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This work explores the possibility of creating and controlling unconventional nonlinearities by
periodic driving, in a broad class of systems described by the nonlinear Schrödinger equation (NLSE).
By means of a parent quantum many-body description, we demonstrate that such driven systems are well
captured by an effective NLSE with emergent nonlinearities, which can be finely controlled by tuning
the driving sequence. We first consider a general class of two-mode nonlinear systems—relevant to opti-
cal Kerr cavities, waveguides, and Bose-Einstein condensates—where we find an emergent four-wave
mixing nonlinearity, which originates from pair-hopping processes in the parent quantum picture. Tun-
ing this drive-induced nonlinearity is shown to modify the phase-space topology, which can be detected
through relative population and phase measurements, and also leads to enhanced quantum properties such
as spin squeezing. We then couple individual (two-mode) dimers in view of designing extended lattice
models with unconventional nonlinearities and controllable pair-hopping processes. Following this gen-
eral dimerization construction, we obtain an effective lattice model with drive-induced interactions, whose
ground state exhibits orbital order, chiral currents, and emergent magnetic fluxes through the spontaneous
breaking of time-reversal symmetry. We analyze these intriguing properties both in the weakly interacting
(mean-field) regime, captured by the effective NLSE, and in the strongly correlated quantum regime. Our
general approach opens a route for the engineering of unconventional optical nonlinearities in photonic
devices and controllable drive-induced interactions in ultracold quantum matter.

DOI: 10.1103/PRXQuantum.4.040327

I. INTRODUCTION

Physical systems can be controlled and enriched by sub-
jecting them to a time-periodic drive. Widely explored
in the context of atomic physics since the 1970s [1–5],
this general approach recently became the leitmotif of
a vast and pluridisciplinary program known as Floquet
engineering [5–8]. Today, it concerns a wide range of phys-
ical platforms, including ultracold quantum gases [5,8],
solid-state materials [6,7], universal quantum simulators
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and computers [9,10], mechanical [11] and acoustical [12]
systems, and photonic devices [13–16].

More specifically, Floquet engineering can be applied
to modify the band structure of lattice systems [5,7], gen-
erate artificial gauge fields [17,18], and design complex
interaction processes [19–38]. These remarkable possibili-
ties open new avenues for the experimental exploration of
a broad range of intriguing physical phenomena, such as
light-induced high-temperature superconductivity [39,40],
magnetism [41–43], topological physics [7,8,16], many-
body localization [44,45], chaos-assisted tunneling [46,
47], and lattice gauge theories [48,49].

Floquet engineering has recently entered the realm of
photonics, where various settings and periodic-driving
scenarios have been proposed and experimentally real-
ized. In laser-written optical waveguide arrays [50],
where waveguides can be finely modulated along the
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propagation direction, Floquet schemes were implemented
in view of generating topological band structures [13,
51–55], synthetic dimensions [56] and artificial mag-
netic fields [57] for light. In the context of optical res-
onators, electro-optical modulators were used to reso-
nantly couple different cavity modes and realize syn-
thetic dimensions [58–62], while non-planar geometries
were designed to create stroboscopic dynamics reflect-
ing an effective magnetic field for photons [14]. In
circuit-QED, time-modulated couplers connecting super-
conducting qubits were exploited to create artificial mag-
netic fields for strongly interacting photons hopping on
a lattice [15]. Finally, drive-induced optical nonlinear-
ities recently emerged as an exciting avenue in the
context of polaritons [63,64], insulating materials [65],
and high-Q microwave cavities coupled to transmon
qubits [66].

The scope of this work is twofold. First, we intro-
duce a general and practical theoretical method to treat
a broad class of periodically driven nonlinear systems
described by the nonlinear Schrödinger equation (NLSE).
By exploiting a parent quantum many-body description,
we show that such driven nonlinear systems are well
captured by an effective NLSE with emergent nonlineari-
ties, which can be finely controlled by tuning the driving
sequence [Fig. 1]. This approach is first analyzed for a
generic two-mode nonlinear system subjected to a repeated
pulse sequence that mixes the two modes periodically
in time. In this case, an emergent nonlinearity known
as four-wave mixing [67–69] is shown to originate from
drive-induced pair-hopping processes in the parent quan-
tum picture. This framework captures a broad range of
nonlinear optical settings, including two-mode optical Kerr
cavities [70–73], optical waveguide couplers [50,74], and
coupled superconducting microwave cavities [15], but also
ultracold atomic gases trapped in double-well potentials
[75–79] and two-component Bose-Einstein condensates
(BEC) [80–82].

Building on these results, we then couple individual
(two-mode) dimers in view of designing extended lat-
tice models with unconventional nonlinearities and con-
trollable pair-hopping processes. Following this general
dimerization construction, we obtain an effective lat-
tice model with drive-induced interactions, whose ground
state exhibits orbital order, chiral currents, and emer-
gent magnetic fluxes through the spontaneous breaking of
time-reversal symmetry (TRS). This rich model is ana-
lyzed both in the weakly interacting (mean-field) regime,
captured by the NLSE, and in the strongly interact-
ing (quantum) regime, through various analytical and
numerical methods. We discuss how the exotic proper-
ties and phase transitions of this peculiar lattice model
could be detected in practice, through static and dynam-
ical probes, in realistic settings. Our general construc-
tion leads to controllable extended Hubbard models and

quantum spin models, well suited for the exploration of
exotic quantum phases of matter emerging from unconven-
tional interactions.

A. Theoretical approach and outline of the article

The first Secs. II and III explore how unconven-
tional nonlinearities can emerge in driven nonlinear sys-
tems described by the two-mode NLSE. Our theoretical
approach uses a parent quantum many-body Hamiltonian,
which describes interacting bosons subjected to a peri-
odic drive. Within this Hamiltonian framework, we derive
an effective (time-independent) quantum Hamiltonian that
well describes the stroboscopic dynamics in the high-
frequency regime of the periodic drive [17,26,27,83,84].
We then take the classical limit of this effective quan-
tum description [85–88] to finally obtain an effective
NLSE. This approach, which explicitly reveals the emer-
gent nonlinearities generated and controlled by the drive,
is summarized in Fig. 1.

Effective nonlinearities can be tuned by simply adjusting
the driving sequence. Section IV analyzes how this control
over nonlinearities can lead to modifications of the clas-
sical phase-space topology. We describe these transitions
through a “fixed-point phase diagram”, which we explain
using a simple pendulum analogy. Interestingly, the control
over drive-induced nonlinearities is directly reflected in the
phase-space topology, which can be detected through the
dynamics of the relative population and phase of the two
modes.

Section V explores the validity of our two central
approximations: the high-frequency approximation related

NLSE + driving sequence

Effective NLSE

Quantum many-body Hamiltonian

Effective many-body Hamiltonian

FIG. 1. Schematic of the approach. We consider a general
class of nonlinear systems, driven by a periodic driving sequence
and described by the nonlinear Schrödinger equation. To ana-
lyze these settings, we introduce a parent quantum many-body
Hamiltonian, Ĥ0 + V̂(t), which describes interacting bosons sub-
jected to a periodic drive. From this, we derive an effective
quantum Hamiltonian Ĥeff in the high-frequency limit of the
drive (ω → ∞). We then derive the effective NLSE upon taking
the classical limit, N → ∞, where N is the number of bosons,
hence revealing the effective nonlinearities generated by the driv-
ing sequence; see also Fig. 8 in Sec. V regarding the numerical
validation of this approach.
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to the drive and the mean-field approximation associ-
ated with the classical limit. Here we perform numerical
simulations of the quantum and classical dynamics, com-
paring the full-time dynamics generated by the drive to the
effective descriptions. As a byproduct, this numerical anal-
ysis further illustrates how effective nonlinearities can be
unambiguously detected through the dynamics of the rela-
tive population and phase of the two modes. This section
also illustrates how drive-induced interactions can modify
genuine quantum properties, such as spin squeezing.

We then design lattice systems with controllable drive-
induced interactions in Sec. VI. Using a dimerization
construction, by which we couple individual (two-mode)
dimers, we derive two classes of lattice models with
effective pair-hopping processes. In Sec. VII, we set the
focus on the ground-state properties of a specific dimer-
ized lattice model with pair hopping, which gives rise
to orbital order, chiral currents, and emergent magnetic
fluxes through the spontaneous breaking of TRS. These
intriguing properties are analyzed using various analyti-
cal and numerical methods, both in the weakly interact-
ing (mean-field) regime captured by the NLSE and in
the strongly correlated quantum regime. As a byprod-
uct, we derive effective spin models, deep in the strongly
interacting regime, which are shown to feature peculiar
(Dzyaloshinskii-Moriya-type) interactions.

We conclude this work in Sec. VIII, by proposing pos-
sible experimental implementations and detection schemes
in optics and cold atoms.

II. TWO-MODE NONLINEAR SYSTEMS AND
DRIVE-INDUCED NONLINEARITIES

We start by considering a broad class of two-mode non-
linear systems, described by the nonlinear Schrödinger
equation (NLSE)

i
∂ψ1

∂t
=
(

−γ ∂
2

∂x2 + |ψ1|2 + β|ψ2|2
)
ψ1 − �0

2
ψ2,

i
∂ψ2

∂t
=
(

−γ ∂
2

∂x2 + |ψ2|2 + β|ψ1|2
)
ψ2 − �0

2
ψ1.

(1)

Here, ψ1,2(x, t) denote the complex amplitude of the fields
corresponding to the two modes s = 1, 2; they depend on
the evolution “time” t and the “spatial” coordinate x. The
focus of this work is set on the “internal” dynamics associ-
ated with the two modes, such that the “spatial” coordinate
x [and the related kinetic energy term proportional to γ
in Eq. (1)] does not play any role in the following. For
the sake of generality, the equations of motion Eq. (1)
contain two types of nonlinearities, which are generically
present in optical cavities [70–73]: the so-called self-phase
modulation and the cross-phase modulation, whose respec-
tive strengths are set by the parameter β; we have also
included a static linear coupling of strength�0/2. We point

(a)

(c) (d)

(b)

FIG. 2. Possible realizations in optics and cold atomic gases:
(a) Two modes in an optical ring cavity (1 and 2), repeatedly
undergoing mixing operations (⊕ and �) along the ring. These
operations correspond to a coupling between the two polarization
eigenmodes of the cavity, as realized by means of quarter-wave
plates; see Eqs. (2) and (3). (b) Two optical waveguides (1 and
2) with modulated interwaveguide separation, realizing a “time-
periodic” linear coupling �(t) between the two optical modes
[Eq. (4)]. In both cases (a),(b), the “time” coordinate corre-
sponds to the propagation direction [50,89]. (c) Two-component
BEC involving two atomic internal states and a time-dependent
(microwave) coupling �(t). (d) Bosonic gas in a double-well
potential, with a time-modulated tunneling strength �(t).

out that the nonlinear Eqs. (1) are decoupled in the limit
�0 = β = 0, i.e., in the absence of linear coupling and
cross-phase modulation.

While Eq. (1) naturally describes the two polarization
modes ψ1,2 of a light field propagating in a lossless cav-
ity [70–73], or light propagating in a pair of adjacent
waveguides [50,74], it should be noted that Eq. (1) equally
captures the physics of bosonic atomic gases trapped in
a double-well potential, as well as two-component Bose-
Einstein condensates [76,80,82]; see Fig. 2 for an illustra-
tion of these four possible realizations. A more detailed
discussion on experiment aspects is provided in Sec. VIII.

In order to modify the nonlinearities of a system
described by Eq. (1), we now introduce a time-periodic
pulse sequence of period T, which mixes the two modes in
a fast and stroboscopic manner. As illustrated in Fig. 3(a),
the sequence is characterized by four successive steps
(within each period T):

Step 1: Free evolution according to the NLSE in Eq. (1)
for a duration t = αT, where α is a tunable parameter
defined between [0, 1].

Step 2: The two components suddenly undergo the mix-
ing operation (pulse ⊕)

ψ1 → (1/
√

2) (ψ1 + iψ2) ,

ψ2 → (1/
√

2) (iψ1 + ψ2) .
(2)
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NLSE NLSE

(a) (b)

FIG. 3. (a) The pulse sequence involves free evolution,
described by the NLSE in Eq. (1), interrupted by two pulses
(⊕, �) described by Eqs. (2) and (3). (b) The same pulse
sequence, now expressed in terms of the time-evolution opera-
tor in Eq. (20), which involves the mixing operations Û(†)

mix and
the “free” time evolution described by the Hamiltonian Ĥ0.

Step 3: Free evolution according to the NLSE in Eq. (1)
for a duration t = (1 − α)T.

Step 4: The two components undergo the reverse mix-
ing operation (pulse �)

ψ1 → (1/
√

2) (ψ1 − iψ2) ,

ψ2 → (1/
√

2) (ψ2 − iψ1) .
(3)

For certain devices, the mixing operations in Eqs. (2)
and (3) can be performed readily, on arbitrarily short time
scales. For instance, in a two-mode optical cavity [70–72],
these operations would correspond to a coupling between
the two polarization eigenmodes of the cavity, as directly
realized by means of quarter-wave plates [90,91]; see
Fig. 2(a) and Sec. VIII.

More generally, when the mixing processes in Eqs. (2)
and (3) cannot be directly performed by a device, they can
be realized by activating a linear coupling between the two
modes, during a short pulse duration τ � T, such that the
equations of motion of the driven system can be written in
the form

i
∂ψ1

∂t
=
(

−γ ∂
2

∂x2 + |ψ1|2 + β|ψ2|2
)
ψ1 − �(t)

2
ψ2,

i
∂ψ2

∂t
=
(

−γ ∂
2

∂x2 + |ψ2|2 + β|ψ1|2
)
ψ2 − �(t)

2
ψ1.

(4)

Here, the function �(t) = �0 + fpulse(t) includes the pulse
sequence defined by the function

fpulse(t) = (+π/2 + 2πp)/τ t⊕n − τ ≤ t ≤ t⊕n ,

= (−π/2 + 2πp)/τ t�n − τ ≤ t ≤ t�n ,

= 0 otherwise, (5)

where t⊕n = (n + α)T and t�n = (n + 1)T denote the suc-
cessive pulse activation times, with n = 0, 1, 2, . . .; see
Figs. 2(b) and 3(a). The pulse function in Eq. (5) also

includes an arbitrary integer, p ∈ Z, which can be cho-
sen based on practical constraints; for instance, it can be
set such that the linear coupling �(t) never changes sign
over time, which can be convenient for certain physical
realizations; see Figs. 2(b) and 2(d) and Sec. VIII.

To verify that the drive in Eqs. (4) and (5) indeed
realizes the mixing operations in Eqs. (2) and (3), we
restrict ourselves to the (linear) driving terms in the cou-
pled Schrödinger Eqs. (4) and we obtain the time-evolution
operators corresponding to the first and second pulses,
respectively:

Û(t⊕n ; t⊕n − τ) = ei π4 σ̂x ≡ Ûmix,

Û(t�n ; t�n − τ) = e−i π4 σ̂x = Û†
mix,

(6)

where σ̂x is the standard Pauli matrix. The operators Ûmix

and Û†
mix in Eq. (6) indeed realize the mixing operations

in Eqs. (2) and (3), respectively. We note that these mix-
ing operations are known as π/2 pulses in quantum optics
[81,92–94].

In the limit of a fast pulse sequence, namely, when the
period of the drive T � Teff is much smaller than the effec-
tive “time” scale of the system (to be discussed below),
we find that the stroboscopic time evolution of the non-
linear system is well described by an effective NLSE with
modified nonlinearities. Following the method detailed in
Sec. III, this effective NLSE reads

i
∂ψ1

∂t
=
(

−γ ∂
2

∂x2 + U1|ψ1|2 + U2|ψ2|2
)
ψ1

+ U3ψ
∗
1ψ

2
2 − �0

2
ψ2,

i
∂ψ2

∂t
=
(

−γ ∂
2

∂x2 + U1|ψ2|2 + U2|ψ1|2
)
ψ2

+ U3ψ
∗
2ψ

2
1 − �0

2
ψ1,

(7)

where the three types of nonlinearities are controlled by the
parameters

U1 = (3α − 1)/2,

U2 = β(3α − 1)/2,

U3 = (α − 1)(1 − β)/2.

(8)

In this framework, the system is assumed to be measured
stroboscopically at times t = T × n, with n ∈ N.

Comparing Eqs. (7) and (8) with the original Eq. (1),
we find that the repeated mixing processes in Eqs. (2)
and (3) effectively produce a new form of nonlinearity,
commonly known in optics as four-wave mixing [67–
69]. The drive also renormalizes the initial nonlinearities
(self-phase and cross-phase modulations) by a same fac-
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tor (3α − 1)/2. We point out that the effective four-wave
mixing is induced even in the limit of two initially decou-
pled modes (β = �0 = 0). We also remark that the NLSE
in Eq. (1) is recovered in the limit α = 1, corresponding to
a nondriven system.

