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Abstract
Bayesian experimental design is a technique that allows to efficiently select measurements to
characterize a physical system by maximizing the expected information gain. Recent developments
in deep neural networks and normalizing flows allow for a more efficient approximation of the
posterior and thus the extension of this technique to complex high-dimensional situations. In this
paper, we show how this approach holds promise for adaptive measurement strategies to
characterize present-day quantum technology platforms. In particular, we focus on arrays of
coupled cavities and qubit arrays. Both represent model systems of high relevance for modern
applications, like quantum simulations and computing, and both have been realized in platforms
where measurement and control can be exploited to characterize and counteract unavoidable
disorder. Thus, they represent ideal targets for applications of Bayesian experimental design.

1. Introduction

We are currently witnessing rapid scaling in the number of components for quantum technology platforms.
Fulfilling the promise of fault-tolerant quantum computation will eventually require millions of qubits, and
while current implementations still fall far short of that goal, the specific challenges of scaling are already
apparent for the present-day devices including on the order of hundred qubits [1]. Other areas like integrated
photonic circuits [2] are following a similar trajectory, for applications such as neuromorphic computing [3]
or sensing and more fundamental studies in areas like topological transport [4]. There, large networks of
beamsplitters, waveguides and resonators, again with component counts on the order of dozens or hundreds,
are being fabricated and deployed. Similar large-scale networks have now been fabricated and investigated
for coupled mechanical resonators, producing phononic circuits with local access to vibrational modes.

Characterizing any of these devices is a very important but nontrivial task, especially if it is to be done in
an efficient manner, within a limited time budget [5]. Active learning [6], in the form of optimal
experimental design can help, provided that one can employ techniques able to deal with the large number of
parameters that are to be determined. These parameters comprise resonance frequencies of optical or
microwave modes, couplings between components (e.g. between resonators and qubits or waveguides, or
beamsplitter transparencies), nonlinearities, propagation phase shifts, matrix elements for the effect of
external drives, and decay rates. Many different measurement approaches can be drawn upon, each of them
coming with its respective parameters that can be adjusted prior to each new measurement. In linear devices,
specific components of the scattering matrix can be measured by injecting waves in some port and
performing a homodyne measurement on another port. Here, the frequency would be a continuous
parameter, while, depending on the setup, the choice of ports could be another, discrete parameter. In
nonlinear systems, such as circuits comprised of qubits, manipulation via pulses in Ramsey-type schemes is
the natural choice, with a final projective measurement of one or several qubits. The drive amplitude and
pulse times would then represent the measurement parameters to be optimized. Systems that couple qubits
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and resonators or waveguides can also be characterized via nonlinear transmission, with the amplitude and
drive frequency being treated as adjustable.

In all these cases, there is unavoidable fundamental noise in the measurement outcomes, namely shot
noise in the case of wave transmission measurements and quantum projection noise in the case of qubit
measurements [7]. This noise can naturally be reduced by extending the measurement duration, increasing
the wave amplitude, or repeating multiple times the qubit pulse sequence together with its final projective
qubit measurement (multi-shot measurement). As a consequence, the information gain per such extended
measurement increases. However, there are limits to the usefulness of this naive optimization: wave
amplitudes can be increased only so far before entering nonlinear regimes or heating up the device. In
addition, one cannot keep measuring at only one single choice of the measurement parameter, since that will
eventually only pinpoint a particular function of the many underlying setup parameters and not allow to
resolve all the parameters individually. That is where active learning, i.e. choosing next measurement settings
efficiently, can offer true benefits.

In this paper, we investigate recent and promising techniques from machine learning [8, 9] to efficiently
and accurately make the best parameter prediction given past measurement, and propose the next best
measurement to perform. We show applications of these techniques to the above-mentioned quantum
devices. We focus especially on quantum systems, such as chains of coupled cavities and arrays of qubits. The
presented framework is nonetheless completely general and applicable in a similar way to other settings.

2. Related work

The idea of finding the best experiment to perform is known as Active Learning in the machine learning
literature [6, 10, 11] and as Bayesian optimal experimental design [12] in more specific parameter estimation
applications [13, 14]. It is very common in science to have a class of possible models, dependent on a set of
parameters, and to perform experiments to find those that better describe the true system. The outcome of
each experiment does not give direct knowledge on the parameters themselves because of noise and
measurement errors, but it provides partial information. Therefore, it is generally not enough to perform as
many measurements as the number of unknown parameters of the system, and more experiments are
required. When enough information is collected through measurements, we can identify the true parameters
with a certain confidence.

When experiments are expensive, either in terms of cost, time and effort, it can be important to be
efficient in the number of experiments required to characterize the given physical system. In those cases, it is
desirable to exploit the information obtained from each experiment as much as possible, and to choose the
sequence of experiments in such a way that the smallest number of experiments is required.

Information theory provides satisfactory answers to this problem, at least from the theoretical point of
view. In particular, the Bayes theorem shows the proper way to include a new measurement into our
knowledge and update our predictions of the parameters of the system, and expected information gain [15]
is the quantity to look at to find the best possible experiments to perform.

There have already been many remarkable applications in science [16, 17] and in physics in particular,
ranging from devising quantum metrological procedures [18] to characterizing quantum dots [19, 20],
superconducting quantum processors [21], or sensors [22], multi-phase estimation [23, 24], and their use is
becoming more and more common. Parameter estimation can then be further generalized to the complete
design of the experiment. For example, [25–27] completely automate the search for the experiment that
solves a given task, in the case of quantum optics.

