incomplete for many site years and difficult to interpolate due to the stochastic characteristics
of precipitation. For the NA sites I use reanalysis data from the DayMet package (Thornton
et al. (2022)) to fill the precipitation gaps. DayMet provides meteorological data with a
spatial resolution of one kilometre. For all EU sites, I removed all siteyears with precipitation
gaps longer than five days from the dataset. Smaller gaps were filled by piecewise linear
interpolation. The remaining meteorological variables are filled with downscaled ERA5 data
(Hersbach et al., 2020).



3
Main Methods

For this project, I am using a machine learning modelling framework based on a convolutional
neural network trained on wavelet-transformed key variables to predict carbon and water
fluxes. The modelling framework was first used in Hafezi Rachti et al. (2023) to predict
phenological states. For a forward run, the ML model uses two years of daily values of ten
different meteorological, one remote sensing and random walk variables to predict one year
of daily values of net ecosystem exchange (NEE) and latent heat (LE). The explanation method
Integrated Gradients (Sundararajan et al., 2017) combined with the wavelet images provides
insight into the importance of different meteorological factors and the length and timing of
meteorological events for NEE and LE.

3.1. Wavelet Transformation
The Wavelet Transform (WT, Daubechies (1990)) is the mathematical optimum between
detecting frequencies and their position in a time series. It is similar to the Fourier transform.
However, instead of just detecting the frequencies in the data series as the Fourier transform
does, the WT also gives the position of the frequency. The continuous wavelet transform is
given by the equation 3.1 . For a given scale (𝑎) corresponding to a frequency, the convolution
between the data series (𝑥(𝑡)) and a wavelet function 𝜓(𝑡) is computed. The resulting function
shows how well 𝑥(𝑡) corresponds to a particular frequency at position 𝑡. To get a more general
picture, this process is repeated for a range of scales. The final output is a two-dimensional
wavelet spectrum. The WT transforms a one dimensional data series into two dimensional
data that can also be interpreted as an image.

𝐶𝑊𝑇𝑓 (𝑎, 𝑏) =
1√
𝑎

∫ ∞

−∞
𝑥(𝑡) · 𝜓

(
𝑡 − 𝑏

𝑎

)
𝑑𝑡 (3.1)

• 𝐶𝑊𝑇𝑓 (𝑎, 𝑏): Continuous wavelet transform
• 𝑥(𝑡): Function to be transformed, e.g. time series
• 𝜓(𝑡): Wavelet function
• 𝑎: Scaling parameter
• 𝑏: Translation parameter, for sampling the data

9



3.2. Convolutional Neural Networks 10

In this project I use the WT to transform a two year time series into a two-dimensional image
showing the wavelet spectrum. The Nyquist frequency for a daily time series is 0.5/day.
For better interpretability, I speak of periods and not frequencies (T = 1/f). The scales
corresponding to the periods are logarithmically spaced from 2 days to 730 days, with a
total of 64 scales. The wavelet function I use is the Ricker wavelet (Ricker, 1943). The Ricker
wavelet is a second derivative of the Gaussian function and is one of the standard wavelet
functions. It is useful for identifying both peaks and troughs in the data. Therefore, the
Ricker wavelet is suitable for extracting features and detecting local extrema in time series. To
implement the WT in Python I use the PyWavelets package (Lee et al., 2019). The boundaries
of the signal are filled with zeros before the WT is applied. Figure 3.1a shows a two year
temperature time series and Figure 3.1b the corresponding wavelet spectrum. The wavelet
transformed timeseries (Fig. 3.1b) shows the seasonal change in the high periods and the
alternation of weather in the low periods.

The WT has two major advantages. First, it provides an additional level of interpretability
by decomposing the time series into periods. Second, images as input for neural network
enables to make use of established convolutional neural networks from computer vision.

3.2. Convolutional Neural Networks
The main structure of a Convolutional Neural Network (CNN, LeCun et al. (1989)) consists
of convolutional layers. Convolutional layers perform a convolution of the convolutional
kernel with the layer’s input matrix. As the convolutional kernel slides along the layer’s
input matrix, each value depends only on neighbouring inputs. The same convolution
kernel is used for a single model layer. Depending on the kernel structure, convolution
enhances features such as edges, trends or regions. It also reduces the number of free param-
eters and allows the network to be deeper. CNNs are very good at detecting features in images.