We stress that the nonlinear system described by the
NLSE in Eq. (7) is assumed to be lossless, such that
|ψ1|2 + |ψ2|2 = N is a constant. Under this contraint, one
can add any arbitrary constant c to the self-phase and
cross-phase modulations, (U1, U2) −→ (U1 + c, U2 + c),
without affecting the physics. In particular, this implies that
the pathological case β = 1 always trivializes to a linear
problem.

As another technical note, we point out that the mix-
ing processes in Eqs. (2) and (3) do not modify the kinetic
energy terms in Eq. (1). For the sake of presentation, we
henceforth set γ = 0 (except otherwise stated), but we do
keep in mind that these terms can be readily added in the
description without affecting the results [95].

It is the aim of the following Secs. III–V to demon-
strate the effective description displayed in Eq. (7)
and to explore its regimes of validity, using analyti-
cal and numerical methods. Section IV analyzes how
tuning the relative strengths of effective nonlinearities
[Eq. (8)] can induce topological changes in phase space,
hence leading to strong modifications of the dynamics.
We then generalize our approach to lattice systems in
Sec. VI.

III. QUANTUM MANY-BODY APPROACH TO
DRIVE-INDUCED NONLINEARITIES

Our approach consists in three successive steps
[Fig. 1]:

(a) We introduce a parent quantum many-body Hamil-
tonian, whose semiclassical dynamics reproduces
the time evolution of the driven nonlinear system in
Eq. (4).

(b) Within this quantum framework, we derive the
effective (Floquet) Hamiltonian that well captures
the long time dynamics in the high-frequency limit
(2π/T → ∞).

(c) We then obtain the effective classical equations of
motion (i.e., the effective NLSE) from the effective
quantum Hamiltonian.

The validity of this approach will then be verified in
Sec. V, through numerical studies of both quantum and
classical dynamics.

We point out that the periodically driven NLSE has been
widely explored in optics [74,96,97] and in cold atoms [20,
87,98–103] using other theoretical methods.

(a) (b)

(c) (d)

FIG. 4. Processes in the Hamiltonian in Eq. (9): (a) intramode
(Hubbard) interactions; (b) intermode (cross) interactions; and
(c) single-particle hopping processes. (d) The effective Hamilto-
nian in Eq. (34) includes pair-hopping processes, by which two
interacting particles in the same mode simultaneously change
mode. In this illustration, the two modes 1 and 2 correspond to
the low-energy orbitals of a double-well potential, and the bosons
are represented by green spheres.

A. The parent quantum many-body system

Our starting point is the quantum many-body Hamilto-
nian

Ĥ0 = 1
2

(
â†

1â†
1â1â1 + â†

2â†
2â2â2

)
+ βâ†

1â†
2â1â2

− �0

2

(
â†

1â2 + â†
2â1

)
, (9)

where â†
s (respectively, âs) creates (respectively, annihi-

lates) a boson in the mode s = 1, 2. These operators satisfy
the bosonic commutation relations, [âs, â†

s′] = δs,s′ . The
first line in Eq. (9) describes intramode (Hubbard) interac-
tions, as well as intermode (cross) interactions of strength
β; the Hamiltonian also includes single-particle hopping
processes of amplitude �0/2; see Figs. 4(a)–4(c) for a
sketch of the processes and Refs. [104,105]. Henceforth,
the bare Hubbard interaction strength sets our unit of
energy and time.

First of all, we note that the classical equations of motion
in Eq. (1) are readily obtained from Heisenberg’s equa-
tions, dâs/dt = i[Ĥ0, âs], upon taking the classical limit
â1,2 → ψ1,2; see Refs. [85–88]. Specifically, the self-phase
modulation in Eq. (1) stems from the intramode (Hubbard)
interaction terms in Eq. (9), while the cross-phase mod-
ulation stems from the intermode (cross) interaction term.
Hence, this justifies the choice of Eq. (9) as a proper parent
quantum Hamiltonian for our initial (nondriven) system.
Note that we set � = 1 throughout this work.

In fact, for the sake of later convenience, it is instructive
to derive the NLSE in Eq. (1) using a different approach.
Indeed, this will allow us to introduce central notions
and quantities, which will be used throughout this work.
Let us introduce a set of angular momentum (Schwinger)
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operators [106], defined as

Ĵx = 1
2

(
â†

1â2 + â†
2â1

)
, Ĵy = 1

2i

(
â†

2â1 − â†
1â2

)
,

Ĵz = 1
2

(
â†

2â2 − â†
1â1

)
, N̂ = â†

1â1 + â†
2â2.

(10)

These angular-momentum operators satisfy the spin com-
mutation relations [Ĵμ, Ĵν] = iεμνλĴλ, and the operator N̂
simply counts the total number of bosons in the system
(assumed to be constant). We note that these operators also
satisfy the sum rule

Ĵ 2
x + Ĵ 2

y + Ĵ 2
z = (N̂/2)[(N̂/2)+ 1], (11)

which is a conserved quantity. For a single boson (N = 1),
we have Ĵμ = σ̂μ/2, where σ̂x,y,z denote the Pauli matrices.

Using the operators in Eq. (10), the parent Hamiltonian
in Eq. (9) simply reads

Ĥ0 = χ Ĵ 2
z −�0Ĵx + constant, χ = 1 − β. (12)

We henceforth neglect the constant terms, which are pro-
portional to N̂ and N̂ 2; see Appendix A. We note that the
Hamiltonian in Eq. (12) has been extensively studied in
the context of the bosonic Josephson effect [76,77,80,107–
110] and nuclear physics [111]. From Eq. (12), we also
recover that the pathological case β = 1 trivializes to a
noninteracting problem (χ = 0), as previously noted in
Sec. II.

The equations of motion associated with Eq. (12) are
readily obtained from Heisenberg’s equations

dĴz(t)
dt

= i[Ĥ0, Ĵz(t)] = −�0Ĵy(t),

dĴy(t)
dt

= i[Ĥ0, Ĵy(t)] = �0Ĵz(t)

+ χ
(

Ĵz(t)Ĵx(t)+ Ĵx(t)Ĵz(t)
)

.

(13)

In order to connect Eq. (13) to the classical NLSE in
Eq. (1), we take the classical limit and introduce the Bloch-
Poincaré sphere representation (θ ,ϕ) through the mapping
[110]

Ĵx → N
2

√
1 − z2 cosϕ, Ĵy → −N

2

√
1 − z2 sinϕ,

Ĵz → −N
2

z, z = cos θ .

(14)

We note that this Bloch-sphere representation relies on
Eq. (11) and particle conservation. Injecting this Eq. (14)

into Eq. (13), one obtains the classical equations of motion

ż = −�0

√
1 − z2 sinϕ,

ϕ̇ = Nχz +�0
z√

1 − z2
cosϕ,

(15)

for the two canonical conjugate variables z(t) and ϕ(t) [76,
80,108].

We point out that Eq. (15) is equivalent to the NLSE in
Eq. (1) upon representing the complex amplitudes ψ1,2 on
the Bloch-Poincaré sphere [88,112]

ψ1 =
√

N cos(θ/2) =
√

N
2

+ n,

ψ2 =
√

N sin(θ/2) eiϕ =
√

N
2

− n eiϕ ,

(16)

where we introduced the relative phase ϕ between the two
modes, the relative population (or relative light intensity)

z = cos θ = 2n
N

= (|ψ1|2 − |ψ2|2
)
/N , (17)

and the total population (or total light intensity)

N = |ψ1|2 + |ψ2|2. (18)

We emphasize that the dynamics in phase space, i.e., the
trajectories (z(t),ϕ(t)) resulting from Eq. (15), can be sim-
ply monitored in experiments by measuring the relative
population (intensity) and relative phase of the two modes;
see also Sec. VIII for a more detailed discussion.

For the sake of completeness, we note that the equa-
tions of motion in Eq. (15) can be derived from Hamilton’s
equation, using the classical Hamiltonian [76,80,113]

H0(z,ϕ) = χN
2

z2 −�0

√
1 − z2 cosϕ. (19)

The classical dynamics of the nondriven system hence
relies on a competition between the “mean-field” interac-
tion parameter g = χN and the linear coupling �0. This
competition is at the core of bifurcations and symme-
try breaking in bosonic Josephson junctions [70,76,80,88,
108]. These concepts will be further discussed in Sec. IV.

B. The pulse sequence and the effective Floquet
Hamiltonian

We now introduce the quantum-many-body analogue of
the pulse sequence introduced in Sec. II; see Fig. 3. We
write the time-evolution operator over one period T in the
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form [Fig. 3(b)]

Û(T; 0) = Û†
mix e−i(1−α)TĤ0Ûmix e−iαTĤ0 , (20)

where the mixing operator is defined as

Ûmix = ei π2 Ĵx , (21)

and we remind that α ∈ [0, 1] is a tunable parameter.
We note that the operator Ûmix in Eq. (21) indeed cor-

responds to the π/2-pulse operator in Eq. (6) for a single
boson (N = 1), which is consistent with the fact that the
mixing operation is a single-particle process. When writ-
ing Eq. (20), we explicitly took the limit τ → 0, where τ
is the pulse duration; see Eq. (5).

The state of the quantum many-body system at time tn =
T × n is then obtained as

|ψ(tn)〉 = Û(tn; 0)|ψ(0)〉 =
(

Û(T; 0)
)n

|ψ(0)〉, (22)

where |ψ(0)〉 denotes the initial state of the system.
We now derive the effective (Floquet) Hamiltonian [17,

26,83], which captures the stroboscopic dynamics of the
driven system, and hence, its time evolution over long
time scales tn � T. The effective Hamiltonian is defined
through the time-evolution operator over one period [17,
114]

Û(T; 0) = e−iTĤeff , (23)

and it can be evaluated explicitly through a 1/ω expan-
sion, where ω = 2π/T denotes the drive frequency; see
Refs. [17,26,27,83,84]. In order to reach convergence of
this infinite series expansion, we partially resum the series
[17] by splitting the time-evolution operator in Eq. (20)
into two parts

Û(T; 0) = e−i(1−α)TĤ1e−iαTĤ0 , (24)

where we introduced the operator Ĥ1 defined as

e−itĤ1 ≡ e−i π2 Ĵx e−itĤ0ei π2 Ĵx . (25)

The time-evolution operator in Eq. (25) has a simple inter-
pretation: it corresponds to free time evolution in a rotated
basis.

Then, assuming that Tωeff � 1, where ωeff is the charac-
teristic frequency associated with the processes included
in the Hamiltonians Ĥ0 and Ĥ1, we apply the Trotter

approximation to Eq. (24),

Û(T; 0) ≈ e−iT
(
αĤ0+(1−α)Ĥ1

)
, (26)

from which we directly obtain the effective Hamiltonian
[Eq. (23)]

Ĥeff = αĤ0 + (1 − α)Ĥ1 + O(T). (27)

Our problem of finding the effective Hamiltonian thus
reduces to the calculation of Ĥ1 defined in Eq. (25). This
step can be performed exactly, by noting that

Ĥ1 = e−i π2 Ĵx Ĥ0 ei π2 Ĵx = χ
(

e−i π2 Ĵx Ĵ 2
z ei π2 Ĵx

)
−�0Ĵx,

where we used the definition of Ĥ0 in Eq. (12).
Using the Baker-Campbell-Hausdorff formula, one

obtains [115]

e−i π2 Ĵx Ĵ 2
z ei π2 Ĵx = Ĵ 2

y , (28)

such that

Ĥ1 = χ Ĵ 2
y −�0Ĵx. (29)

The effective Hamiltonian in Eq. (27) finally reads

Ĥeff = χ
(
αĴ 2

z + (1 − α)Ĵ 2
y

)
−�0Ĵx + O(T). (30)

From this result, we find that the Trotter approximation
[Eq. (26)] is valid for a sufficiently short driving period
satisfying T � 1/χ and T � 1/�0.

The Hamiltonian displayed in Eq. (30) involves uncon-
ventional interactions, which are known as two-axis twist-
ing interactions in the context of quantum optics [93,116].
They have been proposed in view of creating squeezed spin
states with optimal squeezing in various physical settings
[93,94,116–124], as we further discuss in Sec. V B.

1. A few limiting cases

At this stage, it is insightful to analyze the effective
Hamiltonian in Eq. (30) for a few limiting cases:

(a) When α = 1, one finds Ĥeff = Ĥ0, which reflects the
triviality of the sequence in Eq. (20) in this case.

(b) When α = 0, one finds the effective Hamiltonian

Ĥeff = χ Ĵ 2
y −�0Ĵx = e−i π2 Ĵx(Ĥ0) ei π2 Ĵx , (31)

which is thus strictly equivalent to the nondriven
Hamiltonian Ĥ0 up to a unitary transformation
[Eq. (28)]: the Hamiltonians Ĥ0 and Ĥeff share the
same spectrum. In this case, the driving sequence
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simply generates an initial and final kick [17], as can
be deduced by explicitly writing the time-evolving
state at some arbitrary stroboscopic time t = tn
[Eq. (22)]

|ψ(tn)〉 =
(

Ûα=0(T; 0)
)n

|ψ(0)〉,

= e−i π2 Ĵx e−itn Ĥ0ei π2 Ĵx |ψ(0)〉. (32)

The long-time dynamics in Eq. (32) is indeed dic-
tated by the static Hamiltonian Ĥ0, but it is also
affected by the initial and final kicks, e±i(π/2)Ĵx , asso-
ciated with the change of basis (rotation on the
Bloch-Poincaré sphere) [125]. In Sec. VI, we will
see that this situation can nonetheless lead to intrigu-
ing phenomena upon coupling individual dimers in
a time-periodic manner [Fig. 15(b)].

(c) When α = 1/2, the effective Hamiltonian reads

Ĥeff = χ

2

(
Ĵ 2

y + Ĵ 2
z

)
−�0Ĵx + O(T),

= −χ
2

Ĵ 2
x −�0Ĵx + O(T), (33)

where we used the sum rule in Eq. (11) and omit-
ted constant terms. In this case, the system displays
the special symmetry [Ĥeff, Ĵx] = 0, such that the
many-body eigenstates and energies can be written
exactly.

2. The effective Hamiltonian in the bosonic
representation

It is instructive to rewrite the effective Hamilto-
nian in Eq. (30) using the original bosonic operators
[Appendix A],

Ĥeff = U1

2

(
â†

1â†
1â1â1 + â†

2â†
2â2â2

)
+ U2

(
â†

1â†
2â1â2

)

+ U3

2

(
â†

1â†
1â2â2 + â†

2â†
2â1â1

)

− �0

2

(
â†

1â2 + â†
2â1

)
+ O(T), (34)

where the interaction strengths are given in Eq. (8).
A comparison with the initial Hamiltonian Ĥ0 in Eq. (9)

indicates that the driving pulse sequence has effectively
generated novel interaction terms; see the second line
of Eq. (34). These pair-hopping terms [28,105,126–130],
which stem from the Ĵ 2

y interactions in Eq. (30), describe
processes by which two particles in mode s collide and end
up in the other mode s′ �= s; see Fig. 4(d). As we now dis-
cuss below in Sec. III C, these pair-hopping terms are at
the origin of the four-wave mixing nonlinearity announced
in Eq. (7).

As a technical remark, we remind the reader that adding
a constant shift to the intramode (Hubbard) and inter-
mode interactions, (U1, U2) −→ (U1 + c, U2 + c), does
not modify the physics, due to the number-conserving
nature of the system.

C. Effective classical equations of motion

First of all, we find that the effective NLSE in Eq. (7)
is directly obtained from the effective Hamiltonian Ĥeff in
Eq. (34), using Heisenberg’s equations dâs/dt = i[Ĥeff, âs],
and upon taking the classical limit â1,2 → ψ1,2. In partic-
ular, the effective four-wave mixing in Eq. (7) originates
from the effective pair-hopping terms in Eq. (34).

In analogy with Eqs. (13)–(15), we now explicitly derive
the classical equations of motion for the two canonically
conjugate variables z(t) and ϕ(t), describing the relative
population and phase of the two modes. Using the effective
Hamiltonian in Eq. (30) and Heisenberg’s equations, we
find

dĴz(t)
dt

= i[Ĥeff, Ĵz(t)] = −�0Ĵy(t)

− (1 − α)χ
(

Ĵy(t)Ĵx(t)+ Ĵx(t)Ĵy(t)
)

,

dĴy(t)
dt

= i[Ĥeff, Ĵy(t)] = �0Ĵz(t)

+ αχ
(

Ĵz(t)Ĵx(t)+ Ĵx(t)Ĵz(t)
)

.