Nevertheless, optimal experimental design techniques have not been used in their full power up to
recently, even though these techniques have been known for decades. The main reason is that the exact
evaluation of those statistical quantities can be very expensive. Therefore, very rough approximations were
usually made, including the use of empirical heuristics, the use of Gaussian processes [28] and Gaussian
posterior approximation [29, 30] and the optimization through maximum likelihood estimation [31]. The
approximation usually depends on where the bottleneck is in practice, according to the specific problem:
high-dimensional parameter space, large number of different possible experiments to perform, large number
of measured quantities of each experiment, experiment execution time and cost, and total allowed number of
experiments.

Modern neural networks [32] that employ normalizing flows [33, 34] for the approximation of the
posterior distribution, developed in the past few years, recently allowed for quite more efficient estimations
[8, 9] that do not require such rough (and often unjustified) assumptions. The price to pay for the increased
precision of the approximation is clearly a larger computational effort.
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3. Methods

Bayesian experimental design can be implemented as follows. The settings of the experiment, which could
be, for example, a measurement at a particular frequency, are described by a vector x. The physical system is
identified by hidden parameters λ, which we would like to determine. Because of measurement noise, the
outcome of the experiment, y, is not deterministic, but distributed according to a distribution P(y|λ,x),
called likelihood of an observation. We can imagine, for example, y= f(x,λ)+ ϵ, where f is a deterministic
function and ϵ is a random variable, e.g. Gaussian distributed. We can update our knowledge of the
parameters of the system with the Bayes rule [35]: given our inferred distribution Pn(λ|Mn) after n
measurementsMn = {(x1,y1), . . . ,(xn,yn)} (to which we will refer to as prior at step n+ 1), and the
subsequent measurement (xn+1,yn+1), the updated distribution (posterior at step n+ 1) is

Pn+1 (λ|Mn+1) =
P(yn+1|λ,xn+1)Pn (λ|Mn)

Pn (yn+1|xn+1)
. (1)

The initial prior distribution P0(λ) is chosen arbitrarily, and it reflects our initial assumptions on the
parameters of the system. Its choice balances the algorithm’s behavior between improving prediction
accuracy and reducing parameter uncertainty. With an unsuitable prior, many more measurements may be
necessary to overcome the initial prejudice it conveys. Appendix A.3 shows some examples of the effects of
this choice.

To choose the next measurement to perform, it is possible to define a query function, which assigns to
each possible experiment x its expected value: the x for which the query function is maximized is the one that
is expected to be the most useful to measure [6]. A possible choice of the query function is the expected
information gain when measuring at x:

In [λ,y] (x) =

ˆ
dydλPn (λ)P(y|λ,x) log

Pn+1 (λ|y,x)
Pn (λ)

. (2)

This can be interpreted as the mutual information between y and λ given a measurement at x, or in other
words, as the entropy reduction after measuring (x, y).

However, equation (2) is hard to estimate. First, it requires to be able to sample from the prior
distribution P0(λ), and second, it requires the value itself of the posterior probability distribution
P1(λ|y0,x0), since it appears inside the logarithm. In principle, we could obtain the posterior distribution
with the Bayes rule, equation (1), but it is not efficient to calculate its normalization factor
P0(y|x) =

´
dλP0(λ) logP0(λ). Overall, to get equation (2) we would require two nested Monte Carlo

estimates, one for the evidence and one for the mutual information estimation. Then, we should optimize
over x to get the best measurement to perform.

Modern neural network techniques allow implementing variational bounds and perform a much more
efficient estimate [36]. For example, we can avoid evaluating the posterior [37] explicitly by introducing a
new function Q(λ|y,x) and calculating the quantity

I(x) =

ˆ
dydλP0 (y|x)P1 (λ|y,x) log

Q(λ|y,x)
P0 (λ)

. (3)

If Q is a probability distribution, we know that KL(P1(λ|y,x)||Q(λ|y,x))⩾ 0 thus

I(x)⩽ I0 [λ,y] (x) . (4)

This is the so-called Barber–Agakov bound of mutual information [38]. We can parametrize Q(λ|y,x) with a
neural network, so that we do not need to find a different Q function for every different (x, y), but we can
interpolate, amortizing the costs of the evaluation.

In particular, we use a conditional normalizing flow [39]: we start from a normal Gaussian distribution
G(z) and perform a series of invertible transformations (parametrized by neural networks) having a Jacobian
that is simple to estimate. Optimizing over Q(λ|y,x)means to optimize over the parameters of the neural
networks that implement the transformations. Normalizing flows can be easily implemented in common
deep learning frameworks like TensorFlow [40]. In particular, we use TensorFlow Probability [41]. The
procedure is summarized in figure 1. Please refer to appendix A for more details.

