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JACOBI-EISENSTEIN SERIES OVER NUMBER FIELDS

HATİCE BOYLAN

Abstract. For any given totally real number field K, we compute the Fourier

developments of the Jacobi Eisenstein series over K at the cusp at infinity. As a
main application we prove, for any K with class number 1, that the L-series of

the Jacobi Eisenstein series of weight k ≥ 3 for indices with rank and modified

level 1 coincide with the L-series of the Eisenstein series of weight 2k − 2 on
the full Hilbert modular group of K. Moreover, under this correspondence the

Fourier coefficients of the Jacobi Eisenstein series are related to the twisted

L-series of the Hilbert Eisenstein series at the critical point by a Waldspurger
type identity.
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2 HATİCE BOYLAN

1. Introduction and statement of results

In [Boy15] we developed a theory of Jacobi forms over (totally real) number
fields and determined explicitly all Jacobi forms of singular weight over any given
field. However, an essential part is still missing in this theory, namely, a Hecke
theory and the precise relation to usual Hilbert modular forms. We expect a lifting
of Jacobi forms over a given field K of weight k and index of rank 1 and modified
level m to Hilbert modular forms of weight 2k − 2 on the subgroup Γ0(m) of the
Hilbert modular group of K. This is justified by examples and by the intimate
relation between Jacobi forms and half integral weight modular forms and the work
of Shimura, Ikeda et al. on half integral weight Hilbert modular forms and their
relation to integral weight forms. Moreover, we expect Waldspurger type identities
between the Fourier coefficients of Jacobi Hecke eigenforms and the values of the
twisted L-series of its associated Hilbert modular forms at the critical point. In
short, we hope to extend the lifting theory of Skoruppa and Zagier [SZ88] for Jacobi
forms over the rational numbers to Jacobi forms over arbitrary totally real number
fields including the Waldspurger type identities as developed in [GKZ87].

In this article we do a step towards such a theory by considering the case of
Jacobi Eisenstein series. The general (and much deeper case) including cusp forms
will very likely afford a trace formula. First steps towards such a trace formula
are done by Strömberg and Skoruppa [SS16]. For Eisenstein series the proposed
extension of Skoruppa and Zagier’s lifting can be done more explicitly once one has
closed formulas for their Fourier coefficients. In this article we shall derive such
formulas.

We explain our main result. Let K be a totally real number field with ring of
integers o and different d. Moreover, let c be an integral o-ideal and ω be a totally
positive element of K such that m := 1

2ωc
2d is integral. Then, [c, ω] := (c, β), where

β : c × c → d−1, β(x, y) = ωxy, defines an even totally positive definite o-lattice
of modified level m. For any integer k, let Jk,[c,ω] denote the space of Jacobi forms
of weight k and index [c, ω]. Assume that the modified level m of [c, ω] equals o
and that k ≥ 3. Assume furthermore that k is even if K has a unit of norm −1.
Then there are exactly hK-many Eisenstein series in Jk,[c,ω] [Boy15, §4.5], where hK
denotes the class number of K. (If k is odd and K possesses a unit of norm −1
then every Jacobi form in Jk,[c,ω] is a cusp form; see Prop. 2.4). In this note we are
mainly interested in calculating the Fourier expansion of the Eisenstein series

Ek,[c,ω] =
∑

A∈G4m\ SL(2,o)

∑
t∈c

q
1
2ωt

2

ζωt|k,LA,

where Gl, for a given integral ideal l, denotes the subgroup of all upper triangular
matrices

[
d−1 b

0 d

]
in SL(2, o) with d in the subgroup ol of units d in o with d ≡

1 mod l (for the other notations see Section 2).
Since we assume that the index [c, ω] has modified level m = o the Fourier

expansion of Ek,[c,ω] is of the form (see §2.4 and Theorem 3.1).

Ek,[c,ω] = [o× : o4]
∑
r∈c

q
1
2ωr

2

ζωr +
∑

∆∈c2,r∈c
∆�0, ∆≡r2 mod 4c2

ek,[c,ω](∆) q
ω
8 (r2−∆)ζ

1
2ωr.