Applying the Bloch-Poincaré-sphere mapping [Eq. (14)],
we obtain the classical equations of motion

ż = −χN (1 − α)(1 − z2) cosϕ sinϕ −�0

√
1 − z2 sinϕ,

ϕ̇ = χNz
(
α − (1 − α) sin2 ϕ

)+�0
z√

1 − z2
cosϕ.

(35)

The classical equations of motion in Eq. (35) are physically
equivalent to the effective NLSE announced in Eq. (7),
through the mapping provided by Eq. (16). One verifies
that Eq. (35) reduces to the equations of motion of the
undriven system [Eq. (15)] in the limit α = 1.

Drive-induced nonlinearities, which are controlled by
the parameter α, strongly affect the dynamics of the two-
mode system, as we now analyze in the following Sec. IV.

IV. DRIVE-INDUCED NONLINEAR DYNAMICS
AND THE PENDULUM ANALOGY

A. Symmetries, phase-space topology and transitions

First of all, we find that the equations of motion in
Eq. (35) can be derived from Hamilton’s equation, using
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the classical Hamiltonian

Heff(z,ϕ;α) = −�0

√
1 − z2 cosϕ + χN

2
αz2

+ χN
2
(1 − α)(1 − z2) sin2 ϕ. (36)

It is useful to note that the Hamiltonian in Eq. (36), and the
resulting equations of motions in Eq. (35) satisfy, for any
value of the parameters, the following discrete symmetries:

S1 : z → −z,

S2 : ϕ → −ϕ.
(37)

We remind that ϕ is defined modulo 2π , given its angular
nature, and that z = cos θ is defined in the interval [−1, 1].
We also note that additional symmetries exist for specific
values of the parameters [131]. The classical Hamiltonian
Heff(z,ϕ;α) describes an energy landscape over the Bloch
sphere, from which one can readily deduce all possible
trajectories and related fixed points (ż = ϕ̇ = 0) [80]. In
order to reveal the impact of drive-induced nonlineari-
ties on the dynamics, we determine a “fixed-point phase
diagram,” as a function of the dimensionless parameters
α and �̃0 = �0/(χN ). Here, we identify a “phase” as a
region in parameter space that is characterized by a dis-
tinctive phase-space topology (fixed-point configuration);
see Fig. 5.

By performing a stability analysis on the classical
Hamiltonian Eq. (36), we obtain the following fixed points:

FP0 : z = 0,ϕ = 0,

FPπ : z = 0,ϕ = π ,

FP∗ : z = 0,ϕ = ± arccos [�̃0/(1 − α)],

FP± : z = ±
√

1 − �̃2
0/α

2,ϕ = π .

(38)

These fixed points can be stable or unstable, depending on
the values of α and �̃0. In particular, the emergence of
certain fixed points can be associated with a spontaneous
breaking of the aforementioned symmetries [Eq. (37)]: the
fixed points FP± break S1, while the fixed points FP∗ break
S2. We note that neither FP0 nor FPπ break a symmetry.

From the stability analysis, we identify five distinct
phases:

Phase I: FP0, FPπ stable

Phase II: FP0, FP± stable (��S1)

Phase III: FP0, FP∗ stable (��S2)

Phase IV: FP0, FPπ , FP± stable (��S1)

Phase V: FP0, FPπ , FP∗ stable (��S2)

(39)

0.0 0.5 1.0
0.0

0.5

1.0

II

I

III

V IV

z

ϕ0 2π

1

−1

α

˜ Ω
0

FIG. 5. Phase diagram associated with the effective classical
Hamiltonian in Eq. (36), as a function of the drive-induced
nonlinearity parameter α and the dimensionless linear coupling
�̃0 = �0/(χN ). Each phase is characterized by a distinctive
phase-space topology (fixed-point configuration); see Eq. (39).
A few trajectories are indicated as thin blue curves (equipotential
lines of the energy landscape) for each representative case. The
axis used in the phase-space diagrams is shown in phase I; the
colormap is the same as in Fig. 6, where it is explicitly defined.
The black circle (respectively, white square) at (α, �̃0) = (0, 0)
[respectively (α, �̃0) = (1, 0)] indicates the singular point at
which only FP∗ (respectively FP±) are stable fixed points.

We note that a spontaneous symmetry breaking (involving
either S1 or S2) occurs for every phase, except for phase I.
The complete phase diagram is displayed in Fig. 5.

At this stage, it is worth considering three limiting
cases:

(a) When α = 1, the classical Hamiltonian Heff(z,ϕ;α)
reduces to the bosonic Josephson junction (BJJ)
Hamiltonian H0(z,ϕ) in Eq. (19). The BJJ model
features a bifurcation point at �̃0 = 1: the fixed
point FPπ , which is stable for �̃0 > 1 (phase I),
becomes unstable for �̃0 < 1, giving rise to two
new stable fixed points FP± (phase II); see Fig. 5.
This transition, which is associated with the sponta-
neous breaking of the S1 symmetry, was observed in
cold atoms [80] and microresonators [70].

(b) When α = 0, the system corresponds to the BJJ
model in a rotated basis; see Eq. (31). The aforemen-
tioned bifurcation then corresponds to a transition
from phase I (�̃0 > 1) to phase III (�̃0 < 1), char-
acterized by the two stable fixed points FP∗ and
the spontaneous breaking of the S2 symmetry; see
Fig. 5.

(c) When α = 1/2, the effective Hamiltonian satisfies
the symmetry [Ĥeff, Ĵx] = 0; see Eq. (33). Classi-
cally, this corresponds to the following constant of
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Phase V Phase IV

FIG. 6. Energy landscape associated with the effective classi-
cal Hamiltonian Heff(z,ϕ;α) displayed in Eq. (36), for vanishing
linear coupling �0 = 0, and three different values of the drive-
induced nonlinearity parameter: α = 0.25, α = 0.5, and α =
0.75. A few trajectories are indicated as thin blue curves (equipo-
tential lines of the energy landscape) for each case. Note the
emergence and disappearance of stable fixed points on the Bloch-
Poincaré sphere, as the nonlinearity parameter α is varied: phase
space undergoes a transition from phase V (α = 0.25) to phase I
(α = 0.5) to phase IV (α = 0.75); see Eq. (39).

motion:

C =
√

1 − z(t)2 cosϕ(t). (40)

One verifies that this special constant of motion
implies that the system remains in phase I for any
arbitrary value of �̃0.

For any other values of α, the system is allowed to enter
two new phases (phases IV and V), which are both charac-
terized by four stable fixed points but are associated with
different symmetry breaking; see Fig. 5.

Importantly, one can induce transitions between these
various phases by simply tuning the drive-induced non-
linearity parameter α. This is illustrated in Fig. 6, which
shows two successive transitions in the absence of linear
coupling (�0 = 0): when α = 1/2, the system is in phase I,
with two stable fixed points (FP0,π ) satisfying both symme-
tries S1,2. Reducing the nonlinearity parameter (α < 1/2)
stabilizes two additional fixed points FP∗, which break S2
symmetry (phase V). Instead, setting α > 1/2 stabilizes
the two fixed points FP±, associated with the breaking of
S1 symmetry (phase IV).

From the quantum effective Hamiltonian in Eq. (30),
we observe that the phase-space transitions (and related
symmetry breaking) illustrated in Fig. 6 stem from a com-
petition between the two types of interaction terms, Ĵ 2

z
and Ĵ 2

y . From the microscopic point of view [Eq. (34)],
this corresponds to a competition between the intramode
(Hubbard) interaction and the drive-induced pair-hopping
processes. This is different from the transition discussed in
the context of the BJJ model [108,110]—from phase I to

FP∗

FP±

ϕ

l

m

l =
√

1 − z2

x

y

FPπ

FP∗FP∗

FP0

ϕ

(a) (b)

FIG. 7. Pendulum analogy for the effective Hamiltonian
Heff(z,ϕ;α) in Eq. (36). (a) Schematics of a classical pendulum
of mass m and length l, subjected to gravity, and horizontally
attached to a spring (allowed to slide along the y axis); see Eqs.
(42)–(44). The red crosses indicate the positions associated with
several fixed points; see Eq. (38). (b) Due to the momentum-
dependent length, l = √

1 − z2, two types of fixed points can be
stabilized depending on the strength of the spring: FP± (weak
spring, α > 1/2) and FP∗ (strong spring, α < 1/2). The sketch
shows typical trajectories around the FP± and FP∗ stable fixed
points. Figure inspired from [110].

phase II—which involves a competition between the Hub-
bard interaction and the single-particle hopping (or linear
coupling) �0, and which is associated with the breaking of
a single symmetry (S1).

Last but not least, we note that the transition from phase
III to phase I, which involves a competition between the
drive-induced interaction term Ĵ 2

y and the linear coupling
Ĵx in Eq. (30), will be at the origin of the chiral superfluid
to trivial superfluid phase transition discussed in Sec. VII,
in the context of dimerized lattice systems.

B. The pendulum analogy

Tuning drive-induced nonlinearities can change the
topology of phase space, hence radically altering nonlinear
dynamics. Interestingly, this phenomenon can be captured
by a simple pendulum analogy [108,110,132], as we now
explain.

Let us consider a standard pendulum of mass m and
length l, subjected to gravity. Defining the angular-
displacement variable ϕ through [Fig. 7(a)]

x = l sin(ϕ), y = l cos(ϕ), (41)

we write the classical Hamiltonian of this simple pendulum
as

Hpendulum(z,ϕ) = z2

2I
− mgl cosϕ. (42)

Here, z denotes the angular-momentum variable and I is
the moment of inertia of the simple pendulum.

As pointed out in Ref. [108], the Hamiltonian H0(z,ϕ)
describing the BJJ model in Eq. (19) is precisely of the
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form displayed in Eq. (42), upon establishing the following
dictionary:

I → (χN )−1, mg → �0, l →
√

1 − z2. (43)

In this sense, the BJJ model can be mapped onto a nonrigid
pendulum, with momentum-dependent length [108,110].
While the stable fixed point FP0 of the BJJ model is
naturally associated with the position at rest of a rigid pen-
dulum, the other stable fixed points FPπ (�̃0 > 1) and FP±
(�̃0 < 1) stem from the nonrigid nature of the pendulum;
see Fig. 7(b) for a sketch of a typical trajectory around
FP±. In the BJJ model, the angular-momentum variable z
is restricted to take values in the interval z ∈ [−1, 1]; see
Eq. (17).

Having reviewed the pendulum analogy for the BJJ
model [108,110], we now apply this analogy to the effec-
tive Hamiltonian Heff(z,ϕ;α) in Eq. (36). Compared to
the BJJ Hamiltonian H0(z,ϕ), the effective Hamiltonian
in Eq. (36) features a new term proportional to sin2 ϕ.
Using the coordinates defined in Eq. (41), we find that this
term can be interpreted as an additional contribution to the
potential energy of the nonrigid pendulum, given by

Vspring = χN
2
(1 − α) x2. (44)

Consequently, the driven nonlinear system described by
the effective Hamiltonian Heff(z,ϕ;α) in Eq. (36) can be
mapped onto a nonrigid pendulum that is horizontally
attached to a spring (allowed to slide along the y axis);
see Fig. 7(a) for a sketch. We note that the strength of the
spring scales as (1 − α), such that it vanishes in the limit
α = 1 (BJJ model).

The spring has an intuitive effect on the trajectories
of the pendulum: activating the spring (α � 1) naturally
reduces the amplitude of oscillations around the equilib-
rium point (z = ϕ = 0). Besides, for a sufficiently strong
spring (α < 1/2), full rotations around the pendulum’s
pivot [i.e., trajectories associated with a full scan of the ϕ
axis and a well-defined chirality, sign(z)] become strictly
forbidden. These intuitive effects are visible in the phase-
space diagrams illustrated in Fig. 6.

It is also interesting to note that the addition of the spring
leads to two new fixed points FP∗, which become stable for
a sufficiently strong spring (α < 1/2); see Figs. 6 and 7.
These new equilibrium points correspond to a finite angle
ϕ, set by the strength of the spring [Eq. (38)].

To gain further insight, let us focus on the case of
vanishing linear coupling �0 = 0, which is displayed in
Fig. 6. In terms of the pendulum analogy, this corresponds
to a vanishing force of gravity [Eq. (43)], implying that
the pendulum is only subjected to the elastic force of
the spring. For a weak spring (α � 1) and small angular
momentum (|z| � 1), one can assume that the length of

NLSE + driving sequence

Effective NLSE

Quantum many-body Hamiltonian

Effective many-body Hamiltonian

FIG. 8. Outline of the numerical study, which validates the
approach originally displayed in Fig. 1.

the pendulum is constant, and one obtains a set of intu-
itive fixed points: the two stable fixed points (FP0 and
FPπ ) simply correspond to the two rest positions of the
spring, while the two unstable fixed points FP∗ correspond
to the positions where the spring is maximally stretched
and its force is exactly balanced by the constraint reac-
tion of the rigid pendulum. As previously noted, the fixed
points FP∗ become stable for a sufficiently strong spring
(α < 1/2), a peculiar effect, which finds its origin in the
nonrigid (momentum-dependent) length of the pendulum;
see Fig. 7(b) for a sketch of a typical trajectory around FP∗.

V. NUMERICAL VALIDATION OF THE
EFFECTIVE-HAMILTONIAN APPROACH

This section aims at exploring the validity of the
effective-Hamiltonian analysis developed in Sec. III B and
its classical limit presented in Sec. III C. In particular,
this section demonstrates that the stroboscopic dynamics
of the driven NLSE in Eq. (4) is well described by the
effective NLSE with emergent nonlinearities in Eq. (7), as
announced in Sec. II. The outline of our numerical study is
displayed in Fig. 8. We hereby set the drive-induced inter-
action parameter to the value α = 1/2 except otherwise
stated; we verified that our conclusions hold in general.

A. Validating the effective quantum Hamiltonian

First, we demonstrate that the dynamics associated with
the effective Hamiltonian in Eq. (34) [or equally Eq. (30)]
reproduces the stroboscopic dynamics of the driven sys-
tem described by Eqs. (20)–(22). To this end, we choose a
coherent spin state as an initial state [93,110]

|ψ(0)〉 = |N , θ ,ϕ〉 =
(

â†
θ ,ϕ

)N
|∅〉, (45)

which corresponds to a macroscopic occupation of the
single-particle state,

|θ ,ϕ〉 = cos(θ/2)|1〉 + sin(θ/2)eiϕ|2〉, (46)
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(a)

(b)

FIG. 9. Population imbalance 〈z〉 as a function of time, as
obtained from the quantum dynamics of the driven system (blue
curve) and the effective-Hamiltonian quantum dynamics (red
curve) for (a) N = 10 bosons and (b) N = 50 bosons. For each
case, the full-time dynamics of the driven system is generated
using the sequence in Eq. (20) with a period T = 0.2, T = 0.1,
and T = 0.05. Here the interaction parameter is set to g = χN =
5, the static linear coupling is set to�0 = 0 and α = 1/2; the ini-
tial coherent spin state |N , θ ,ϕ〉 corresponds to z = cos θ = 0.4
and ϕ = 2.25. In all plots, the time-evolved state is evaluated at
stroboscopic times tn = T × n.

defined on the Bloch sphere. Here we introduced the
single-particle states |1〉 = â†

1|∅〉 and |2〉 = â†
2|∅〉, associ-

ated with the two modes, as well as the creation operator
â†
θ ,ϕ|∅〉 = |θ ,ϕ〉. We note that the chosen initial state in

Eq. (45) behaves classically in the limit N → ∞ [110],
which will be convenient for later purposes (i.e., when
comparing quantum and classical dynamics).

We analyze the quantum dynamics through the evalua-
tion of the population imbalance [Eq. (14)]

〈z(tn)〉 = −(2/N )〈ψ(tn)|Ĵz|ψ(tn)〉, tn = T × n,

where the time-evolved state |ψ(tn)〉 is obtained from:
(i) the full-time dynamics of the driven system [Eqs.
(20)–(22)], and (ii) the effective Hamiltonian [Eq. (34)].
Figure 9 compares these two results for both N = 10
and N = 50 bosons, and the same “mean-field” interac-
tion parameter g = χN = 5. In both cases, one obtains
that the effective description well captures the stroboscopic
dynamics when the driving period is sufficiently small,
T � 0.1 in the current units [see Eq. (9)]. This analy-
sis validates the effective Hamiltonian in Eq. (34) in the
high-frequency regime.