The CNN I use is a Residual Neural Network of 18 layers (ResNet-18, He et al. (2016))
pre-trained on ImageNet (Deng et al., 2009). ResNet is a deep learning model, i.e. it consists of
several layers, and has shown very high performance in correctly classifying and recognising
objects and scenes in images. To fit the framework, I change the input layers from fitting an
image (224x224) with three channels (reg, green, blue) to fitting an image of size 730x64 (730
days, 64 WT scales) with 12 channels. A channel is an input variable. I also change the output
of the neural network to 730 values to predict 365 values each for NEE and LE.

3.3. Model architecture
Figure 3.2 shows the architecture of the model framework. The length of the input data is
two years of daily values for each variable. The second year is the target year, for which
the models predict daily values of NEE and LE. The first year is the memory year, which
gives the model information about past meteorological events that may have a legacy effect
on the ecosystem. In addition to the nine meteorological variables and one remote sensing
variable, I add a random walk variable with autocorrelation. The random walk variable, in
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combination with Integrated Gradients, helps to interpret the model. All two-year time series
of the input variables are minimum-maximum normalised before and after the WT. All values
are between zero and one. The resulting vector of 12 images or one image with 12 channels is
fed into the ResNet model and the static climate variables (MAP, MAT) are added to the last
layer of the ResNet model (late fusion). The model then directly predicts 365 daily values
for NEE and LE for the target year. The ResNet model weights are updated with the loss
calculated from the eddy covariance observations and the model prediction. For the results, I
also calculate the total annual NEE from the 365 predicted NEE values.

3.4. Integrated Gradients
I use Integrated Gradients (IG, Sundararajan et al. (2017)) to interpret the machine learning
model. IG is an explanation method from the field of Explainable Artificial Intelligence for
neural networks and characterises the importance of the input features that contribute to the
prediction. One of the essential points of IG is to set the baseline. The baseline, which can
be zero or the mean state, is the starting point for calculating the gradient. For each input
value, i.e. meteorological prediction in time and time scale, IG returns an importance score
for the predicted output, i.e. annual carbon exchange, with respect to a specific baseline. IG
calculates the gradients of the model’s prediction along a straight path in the input space
between the baseline and the actual input. The importance score is assigned to the integral
over the gradients.

Applying IG to a model input gives an importance score for each value of the input vector
and the two static variables. So for a given variable, the IG output resembles an image. I
use the 99.9th percentile of the random variable IG output to set a minimum IG importance
score for the other parameters. This reduces the uncertainty that an IG importance score was
generated by chance and increases confidence in the results.

3.5. Model training and validation
The 14 sites were divided into training (nine sites with ~69.6% of siteyears), validation (two
sites with ~10.7% of siteyears) and test data (three sites with ~19.6% of siteyears) to have a
70%/10%/20% split between training, validation and test data. The model framework based
on wavelet transform and ResNet-18 is trained across sites on 78 siteyears (~69.6% of total
siteyears) with the hyperparameter configuration of Table 3.1 and validated during training
on the validation data (~10.7% of total siteyears). The model with the lowest mean square
error on the validation data during training is selected.

To compare model performance, I include the mean seasonal cycle as a baseline and a
linear regression framework version for comparison. I calculate the seasonal cycle by taking
the average per day of the year across all training and validation site years. The linear
regression framework is the same modelling framework based on the wavelet transform.
However, the ResNet-18 is replaced by a linear regression model consisting of two linear
layers. One linear layer applies a linear transformation to the incoming data. This model is
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Figure 3.2: Model framework to predict carbon and water fluxes. A Example time series are
shown for EVI, meteorological variables and the random walk. B The wavelet-transformed
example time series are shown. C Static variables are attached with late fusion. Pre-trained
Convolutional Neural Network (ResNet-18) predicts NEE and LE. D The loss is calculated by

comparing observations with the model prediction. Then the weights of the model are
updated. (Parts of this figure were created with BioRender.com)
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also trained using the hyperparameters of Table 3.1.