There are multiple ways to estimate the performance of the proposed result (and compare with
alternative techniques). The sum of the information gained at step n+ 1 after measuring (xn+1,yn+1),

ˆ
dλPn (λ|yn,xn) log

Q(λ|yn,xn)
Pn (λ)

, (5)
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Figure 1. Sketch of the model of a system’s response and summary of the parameter estimation procedure. At the top: the
observed system produces a noisy observation given the measurement settings and the system’s parameter λ. At the bottom:
starting from the prior we have about the system, we can perform multiple steps. In each step, given the prior and the system’s
likelihood, we approximate the posterior distribution by minimizing the Barber–Agakov bound (3). At the same time, the
minimization also gives us the optimal measurement setting to perform the measurement at. After the measurement has been
performed, the approximated posterior, conditioned on the measured value and outcome, becomes the new prior, and a new
iteration can be performed.

can be a measure for how much we understood about the system. However, in contrast to (3), which
represents the expected information gain averaged over all the possible measurement outcomes, this quantity
can also be negative. Indeed, it is possible that an unexpected outcome of a measurement increases the global
uncertainty on the parameters. Properties of the final posterior distribution such as its variance, or the
comparison of its mean (or most likely value) with the true parameters are also a possible metric to consider.
On the other hand, the best prediction for an observation is actually the average over all the allowed
parameters

P(y|x) =
ˆ

dλPn (λ|Mn)P(y|λ,x) . (6)

It is possible to compare this prediction with the likelihood calculated at the true parameters λ∗, for
example using the Kullback–Leibler divergence. This gives an idea of how much the predictions of our model
can differ from the observations. It is important to emphasize that if the physical model is correct, we would
expect only a single parameter set to be relevant, corresponding to the true parameters of the system.
However, if the model does not represent well the true system, the use of multiple values may be helpful to
produce a better approximation.

4. Applications and discussion

We have already mentioned in the introduction the wide variety of quantum technology platforms, system
parameters, and potential measurement approaches that could benefit in principle from active learning
approaches. In the following, we have chosen two illustrative examples that are sufficiently distinct in their
characteristics. As a first example, we consider a linear device, where wave transmission is measured to
extract the resonance frequencies of a coupled-cavity array. Such cavity arrays [4, 42–44] have been
considered in studies of transport as coupled-resonator optical waveguides in optical setups or quantum
many-body physics of photons, when combined with nonlinear elements like qubits. In our second example,
we turn to an array of qubits, which is a widespread platform used for quantum simulations and quantum
computing [43–48]. There, we consider a typical pulsed scheme followed by a projective measurement to
extract qubit parameters. In our experiments, to approximate the posterior, we employ a 4-layer normalizing
flow, each employing a two-layer MADE network (Masked Autoregressive flow for Density Estimation [49]),
with 64 neurons each. We optimize the network with an Adam optimizer with learning rate η = 10−3.
Appendix B provides additional technical details about our implementation.
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4.1. Coupled cavities
We consider a cavity array with the following Hamiltonian:

Ĥ=
∑
j

Ωjâ
†
j âj +

∑
j

Jj+1

(
â†j âj+1 + h.c.

)
, (7)

where the sum runs over all but the last of the cavity modes in this chain with open boundary conditions.
Here and in what follows, we consider h̄= 1.

Since the setup we are dealing with is linear, it is sufficient to solve the classical equations of motion for
the coupled modes, driven by a wave entering from a waveguide coupled to the first cavity. To this end, we
consider the classical coherent-state amplitudes aj corresponding to the quantum operators âj, including
drive and decay as prescribed by input-output theory [7]. For brevity of our notation, we collect all these
amplitudes in a vector and all frequencies in a matrix, where first-neighbor interactions are J and proper
frequencies Ωi. Let our system also have some internal decay κint and external decay κext, which only applies
to the cavities coupled to the environment, for example the first and last.

Given the entering fluctuating field ain, which can also contain a laser drive, the output field aout is given
by [50]

aout = Sain =
(
1−

√
κext

−i(ω−Ω)+ κ
2

)
ain. (8)

In our example, we imagine driving the first cavity and looking at the response at the last cavity. Our goal
is to extract the scattering matrix element for transmission from the first to the last cavity, given by the S0N

in (8). Being it a complex number, its knowledge corresponds to measuring both the amplitude and phase of
the emitted light. By performing the smallest possible number of measurements at a frequency ω close to the
resonance frequency, we want to discover the frequencies of all the cavities. For example, they may all be
close to a common resonance frequency, but slightly detuned. Each measurement is affected by noise ϵ,
which can be assumed to be Gaussian [7]. This noise, being observed in a measurement of the field
amplitude, ultimately arises from quantum vacuum noise being injected into the input ports of the device
(and through the dissipation channels) and propagating linearly through the setup.

In figure 2, we show our results. We consider 6 coupled cavities, with each random coupling uniformly
chosen in Jj/κ ∈ [1,3]. We assume a setting where the couplings J and the dissipation κ have already been
calibrated and are therefore known, and our goal is to find the detunings. In the general notation of
section 3, the measurement setting x corresponds in this case to the choice of the drive frequency ω, the
response function f(x,λ) corresponds to the scattering matrix element S0N, and the unknown parameters of
the system λ are the frequencies of the cavities Ωi.

As more measurements are performed, we improve our estimate of the cavity frequencies. We see that the
information provided by new measurements decreases as we make more observations. At the same time, the
posterior distribution converges to a sharp peak around the true values. For example, figure 2(e) shows the
evolution of the last cavity frequency distribution. It is important to emphasize that even if the posterior
eventually converges to a Gaussian, it is not Gaussian at the beginning, as shown in figure 2(d). This is why it
is necessary to approximate the posterior using a neural network approximation.

By looking at the measurement frequencies that the active approach selects, we can identify a pattern, or
measurement strategy: it measures the frequencies where the slope of the response is larger, alternating
between different points. These points give indeed the largest information on the intrinsic frequencies of the
cavities.