B. Effective semiclassical dynamics and quantum
effects

As a next step, we now show that the effective
Hamiltonian Ĥeff in Eq. (34) well captures the classical
dynamics generated by the equations of motion in Eq. (35).
We remind that the latter classical description is associ-
ated with the Hamiltonian function Heff(z,ϕ;α) displayed

E
ne

rg
y

FIG. 10. Energy landscape associated with the classical
Hamiltonian Heff(z,ϕ;α) displayed in Eq. (36), for �0 = 0 and
α = 1/2. A few trajectories are indicated as thin blue curves
(equipotential lines of the energy landscape).

in Eq. (36), where z and ϕ describe the relative population
and phase of the two modes; see also Eqs. (16) and (17).
The agreement between the quantum and classical descrip-
tions is expected to be reached in the limit N → ∞,
where quantum fluctuations become negligible [76,80,86,
110,133,134]. We also remind the reader that the classical
equations of motion in Eq. (35), which are analyzed in this
section, are equivalent to the effective NLSE in Eq. (7),
through the mapping defined in Eq. (16).

First of all, let us analyze the dynamics generated by the
effective classical equations of motion in Eq. (35). In order
to highlight the role of nonlinearities, we hereby set the
static linear coupling to �0 = 0 and we remind that α =
1/2. In Fig. 10, we display a few representative trajectories
over the energy landscape Heff(z,ϕ;α) defined in Eq. (36).
These trajectories reflect the presence of two stable fixed
points at FP0 and FPπ . We stress that this configuration
of fixed points radically differs from that associated with
the nondriven system [see H0(z,ϕ) in Eq. (19)], which
are located at z = ±1 for the same choice of �0 = 0; see
Sec. IV.

We now compare these classical predictions to the quan-
tum dynamics associated with the effective Hamiltonian
Ĥeff in Eq. (34), using a coherent spin state |N , θ ,ϕ〉 as an
initial condition; see Eq. (45). Figure 11 shows the trajec-
tories 〈z(t)〉 for N = 5, 10, 80, 170 bosons, while keeping
the “mean-field” interaction parameter χN = 5 constant.
From these results, we confirm that a good agreement
between the effective classical and quantum descriptions
is indeed obtained in the large N limit.

In order to further appreciate the residual deviations
between the quantum and classical dynamics in the small
N regime, we depict the time-evolving Husimi function
Q(z,ϕ; t) in Fig. 12 for the case N = 80. The Husimi
function [80,110,135–139] is obtained by evaluating the
squared overlap of the time-evolving state |ψ(t)〉 with the
coherent spin states defined over the Bloch sphere (with
same particle number N ),

Q(z,ϕ; t) = |〈N , θ ,ϕ|ψ(t)〉|2, z = cos θ . (47)
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(a) (b)

(c) (d)

FIG. 11. Population imbalance 〈z〉 as a function of time,
as obtained from the effective-Hamiltonian quantum dynam-
ics (red curve) and the effective classical equations of motion
(blue curve). The number of bosons is (a) N = 5, (b) N = 10,
(c) N = 80, (d) N = 170. Here the interaction parameter is set to
g = χN = 5, while the static linear coupling is set to�0 = 0 and
α = 1/2. The initial coherent spin state |N , θ ,ϕ〉 corresponds to
z = cos θ = 0 and ϕ = 2.7; the same initial condition is chosen
for the effective classical dynamics. The dynamics z(t) should be
compared with the trajectories depicted in Fig. 10, close to the
stable fixed point FPπ .

Here the state |ψ(t)〉 is evolved according to the effective
Hamiltonian Ĥeff in Eq. (34), so that the evolution of the
Husimi function in Fig. 12 is to be compared with the quan-
tum dynamics displayed in Fig. 11(c) for N = 80 bosons.
The time evolution of the Husimi function Q(z,ϕ; t) shown
in Fig. 12 indicates that the initial coherent spin state
|ψ(0)〉 = |N , θ ,ϕ〉 becomes substantially squeezed [93]
around time t ≈ 3, which also corresponds to the time
around which the classical trajectory starts deviating from
the effective-Hamiltonian quantum dynamics in Fig. 11(c).
At later times, t ≈ 12, the state becomes oversqueezed
and it exhibits Majorana stars in the Husimi distribution
[136,138,139]. We find that these nonclassical features are
postponed to later evolution times upon increasing the
number of bosons N while keeping the interaction param-
eter g = χN fixed. Despite these nonclassical features, the
center of mass of the Husimi function is found to approxi-
mately follow a classical orbit around the stable fixed point
FPπ , as depicted in Fig. 10.

Within this framework, quantum effects such as squeez-
ing and entanglement can be further enhanced by properly
adjusting the initial state and the system parameters. In
particular, setting the system at an unstable fixed point
of a two-axis twisting (TAT) Hamiltonian is expected to
produce optimal squeezing [93,116,118]. In our setting,
the effective Hamiltonian in Eq. (30) reduces to the TAT

FIG. 12. Time-evolving Husimi function Q(z,ϕ; t) for a state
|ψ(t)〉 that evolves according to the effective Hamiltonian Ĥeff
in Eq. (34). Here, the number of bosons is N = 80, and the other
parameters are the same as in Fig. 11(c). The initial coherent spin
state |ψ(0)〉 = |N , θ ,ϕ〉, at z = cos θ = 0 and ϕ = 2.7, becomes
substantially squeezed around time t ≈ 3, hence signaling the
breakdown of its classical description. An oversqueezed state,
exhibiting Majorana stars, appears around t ≈ 12. The trajectory
predicted by the effective classical equations of motion [Eq. (35)]
is depicted in white.

Hamiltonian in the limit α = 1/3, in which case

Ĥeff(α = 1/3) = χ

3

(
Ĵ 2

y − Ĵ 2
x

)
−�0Ĵx + O(T), (48)

where we used Eq. (11) and omitted an irrelevant constant
[94]. Considering the unstable fixed point located at the
North pole (z = 1), we study how the squeezing parameter
ξ 2 behaves as the parameter α is tuned within the inter-
val α ∈ [0, 0.5]. Here, we evaluate the squeezing parameter
according to the definition [116]

ξ 2 = 4(�Ĵ 2
⊥)min

N
, (49)

where (�Ĵ 2
⊥)min denotes the minimal variance normal to

the mean spin vector 〈Ĵ〉. Using this definition, one has
ξ 2 = 1 for a coherent spin state [Eq. (45)] and ξ 2 < 1
for a squeezed state [93,116]. The time-evolving squeez-
ing parameter ξ 2(t) is represented in Fig. 13, for various
values of the parameter α. These results demonstrate that
an optimal squeezing is indeed reached for α = 1/3, after
a duration topt ≈ 2.8 log(2N )/2Nχ . We verified that the
optimal squeezing value scales as ξ 2

opt ∼ N−1 and that
the corresponding optimal squeezing time scales as topt ∼
log(2N )/2Nχ in the vicinity of α = 1/3 [116,118].

C. The driven nonlinear Schrödinger equation and its
effective description

In this section, we finally analyze the agreement
between the classical dynamics associated with the driven
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FIG. 13. Squeezing parameter ξ 2 as a function of time t, for
various values of the drive parameter α. The green arrow indi-
cates optimal squeezing, which is reached in the limit α → 1/3,
after a duration topt ≈ 2.8 log(2N )/2Nχ . Here, the initial state is
a coherent spin state of N = 80 bosons located at the North pole
(z = 1), and the system is evolved using the effective Hamilto-
nian Ĥeff in Eq. (34). The interaction parameter is set to g =
χN = 5 as in Fig. 12.

NLSE [Eqs. (4) and (5)] and the dynamics generated by the
effective classical equations of motion [Eq. (35)], which
derive from the Hamiltonian Heff(z,ϕ;α) in Eq. (36).
We remind that these effective equations of motion are
equivalent to the effective NLSE announced in Eq. (7).

In practice, we numerically solve the following classical
equations of motion [Eq. (15)]:

ż = fpulse(t)
√

1 − z2 sinϕ,

ϕ̇ = Nχz − fpulse(t)
z√

1 − z2
cosϕ,

(50)

where the pulse function fpulse(t) is defined in Eq. (5); here
we again set the static coupling �0 = 0. The equations of
motion in Eq. (50) are equivalent to the driven NLSE in
Eqs. (4) and (5) through the mapping provided by Eq. (16).

The resulting dynamics is displayed in Fig. 14, together
with the dynamics generated from the effective classical
Hamiltonian Heff(z,ϕ;α) in Eq. (36). The results in Fig. 14
confirm that the effective classical description very well
captures the dynamics of the driven nonlinear system at
stroboscopic times t = tn, while a finite micromotion is
observed at intermediate times t �= tn.

We also emphasize that the trajectories (z(t),ϕ(t)) gen-
erated by the effective equations of motion [Fig. 14] reflect
the presence of a stable fixed point at FPπ ; see Fig. 10.
Importantly, this fixed point is unstable for the nondriven
system described by H0(z,ϕ) in Eq. (19), hence leading to
drastically different dynamics.

Altogether, the numerical studies presented in this
Sec. V validate the effective description announced in

(a) (b)

(c) (d)

FIG. 14. The driven NLSE versus the effective NLSE descrip-
tions: (a) Population imbalance z(t) as a function of time, as
obtained from the driven NLSE in Eq. (50) (blue curve) and from
the effective classical equations of motion in Eq. (35) (red curve).
(b) Enlargement of panel (a): the blue dots highlight the strobo-
scopic dynamics at times tn; note the micromotion at arbitrary
times t �= tn. (c) Stroboscopic dynamics z(tn) obtained from the
driven NLSE (blue curve and dots), compared with the effective
classical description (red curve). (d) Same as in panel (c) but
for the other canonical variable ϕ. In all panels, the period of
the drive is set to T = 0.1 and the pulse duration to τ = T/20;
the interaction parameter is set to g = χN = 5, the static linear
coupling is set to �0 = 0 and α = 1/2; the initial condition cor-
responds to z = cos θ = 0 and ϕ = 2.7 as in Fig. 11. We note
that the stroboscopic dynamics (z(tn),ϕ(tn)) reflects the effec-
tive energy landscape depicted in Fig. 10, close to the stable fixed
point FPπ .

Eq. (7) [see also Secs. III B and III C], and hence, con-
firm the creation of effective interactions and nonlinearities
through the driving sequence.

VI. DESIGNING LATTICE SYSTEMS WITH
CONTROLLABLE DRIVE-INDUCED

INTERACTIONS

We described in Sec. III how activating coupling pro-
cesses between two modes (or orbitals), according to a
well-designed pulse sequence, generates effective pair-
hopping processes [Eq. (34)]. We now analyze the possibil-
ity of extending this scheme to lattice systems, both in the
classical (mean-field) limit and in the regime of strongly
correlated quantum matter.

Here, we set the focus on two types of sequences, illus-
trated in Fig. 15, which lead to different classes of lattice
models. In the first scenario, one applies the pulse sequence
in Eq. (20) in a dimerized manner in view of generating
uniform pair-hopping processes over the entire lattice; see
Fig. 15(a). In the second sequence, one first applies the
pulse sequence on individual dimers and then activates
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hopping processes between them; see Fig. 15(b). Inter-
estingly, this second approach leads to a class of models
that share similarities with p-band systems [140], without
recurring to higher bands; this aspect will be explored in
Sec. VII.

We note that subjecting a lattice to a time-periodic mod-
ulation generically leads to various types of correlated
tunneling processes and higher-order interaction pro-
cesses [21,24,26–29,31,37]. In our approach, tunable pair-
hopping processes are generated at the level of individual
dimers, hence allowing for highly controllable exotic lat-
tice models. Possible experimental implementations will
be discussed in Sec. VIII.

A. Generating uniform pair-hopping processes
on a lattice

Let us consider a dimerized lattice of Ns sites, which we
label as (n; s) with

n = 1, . . . , Nd, s = 1, 2. (51)

Here, Nd denotes the number of dimers and s labels the two
modes (or orbitals) within each dimer; see Fig. 15(a).

Each dimer n is assumed to be described by a (static)
Hamiltonian Ĥ (n)

0 of the form given in Eq. (9). Physical
realizations include arrays of two-mode optical cavities
[141,142], two-component Bose gases in an optical lattice
[143], or quantum gases in tunable (dimerized) superlat-
tices [144,145].

We introduce the angular momentum operators [Eq. (10)]
associated with each dimer

Ĵ (n)x = 1
2

(
â†

n,1ân,2 + â†
n,2ân,1

)
,

Ĵ (n)y = 1
2i

(
â†

n,2ân,1 − â†
n,1ân,2

)
,

Ĵ (n)z = 1
2

(
â†

n,2ân,2 − â†
n,1ân,1

)
,

N̂ (n) = â†
n,1ân,1 + â†

n,2ân,2,

(52)

where â†
n,s creates a boson at the lattice site (n; s). We then

write the total (undriven) Hamiltonian as [Eq. (12)]

Ĥ0 =
∑

n

Ĥ (n)
0

=
∑

n

{
χ
[
Ĵ (n)z

]2
−�0 Ĵ (n)x + η

4

[
N̂ (n)

]2
− 1

2
N̂ (n)

}
,

(53)

where χ = 1 − β and η = 1 + β. In the following, indi-
vidual dimers will be coupled such that the number of
particles N̂ (n) will no longer be conserved at the level

of each dimer. As a consequence, the interaction terms
proportional to (N̂ (n))2 in Eq. (53) cannot be ignored.

We now introduce the pulse sequence, which we split
into two main steps:

Step 1: We apply the pulse sequence in Eq. (20) within
each individual dimer over a duration T.

Step 2: We consider the complementary dimerization,

. . . (n − 1; 2)− (n, 1) (n; 2)− (n + 1, 1) . . .

and we apply the pulse sequence in Eq. (20) within those
new dimers over a duration T.

The complete sequence of period T = 2T is illustrated in
Fig. 15(a).

Following the method of Sec. III, we readily obtain the
effective Hamiltonian describing the evolution over Step 1:

Ĥ Step 1
eff =

∑
n

Ĥ (n)
eff (54)

=
∑

n

{
χ

(
α
[
Ĵ (n)z

]2
+ (1 − α)

[
Ĵ (n)y

]2
)

−�0 Ĵ (n)x

+η
4

[
N̂ (n)

]2
− 1

2
N̂ (n)

}
. (55)

A similar expression can be derived for the complementary
dimerization considered during Step 2.

The total effective Hamiltonian is then obtained through
the time-evolution operator over a period T of the full
sequence,

e−iT Ĥeff ≡ Û(T ; 0) = e−iTĤStep 2
eff e−iTĤStep 1

eff , (56)

which can be estimated using the Trotter approximation

Ĥeff ≈ 1
2

(
Ĥ Step 1

eff + Ĥ Step 2
eff

)
. (57)

The pulse sequence strongly couples the original dimers
in Eq. (51), hence, it is relevant to relabel the sites using a
single index m = 1, . . . , 2Nd. We obtain the effective
Hamiltonian Ĥeff in Eq. (57) in terms of the bosonic
operators â(†)m as

Ĥeff = U1

2

∑
m

â†
mâ†

mâmâm

+ U2

∑
m

(
â†

m+1â†
mâm+1âm + â†

m−1â†
mâm−1âm

)

+ U3

2

∑
m

(
â†

m+1â†
m+1âmâm + â†

m−1â†
m−1âmâm

)

− �0

2

∑
m

(
â†

m+1âm + â†
m−1âm

)
+ O(T), (58)
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where the interaction parameters are given by

U1 = (1 − α(β − 1)+ β) /2,

U2 = (1 + α(β − 1)) /2,

U3 = (α − 1)(1 − β)/4.

(59)

The effective Hamiltonian in Eq. (58) contains three types
of tunable interaction terms: Hubbard (on-site) interactions
of strength U1, nearest-neighbor interactions of strength
U2, and pair-hopping processes of strength U3. We point
out that all interaction terms are uniformly defined over
the entire lattice. Such an extended Bose-Hubbard model
is known to exhibit a rich phase diagram [128], which dis-
plays time-reversal-symmetry-broken superfluid phases,
pair superfluid and supersolid phases, and unconventional
Mott insulators. The driven setting described in this section
thus offers a realistic platform for the fine exploration of
these intriguing phases of quantum matter.

We note that the two-step sequence presented in this
section can be generalized in multiple ways. For instance,
one could modulate the strength of the bare interactions
between the various steps of the sequence, and possi-
bly exploit this feature within additional Trotter steps.
Such schemes would allow for independent control over
all interaction processes in the effective Hamiltonian in
Eq. (58).

B. Lattice system with drive-induced four-wave mixing

In the classical limit, âm → ψm, the driven lattice sys-
tem described above [Eq. (58) and Fig. 15(a)] is effectively
described by the coupled NLSE

i
∂ψm

∂t
= U1|ψm|2ψm + U2

(|ψm+1|2 + |ψm−1|2
)
ψm

+ U3ψ
∗
m

(
ψ2

m+1 + ψ2
m−1

)− �0

2
(ψm+1 + ψm−1) ,

(60)

where the strength of the various nonlinearities U1,2,3 (self-
phase modulation, cross-phase modulation, and four-wave
mixing) are provided in Eq. (59).