Table 3.1: List of hyperparameters selected for training the ML framework. The parameters
are set according to best practice.

Hyperparameter Description Defined Parameter
Learning rate Step size at which a model’s weights

are updated
𝜋 ∗ 10−2

Learning rate
scheduler

Technique to dynamically adjust the
learning rate

CosineAnnealing-
WarmRestarts (Loshchilov
and Hutter, 2017)

Optimizer Algorithm to update the model’s pa-
rameter

Stochastic gradient descent

Batch size Number of training samples in each
iteration

4

Loss function Measures the difference between pre-
dicted values and target values

Mean squared error

Epoch number An epoch is one complete iteration
through the entire training dataset

1000



4
Model Performance

To evaluate the model framework, I choose three different validation scores. First, I calculate
the coefficient of determination (𝑅2) between observations and model predictions for daily
values of NEE (and LE). I also calculate 𝑅2 for anomalies by first subtracting the mean seasonal
cycle per site. Additionally, I use the correlation coefficient of the annual sum of NEE (𝐶𝐶
NEEyr) as a simple measure to test the interannual variability (IAV). It is calculated per site
between the predicted and observed annual total NEE (NEEyr) for each siteyear. All validation
scores are calculated per site and then averaged. The models are only tested on the three test
sites that were not seen during training with 22 siteyears (~20% of the data). For the analysis,
I only consider NEE as this is the target variable for the interpretation.

The model framework based on wavelet transformation and ResNet-18 (WCon) predicts the
winter values and the slope of the seasonal cycle very well (Fig. 4.1). However, the amplitude
of the seasonal cycle is not well captured and fluctuations during the growing season and
winter are not reproduced. The same picture emerges for several years (Fig. 4.2). In addition,
the model shows only minor variations between years. The validation scores reveal the same
results.

The WCon model performs better than the baseline seasonal cycle (SC), but slightly worse
than the linear version of the framework (WLR) for 𝑅2 (Fig. 4.3). For the 𝑅2 of anomalies,
both models perform very poorly and are unable to capture any of the variability of the
anomalies. For the correlation coefficient of NEEyr, WCon performs better than WLR. WCon
is able to capture 0.34 of the correlation of the annual sum of NEE between years. The WCon
model is good at predicting high values, which are most likely winter NEE values (Fig. 4.4).
It overestimates low NEE values. It appears that the model is not able to predict values below
0.40 and above ~0.75.

The WCon model captures the seasonal cycle quite well, but fails to describe anomalies in
the NEE data. Furthermore, it can only partially capture the CC in NEEyr. Most of the
inter-annual variability is not captured. The slightly better performance of the WLR model
for 𝑅2 is surprising, as the CNN is expected to be better at extracting the main features in
the wavelet-transformed input variables than the WLR. This may indicate that a deep CNN
such as the ResNet-18 model is not necessary for predicting water and carbon fluxes. Overall,
the WCon model is slightly better than the WLR and the baseline SC. The expectation of
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Figure 4.1: NEE Observations and WCon prediction for 2007 at the DE-Hai test site.
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Figure 4.2: Same as 4.1, but for multiple years from 2004 to 2008.
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Figure 4.3: 𝑅2, 𝑅2 of anomalies and 𝐶𝐶 of NEEyr for the wavelet transform (WT) based
models WCon (WT+ResNet-18) and WLR (WT+Linear Regression) as for the baseline

seasonal cycle (SC). The dark green colour indicates the best performing model.

0.0 0.2 0.4 0.6 0.8 1.0
NEE model prediction

0.0

0.2

0.4

0.6

0.8

1.0

N
EE

 m
ea

su
re

m
en

ts
 (n

or
m

al
iz

ed
)

R2 = 0.56
100

101

102

# 
of

 v
al

ue
s

Figure 4.4: 2D histogramm of WCon for the test data.
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the deep convolutional network to extract more features from the data is not fulfilled under
these training conditions. Nevertheless, the interpretive capacity of the framework is still a
key advantage to interpret WCon prediction and investigate the meteorological drivers of
the IAV in NEEyr. Due to the poor performance of the model, caution should be exercised
when applying the interpretation results to reality. In the following text, model or ML model
always refers to the WCon model.