We compare the results of the inference with an active choice of the measurement with two other
strategies: fixed and random. The fixed strategy is the simplest: all the measurements are performed at the
same x value, and it is clearly often not possible to learn all the parameters from that. There will usually be a
region of the response function, close to the measurement region, that is very well learned, while other
regions will not be very accurate. A better naive measurement selection approach is the random one.
In this case, measurements are chosen uniformly within the specified measurement range (here,
x= ω/κ ∈ [−12,12]). We can see that in figure 3: the active strategy, i.e. the one that chooses the next
measurement greedily by maximizing the expected information gain, learns the parameters of the system
faster than the random one. Asymptotically, both the random and active strategy will converge to the right
values. However, active selection allows to save a lot of measurements.

5



Mach. Learn.: Sci. Technol. 4 (2023) 045022 L Sarra and F Marquardt

Figure 2. Deep Bayesian optimal experimental design applied to estimating the frequencies of an array of 6 coupled cavities. (a)
Sketch of the system. (b) Measurements at each step. The red symbols show the chosen frequency x to measure at each step. In the
background, the value of the expected information gain for each possible x (brighter is higher), normalized at each step, i.e.
IG(x)/maxx IG(x). (c) Expected information gain values for each possible measurement x. A peak represents an optimal value to
measure. Different lines represent different measurement steps. (d) Inferred parameter distribution after 15 measurements. The
diagonal shows the marginal distribution P(λi), the off-diagonal plots the two-variable slice P(λi,λj). (e) Evolution of the
marginalized posterior distribution of the last cavity frequency, until converging to a sharp peak around the true value.

4.2. Array of qubits
We consider an array of N qubits, whose many-body Hamiltonian reads like

H=
N−1∑
i=0

ωiσ
(i)
z + J

N−2∑
i=0

σ(i)
x σ(i+1)

x . (9)

At the beginning, the system starts in its ground state |ψ0⟩. We assume that qubits can be individually
addressed, and can be subjected to microwave pulses and projective measurements. In particular, we excite
the first qubit of the array by applying a microwave pulse with pulse area π. This corresponds to
implementing the unitary

U= e−iπ2 σ
(0)
x . (10)

We let the system evolve freely for some time t, and then we perform a projective measurement on the first
qubit. The evolution allows for the propagation of the external excitation. The outcome of the measurement
is binary, according to probability

p(0)↑ = ⟨ψ (t) |P̂(0)
↑ |ψ (t)⟩, (11)

where P̂(0)
↑ = | ↑⟩0⟨↑ | is the projection operator on the ‘up’-state of the first qubit (qubit number 0). In each

experiment, we can choose the duration of the free evolution after the initial pulse, which we will denote as
the ‘measurement pulse duration’ x ∈ [0,5]. By performing the smallest possible number of experiments, we
want to discover the frequencies ωi of all the qubits.

6



Mach. Learn.: Sci. Technol. 4 (2023) 045022 L Sarra and F Marquardt

Figure 3. Comparison of different measurement strategies for the coupled cavities system. (a) Final response functions after
inferring the parameters with the active, random, or fixed strategy. The orange curves represent the response function induced by
various samples of parameters λ from the final posterior distribution. In blue, the true response. Red symbols mark the
performed measurements and their outcome. (b) Evolution of the KL-divergence between the inferred response function
distribution P(y|x) and the system likelihood during the various measurements. Brighter means higher. (c) Cumulative sum of
information gained after each measurement, i.e.

∑N
n=1 logPn(λ|y,x)− logPn−1(λ). Higher values represent learning more about

the system. Results are averaged over 3 runs.

We considered a four-qubit system and performed 100 measurements in series, choosing the pulse
duration for each of them. In this case, each of those measurements is in itself a multishot measurement,
being repeated 100 times to give better statistics (otherwise the outcome would only be either 0 or 1). Again,
as shown in figure 4, we compare the active strategy with a random and a fixed one, and show the efficiency
advantages of the active one in terms of gained information. In this case, we also show the performance of a
uniform strategy, which takes sequential equally-spaced measurements, i.e. sweeping the pulse duration from
0 to the maximum allowed value. It is interesting to observe that this strategy eventually learns the parameters
of the system, but it requires many more measurements than the random one. Also, in figure 4(d) we see that
the active strategy usually requires, on average, sensibly fewer measurements than the random strategy to
provide the same total information gained. For example, to reach a total information gained of 10, we require
about 10 measurements with the active approach or about 20 measurements with the random one.

The fixed strategy always measures at x= 0, i.e. does not allow any relaxation after the microwave pulse
on the first qubit. As a consequence, this measurement effectively only provides information about the
interacting ground state of the system, which already contains some limited information about the qubit
frequencies. We emphasize, indeed, that since the interacting quantum many-body ground state is not an
eigenstate of σz acting on the first qubit, the probability of measuring ↑ at t= 0 is not 1.

Furthermore, it is possible to spot a sort of strategy in the pattern of the measurements performed by the
active selection: a few measurement regions are alternated cyclically. Indeed, we can imagine that some
regions give the largest information about some parameters. After we measure in one region, we increase the
accuracy on some parameters, and another region becomes more relevant, until it is useful to measure again
at the initial spot. This cycle is repeated until we reach the desired accuracy on the parameters.