This driven nonlinear setting is well suited to explore the
impact of exotic nonlinearities on discrete solitons. In par-
ticular, preliminary studies suggest that the drive-induced
four-wave mixing in Eq. (60) can stabilize intersite soli-
tons [146], which are generically unstable for on-site
nonlinearities [147].

C. Dimerized lattice with effective pair hopping

In this section, we consider a slightly different driving
sequence, which preserves the dimerized structure of Eqs.
(51)–(53). As in the previous Sec. VI A, the pulse sequence
is split into two main steps:

(a) (b)

t ∈ [0;T ]

t ∈ [T ;

Ĥeff :

Ĥ
(n)
eff

Ĥ
(n)
eff

T ]

1 2

n−1 n+1 n+2n

m−1 m+1m

n−1 n+1 n+2n

1 2Ĥ
(n)
eff

Ĥ
(n)
eff

hopping

hopping

FIG. 15. Designing effective interactions in lattice systems
using two types of sequences. (a) We apply the pulse sequence
in Eq. (20) within each individual dimer over a duration T, and
then apply that same sequence to the complementary dimeriza-
tion. The total sequence, of period T = 2T, realizes the extended
Bose-Hubbard model in Eq. (58), which is characterized by
drive-induced pair-hopping processes. (b) In the second type of
sequence, one preserves the dimerized structure and activates
hopping between the dimers during the second step. The resulting
class of models exhibit orbital ordering, in direct analogy with
p-band systems.

Step 1: We apply the pulse sequence in Eq. (20) within
each individual dimer over a duration T.

Step 2: We activate single-particle hopping processes
between neighboring dimers (to be specified), over a dura-
tion T.

The complete sequence of period T = 2T is illustrated in
Fig. 15(b).

A broad class of models can be designed using this
driving sequence. For the sake of concreteness, we focus
our study on a specific model obtained by setting the
parameters α = �0 = 0 at Step 1, such that the effec-
tive Hamiltonian describing the time-evolution over Step
1 reduces to

Ĥ Step 1
eff =

∑
n

Ĥ (n)
eff

= U
∑

n

([
N̂ (n)

]2
− ξ

[
Ĵ (n)y

]2
)

− 1
2

∑
n

N̂ (n),

(61)

where U = (β + 1)/4 and ξ = 4(β − 1)/(β + 1). More-
over, we consider the single-particle processes activated in
Step 2 to be of the form

Ĥ Step 2 = −2�
∑

n

(
â†

n+1,1ân,1 + â†
n+1,2ân,2 + h.c.

)

− 2�12

∑
n

(
â†

n+1,1ân,2 + h.c.
)

, (62)

as we illustrate in Fig. 16(a); see also Sec. VIII on possible
realizations.
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(a)

(b)

FIG. 16. (a) Illustration of the dimerized lattice model in
Eq. (63), with interdimer couplings � and �12. (b) Sketch of
the fictitious Creutz-Hubbard ladder in Eq. (66), as obtained
when considering the angular-momentum-state representation
(b±). The arrows depict hopping processes, and their color reflect
the complex phase acquired upon tunneling (+� in red, −�
in blue). When projected onto a single leg (i.e., when sponta-
neous orbital ordering occurs), the lattice exhibits an emergent
flux � = ±atan(�12/2�), giving rise to persistent currents.

Altogether, the total effective Hamiltonian is obtained
through the time-evolution operator over a period T of the
full sequence [Eq. (56)], and it reads

Ĥeff = U
2

∑
n

([
N̂ (n)

]2
− ξ

[
Ĵ (n)y

]2
)

−�
∑

n

(
â†

n+1,1ân,1 + â†
n+1,2ân,2 + h.c.

)

−�12

∑
n

(
â†

n+1,1ân,2 + h.c.
)

−
[

U
2

(
1 − ξ

4

)
+ μ

]∑
n

N̂ (n) + O(T), (63)

where we introduced the chemical potential μ in the last
line for later convenience. This effective dimerized lattice
model is illustrated in Fig. 16(a).

The Hamiltonian in Eq. (63) features interaction terms

of the form −
[
Ĵ (n)y

]2
, which reminds the models describ-

ing interacting bosons in p-bands [140,148]; see also
Ref. [149]. Indeed, repulsive bosons in px,y orbitals
experience a characteristic orbital-type coupling of the
form −L̂2

z , where L̂z = i(p̂†
x p̂y − p̂†

y p̂x) is the angular-
momentum operator. The operator Ĵ (n)y = (i/2)(â†

n,1ân,2 −
â†

n,2ân,1) entering the first line of Eq. (63) can thus be inter-
preted as a local angular momentum, with the two modes
â1,2 playing the role of px,y orbitals.

It is the aim of the next Sec. VII to explore the conse-
quences of these unconventional interactions and orbital
structure on the ground-state properties of the dimerized
lattice in Eq. (63).

VII. BOSONIC PHASES IN A DIMERIZED
LATTICE WITH EFFECTIVE PAIR HOPPING

A. Orbital order and emergent magnetic fluxes

When setting ξ > 0, the peculiar interaction term

−ξ
[
Ĵ (n)y

]2
in Eq. (63) favors an orbital-ordered ground

state, which exhibits finite “angular momentum” at the
level of each dimer: |J (n)y | �= 0 is maximized in the ground
state, hence leading to a spontaneous breaking of time-
reversal symmetry (TRS). Indeed, the angular-momentum
states |b(n)± 〉, which diagonalize the Ĵ (n)y operator,

Ĵ (n)y |b(n)± 〉 = (±)|b(n)± 〉, |b(n)± 〉 = b̂†
n,±|∅〉, (64)

have a complex structure given by

b̂†
n,σ = 1√

2

(
â†

n,1 + iσ â†
n,2

)
, σ = ±,

T b̂†
n,σ T−1 = b̂†

n,σ , σ = −σ ,
(65)

where T is the TRS operator. The spontaneous breaking
of TRS leads to rich phases and chiral dynamics in the
ground state, as we describe below. Henceforth, we set
ξ > 0 except otherwise stated.

It is instructive to write the effective Hamiltonian (63) in
the angular-momentum-state basis (b±),

Ĥeff = 1
2

∑
nσ

[
Uξ n̂n,σ (n̂n,σ − 1)+ Wξ n̂n,σ n̂n,σ

]

−
∑
nσ

(
tσ b̂†

n+1,σ b̂n,σ + h.c.
)

−
∑
nσ

(
tσσ b̂†

n+1,σ b̂n,σ + h.c.
)

− μ
∑
nσ

n̂n,σ , (66)

where n̂n,σ = b̂†
n,σ b̂n,σ . The Hamiltonian in Eq. (66) fea-

tures intraspecies and interspecies interactions of strength

Uξ = U(1 − ξ/4), Wξ = U(1 + ξ/4), (67)

as well as complex tunneling matrix elements given by

tσ =
(
�+ �12

2
eiσπ/2

)
= |tσ |eiσ�, (68)

tσσ = �12

2
e−iσ π2 . (69)

In this picture, the problem can be interpreted as a fic-
titious Creutz-Hubbard ladder [150–152], where each leg
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is entirely composed of either b+ or b− orbitals; see the
sketch in Fig. 16(b). For ξ > 0, the interspecies interaction
Wξ always dominates over the intraspecies interaction Uξ ,
hence favoring the stabilization of an orbital ordering in
the system.

To capture this orbital order, we introduce the local
orbital polarization, which is defined at each dimer as

m(n)
0 ≡ − 2

ρn
〈Ĵ (n)y 〉0 = 1

ρn

(〈n̂n,+〉0 − 〈n̂n,−〉0
)

. (70)

Here, ρn = 〈N̂ (n)〉0 denotes the local density of bosons, and
we henceforth use the notation 〈. . .〉0 to express the mean
value of an operator in the ground state.

The effective Hamiltonian Ĥeff [Eqs. (63) and (66)] dis-
plays two types of hopping terms. As we will demonstrate
later in this section, the kinetic terms proportional to �
stabilize a uniform “ferromagnetic” ordering in the chain
of dimers, while the terms proportional to �12 (which
are absent in p-band models [140]) are responsible for
the emergence of an effective magnetic flux and chiral
currents. This can be intuitively grasped from the com-
plex tunneling matrix elements in Eq. (68), and which are
illustrated in Fig. 16(b): Each leg of the fictitious ladder
(σ = ±) is associated with a magnetic flux,

�σ = σ ×�, � = atan(�12/2�), (71)

such that a macroscopic occupation of a single leg (through
spontaneous orbital ordering) leads to the emergence of a
chiral persistent current: a clear signature of TRS break-
ing in the system. This simple picture illustrates how the
emergent chirality of the system is directly determined by
the interaction-induced orbital polarization m0 in Eq. (70).

These peculiar properties will now be explored in detail,
both in the mean-field limit (relevant for nonlinear optics
and weakly interacting bosonic gases) and in the quan-
tum (strongly correlated) regime. We will also present
a practical quench protocol, which dynamically reveals
the presence of orbital polarization in this unconventional
lattice system.

B. Mean-field regime: orbital polarization
and chiral currents

We start by analyzing the mean-field (classical) regime
of the Creutz-Hubbard ladder in Eq. (66), which is
obtained by performing the substitution

b̂n,σ → 〈b̂n,σ 〉 ≡ ψn,σ . (72)

The corresponding NLSE (expressed in the b± basis) reads

i
∂ψn,σ

∂t
=
[

Uξ |ψn,σ |2 + Wξ |ψn,σ |2 −
(

Uξ

2
+ μ

)]
ψn,σ

− tσ ψn−1,σ − tσσ ψn−1,σ − t∗σ ψn+1,σ

− t∗σσ ψn+1,σ . (73)

We aim at determining the ground-state properties of
this system, setting the focus on the emergence of orbital
order in the regime ξ > 0. Following a self-consistent
mean-field approach, we obtain analytical predictions for
the orbital polarization and the chiral persistent current in
terms of the system parameters. We hereby summarize our
findings, and refer the reader to Appendix B for detailed
calculations and analysis.

1. The orbital polarization

First of all, we find that the ground-state orbital polariza-
tion m0 is directly related to the relative phase ϕ between
the two components of the condensate within each dimer
[see Eq. (16)],

ϕ = atan

⎛
⎝ m0√

1 − m2
0

⎞
⎠ . (74)

Furthermore, we find that these local ground-state prop-
erties (m0, ϕ) are uniform over the entire dimerized lat-
tice. Hence, a ground state with finite polarization m0 �= 0
defines a “chiral” superfluid phase (CSF), which is char-
acterized by a uniform twisting of the phase ϕ over the
dimerized lattice. We note that similar twisted superfluid
phases have been identified in other classes of models
supporting pair-tunneling processes [128].

When the coupling �12 = 0, condensation occurs at
quasimomentum k0 = 0 and the system exhibits two
degenerate ground states with opposite orbital polariza-
tions m0 = ±1; according to Eq. (74), this corresponds to
a relative phase ϕ = ±π/2 within each dimer. In this way,
the ground state maximizes the “angular momentum” |J (n)y |
at the level of each dimer and it spontaneously develops a
“ferromagnetic” ordering throughout the dimerized lattice:
orbital order emerges through the spontaneous breaking of
TRS [Eq. (65)].

For a small finite coupling �12, the ground-state polar-
ization is found to decrease as

m0 ≈ ±
(

1 ∓ 1
2

(
�12

�c

)2
)

, for �12 � �c, (75)

where we introduced the critical value

�c = ρ

2
(Wξ − Uξ ) = Uρξ/4. (76)
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Here, ρ = ∑
σ |ψn,σ |2 = N/Nd denotes the particle den-

sity, with N the total number of bosons and Nd the number
of dimers, and we considered periodic boundary condi-
tions. Furthermore, condensation is found to occur at finite
quasimomentum, which for �12 � �c reads

k0 ≈ (�12/2�) sgn(m0) ≈ � sgn(m0), (77)

hence reflecting the emergence of an effective flux �

[Eq. (71)] dictated by orbital order.
For small dimerized lattices, such that Nd < 2π�/|�12|,

condensation occurs at k0 = 0 for any value of the coupling
�12. In this case, the ground-state orbital polarization can
be obtained analytically as

m0 =
⎧⎨
⎩±

√
1 −

(
�12
�c

)2
�12 < �c

0 otherwise.
(78)

We have validated these predictions by numerically
solving the coupled NLSE in Eq. (73) and performing
imaginary-time evolution to reach the ground state. In
order to favor one of the two degenerate TRS-broken
ground states, we used an initial seed privileging the +
orbitals. Figure 17(a) shows the obtained orbital polariza-
tion m0 and relative phase ϕ as a function of �12/�. The
analytical curve with m0 > 0 [Eq. (78)] is plotted with
a solid red line, presenting an excellent agreement with
the numerical results (red dots). We note that the angle ϕ
evolves continuously from π/2 to zero, as described by
Eq. (74).

We emphasize that the sharp transition displayed in
Fig. 17(a), from m0 �= 0 to m0 = 0, is due to the conden-
sation at k0 = 0, which is imposed by the small system
size (Nd = 30 dimers). For sufficiently large lattices, we
find that condensation occurs at a finite quasimomentum
k0 [even beyond the limit of validity of Eq. (77)], lead-
ing to a smoother behavior of the orbital polarization;
see the inset in Fig. 18. This surprising behavior, which
points to a crossover rather than a genuine phase transition,
can be traced back to the peculiar form of the underlying
mean-field functional; see Appendix B.

Finally, it is worth noticing that the transition displayed
in Fig. 17(a), by which the relative phase changes from
ϕ �= 0 to ϕ = 0, is analogous to the transition from phase
III to phase I discussed in Sec. IV for a single dimer;
see Fig. 5. In the present case, the fixed points FP∗ are
described by Eq. (74), the discrete S2 symmetry corre-
sponds to TRS, and the role of the dimensionless coupling
�̃0 is played by the ratio �12/�c.

2. Chiral persistent currents

The interplay of local orbital polarization and hopping
processes gives rise to a chiral ground-state current on a

(a)

(b)

FIG. 17. (a) Ground-state orbital polarization m0 and relative
phase ϕ as a function of the hopping amplitude �12, measured
in units of the critical value �c = Uξρ/4. The shaded region
depicts the chiral superfluid (CSF) phase with ϕ �= 0, while the
nonshaded region represents a more conventional superfluid (SF)
phase. Note that the transition from ϕ �= 0 to ϕ = 0 is analogous
to the transition from phase III to phase I in Fig. 5; see Sec. IV.
(b) Mean-field current as a function of �12. In both panels, the
points were obtained through imaginary-time evolution of the
NLSE in Eq. (73), evaluating quantities in the ground state with
m0 > 0. The solid lines represent the analytical mean-field pre-
dictions given by Eqs. (74), (78), and (80). The system contains
Nd = 30 dimers at filling ρ = 2, and the interaction parameters
are set to U = 0.2 � and ξ = 4/3.

ring geometry. In the mean-field regime, this chiral persis-
tent current can be expressed in terms of the condensate’s
momentum k0 and orbital polarization m0 according to

JMF(k0) = ρ

[
sin(k0)

(
2�+�12

√
1 − m2

0

)

− 2�12 cos(k0)m0

]
. (79)

For small system sizes, condensation occurs at zero
momentum and we find a simple relation for the chiral
current

JMF(k0 = 0) = −2ρ�12m0. (80)

We have validated this analytical prediction for the chi-
ral current by numerically solving the coupled NLSE in
Eq. (73), as we show in Fig. 17(b).
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FIG. 18. Phase diagram of the fictitious Creutz-Hubbard lad-
der in Eq. (66) as a function of the chemical potential and the
ratio �/Uξ . Blue shaded areas represent the Mott insulating
phases, obtained within a strong-coupling perturbation (SCP)
theory for �12 = � and ρ ≥ 2. Red solid lines show the Mott-
superfluid boundaries for �12 = 0. Filled points were obtained
using a DMRG algorithm for�12 = 0 (red) and�12 = � (blue),
for a filling fraction ρ = 2. The inset shows the evolution of the
averaged ground-state orbital polarization m0 as a function of
�12, for �/Uξ = 0.25 and filling ρ = 2, in a chain with open
boundary conditions (Nd = 100 dimers); the DMRG result is
compared to that obtained from the NLSE in Eq. (73).