5
Main Drivers of Positive NEE Anomalies

Positive NEE anomalies are defined as periods with a higher NEE, i.e. the ecosystem stores
less carbon, than the average. To identify positive NEE anomalies, I follow the definition of
climate extremes in Reichstein et al. (2013):

“Conditions where an ecosystem function (such as carbon uptake) is higher or lower than a de-
fined extreme percentile during a defined time period and over a certain area, traceable to single or
multivariate anomalous meteorological variables."

As ecosystem condition, I choose annual total NEE (sum of all daily values of one year, NEEyr)
and as extreme percentile the 90th. Therefore, for each site, all years with NEEyr above the
90th NEEyr percentile of that site are selected as positive anomalies. The 90th percentile
is estimated using the linear method of the numpy.percentile function (NumPy, 2023). A
total of 14 anomaly years are selected. Only sites with more than four years of data are
considered. The NEE anomalies are site specific and are determined using the observational
data. Looking at the local anomalies gives a more accurate picture of the meteorological
factors. There are large differences in climate and mean NEE between sites. In a global view,
effects such as site climate or forest condition could dominate the NEE. Looking at local
anomalies should filter out most of the non-meteorological factors.

5.1. Methods
To determine the main drivers of the NEEyr anomalies, I use the model framework and Inte-
grated Gradients (IG, Sundararajan et al. (2017)). The target of IG is the annual nee total NEEyr.
Therefore, I add to the model framework an additional function that calculates NEEyr from
the predicted 365 daily values. IG has two inputs, firstly the target input data. This is the input
data (meteorological data, EVI and the random walk variable) of the selected anomaly NEEyr.
The second input is for the baseline. In this case, these are the input variables averaged over
all siteyears of the site. IG predicts with the model for the target and baseline inputs NEEyr
and returns the importance of each input value for the difference between the predicted tar-
get NEEyr and the baseline NEEyr. The baseline NEEyr is a proxy for the mean NEEyr of the site.

In a nutshell, I select the NEEyr anomalies based on the NEE observations per site. I
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then predict the same NEEyr sum with the ML model. Finally, IG gives me the importance of
each input value on predicting the anomaly (target NEEyr- baseline NEEyr). This process is
repeated for all 14 of the selected anomaly years.

Due to the use of a proxy for the mean NEEyr of a site and the poor model performance for
anomalies, the difference between the predicted NEEyr and the mean NEEyr is significantly
smaller than in the observations. Furthermore, in this analysis I am interpreting the predic-
tions of the model, not the observations.

First, I am interested in the overall importance of each input variable. Therefore, for
each of the selected anomaly examples, I calculate the total sum for each input variable. Once I
take the absolute amount of IG importance scores (absolute IG importance) and once I take the
actual IG importance scores before taking the sum. The absolute IG importance shows which
input variable was overall most important for the model to predict NEEyr anomaly. The actual
IG importance shows the resulting effect of the input variable. A positive IG importance score
means that the variable increases NEEyr and therefore contributes to the anomaly. A negative
IG importance means that the variable counteracts the anomaly and therefore provides more
carbon storage. For the absolute IG importance scores, only those values above the 99.9th
percentile of the absolute random walk importance scores are considered. To also reduce the
impact of random IG importance values on the actual IG importance score, I set an upper
and lower threshold for the IG values considered for the sum. The upper threshold is the
same threshold as for the absolute importance score and the lower threshold is the negative
upper threshold. Only IG values above and below the thresholds are considered. Using
bootstrapping by varying the anomaly years in the sample, I create a box and whisker plot for
the total absolute and actual importance of each input variable (Fig. 5.1 and 5.2).