4.3. Effects of physical non-idealities
We briefly discuss the effect of physical non-idealities on the performance of the active learning approach.
There are three aspects we can think of in this regard: (i) decay and decoherence, (ii) measurement errors,
and (iii) model deviations.

Decay and decoherence in general are part of the model and therefore will be taken into account
automatically in the active learning procedure discussed here, since they affect the likelihood. Depending on
the situation, decay rates may even be part of the parameters to be discovered or they can be assumed as

7
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Figure 4. Deep Bayesian experimental design applied to the estimation of the frequencies of an array of 4 qubits. (a) Sketch of the
system. (b) Chosen pulse duration x at each step. The red symbols show the chosen x to measure at each step. In the background,
the value of the expected information gain for each possible x (brighter is higher), normalized at each step maximum. (c)
Response functions after ten measurements, comparing the active, random, fixed and uniformly spaced approaches. The orange
curves represent the response function induced by various samples of parameters λ from the final posterior distribution. In blue,
the true response. Red symbols mark the performed measurements and their outcome. (d) Sum of information gained after each
measurement, i.e.

∑N
n=1 logPn(λ|y,x)− logPn−1(λ). Higher values imply learning more about the system. Results are averaged

over 3 runs.

given. Typically, the presence of decay and decoherence diminishes the variation of the measurement signal
as a function of the underlying system parameters. This then has the tendency to decrease the expected
information gain per measurement. One of our examples, the cavity array, illustrates that situation, where
the slope of the response function decreases for stronger decay rates, eventually requiring a larger number of
measurements. A more detailed description of this effect is shown in appendix B.3 By contrast, in the qubit
example, we chose to assume no decay, since in realistic qubit systems decay times are much longer than the
few oscillations considered here. If decay were included, this would produce a bias towards performing
measurements at shorter times, where the dependence on the underlying system parameters is still
maintained while such dependence will decrease to zero at long times due to the decay.

The measurement error is normally also included in the complete model and will affect the information
gain per measurement. This is illustrated in the qubit example, where individual measurements have binary
outcomes but N repeated measurements then lead to a signal that carries a 1/

√
N shot noise contribution.

The most challenging type of non-ideality or error to be considered for any parameter discovery
approach (whether active or not) are deviations between the assumed model and the ground truth model. In
this case, no general statements can be made, but the Bayesian approach will simply fit the assumed model as
well as it can to the observed data. In principle, one can remedy this by introducing new terms, weighted by
additional parameters, into the model. If the prior distribution in these parameters is narrowly centered
around zero, this will bias the procedure towards the simpler model while retaining the flexibility to discover
a more complex model should the observations require this.

4.4. Towards practical applications
Depending on the application, different assumptions should be made, leading to different tradeoffs between
the approximation precision and the time efficiency. The approach we propose is especially advantageous in
the setting where each measurement is very expensive and it is worth spending a long calculation time to
really find the optimal next measurement setting.

The main computation time is split in two components: the estimation of the likelihood P(y|λ,x) by
simulating the system with various parameter settings, and the sampling of both the prior (which, after the
first step, is also a normalizing flow corresponding to the posterior at the previous step) and the posterior.
The simulation time mainly depends on the system. In the qubit array, for example, most of the effort is
needed to diagonalize the Hamiltonian to exponentiate it for the time evolution. This time inevitably

8
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explodes with increasing number of qubits, as it happens with most quantum systems. The sampling time
mainly depends on the size of the network: larger networks provide a more accurate approximation but are
slower. In our examples, each training step took about 30ms in the case of the cavity example (for a batch
size 1500 samples; using 8000 steps we need 240 s per measurement) and 50ms (for a batch size of 700
samples; using 2500 steps we need 125 s) in the case of the qubits, on Quadro RTX 6000 GPUs. To give a feel
for the time scaling, a system of 50 cavities would take about 100ms per training step, while a qubit system
with six qubits needs more than 1 s per training step.

For practical applications, some tuning will be helpful to increase the performance and reduce the time
and memory requirements, according to the use case. For example, we empirically train the posterior
network for a fixed number of steps. While this proved to be a good choice, smarter techniques such as
choosing an adaptive number of steps and stopping when no change occurs for a given number of steps, or
the use of an adaptive learning rate can allow for faster convergence. Also the batch size can be adjusted. To
cut the training time, sometimes even a rough estimate of the information gain (with a smaller network or
fewer training steps), can provide a better measurement suggestion when compared with a completely
non-Bayesian approach.

5. Outlook

In this paper, we have introduced deep optimal Bayesian experimental design for modern quantum
technologies. This approach approximates the posterior update with a variational bound and a deep neural
network and allows extracting the optimal measurement to perform at each step. We have shown the
application of this technique to two promising quantum platforms, cavity arrays and qubit chains. In both
cases, the active measurement selection technique allows learning the parameters of the system with fewer
measurements than other strategies.

The main challenge at present is the time it takes to update the neural network representing the Bayes
posterior distribution as well as optimizing over possible measurement settings. This time is still too large in
order for this technique to be deployed economically ‘as is’ in the given scenarios, where individual
measurements can happen on microsecond time scales, and even extended sequences used to reduce shot
noise will probably not last longer than a millisecond for one measurement setting, except when extreme
accuracy is called for. In the present (not yet very optimized) technique, an optimization run still takes on the
order of hundreds of seconds per measurement step, which is currently a drawback of Bayesian optimal
experimental design based on deep neural networks in general.