3. The quantum regime: numerical validation
beyond mean field

In order to validate the existence of the transition pre-
dicted by mean-field theory, we solved the full quantum
many-body Hamiltonian in Eq. (66) using density-matrix
renormalization group (DMRG) methods [153]. In prac-
tice, we select one of the TRS-broken ground states (with
+ polarization) by adding a small polarizing field of
strength 0.001 �, and we keep up to 512 DMRG states
to ensure a truncation error ≤ 10−6. Here, we consider
a lattice containing Nd = 100 dimers, with open bound-
ary conditions, and we calculate the average ground-state
orbital polarization,

m0 = 1
ρNd

Nd∑
n=1

〈n̂n,+ − n̂n,−〉0, (81)

for various values of the ratio �12/�c. This calculation
is performed deep in the quantum regime (but still within
the chiral superfluid phase), by setting �/Uξ = 0.25 and
a filling ρ = 2. The resulting curve m0(�12) is depicted
in the inset of Fig. 18, together with the mean-field pre-
diction. Interestingly, the transition from the chiral super-
fluid (m0 �= 0) to the conventional superfluid (m0 = 0) is

still observed deep into the quantum regime. We note
that the transition is qualitatively similar in the quantum
regime, although the transition point is slightly below the
mean-field prediction (�12 = �c).

C. A quench protocol to measure the orbital
polarization

We have seen that the ground state of the system spon-
taneously breaks TRS by developing a finite orbital polar-
ization m0, whose sign reflects the privileged orbital order.
This order parameter can be measured through a simple
quench protocol, as we now explain.

We assume that the system is initialized in the ground
state. At t = 0, all the dimers are suddenly decoupled from
each other, so that the postquench Hamiltonian (t > 0) is
of the form

ĤQ = Uξ

2

∑
nσ

n̂n,σ (n̂n,σ − 1)

+ Wξ

∑
n

n̂n,+n̂n,− − μ
∑
nσ

n̂n,σ . (82)

The Heisenberg equations of motion for the bosonic cre-
ation and annihilation operators can be simply written as

db̂n,σ

dt
= − i

�
[b̂n,σ (t), ĤQ]

= − i
�

(
Uξ n̂n,σ + Wξ n̂n,σ − μ

)
b̂n,σ (t). (83)

We point out that the operators n̂n,σ (t) = n̂n,σ do not
depend on time due to the fact that these quantities are
conserved by the Hamiltonian ĤQ. Consequently, one can
readily integrate these equations and find

b̂n,σ (t) = e− i
�

(
Uξ n̂n,σ+Wξ n̂n,σ−μ

)
tb̂n,σ (t = 0). (84)

Taking the classical (mean-field) limit, and considering a
ring geometry with a homogeneous density distribution,
this translates into

ψn,σ (t) = e− i
�

(
Uρ−σ�cm0−μ

)
t
ψn,σ (t = 0), (85)

where m0 is the ground-state orbital polarization (uni-
formly defined throughout the system).

After the quench, the number of particles in the original
orbitals a1,2, defined at each dimer, evolves according to

|ψn,1(t)|2 = 1
2
(
ρ + ψ∗

n,+(t)ψn,−(t)+ ψ∗
n,−(t)ψn,+(t)

)
,

|ψn,2(t)|2 = 1
2
(
ρ − ψ∗

n,+(t)ψn,−(t)− ψ∗
n,−(t)ψn,+(t)

)
.

(86)

Inserting Eq. (85) into Eq. (86), and using Eq. (B3) to
parameterize the ground state at t = 0, we find that the time
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FIG. 19. Time evolution of the relative population at each
dimer zn(t), as a function of the hopping amplitude �12, upon
performing the quench protocol described in the main text. For
each value of the hopping parameter, the initially evolved ground
state corresponds to the one obtained in Fig. 17, i.e., a state with
m0 ≥ 0.

evolution of the particle number at each dimer is described
by

|ψn,1(t)|2 = ρ

2

[
1 +

√
1 − m2

0 sin
(

2�cm0t
�

)]
,

|ψn,2(t)|2 = ρ

2

[
1 −

√
1 − m2

0 sin
(

2�cm0t
�

)]
.

(87)

As a consequence, the amplitude and frequency of these
oscillations give direct information on the orbital polariza-
tion of the ground state, m0, which is also straightforwardly
related to the twisted superfluid angle ϕ through Eq. (74).

Figure 19 shows the population imbalance measured at
each dimer,

zn(t) = |ψn,1(t)|2 − |ψn,2(t)|2
ρ

, (88)

after numerically performing the quench protocol for dif-
ferent values of �12. For each value of the hopping ampli-
tude, the initial ground state corresponds to that used in
Fig. 17, i.e., an ordered state with m0 ≥ 0. We find that
the dynamics obtained from these numerical simulations is
perfectly described by the analytical prediction in Eq. (87).
In the conventional superfluid phase, where the system is
completely depolarized, the particle number at each dimer
remains unaltered.

D. Strong-coupling regime and the transition to the
chiral Mott phase

In the limit of strong interactions, U � �,�12, and for
a commensurate filling factor, ρ = N/Nd > 1, the bosonic
system described by Eq. (66) is found to form a “chiral”
Mott insulating phase, characterized by an orbital order-
ing. As in the mean-field regime, this orbital order relies
on having the interaction parameter ξ > 0. We hereby set
ρ > 1, and treat the unit-filling case ρ = 1 in the next
Sec. VII E.

When the hopping parameters are strictly zero, and
when setting ξ > 0, the particles either occupy the b+
or the b− orbitals, so as to maximize the local angu-
lar momentum |Ĵ (n)y | at the level of each dimer. For ρ =
N/Nd > 1 bosons in each dimer, these Fock states are
described by

|σn〉 = (b̂†
n,σ )

ρ

√
ρ!

|0〉, (89)

where b̂n,σ is defined in Eq. (65). In the absence of kinetic
terms in the Hamiltonian in Eq. (66), there is a macroscopic
degeneracy of 2Nd possible ground-state configurations
|{σn}〉, which may be written as product states

|{σn}〉 =
Nd∏

n=1

|σn〉. (90)

The tunneling terms in the Hamiltonian in Eq. (66) do
not couple these states at first order, but they do lift their
degeneracy in second-order perturbation theory. Follow-
ing the perturbative approach detailed in Appendix C, we
obtain an effective Ising spin model

Ĥ eff
Ising = Kyy

∑
n

Ĵ (n)y Ĵ (n+1)
y , (91)

with the exchange coupling

Kyy = −4�2[Wξ + ρ(Wξ − Uξ )]
Uξ [Uξ + ρ(Wξ − Uξ )]

< 0, (92)

where we assumed repulsive intraspecies interactions
Uξ > 0 in Eq. (66), i.e., U > 0 and ξ < 4 in the original
Hamiltonian in Eq. (63). We point out that the effec-
tive Hamiltonian in Eq. (91) acts only on the projected
subspace spanned by the states in Eq. (90).

Importantly, the exchange coupling Kyy < 0 in Eq. (92)
favors a uniform “ferromagnetic” angular-momentum
ordering. Moreover, the exchange coupling is found to be
independent of the hopping parameter �12, at this order of
perturbation theory. This analysis suggests that the orbital
order identified in the superfluid phase (mean-field regime)
should be preserved in the strongly interacting regime.
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In analogy with p-band systems, we refer to this ordered
(TRS-broken) Mott insulator as a “chiral” Mott phase. We
remark that Kyy > 0 in p-bands [140], such that the Mott
phase is instead associated with a staggered ordering in that
context.

The perturbative expansion described above can be
further exploited to elucidate the boundaries between

the chiral Mott and superfluid phases; see Appendix C.
Indeed, applying a strong-coupling perturbation (SCP)
theory up to second order in the hopping ampli-
tudes, we obtained approximate boundaries for particle-
type (μ+) and hole-type (μ−) excitations in the Mott
phase

μ+
Uξ

= ρ− 2(ρ+ 1)
|tσ |
Uξ

+ |tσ |2
U2
ξ

ρ2 − 4(ρ + 1)|tσσ |2 cos2(�)

ρUξ (Wξ − Uξ )

− |tσσ |2
Uξ

(
2ρ

ρ(Wξ − Uξ )+ Wξ + Uξ

− 4ρ
ρ(Wξ − Uξ )+ Uξ

)
,

μ−
Uξ

= ρ − 1 + 2ρ
|tσ |
Uξ

− |tσ |2
U2
ξ

(ρ + 1)2 − 2ρ|tσσ |2(1 + 2 sin2(�))

Uξ [ρ(Wξ − Uξ )+ Uξ ]

+ |tσσ |2
Uξ

(
2ρ

ρ(Wξ − Uξ )+ Uξ − Wξ

+ 2(ρ − 1)
ρ(Wξ − Uξ )+ 2Uξ

)
. (93)

The difference μ+ − μ− determines the charge gap in
the Mott regime [154]. Interestingly, due to the peculiar
orbital structure of the model, the expressions in Eq. (93)
explicitly depend on the effective flux � that sponta-
neously emerges in the fictitious ladder for finite �12;
see Eq. (71) and Refs. [155,156].

In the limit �12 = 0, the low-energy physics is entirely
determined by one of the ± orbitals (the system exactly
projects onto a single leg of the fictitious ladder in Fig. 16),
and we hence recover the Mott lobes of the more conven-
tional 1D Bose-Hubbard model [154]. The Mott-SF phase

0.96
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0.00 0.05 0.10
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Ω12/Ω = 1

FIG. 20. Evolution of the averaged ground-state orbital polar-
ization m0, within the Mott regime, for ρ = 2 and �12 = 0 (red)
and�12/� = 1 (blue). The points were obtained using a DMRG
algorithm in a chain with open boundary conditions and Nd =
100 dimers.

diagram resulting from Eq. (93) is depicted in Fig. 18,
in terms of the chemical potential μ and ratio �/Uξ , for
two values of �12: �12 = 0 and �12 = � (i.e., for a finite
effective flux � �= 0).

We compare these analytical predictions with the phase
diagram extracted from DMRG calculations (filled points
in Fig. 18), for the two cases �12 = 0 and �12 = �, and
a filling factor ρ = 2. We note that the SCP-theory pre-
diction is in very good agreement with the more accurate
numerical method for� � Uξ . Moreover, the DMRG cal-
culations confirm the analytical prediction in Eqs. (91) and
(92) according to which the orbital order is unaltered by
a finite coupling �12, deep in the chiral-Mott phase; see
Fig. 20. As the system approaches the superfluid phase,
the presence of the hopping terms proportional to �12 is
found to destabilize the angular-momentum ordering, as
we previously obtained in our mean-field analysis; see
Fig. 20.

E. Strongly correlated phases at unit filling ρ = 1

For unit filling, ρ = 1, the Ising-spin description in
Eq. (91) is insufficient: it lacks spin-flip terms involving
the spin states in Eq. (90), which are now present and scale
as the square of the tunneling amplitudes. In order to derive
a proper low-energy theory at strong coupling, within
second-order perturbation theory, we perform a canonical
transformation and project the transformed Hamiltonian
onto the subspace of unit occupation at each dimer; see
Appendix D for details. Following this procedure, we map
our original bosonic model to an effective spin-1/2 theory
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described by the effective spin Hamiltonian

Ĥ eff
1/2 =

∑
n

∑
ν=x,y,z

Kνν Ĵ (n)ν Ĵ (n+1)
ν + hx

∑
n

Ĵ (n)x

− D ·
∑

n

(
Ĵ(n) × Ĵ(n+1)

)
. (94)

This model includes exchange couplings along all three
spin directions, a magnetic field hx along the x direc-
tion, as well as Dzyaloshinskii-Moriya interactions [157–
162] characterized by the vector D. The corresponding
couplings are given by

Kxx = −4�2

Wξ

, hx = −4��12

(
1

Wξ

+ 1
Uξ

)
,

Kyy = −4�2

Wξ

(
2Wξ

Uξ

− 1
)

, D =
(

0,
4��12

Wξ

, 0
)

.

Kzz = −4�2

Wξ

(
1 − �2

12

2�2

)
.

(95)

Interestingly, the Dzyaloshinskii-Moriya interaction is
found to originate from an interplay between the inter-
species interactions Wξ in Eq. (66) and the single-particle
coupling �12, which effectively produces a Rashba-type
spin-orbit coupling [158,159]. We also note that the cou-
pling constant Kyy entering the Ising model in Eq. (92)
reduces to that in Eq. (95) in the limit ρ = 1.

In the limit �12 = 0, we obtain an XYX quantum spin-
1/2 Heisenberg model

ĤXYX = K
2

∑
n

(
Ĵ (n)+ Ĵ (n+1)

− + Ĵ (n)− Ĵ (n+1)
+

)

+�K
∑

n

Ĵ (n)y Ĵ (n+1)
y , (96)

where we defined the operators Ĵ (n)± = Ĵ (n)x ± iĴ (n)z , and
where we introduced the ferromagnetic coupling

K ≡ Kxx = Kzz = −4�2/Wξ , (97)

and the anisotropy parameter

� = 2(Wξ /Uξ )− 1. (98)

We note that a similar effective Hamiltonian was obtained
for p-band bosons [163]. In the present context, the
anisotropy parameter can satisfy� > 1 upon setting Wξ >

Uξ . In this case, our system privileges ferromagnetic order
along the y axis, hence forming a chiral Mott insulating
phase with one boson per dimer. We expect that a small

finite value of �12 will slightly depolarize this chiral Mott
phase.

Last but not least, we note that similar Heisenberg
models can be mapped onto an interacting Kitaev chain
[163,164], which suggests an interesting route towards
Floquet-engineered topological superconductors [165].

VIII. EXPERIMENTAL IMPLEMENTATIONS AND
CONCLUDING REMARKS

A. Optical cavities and photonic lattices

This work introduces a method to engineer and tune
nonlinearities in optical devices, using a designed pulse
sequence that couples the optical modes in a fast and
periodic manner. These repeated mixing operations sim-
ply correspond to the pulsed activation of a linear cou-
pling between two optical modes, and they can thus
be implemented in a broad range of two-mode non-
linear systems, ranging from optical resonators [70–
72,88] and waveguide arrays [50,74] to circuit-QED
platforms [15].

In a two-mode optical cavity [70–72], the pulsed oper-
ations could correspond to a coupling between the two
polarization eigenmodes of the cavity, which can be
directly realized by means of quarter-wave plates [90,91];
see the sketch in Fig. 2(a). In optical-waveguide arrays
[50], the two modes (1 and 2) would describe light
propagating in two adjacent waveguides. In this case, the
pulsed linear couplings in Eqs. (4) and (5) can be real-
ized by abruptly changing the spatial separation between
the two waveguides; see Fig. 2(b) for a sketch and Refs.
[51,52,54,55] for experimental realizations using ultrafast-
laser-inscribed waveguides. Such optical-waveguide set-
tings could benefit from the state-recycling technique of
Refs. [53,166], where light is reinjected into the waveg-
uides (and possibly modified) at every roundtrip; see also
Refs. [167–169] regarding setups based on recirculating
fiber loops.

While we considered a generic setting that includes both
self-phase and cross-phase modulations in the absence
of the periodic drive [Eq. (1)], we found that effective
nonlinearities emerge even when a single type of bare non-
linearity is present. Importantly, we demonstrated that the
strength (and sign) of effective nonlinearities can be tuned
by simply adjusting the pulse sequence; see Eqs. (7), (8),
and (59). We also emphasize that the parameter β [i.e.,
the relative strength and sign of the bare self-phase and
cross-phase modulations in Eq. (1)] can vary across a large
number of experimental configurations [68,71,170].

To detect the emergence of drive-induced nonlineari-
ties, we proposed to study changes in the phase space’s
topology [80], which can be explored by monitoring the
dynamics of the relative intensity z(t) and phase ϕ(t) of
the two optical modes. According to our numerical stud-
ies, these properties could already be revealed over “time”
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scales of the order of 5 − 10T, where T denotes the period
of the driving sequence. This is particularly appealing
for waveguide settings [50], where the “evolution time”
associated with the propagation distance—and hence the
number of driving periods—is limited. In this context, it
would be interesting to combine such driving schemes with
a state-recycling protocol [53].

While we considered a simple pulse sequence, charac-
terized by the alternance of linear mixing operations and
“free” evolution [Fig. 3(a)], we note that more compli-
cated protocols and configurations could be envisaged. For
instance, different types of mixing processes could be acti-
vated within each period of the drive, including nonlinear
processes.

The lattice models explored in Secs. VI and VII
could be implemented in nonlinear optics, by engineer-
ing appropriate couplings between photonic dimers. In
optical-cavity implementations, each dimer would be rep-
resented by a two-mode cavity; one would then couple
many of such dimers using mode-dependent couplings
[141,171–174], hence realizing the models illustrated in
Fig. 15. These lattice models could also be realized in
arrays of ultrafast-laser-inscribed waveguides [50], where
the couplings between individual waveguides can be
adjusted with high precision [51–53]. In this context, it
would be exciting to study the interplay of drive-induced
nonlinearities, solitons and topological band structures;
see, for instance, Ref. [175], where edge solitons were
studied in the presence of four-wave mixing.