I also calculate the sum for each IG importance score over all anomaly examples (See
Figure 5.3 for VPD). Additionally, I want to identify the most important timings and scales of
meteorological events. So for each day I calculate the sum over all periods (Fig. 5.4) and for
each period I calculate the sum over all days (Fig. 5.5) for each input variable. Again, I only
consider values above or below the threshold based on the 99.9th percentile of the random
walk variable. The different scales of IG importance scores in Figures 5.3 - 5.5 result from the
different methods of calculation.

5.2. Overall importance of input variables
Precipitation (P) has the highest absolute importance score, followed by vapour pressure
deficit (VPD) and wind speed (WS) (Fig. 5.1). The large upper whisker for precipitation
indicates that precipitation is highly important for a number of anomalies. For the actual
importance values, the order changes (Fig. 5.2). Here VPD has the largest positive influence
and therefore contributes to the anomaly. VPD is a major driver of the anomaly. Wind speed
is third in absolute importance and has the highest negative score. Wind speed therefore has
a counteracting effect and reduces the anomaly. The radiation variables incoming shortwave
radiation (SW) and net radiation (NETRAD) play a less important role overall, but both
variables drive anomalies as their importance scores are slightly positive. Air pressure (PA)
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has an importance score close to zero and plays no role at all. The other radiation variables
potential incoming shortwave radiation (SW_P) and its derivation (DV_SW_P) also have no
influence, because for both variables the target input and the baseline input are the same.
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Figure 5.1: Box and whisker plot for the absolute total IG importance for each input variable.

The results show that water variables such as precipitation and VPD have the highest
importance for the model and are, according to the model, the main drivers of the anomalies.
In particular, VPD has a very positive effect on the NEEyr anomaly. The vapour pressure
deficit (VPD) is the difference between the saturated vapour pressure (es) calculated from the
air temperature and the observed vapour pressure (e) (Eq. 5.1).

𝑉𝑃𝐷 = 𝑒𝑠(𝑇) − 𝑒 (5.1)

VPD increases as the temperature rises or as the moisture in the air decreases. VPD is a
combined measure of atmospheric heat and water. A high VPD is an indicator of high
atmospheric water demand of atmospheric drought. As a result, plants evaporate more water
and draw more water from their roots.

The high positive importance of VPD in combination with precipitation suggests that
water availability for a site is the main factor for positive anomalies in NEEyr. However, it
is difficult to give a clear indication of ecosystem drought using VPD alone. This requires
more information on soil water content. For example, a bucket model based on precipitation
observations can estimate soil moisture.

In addition, VPD contains information from air temperature and has a similar meaning to
relative humidity. Therefore, VPD could be the reason for a lower importance of temperature.
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Figure 5.2: Box and whisker plot of actual total IG importance for each input variable.

Especially for the actual IG values (Fig. 5.2), VPD could hold a part of the positive temperature
IG scores. Also, VPD may have a clearer relationship with NEE than RH due to its seasonal
cycle, which causes the lower RH importance.

The interpretation of the model is in line with the results of Jung et al., who also re-
port water availability as the main driver of interannual variability of NEE at the local scale.
Even without clear information on soil moisture, the importance of VPD and precipitation may
point to the effects of droughts on forest ecosystems carbon balance reported by Reichstein et
al. (2013). However, this must be treated with caution, as it is not clear whether the high VPD
importance scores are related to high VPD values.

The high importance of wind speed (WS) is surprising, especially the negative influence
on positive NEEyr anomalies. Frank et al. (2015) report on the vulnerability of forests to
wind throw and its direct impact on the carbon balance. However, the interpretation results
indicate that wind speed has an overall negative influence and causes more carbon storage. A
clear explanation is difficult. Flux measurements depend on wind speed measurements. The
high importance of WS could be an artefact of the use of wind speed for NEE measurements.
Another reason could be that wind mixes the air through turbulence and transports carbon
dioxide to plants, which increases GPP. Further research into the relationship between wind
speed scales and their importance scores is needed to provide a clearer picture.
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5.3. Temporal patterns of VPD importance
The previous results show that VPD is a dominant driver of NEEyr. I use the interpretative
power of the framework to look more closely at the importance of the timing and length of
VPD events. Figure 5.3 shows that VPD events with a period of less than ten days do not
play a significant role for the NEEyr anomaly. VPD importance shows a seasonality. During
the growing season, and especially in the summer months, VPD is more important than in
the winter. The summer months of the target year are the most important, with the most
important periods between 20 and 40 days. However, the summer months of the previous
year also play a role. And it seems that the importance lies more in the higher periods, above
100 days.
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Figure 5.3: IG importance image for VPD. IG importance scores are summed over all
anomaly examples.