However, a remedy would consist in performing the optimization on a number of different example
scenarios, in simulations, and then train a neural network in a supervised fashion to learn the suitable choice
of the next measurement setting based on all the previous settings and outcomes. In this way, we could really
develop a sort of policy that can be deployed to characterize unknown systems of the same class.

A specific cost function may also be added to take into account that some measurement values may
require more resources and thus be more expensive than others [6].

A further generalization can be to drop the likelihood assumption and try to develop a likelihood-free
active inference technique. This would be similar to [24]. However, we do not want to discretize the input
space x, since it would not scale up to large dimensions. Finally, we notice that we are employing a greedy
strategy which always chooses the single next best measurement to perform. Alternative approaches may
include providing an overall measurement budget (e.g. total number of measurements) or set a target total
information gain to achieve. It would be interesting to study how these sequential strategies [51], perhaps
approximated with a reinforcement learning agent [22, 52], may suggest better measurement strategies than
the greedy one we applied in this paper.

From the broader perspective, we can imagine in the future to generalize the measurement setting x to
become an entire experimental setup, and to perform the search on a broader class of experiments. This
would be a very useful aspect of a future ‘artificial scientist’ that tries to explore the world and learn a model
by performing experiments autonomously.

Data availability statement

The code of this paper is available on Github (https://github.com/lsarra/active-learning). The data that
support the findings of this study are openly available at the following URL/DOI: https://zenodo.org/record/
8084079.
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Appendix A. Bayesian experimental design

In this appendix, we describe in more detail the standard framework of Bayesian experimental design.

A.1. The Bayesian parameter update
Starting from some a priori distribution P0(λ), that reflects all our expectations on the parameters of the
system (e.g. parameter range, symmetries, constraints), we can update it according to the Bayes rule [35]

P1 (λ|x0,y0) =
P(y0|λ,x0)P0 (λ)

P0 (y0|x0)
, (A.1)

where (x0,y0) is the first measurement and its outcome and

P0 (y0|x0) =
ˆ

dλP(y|λ,x)P0 (λ) . (A.2)

The distribution P1(λ), which depends on the performed experiment and on its outcome (x0,y0), is called
posterior distribution. It represents the updated knowledge on λ after taking into account the result of the
experiment. It is easy to show that in case of multiple (independent) experiments, {xi,yi }n, this equation can
be easily generalized to a recursive form:

Pn
(
λ|{xi,yi }n

)
=

∏nP(yi|λ,xi)P0 (λ)´
dλ ′∏nP(yi|λ ′,xi)P0 (λ ′)

=
P(yn|λ,xn)Pn−1

(
λ|{xi,yi }n−1

)
Pn−1 (yn|xn)

(A.3)

with

Pn (yn|xn) =
ˆ

dλP(yn|λ,xn)Pn−1

(
λ|{xi,yi }n−1

)
. (A.4)

As one would expect, we get exactly the same updated prior if we perform many experiments in parallel and
then update our knowledge or if we perform them one after the other and update our prior after each single
experiment.

A.2. The information gain query function
We define a query function to choose which experiment to perform. This function assigns to each possible
experiment x its expected usefulness: the x for which the query function is maximized is the one expected to
be most useful to measure [6]. The query function we use in this paper is the expected Kullback–Leibler
divergence between the updated parameter distribution and the prior. We start from

KL(P1 (λ|y,x) ||P0 (λ)) =
ˆ

dλP1 (λ|y,x) log
P1 (λ|y,x)
P0 (λ)

, (A.5)

which estimates how much the prior differs from the updated distribution as a function of the experiment x
and its outcome y. Then, we calculate its average over the possible y, which gives the expected information
gain when measuring at x i

IG(x) =

ˆ
dyP0 (y|x)KL(P1 (λ|y,x) ||P0 (λ)) =

ˆ
dydλP0 (y|x)P1 (λ|y,x) log

P1 (λ|y,x)
P0 (λ)

. (A.6)

This equation can be rewritten asˆ
dydλP0 (λ)P(y|λ,x) log

P1 (λ|y,x)
P0 (λ)

=H0 (λ)−H1 (λ|y)(x) = I0 (λ,y)(x) , (A.7)

with H0(λ) =−
´
dλP0(λ) logP0(λ) and H1(λ|y)(x) =−

´
P0(λ)P(y|λ,x) logP1(λ|y,x). This can be

interpreted as the mutual information between y and λ, or, in other words, as the entropy reduction after
measuring (x, y). The optimal x to measure next, if we consider a greedy strategy, is the one that maximizes
this quantity.
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Figure A1.We compare the learning of the parameters of the coupled-cavity example in the main text (Gaussian prior with µ= 0
and σ= 1) with the case of a biased prior (µ= 1 and σ= 0.05) and that of a much broader prior (µ= 0 and σ= 10). (a) Initial
response P0(y|x) using the chosen prior distribution. For compactness, we only show the imaginary part of the response. (b)
Learning with an active strategy. Left: evolution of a parameter distribution, λ5, as an example. The red line highlights the true
value. Right: predicted response function after 200 measurements. (c) Learning with a random strategy. Same plots as in (b). As
the parameter distribution evolves, the predicted response function improves. However, it takes many more measurements to
reject values that produce similar responses but are not the true ones. In the case of the biased prior, the choice of alternative
values of λ5 correlate with alternative choices of λ0, . . .λ4 to compensate for the wrong value. To draw overall conclusions on the
learning, one should analyze the full posterior. The strong initial bias does not vanish completely even after 200 measurements.
Especially with the random approach, the predicted response is still very different from the truth. By looking at the behavior of
the active strategy, we see a shift in the chosen measurement settings that reflect the updated parameter knowledge in the case of
the biased prior; in the case of the broader one, it initially starts with some random measurements until it identifies the regions of
the response with the largest slope and starts exploiting them.