It would also be intriguing to explore the applicability of
our scheme in the context of superconducting microwave
cavities [176], where optical nonlinearities originate from
the coupling to transmon ancillas. Indeed, it was recently
shown that such optical nonlinearities can be modified by
applying an off-resonant drive on the transmon ancillas
[66]. Moreover, in circuit-QED platforms, the linear cou-
pling between neighboring qubits can be modulated in a
time-periodic manner [15]; applying our pulse protocol to
such settings could be used to modify the nonlinearity of
the qubits, and hence, the interaction between microwave
photons. In general, we anticipate that drive-induced
nonlinearities, such as the effective four-wave mixing stud-
ied in this work, could be useful for nonlinear optics
applications [67,69].

We remark that the present work relies on a nondissipa-
tive theoretical framework. Our scheme could nevertheless
be applied to driven-dissipative optical devices [86], such
as fiber-ring cavities or microresonators described by the
Lugiato-Lefever equation [72,73,177–180], upon treating
dissipation within the Floquet analysis [103,181,182].

Finally, we note that modifying, possibly enhancing,
optical nonlinearities represents a central theme through-
out the realm of photonics [16,86]. In general, effective
photon-photon interactions are obtained by coupling a light
field to a mediator, e.g., an atom or a mechanical mode.

In such settings, the effective interactions (e.g., four-wave
mixing) can be further controlled by an additional para-
metric drive, which either acts on the optical cavity [183]
or on the mediator mode [184]. In contrast, our Floquet
driving scheme involves a periodic modulation of the
linear coupling between optical modes [Eq. (4)], a gen-
eral method that does not rely on the nature (nor on the
origin) of the bare nonlinearity. This method allows for
highly tunable drive-induced interactions, whose strength
(of order χ ) remains comparable to the bare interac-
tions; see Eqs. (30) and (34). Moreover, we emphasize
that this simple approach relies on a single condition:
the time-scale separation T � 1/χ . Generically, driving
a nonlinear setting periodically in time leads to paramet-
ric instabilities; however, these instabilities are suppressed
in the high-frequency limit T → 0; see Refs. [102,185–
187]. We note that this stable regime is compatible with
the aforementioned time-scale separation T � 1/χ .

B. Ultracold atomic gases

The bosonic Josephson junction (BJJ) Hamiltonian
in Eq. (12) can be experimentally realized by manip-
ulating ultracold gases of bosonic atoms [76–78,80–82,
188]. In the following paragraphs, we discuss possible
implementations of the driving pulse sequence in Eqs. (20)
and (21), for systems of cold atoms that either employ their
internal or external degrees of freedom. We also propose
ways to probe the effects associated with drive-induced
nonlinearities through various observables.

1. Two-mode systems using atomic internal states

When using two internal states of an atom (e.g., 87Rb)
as a pseudospin, the interaction term χ Ĵ 2

z entering the BJJ
Hamiltonian in Eq. (12) directly reflects atomic collisions
in the two internal states; see Fig. 2(c). In this context,
the linear coupling �0Ĵx can be generated with high con-
trol, using coherent coupling with oscillatory (microwave)
magnetic fields [80]. The mixing operator in Eq. (21) is
implemented using the same microwave drive, with a Rabi
frequency �τ chosen such that �ττ = π/2, where τ is the
pulse duration [Fig. (3)]. The Rabi frequency �τ can be
made much larger than other frequency scales in the sys-
tem, such that the Floquet pulses and the internal dynamics
have well separated time scales. The strength of the non-
linearity χ is typically limited by the atomic properties,
however it can be tuned with the help of a Feshbach
resonance [189].

The readout of the relevant observables (i.e., the relative
population z and relative phase ϕ in the two internal states)
is routinely performed using state-selective imaging of the
atomic densities. To extract the relative phase, the imaging
is combined with a π/2 rotation around the y direction in
order to map the phase on measurable atomic densities.
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2. Atoms in double-well potentials

Two-mode atomic systems can also be implemented
using external (spatial) degrees of freedom, namely, by
loading the atoms into optical [77] or magnetic [79]
double-well potentials; see Fig. 2(d).

Here, the Hubbard interaction term in Eq. (9) [which
is equivalent to χ Ĵ 2

z in the BJJ Hamiltonian in Eq. (12)]
is directly generated by the on-site atomic interactions.
The tunneling between the wells provides the coherent
coupling term and can be tuned by either changing the
separation of the wells or the height of the barrier. To
implement a pulse of the driving sequence [Eqs. (20) and
(21)], the tunneling term has to be made dominant during
the pulse duration. We note that a different Floquet scheme
has been recently applied in a double-well experiment to
control the amplitude and phase of the tunneling matrix
elements [190].

In the double-well system, the population imbalance
z can be directly evaluated by measuring the number of
atoms in the two wells. Moreover, the relative phase ϕ can
be accessed by interference measurements [77,188].

The Hamiltonian in Eq. (9), and the derivation that
leads to the effective Hamiltonian in Eq. (34), assumes
that each well contains a single orbital: this is equivalent
to the single-mode approximation in spinor condensates
[108,191]. This scheme thus requires very limited exci-
tations within each well over the driving pulse sequence.
This can be achieved by using sequences that are slow
compared to trapping frequencies; we note that the high
degree of experimental control over designed potentials
allows for the implementation of optimal-control schemes
to optimize the performance [192,193]

3. Arrays of dimers and engineered lattice models

The lattice models introduced in Sec. VI, and repre-
sented in Fig. (15), could be designed by assembling
an array of dimers, e.g., using optical tweezer setups
[194]. Alternatively, one could trap two internal states
of an atom at each site of an optical lattice (a “dimer”)
and then activate state-dependent hopping over the lat-
tice using laser-assisted tunneling methods [130,195–197].
This scheme would allow for a fine control over the inter-
dimer couplings (i.e., the parameters �, �12), but also, on
the interparticle interactions (i.e., the parameter β).

4. Probing pair-hopping processes and orbital order

The phase space associated with the effective clas-
sical Hamiltonian in Eq. (36), which was analyzed in
Sec. IV, can be finely studied using atomic Bose gases
[80,108,110]. This can be readily performed by measuring
the mean values of the relative population z(t) and phase
ϕ(t) for different times and initial conditions. This would
allow for the characterization of the effective Hamiltonian
on a “classical” level.
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FIG. 21. Detecting pair-hopping processes in a driven double-
well potential. (a) An additional spatial degree of freedom,
combined with an energy offset�0 between the two wells, allows
for specific pair-hopping processes, which result in pairs of atoms
with opposite momentum ±k0. (b) Dispersion relation associated
with the two wells, which are shifted in energy by an amount�0.
A pair-hopping process converts two atoms in the “blue” well
with momentum k = 0, into a pair of atoms in the “red” well with
momentum ±k0. These finite-momentum pairs can be detected
after a long TOF, hence revealing the effective pair-hopping
processes generated by the driving sequence.

Ultracold atomic systems offer the possibility to access
genuine quantum properties, such as coherent spin squeez-
ing; see Fig. 13 and Refs. [81,135,137,138,198,199]. In
particular, generalized measurements can be used to eval-
uate noncommuting observables (such as the imbalance
z and relative phase ϕ) within the same experimental
realization [199]. Besides, the Husimi distribution [Fig.
(12)] can be reconstructed from projective measurements
[138].

Drive-induced pair-hopping processes are a striking fea-
ture of the effective Hamiltonian in Eq. (34). To detect this
effect, we propose to exploit an additional spatial degree of
freedom (“tube” geometry), as we illustrate in Fig. 21(a).
Specifically, we apply an energy offset �0 to one of the
wells (colored in blue), and assume that atoms are initially
prepared at momentum k ≈ 0. When activating the driving
sequence, pair-hopping processes are effectively gener-
ated, and atoms would then be allowed to hop by pairs to
the other well (colored in red), where they would acquire
a finite momentum ±k0; see Figs. 21(a) and 21(b). The
momentum correlation could then be revealed experimen-
tally by letting the cloud expand for a long time of flight
(TOF) [193]: the finite momentum leads to a separation of
the atom pairs, such that counting the number of atoms at
±k0 would reveal the correlation in the reduced variance
(compared to a binomial distribution) of the population
imbalance.

Finally, we note that the quench protocol introduced in
Sec. VII C could be directly implemented in a quantum-gas
experiment, in view of revealing the orbital order and TRS-
broken nature of the chiral superfluids and Mott phases
analyzed in Sec. VII. As illustrated in Fig. 19, the finite
orbital polarization in the ground state can be unambigu-
ously detected by monitoring the time-evolving population
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imbalance zn(t), locally defined at the level of each dimer,
upon performing the quench protocol.
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APPENDIX A: USEFUL FORMULAS

Section III uses two families of operators: the bosonic
operators â(†)1 and â(†)2 associated with the two modes, and
which satisfy the canonical bosonic commutation relations,
[âs, â†

s′] = δs,s′ , where s = 1, 2; and the angular momentum
(Schwinger) operators, defined as

Ĵx = 1
2

(
â†

1â2 + â†
2â1

)
, Ĵy = 1

2i

(
â†

2â1 − â†
1â2

)
,

Ĵz = 1
2

(
â†

2â2 − â†
1â1

)
, N̂ = â†

1â1 + â†
2â2.

(A1)

These operators satisfy the spin commutation relations
[Ĵμ, Ĵν] = iεμνλĴλ, and the operator N̂ counts the total
number of bosons in the system (assumed to be constant).

In view of expressing interaction processes with
Schwinger operators, it is useful to note that

Ĵ 2
z = 1

4

(
â†

1â†
1â1â1 + â†

2â†
2â2â2 − 2â†

1â†
2â1â2 + N̂

)
,

Ĵ 2
y = 1

4

(
2â†

1â†
2â1â2 − â†

1â†
1â2â2 − â†

2â†
2â1â1 + N̂

)
,

N̂ 2 =
(

â†
1â†

1â1â1 + â†
2â†

2â2â2 + 2â†
1â†

2â1â2 + N̂
)

.

(A2)

Hence, both Ĵ 2
z and N̂ 2 contain intramode (Hubbard) and

intermode (cross) interactions, while Ĵ 2
y contains a com-

bination of intermode interactions and pair-hopping pro-
cesses [Fig. 4]. We point out that Ĵ 2

z is related to Ĵ 2
y through

a unitary transformation; see Eq. (28).
From Eq. (A2), we can express the intramode (Hubbard)

interaction terms as

1
2

(
â†

1â†
1â1â1 + â†

2â†
2â2â2

)
= Ĵ 2

z + constant, (A3)

where the irrelevant constant term reads N̂ (N̂ − 2)/4.
Similarly, the intermode (cross) interaction term reads

â†
1â†

2â1â2 = −Ĵ 2
z + constant, (A4)

with the irrelevant constant term N̂ 2/4. These expressions
were used to derive the Hamiltonian in Eq. (12) from
Eq. (9).

Finally, it is useful to note that a combination of
intramode (Hubbard) interactions and pair-hopping pro-
cesses can be expressed as

Ĵ 2
z + Ĵ 2

y = 1
4

(
â†

1â†
1â1â1 + â†

2â†
2â2â2

)

− 1
4

(
â†

1â†
1â2â2 + â†

2â†
2â1â1

)
+ constant.

(A5)

APPENDIX B: ORBITAL ORDER AND PHASE
TRANSITIONS FROM A MEAN-FIELD ANALYSIS

In this Appendix, we provide a detailed mean-field
analysis of the extended Bose-Hubbard model in Eq. (66).

Upon performing the mean-field substitution

b̂n,σ → 〈b̂n,σ 〉 ≡ ψn,σ , (B1)

we obtain the mean-field functional

F = 1
2

∑
nσ

[
Uξ |ψn,σ |2(|ψn,σ |2 − 1)+ Wξ |ψn,σ |2|ψn,σ |2

]

−
∑
nσ

[(
�+ �12

2
eiσπ/2

)
ψ∗

n+1,σψn,σ + h.c.
]

− �12

2

∑
nσ

(
e−iσ π2 ψ∗

n+1,σψn,σ + h.c.
)

− μ
∑
nσ

|ψn,σ |2, (B2)

from which we derive the coupled NLSE in Eq. (73).
When imposing periodic boundary conditions (ring

geometry), and in the limit of weak interactions U � �,
the mean-field ground state is expected to have a uniform
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density distribution over the entire chain. We can then
propose Bloch states as stationary solutions of Eq. (73),
namely

ψn,σ (t) = e−i(ε(k)−μ)t/� eikn φk,σ ,

φk,σ =
√
ρ

2
[1 + σm(k)]ei�k,σ .

(B3)

In this way, the local density ρn = ρ = ∑
σ |ψn,σ |2 =

N/Nd is constant, with N the total number of bosons and
Nd the number of unit cells (dimers) in the ring. We note
that the orbital polarization entering Eq. (B3) is given by

m(k) = 1
ρ
(|φk,+|2 − |φk,−|2). (B4)

Inserting the ansatz Eq. (B3) into the NLSE in Eq. (73), we
find that φk = (φk,+,φk,−)T should be an eigenstate of the
Gross-Pitaevskii Hamiltonian written in Bloch representa-
tion,

ĤGP(k) =
[

Uξ

2
(ρ − 1)+ Wξ

2
ρ − 2� cos(k)

]
1̂

− [�cm(k)+�12 sin(k)] σ̂z −�12 cos(k)σ̂y ,
(B5)

where m(k) should be determined self-consistently
[Eq. (B4)], and where �c is given by Eq. (76). Note
that, for each value of k, this Hamiltonian exactly maps
to the mean-field Hamiltonian of a transverse spin-1/2
Ising model with an additional longitudinal magnetic field.
Indeed, m(k) represents the self-consistent magnetization
along the z direction with �c the magnitude of the ferro-
magnetic coupling constant. The magnitudes of the trans-
verse field along the y direction and the longitudinal field
along the z direction are, respectively, given by �12 cos(k)
and �12 sin(k).

The solution with lowest eigenenergy determines the
mean-field energy functional

εMF(k) = −
√
�2

12 +�2
cm(k)2 + 2m(k)�12�c sin(k)

− 2� cos(k)+ Uξ

2
(ρ − 1)+ Wξ

2
ρ, (B6)

which should be minimized. We will denote by k0 the
value of k that achieves this minimization (to be specified
below).

By inserting the eigenstate of this low-energy branch
into Eq. (B4), we obtain that the orbital polarization m(k)

should satisfy the self-consistent condition

m(k) = m(k)�c +�12 sin(k)√
�2

12 +�2
cm(k)2 + 2m(k)�12�c sin(k)

. (B7)

Moreover, we find that the phases �k,σ = �σ are inde-
pendent of the wavevector, and that they are determined
by

� = �+ −�− = −(π/2)sgn(�12). (B8)

It is insightful to analyze how these conditions on the
nature of the ground-state translate in the original basis of
Eq. (63). In this representation, the mean fields are given
by 〈ân,s〉0 ≡ ψn,s, with s = 1, 2, and they read [Eqs. (65)
and (B3)]

ψn,1 = eik0n√ρ
(√

1 + m0ei�+ + √
1 − m0ei�−

2

)
,

ψn,2 = ieik0n√ρ
(√

1 + m0ei�+ − √
1 − m0ei�−

2

)
.

(B9)

Here, we explicitly evaluated the fields at k = k0 and we
introduced the notation m(k0) = m0; we also omitted the
trivial dynamical phase.

The condition in Eq. (B8) then simply corresponds to
having the a1,2 orbitals equally populated in the ground
state, i.e., |ψn,1|2 = |ψn,2|2 = ρ/2. Without loss of general-
ity, we henceforth set �12 > 0, and we express the relative
phase ϕ between the components ψn,2 and ψn,1 according
to

ψn,2

ψn,1
= eiϕ =

√
1 − m2

0 + im0, (B10)

where we used Eqs. (B8) and (B9). We thus obtain a simple
relation between the local relative phase (internal angle)
and the ground-state orbital polarization given in Eq. (74).

The interplay of local orbital polarization and hopping
processes gives rise to a ground-state current on a ring
geometry. This can be obtained by evaluating the current
operator derived from Eq. (66),

Ĵ = i
�

Nd

∑
nσ

(
b̂†

n+1,σ b̂n,σ − h.c.
)

+ �12

2Nd

∑
nσ

(
σ b̂†

n+1,σ b̂n,σ − σ b̂†
n+1,σ b̂n,σ + h.c.

)
.