Figure 5.4 highlights the importance of the summer of the target year. It also shows that the
VPD is positive during these months, thus driving the anomalies. The memory year does
not give a clear picture of the direction of the VPD importance values. Figure 5.5 compares
the IG importance between the different periods. It shows two modes for VPD. One peak is
around 25-40 days and the second peak is around 300-400 days.

The Integrated Gradients combined with the wavelet-transformed input reveal several things.
Firstly, the model incorporates some physical plausibility. It is physically plausible that VPD
has a higher importance during the growing season and especially in the summer months of
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Figure 5.4: Daily actual IG scores summed over all periods for VPD. For better clarity, the
data is smoothed with a 30-day moving average.
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Figure 5.5: Absolute IG scores summed over all days for VPD. For better clarity, the data is
smoothed with a five-period moving average.
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the target year. In addition, the memory year also plays a role, with a slight shift in importance
to higher periods, although to a lesser extent than in the target year.

Secondly, the interpretation methods are able to reveal temporal patterns of VPD importance
and extract important periods of meteorological events. This provides a more accurate picture
than reported in the literature. However, the limitations of IG are also apparent here. It is still
unclear whether the high VPD importance scores are related to high or low VPD values and
thus to possible droughts or heat waves or to other events such as storms or high precipitation
events. With regard to the reported effects of summer droughts and heatwaves on the carbon
balance of temperate forests (Ciais et al., 2005; Reichstein et al., 2013; Frank et al., 2015; Yu et al.,
2022), the positive VPD importance is more likely to correlate with heatwaves or droughts.



6
Case Study: Heatwave 2003 in Hainich

Forest Germany

The 2003 European heatwave with July temperatures up to 6 °C above long-term means
and annual precipitation deficits up to 300 mm yr−1 (Ciais et al., 2005) had far-reaching
consequences for ecosystems and society. Ciais et al. (2005) reported a strong anomalous net
source of carbon dioxide to the atmosphere, reversing the effect of four years of net ecosystem
carbon uptake. Figure 6.1 shows the annual history of NEEyr at the Hainich forest site in
Germany (DE-Hai). The year 2003 shows a high NEEyr value in the Hainich forest. The
following year, 2004, is even higher and one of the highest NEEyr measured at the site. This
suggests strong legacy effects from the 2003 heatwave, as also reported in a study by Yu et al.
(2022). I use the model framework and an interpretation scheme to investigate the drivers of
the 2004 NEEyr anomaly in more detail.
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Figure 6.1: Interannual variation in NEEyr for the Hainich forest site in Germany. All dots
indicate observed siteyears. Light green dots indicate the siteyears that are also included in

the test dataset.
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6.1. Methods
To determine the overall importance of each variable I use a similar principle to that used
in chapter 5. In this case study, the target input for IG are the input variables for the time
period 2003 (memory year) till 2004 (target year) from the Hainich forest site. The ML model
predicts daily values and calculates the NEEyr for 2004. The baseline input are input variables
averaged over the site. For each input variable I calculate the sum over all absolute IG
importance scores. For the absolute total importance only values above the 99.9th percentile
of the random variable IG scores are considered.

The interpretation scheme (Fig. 6.3) traces the model prediction back to a specific me-
teorological event. The first step is the absolute IG output for a given variable. Only IG
importance scores above the 99.9th percentile of the random variable IG scores are shown.
I find the most important point by smoothing the data with a Gaussian kernel and taking
the maximum. This point in the two-dimensional space has a corresponding day and a
corresponding time scale. The black dotted lines in all three plots of Figure 6.3 symbolise
this length and time of the meteorological event detected by IG. The second plot shows the
target input time series of the variable before the wavelet transform, compared to the baseline
time series, which is the site mean. Both time series are smoothed with a seven-day moving
average to improve clarity. The third plot shows the difference between the target wavelet
transformed input and the baseline wavelet transformed input at the corresponding time
period.