A.3. Choice of the prior
To give an idea of the effects of the choice of the prior, we consider again the example of the coupled-cavity
arrays in the main text. There, the prior is an independent Gaussian distribution with zero mean and unit
variance, and this is the same distribution from which we sampled the true parameters of the system.

Figure A1 compares this choice with two different choices: a biased prior that is focused on the wrong
mean, and a broader one which has a very large variance. We see that the posterior starts approaching the
correct values, but it requires more measurements. In the case of the biased prior, we see that the active
strategy will exploit the surprise of observed outcomes to improve accordingly, while the random strategy
hardly learns a good response with the same number of measurements. On the other hand, it is much easier
to reduce the variance of a broader prior to converge towards the true parameters.

If the procedure is interrupted too early, before the desired accuracy is obtained, the posterior mean
might suggest different parameters from the true ones, or have multiple modes around different candidates.
This is because those candidates might produce a response function similar enough to the system’s response;
with additional measurements, the posterior shifts towards the true parameters, unless the other ones really
represent a symmetry of the system, or the measurement procedure does not allow to distinguish a system
with the proposed parameters and the true ones.

From the numerical perspective, it is important that the prior keeps a sensible overlap with the
approximate posterior distribution Q(λ|y,x). Indeed, to estimate the information gain with the
Barber-Agakov bound in (2), the product P0(λ) logQ(λ|y,x)matters. If the approximate posterior Q(λ|y,x)
is too small for some values of the prior, divergences can arise, while if the prior is too small in the regions
where the approximate posterior has most of its density, they might not be sampled with the Monte Carlo
estimate and no dependence between the estimated information gain and measurement setting x will be
detected. A broader prior can help to solve the former problem, at the expense of requiring more samples in
the Monte Carlo estimate to prevent the latter. For example, in our experiments with the coupled cavities, a
prior with µ= 10 and σ= 0.05, or a prior with µ= 0 and σ= 100 almost always breaks down the numerical
precision of our implementation.

11



Mach. Learn.: Sci. Technol. 4 (2023) 045022 L Sarra and F Marquardt

Figure B1. Sketch of the normalizing flow used to approximate the posterior distribution Q(λ|y,x). Left: normalizing flow
architecture fθ(z,y), which transforms a random normal input z to a sample from the posterior, λ, conditioned on the observed
outcome y (see the main text). Right: structure of a MADE layer. It takes as input the output of the previous layer and the
observed outcome y and outputs µ and σ, which can be used to perform an invertible transformation to the input. In particular,
we remind that for the transformation to be invertible, we need to constrain the network connectivity so that each component of
the output only depends on the previous components. As a consequence, since the first component can only be rescaled
independently of all the other components, we need a permutation layer after each MADE layer.

Appendix B. Applications

B.1. Implementation
In our experiments, we employ a four-layer normalizing flow, each employing a two-layer MADE network
(Masked Autoregressive flow for Density Estimation [49]) with 64 neurons each, for a total 20544
parameters. The MADE network is conditioned on the y value, allowing to amortize the posterior
approximation for all possible measurement outcomes. On the other hand, the posterior model does not
explicitly depend on the measurement choice x: we obtain the posterior associated to the optimal
measurement x∗ by optimizing the Barber–Agakov bound.

Starting from a random input z sampled from a normal Gaussian, each MADE layer transforms the
distribution until approximating the posterior Q(λ|y,x). We can imagine a MADE layer as a fully-connected
neural network fθ(z,y) taking the previous random input z(i) at layer i of the normalizing flow and the
condition on the measurement outcome y and producing outputs µ(λ|y) and σ(λ|y). The final output is
z(i+1) = fθ(z(i)) = µ(z(i),y)+ eσ(z

i|y)z(i). We employ ReLU activation functions for all the 4 layers of the
MADE but the last one.

The MADE network is a dense network with a masked structure, so that the nth outputs µn and σn only
depend on the previous 1 . . .n− 1 inputs. In this way, the Jacobian determinant needed to calculate the
probability density from the initial Gaussian is efficient to evaluate (being it a triangular matrix) [49].
Therefore, we can easily sample and evaluate probability densities of the approximate posterior. With respect
to the original implementation [49], we activate the σ with a tanh(σ/a), with a= 5 to prevent numerical
explosion or collapse of the distribution variance and increase stability.

After each layer of the MADE network, the input vector is shifted by one with a permutation layer (i.e.
x1 . . .xn → xn,x1, . . .xn−1), so that the subsequent layer applies a masked transformation to a different
sequence of the input. Figure B1 shows a sketch of the architecture. We optimize the network with an Adam
optimizer with learning rate η = 10−3.

In terms of memory, the network we used has roughly 20000 parameters, so it is relatively small
compared to available memory on current GPUs. Especially in the case of the qubit system, the main effort
lies in the simulation, and the memory consumption grows with larger qubit systems.