(B11)

In the mean-field solution, the current flowing through the
ring is given by Eq. (79), where k0 and m0 are still to be
determined below.
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Finding the minimum of Eq. (B6) by imposing the
self-consistent condition given by Eq. (B7) can be cumber-
some from an analytical point of view. Hence, it is useful
to consider particular limits. When �12 = 0, the mini-
mum energy is precisely reached at k0 = 0, which leads
to two possible degenerate polarizations m0 = ±1; this sit-
uation corresponds to a relative phase ϕ = ±π/2. A finite
coupling �12 � �c leads to a nonzero ground-state quasi-
momentum k0 ≈ (�12/2�) sgn(m0) ≈ � sgn(m0) and to a
small depolarization of the system [see Eq. (75)]. We recall
that � is the effective flux generated by the complex tun-
neling in Eq. (66); see Eq. (71) and Fig. 16. Importantly,
condensation at a finite quasimomentum activates an effec-
tive longitudinal field in the Ising picture—recall that this
field scales as �12 sin(k)—leading to a smoothing of the
transition to the unpolarized state and an eventual absence
of critical behavior. As a technical note, we remark that
reaching this finite k0 requires sufficiently large lattices sat-
isfying Nd > 2π�/|�12|. In any case, to lowest order in
�12, the ground-state polarization decreases according to
Eq. (75).

The chiral current flowing through the ring is activated
by �12; see Eqs. (77) and (79). In the mean-field ground
state, the leading-order contribution is given by

JMF(k0) ≈ −sgn(m0)ρ�12. (B12)

Importantly, the sign of the persistent current in Eq. (B12)
depends on the orbital order that spontaneously emerges in
the system. This emergent chirality is a striking signature
of the spontaneous breaking of TRS; see also the main text.

APPENDIX C: ORBITAL ORDER IN THE
STRONGLY CORRELATED REGIME

In this Appendix, we derive the effective Ising spin
model in Eq. (91) and we obtain the chiral superfluid-
to-Mott phase diagram in the strong-coupling regime
[Fig. 18]. In the absence of kinetic terms in the Hamilto-
nian in Eq. (66), there is a macroscopic degeneracy of 2Nd

possible ground-state configurations |{σn}〉, which may be
written as product states

|{σn}〉 =
Nd∏

n=1

|σn〉, (C1)

with |σn〉 the states having well-defined angular momen-
tum along the y direction, namely J (n)y = σnρ/2 with σn =
±1; see Eq. (89) in the main text. The corresponding
ground-state energy reads

E(0)N (|{σn}〉) = UξN (ρ − 1)/2 − μN . (C2)

The tunneling terms in the Hamiltonian in Eq. (66) do
not couple these states at first order, but they do lift their

degeneracy in second-order perturbation theory. Indeed,
the first nontrivial correction to the energy of these N -
particle states is given by

�E(|{σn}〉) =
∑

l

|〈l|ĤT|{σn}〉|2
E(0)N (|{σn}〉)− E(0)N (|l〉)

, (C3)

where ĤT contains all the tunneling terms of Eq. (66),
and where |l〉 is an excited state. Since the Hamilto-
nian in Eq. (66) couples only first nearest neighbors, this
expression can be further simplified as a sum of pair
contributions,

�E(|{σn}〉) =
∑

n

�E(|σn〉|σn+1〉). (C4)

The energy corrections for each pair are readily obtained
as

�E(|+〉|+〉) = �E(|−〉|−〉)

= −2|tσ |2ρ(ρ + 1)
Uξ

− 2|tσσ |2ρ
[ρ(Wξ − Uξ )+ Uξ ]

,

�E(|+〉|−〉) = �E(|+〉|−〉)

= −2|tσσ |2ρ(ρ + 1)
Uξ

− 2|tσ |2ρ
[ρ(Wξ − Uξ )+ Uξ ]

.

We note that this approach is valid whenever ξ < 4,
which ensures repulsive intraspecies interactions Uξ > 0
in Eq. (66). The correction to the energy of the manifold of
states given by Eq. (C1), up to second order, can hence be
expressed as a constant shift (which is independent of the
configuration {σn}) plus an orbital exchange interaction,

�E(|{σn}〉) =
∑

n

E0 + Kyy

∑
n

J (n)y J (n+1)
y , (C5)

with J (n)y = σnρ/2. The shift and exchange coupling are
given by

E0 = −
(|tσ |2 + |tσσ |2

)
ρ[Wξρ(ρ + 1)− Uξ (ρ

2 − 2)]
Uξ [Uξ + ρ(Wξ − Uξ )]

,

Kyy = −4
(|tσ |2 − |tσσ |2

)
[Wξ + ρ(Wξ − Uξ )]

Uξ [Uξ + ρ(Wξ − Uξ )]
< 0.

(C6)

These results lead to the effective Ising spin model dis-
played in Eq. (91). We remark that the exchange coupling
at this order depends only on the tunneling � and that
it favors a uniform “ferromagnetic” ordering. In a one-
dimensional ring geometry, the approximated ground-state
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energy can then be expressed as

EGS(N ) = E(0)N + Nd

(
E0 + Kyy

ρ2

4

)
. (C7)

With the aim of comparing this analytical model with a
more accurate numerical tool, we performed DMRG simu-
lations to analyze the evolution of the ground-state orbital
polarization within the chiral-Mott phase. The results are
presented in Fig. 20 for both�12 = 0 and�12/� = 1. The
orbital order is practically unaltered by the existence of
a finite �12, in agreement with what we expect from the
effective spin model: the exchange coupling constant Kyy
in Eq. (C6) does not depend on �12. On the other hand, as
the system gets closer to the superfluid phase, the presence
of this hopping term destabilizes the angular momentum
ordering.

The perturbative expansion described above can be fur-
ther used to elucidate the boundaries between the (chiral)
Mott and superfluid phases, by additionally considering
how the ground-state energy changes by adding or remov-
ing a particle in the system: the phase boundary precisely
occurs when this particle-hole excitation gap vanishes.
Since we are interested in the regime Wξ > Uξ , the rel-
evant low-energy manifold to consider upon adding one
extra particle is given by Nd states of the form

|nN+1〉 =
(

b̂†
1,σ

)ρ
. . .
(

b̂†
n,σ

)ρ+1
. . .
(

b̂†
Nd ,σ

)ρ
√
(ρ!)Nd−1(ρ + 1)!

|0〉, (C8)

so that the state |nN+1〉 has one more boson in the nth dimer
of a ferromagnetic state with σ order. The unperturbed
energy of these states is

E(0)N+1({|nN+1〉}) = UξN (ρ − 1)/2 + Uξρ − μ(N + 1).
(C9)

The ground-state energy can then be approximately found
via a canonical transformation procedure [200], in which
an effective Hamiltonian Ĥ

′
that takes into account up

to second-order processes in the tunneling amplitudes is
defined within the manifold of the original set of {|n〉N+1}
states. The matrix elements of Ĥ ′ are determined as

〈nN+1|Ĥ
′ |n′

N+1〉 = E(0)N+1 + 〈nN+1|ĤT|n′
N+1〉

+
∑

l

〈nN+1|ĤT|l〉〈l|ĤT|n′
N+1〉

E(0)N+1 − E(0)N+1(|l〉)
,

(C10)

with |l〉 the excited states and E(0)N+1(|l〉) their corresponding
unperturbed energy. The Nd × Nd matrix has a tridiagonal
form and can be analytically diagonalized, revealing the

splitting of the degenerate states of Eq. (C8) into a band
described by

E′
N+1(k) = E(0)N+1 +�N+1 − 2|tσ |(ρ + 1) cos(k −�σ)

− 2(ρ + 1)|tσσ |2
(Wξ − Uξ )ρ

cos(2k)

− 2ρ(ρ + 1)|tσ |2
Uξ

cos(2(k −�σ)), (C11)

with

�N+1 = −|tσ |2ρ(ρ + 2)
Uξ

− 2ρ|tσσ |2
ρ(Wξ − Uξ )+ Wξ + Uξ

− 2(ρ + 1)|tσσ |2
ρ(Wξ − Uξ )

− 2(Nd − 2)ρ(ρ + 1)|tσ |2
Uξ

− 2(Nd − 2)ρ|tσσ |2
ρ(Wξ − Uξ )+ Uξ

. (C12)

In Eq. (C11), we introduced the flux �σ = σ arctan(�12/

2�) and the quasimomentum k = 2π j /Nd, with j =
0, . . . , Nd − 1. Interestingly, at this order, the extra boson
feels the presence of the flux �σ in the lattice via effective
hopping processes at first and second nearest neighbors.

In the thermodynamic limit, the minimum energy of this
band will be precisely at k = �σ , so that the ground-state
energy with one extra boson is obtained as

EGS(N + 1) = E′
N+1(�σ ). (C13)

We follow a similar procedure to consider the effect of the
hopping terms in the low-energy manifold with one boson
less. When removing one particle from the σ -ordered
N -particle ground state, the relevant manifold of states
where the perturbation theory should be applied will be
given by

|nN−1〉 =
(

b̂†
1,σ

)ρ
. . .
(

b̂†
n,σ

)ρ−1
. . .
(

b̂†
Nd ,σ

)ρ
√
(ρ!)Nd−1(ρ − 1)!

|0〉, (C14)

which have a zeroth order energy of

E(0)N−1({|nN−1〉}) = UξN (ρ − 1)/2

− Uξ (ρ − 1)− μ(N − 1). (C15)

By diagonalizing the corresponding canonically trans-
formed Hamiltonian, we obtain the broadening of these

040327-29



N. GOLDMAN et al. PRX QUANTUM 4, 040327 (2023)

states into a band described by

E′
N−1(k) = E(0)N−1 +�N−1 − 2|tσ |ρ cos(k +�σ)

− 2ρ|tσσ |2
(Wξ − Uξ )ρ + Uξ

cos(2k)

− 2ρ(ρ + 1)|tσ |2
Uξ

cos(2(k +�σ)), (C16)

with

�N−1 = −|tσ |2(ρ2 − 1)
Uξ

− 2ρ|tσσ |2
ρ(Wξ − Uξ )+ Uξ − Wξ

− 2(ρ − 1)|tσσ |2
ρ(Wξ − Uξ )+ 2Uξ

− 2(Nd − 2)ρ(ρ + 1)|tσ |2
Uξ

− 2(Nd − 2)ρ|tσσ |2
ρ(Wξ − Uξ )+ Uξ

. (C17)

Note that the holelike excitation feels the opposite flux
(−�σ ). We then find that, in the thermodynamic limit, the
ground-state energy with one boson less is given by

EGS(N − 1) = E′
N−1(−�σ). (C18)

The phase boundary between the (chiral) Mott insulator
and superfluid phases is determined by the conditions

EGS(N + 1) = EGS(N ),

EGS(N ) = EGS(N − 1).

Solving these equations separately for μ, we find the
boundaries for the particle sector (μ+) and hole sector
(μ−), which are displayed in Eq. (93). The difference
μ+ − μ− determines the charge gap in the Mott phase. The
resulting Mott-SF phase diagram is depicted in Fig. 18, in
terms of the chemical potential μ/Uξ and ratio �/Uξ .

APPENDIX D: Strong-coupling expansion and the
effective Hamiltonian for filling ρ = 1

At unit filling, the spin states in Eq. (90) are coupled
to each other via spin-flip processes, which also scale as
the square of the tunneling amplitudes. In order to describe
the corresponding low-energy manifold with an effective
theory, we must perform a canonical transformation proce-
dure and project the resulting effective Hamiltonian into
the subspace of unit filling. Since the Hamiltonian only
couples nearest neighbors, we can focus on the effective
theory for just two dimers (n and n + 1) and then sum over
all the lattice links connecting them. For simplicity, we will
work in the basis of the original orbitals an,s in each dimer
(with s = 1, 2).

In the absence of hopping terms, there are four possible
degenerate states with two particles in the nearest-neighbor

dimer configuration that satisfy the unit filling condition.
Their corresponding energy is given by E(0)2 = −2μ and
they can be expressed as

|sns′
n+1〉 = â†

n,sâ
†
n+1,s′ |0〉, (D1)

where we introduced the notation |sn〉 = â†
n,s|0〉 with s =

1, 2.
The matrix elements of the canonically transformed

Hamiltonian Ĥ ′ within this subspace are given by

〈sns′
n+1|Ĥ ′|s′′

ns′′′
n+1〉 = E(0)2 + 〈sns′

n+1|ĤT|s′′
ns′′′

n+1〉

+
∑

l

〈sns′
n+1|ĤT|l〉〈l|ĤT|s′′

ns′′′
n+1〉

E(0)2 − E(0)2 (|l〉)
,

(D2)

with |l〉 the excited states and E(0)2 (|l〉) their unperturbed
energy. In particular, the states in Eq. (D1) are coupled
through ĤT to the following high-energy virtual states:

|1〉 = 1√
2

(
â†2

n,1 + â†2
n,2

)
|0〉 |2〉 = 1√

2

(̂
a†2

n+1,1 + â†2
n+1,2

)
|0〉

|3〉 = 1√
2

(̂
a†2

n,1 − â†2
n,2

)
|0〉 |4〉 = 1√

2

(
â†2

n+1,1 − â†2
n+1,2

)
|0〉

|5〉 = â†
n,1â†

n,2|0〉 |6〉 = â†
n+1,1â†

n+1,2|0〉,
(D3)

where the first two states have energy Wξ − 2μ and the
others Uξ − 2μ.

Neglecting irrelevant constant energy shifts, we can
express the projected canonically transformed Hamiltonian
in the following form

Ĥ ′
n,n+1 =

∑
s,s′

s′′,s′′′

〈sns′
n+1|Ĥ ′|s′′

ns′′′
n+1〉â†

n,sâ
†
n+1,s′ ân,s′′ ân+1,s′′′

=
∑

s

(
γssn̂n,sn̂n+1,s + γssn̂n,sn̂n+1,s

)

+ �1

∑
s

â†
n,sâ

†
n+1,sân,sân+1,s

+ �2

∑
s

â†
n,sâ

†
n+1,sân,sân+1,s

+ (â†
n,1ân,2 + â†

n,2ân,1)(�3n̂n+1,1 + �4n̂n+1,2)

+ (â†
n+1,1ân+1,2 + â†

n+1,2ân+1,1)(�5n̂n,1 + �6n̂n,2),
(D4)

where 1 = 2 and 2 = 1. We note that the tunneling Hamil-
tonian effectively leads to the emergence of correlated
hopping terms within each dimer [the last two terms in
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Eq. (D4)], which are absent in p-band bosonic models;
see Ref. [163]. The corresponding coupling constants are
explicitly given by

γ11 = −2�2
(

1
Uξ

+ 1
Wξ

)
− �2

12

Uξ

, γ12 = −2�2

Uξ

,

γ21 = −2�2
12

(
1

Wξ

+ 1
Uξ

)
− 2�2

Uξ

, γ22 = γ11,

�1 = 2�2
(

1
Uξ

− 1
Wξ

)
, �2 = −2�2

Uξ

,

�3 = −��12

(
2

Wξ

+ 1
Uξ

)
, �4 = −��12

Uξ

,

�5 = �4, �6 = �3.
(D5)

By further employing the Schwinger angular momen-
tum representation [see Eq. (52) in the main text] and
the constraint N̂ (n) = n̂n,1 + n̂n,2 = 1, the effective Hamil-
tonian at each link can be expressed as

Ĥ ′
n,n+1 =

∑
ν=x,y,z

Kνν Ĵ (n)ν Ĵ (n+1)
ν +

(
γ22 − γ11

2

)

×
(
Ĵ (n)z + Ĵ (n+1)

z

)
+
(
γ21 − γ12

2

)(
Ĵ (n)z − Ĵ (n+1)

z

)

− D
(

Ĵ (n)z Ĵ (n+1)
x − Ĵ (n)x Ĵ (n+1)

z

)
+ (�3 + �4)Ĵ (n)x

+ (�5 + �6)Ĵ (n+1)
x , (D6)

with Kxx = 2(�1 + �2), Kyy = 2(�2 − �1), Kzz = γ11 +
γ22 − γ12 − γ21, and D = 2(�4 − �3). The magnitudes of
these couplings, expressed in terms of the original hopping
and interaction parameters of the model, are provided in
Eq. (95) in the main text.

The effective spin-1/2 Hamiltonian in the one-
dimensional lattice is finally written as

Ĥ eff
1/2 =

∑
n

Ĥ ′
n,n+1 =

∑
n

∑
ν=x,y,z

Kνν Ĵ (n)ν Ĵ (n+1)
ν

+ hx

∑
n

Ĵ (n)x − D ·
∑

n

(
Ĵ(n) × Ĵ(n+1)

)
, (D7)

where D = (0, D, 0) and hx = �3 + �4 + �5 + �6.
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