6.2. Atmospheric water demand caused by the 2003 heatwave has
a legacy effect on 2004 NEEyr anomaly

The total absolute IG sum in Figure 6.2 shows a similar order to the quantitative analysis in
Figure 5.1. However, in this case the order of vapour pressure deficit (VPD) and precipitation
(P) changes. VPD is clearly the most important variable for the NEEyr 2004 anomaly. I take a
closer look at the most important event for VPD using the interpretation scheme (Fig. 6.3).

The top plot in Figure 6.3 shows the IG output for VPD. The most important values are in
the memory year and also in the higher periods. The Gaussian kernel also finds the most
important point here (black box). With a timing in July and a length of 316 days it covers
almost the whole of 2003. The second plot shows high VPD anomalies in the memory year
2003, especially during the summer. There is a clear positive anomaly for VPD when looking
at the wavelet-transformed difference of the two time series in the corresponding period in
the third plot. In 2003 the VPD was significantly higher than the site mean. Especially during
the summer months there was a high atmospheric dryness. This had a significant impact on
the model to predict the NEEyr in 2004.

The model framework is able to show that the 2003 heat wave had a legacy effect on
2004. Most important were not only the high temperature anomalies, but the atmospheric
dryness which is a consequence of the lack of precipitation and high temperatures in 2003.
Reichstein et al. (2007) also report that precipitation and soil moisture deficit rather than
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Figure 6.2: Total absolute IG sum for each input variable. Only values above the 99.9th
percentile of the random variable IG scores are considered.

high temperatures were the main factor to reduce water and carbon fluxes. According to
Frank et al. (2015), drought and high temperatures induce drought stress in vegetation, which
negatively affects plant growth and plant health, and in turn increases plant mortality. The
damage to plants caused by the 2003 heatwave could have consequences for carbon uptake in
subsequent years. According to Yu et al. (2022) the legacy effect of the 2003 heatwave can be
partly explained by reduced leaf development.
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Figure 6.3: Interpretation scheme of VPD for 2004 of Hainich forest site in Germany. First
plot shows the absolute IG importance scores for VPD. The black dotted lines in all three

plots symbolise the length and time of the most important meteorological event detected by
the Gaussian kernel (black box). The second plot shows the target input time series of the

variable before the wavelet transform, compared to the baseline time series, which is the site
mean. Both time series are smoothed with a seven day moving average. The third plot shows
the difference between the target WT input and the baseline WT input at the corresponding

time period.



7
Conclusion

The model framework captures the annual cycle of NEE at unseen sites well, but fails to repro-
duce anomalies. This reduces confidence in the results. Integrated gradients in combination
with the wavelet-transformed time series can determine the importance of different input
variables on NEE anomalies. Furthermore, the interpretation method is able to quantify the
effects of multi-scale meteorological events on NEEyr. It relates the model prediction to past
meteorological events in terms of their position in time and scale. The interpretive capability
demonstrates the potential of interpretable machine learning methods to accurately identify
drivers of interannual variability in carbon fluxes and in Earth system science.

Using the model framework, I confirm the importance of water availability for the in-
terannual variability of NEEyr at site level. In particular, I show that the vapour pressure
deficit is the most important driver of positive NEEyr anomalies. The most important VPD
events are those with a duration of about 20-40 days in the summer months of the target year.
VPD events that occur in the memory year are quantitatively also of high importance and
can lead to legacy effects. Furthermore, I analyse the drivers of the 2004 NEEyr anomaly in
the Hainich Forest, Germany, in a case study. My results show that the high VPD anomaly
caused by the 2003 European heatwave was the dominant driver of the 2004 NEEyr anomaly
and thus had legacy effects.