The system simulation runs on the GPU to exploit its parallelization capabilities and to allow
differentiating through the response function. Also, we repeat the optimization over x in parallel on multiple
GPUs, starting from different initial values, and select the final x with the largest information gain. This
allows avoiding getting stuck in local minima and select suboptimal measurement settings. Alternative and
smarter machine learning regularization techniques could be used instead for a more resource-efficient
approach.
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B.2. Coupled-cavity arrays
We consider a cavity array with the following Hamiltonian:

Ĥ=
∑
j

Ωjâ
†
j âj +

∑
j

Jj+1

(
â†j âj+1 + h.c.

)
, (B.1)

where the sum runs over all but the last of the cavity modes in this chain with open boundary conditions. We
consider the classical coherent-state amplitudes aj corresponding to the quantum operators âj, including
drive and decay as prescribed by input-output theory [53]. Given first-neighbor interactions Ji and proper
frequencies Ωi, we can define the matrix

Ω=


Ω0 J1 0 . . .
J1 Ω1 J2 0 . . .
0 J2 Ω2 J3 . . .
...

. . .

. . . 0 JN ΩN

 . (B.2)

We also include some internal decay κint and external decay κext, which only applies to the cavities coupled to
the environment, for example the first and last. The overall decay can be represented by a vector

κ=


κint +κext
κint
...
κint

κint +κext

 . (B.3)

Let ain be the entering fluctuating field, which can also contain a laser drive, and aout the output field. The
behavior of the system is described by the input–output relations [50]{

ȧ =
(
−iΩ− κ

2

)
a+

√
κextain

aout = ain −
√
κexta

. (B.4)

From the first equation, we can write the Green function (i.e. consider a drive ain ∝ e−iωt and assume also
a∝ e−iωt)

a=

√
κext

−i(ω−Ω)+ κ
2

ain. (B.5)

Therefore, the final input–output relation becomes

aout =

(
1−

√
κext

−i(ω−Ω)+ κ
2

)
ain. (B.6)

For the case of spatially constant cavity mode frequencies, the N eigenfrequencies of the open-boundary
array span a bandwidth 4J. All the frequencies in the bulk of the spectrum are doubly degenerate, and the
spacing becomes smaller near the boundaries of the spectrum. This picture changes, and the degeneracies are
broken, when we introduce variation in the onsite frequencies Ωj, which will be the generic situation we want
to explore.

The system we discuss in the main text has couplings J uniformly sampled in [1,3] for each cavity, and
proper frequencies sampled from a Gaussian distribution with zero mean and unit variance. The values for
the specific example in figures 2 and 3 are shown in table B1. We optimize the posterior neural network for
8000 steps after each measurement, using a batch size of 1500 samples in (3).

B.3. Effect of larger decay in the coupled-cavity system
In this appendix, we show the impact of different values of decay κ on the performance of the active learning
approach. In figure B2, we apply our technique, in addition to the system analyzed in the main text, with
κ= 0.5, also to a system with κ= 1 and κ= 2. In general, we see that systems with larger decay have lower
information gain per measurement and more steps are required to learn the parameters. Also in these cases,
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Table B1. Parameters for the coupled cavity example discussed in the main text. On the left, the true frequencies we want to discover; on
the right, the known parameters of the system.

Parameters Value Known par. Value

Ω0 (freq.) 1.040 J1 (coupling) 2.733
Ω1 0.326 J2 2.615
Ω2 0.520 J3 1.956
Ω3 0.900 J4 1.568
Ω4 −0.466 J5 2.620
Ω5 0.004 κint (int. diss.) 0.5

κext(ext. diss.) 0.5
ϵ (msmt noise) 0.05

Figure B2. Effect of different decay values in the coupled-cavity example. The first plot, with κ= 0.5, corresponds to the system
described in the main text. (a) Predicted response after 200 measurements using the active strategy. We only show the imaginary
part. (b) Comparison of information gained at each measurement with both the active and random approach. Larger decay
implies lower information gained per measurement and more measurements are needed to learn the parameters. Results are
averaged over 3 runs.

Table B2. Parameters for the qubit chain example discussed in the main text. On the left, the true frequencies we want to discover; on the
right, the known parameters of the system.

Parameters Value Known par. Value

ω0 (freq.) 1.163 J (coupling) 1.7
ω1 1.003 nmsmt (multishot) 100
ω2 1.045
ω3 0.910

even if the information gain is lower, an active approach can find measurement settings that still convey more
information, and learn the parameters of the system more efficiently than with a random choice. We notice
that in the case of largest decay, κ= 2, the active strategy may require at the beginning many more
measurements to identify the measurements settings with the largest response slope (which provide the most
useful measurements).

B.4. Qubit chain
Table B2 shows the parameters employed for the qubit chain example. We optimize the posterior neural
network for at least 2500 steps after each measurement, using a batch size of 700 samples in (3). When also
optimizing over x (i.e. optimal measurement setting), we keep optimizing the loss until the change in 500
steps is smaller than 0.05. This choice allows decreasing the training time for this more computationally-
demanding system, since we train for a longer time only when required.
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Figure B3. Prediction of the response function after a different number of steps. In orange, curves given by sampling parameters
from the posterior; in blue, the true response function. The initial best guess is given by sampling from the prior distribution,
before any measurement is performed.

It is also interesting to look at how the prediction of the response function of a qubit system as in figure 4
improves after the measurements suggested by an active strategy. As shown in figure B3, starting from a very
uncertain prediction, the distribution of possible response functions converges to the true curve.
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