The poor model performance on anomalies and the linkage of IG importance to the magnitude
of input variables in the quantitative analysis are the main limitations of the modelling
framework. However, both limitations can be improved with further studies. These studies
are needed to increase confidence in the results.
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8
Outlook

The poor performance of the model on anomalies is a major limitation in gaining more
confidence in the results. There are several ways to improve the performance. One important
point is to improve the performance by optimising the hyperparameters. For this thesis,
I choose only a basic set of hyperparameters. Other possibilities are to change the model
architecture. The loss function could be changed to include the loss for anomalies. This could
shift the focus of the model from the seasonal cycle to anomalies. A different wavelet function
may be better suited to meteorological data, and therefore lead to improved results.

Figure 4.1 shows that the model is not able to capture small variations in NEE on a daily basis.
The time resolution of the daily input values is likely too coarse to represent short variations
in NEE. Fluxnet and the downscaled Era5 products I use for gap filling provide hourly data.
Reducing the time resolution to hourly data, with smaller scales for the wavelet transform, can
help the model capture the daily variations in NEE and improve the overall model performance.

To overcome the interpretation limit in chapter 5, I can compare the IG output with the denor-
malised wavelet-transformed input. This could show quantitatively whether, for example,
positive IG importance scores for VPD correspond to high VPD values.

The performance of the model and its interpretability can be improved by changing the input
variables. It would be helpful to include information on soil moisture. Soil moisture is crucial
for vegetation and therefore for NEE. Soil water content or soil moisture is only measured
at a few Fluxnet sites. However, a bucket model based on precipitation could estimate soil
moisture and provide useful information for the model. In addition, soil moisture information
can be used in combination with VPD to accurately characterise droughts.

Different input variables contain similar information, e.g., RH and VPD. Reducing repetitive
information, e.g., by removing RH as an input variable, reduces the complexity of the model
and can lead to better interpretation results because the meaning is not shared between
variables and the attribution is clearer. This effect could also be achieved by combining
different water variables into a water availability index.

In addition to the experiments in Chapters 5 and 6, there are several other ways to as-
sess meteorological effects on ecosystem carbon uptake. In chapter 5, I have only looked at
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VPD in detail. The same methods can be used to investigate the importance of other variables
and to further test the physical plausibility of the model. I want to repeat the experiment in
chapter 5 to identify the driver of NEEyr anomalies with a different baseline. Instead of using
the mean input variables per site, the mean input variables across all sites can be used as the
baseline. This reveals the drivers of NEEyr anomalies as opposed to the mean meteorology
across sites, providing a more global view. According to Jung et al. (2017), the importance of
water availability should balance out between sites, leaving a dominant temperature signal in
the annual variation of ecosystem carbon uptake. The interpretation scheme introduced in
chapter 6 can be used to study already defined extreme events such as the 2003 heat wave
in more detail. The interpretation method is able to attribute the NEEyr anomaly to specific
meteorological events. However, it remains unclear whether these meteorological events
are extreme weather or climate events. Therefore, a further step is necessary to compare the
identified event with data.

Another interesting experiment would be, instead of inferring meteorological factors from
NEE anomalies, to identify extreme events in the input data and then investigate the con-
sequences for NEEyr. These extreme events could be droughts, extreme precipitation or
’false spring’ events. Mahecha et al. (2022) report that the last two events in particular are
understudied.

Keenan et al. (2014) show that a general trend towards an earlier start and later end of
the growing season leads to increased carbon uptake through photosynthesis at US sites.
The authors identify temperature as the main driver of these changes in phenology. In my
opinion it is very interesting if changes in phenology due to meteorology and the resulting
NEE consequences play a significant role for the IAV of NEEyr. Looking at the main timing of
temperature events could answer this question.

In this thesis I focus mainly on the IAV of NEEyr. Looking at the annual sum of NEEyr
could lead to compensating effects between different events in a year. Perhaps a clearer sig-
nal could be obtained by looking at shorter-term NEE totals, such as monthly or seasonal totals.

Overall, there is a wide range of possibilities. If the model is able to capture NEE vari-
ation well at the site level, the possibility of spatially scaling up the model could be explored.
Another possibility would be to include more forest plant functional types, such as evergreen
or mixed forest, or to combine different models trained on these plant functional types to
provide a more complete view of meteorological effects on ecosystem carbon uptake.
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