Main Theorem. For any totally negative ∆ in c2 which is a square mod 4c2, we
have

ek,[c,ω](∆) = C
N(∆/4df2∆)k−3/2

hK

∑
ψ

L
(
ψ
(

∆
∗
)

0
, k − 1

)
L (ψ2, 2k − 2)

γψ(f∆/c),
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where for any integral ideal f,

γψ(f) =
∑
t|f

µ(t)ψ(t)
(

∆
t

)
0
N(t)k−2 σψ

2

2k−3 (f/t) .

Here
(

∆
∗
)

0
is the Größencharacter associated to the extension K(

√
∆) of K, and f∆

denotes the largest integral ideal in K whose square divides ∆ such that ∆ is a square
modulo 4f2∆. The sum is over all characters ψ of the class group of K, and, for any
Größencharakter χ of K, we use L(χ, s) for its L-series.

Moreover, N(t) denotes the norm of the ideal t, hK denotes the class number

of K, µ is the Möbius µ-function1 of K, and σψ
2

k (f) =
∑

t|f N(t)kψ2(f/t).

Finally, C is a constant whose precise value is given in (11).

In the formula for γψ(f) we use
(

∆
t

)
0

= 0 if t is not relatively prime to ∆/f2∆.

The Größencharakter
(

∆
∗
)

0
was studied in detail in [BS]. In particular, it is shown

loc.cit. that its conductor equals ∆/f2∆.
As already explained we expect that there should be a Hecke equivariant lift

of Jk,[c,ω] to the space M2k−2 (SL(2, o)) of Hilbert modular forms on SL(2, o) of
weight 2k−2 with respect to a suitable Hecke theory for Jacobi forms over arbitrary
totally real number fields, which has still to be developed. (Here we assume still
that the modified level of [c, ω] is 1.) In terms of L-series this lifting should work
as follows. Call a number ∆ in K a discriminant if it is integral and a square
modulo 4. We say that two disriminants fall into the same class if their square roots
generate the same quadratic extension over K. For any class D of totally negative
discriminants and any Jacobi form φ in Jk,[c,ω] with Fourier coefficients Cφ(∆) we
set

LD(φ, s) := L
((

∆
∗
)

0
, s− k + 2

) ∑
∆∈D/o×2

c2|∆

Cφ(∆)

N(f∆)
s .

(Note that Cφ(∆) depends only on ∆o×
2
, see (4), and note that Jk,[c,ω] = 0 if k is

odd and K possesses a unit of norm −1.) If the class number hK of K is 1 and φ
is a Hecke eigenform we expect that these Dirichlet series are all proportional, and
in fact are proportional to the L-series of a Hecke eigenform in M2k−2 (SL(2, o)).

Using the formula of the main theorem this can be easily checked for Ek,[c,ω]. For
hK = 1 the form Ek,[c,ω] is the only Eisenstein series in Jk,[c,ω] and should therefore
be Hecke eigenform. For hK = 1 we can also assume that c = o. The formula of
the main theorem simplifies then to

ek,[o,ω](∆) = C N(ω∆/8f2∆)k−3/2
L
((

∆
∗
)

0
, k − 1

)
ζK (2k − 2)

γ(f∆),

where γ(f) = γ1(f) =
∑

t|f µ(t)
(

∆
t

)
0
N(t)k−2 σ2k−3 (f/t). Moreover, for hK = 1,

every class of discriminants coincides with the nonzero multiples of a fundamental
discriminant ∆0, i.e. a discriminant ∆0 with f∆0 = 1. Accordingly we find

LD(Ek,[o,ω], s) = const.
∑
a

σ2k−3(a)

N(a)s
,

where the sum is over all integral ideals a. Note that the Dirichlet series is indeed
the L-function of the unique Eisenstein series E2k−2 in M2k−2 (SL(2, o)).

1This means µ(a) = (−1)ν if a is squarefree, where ν equals the number of prime divisors of a,
and µ(a) = 0 otherwise.
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Moreover, if we twist the L-series of the Eisenstein series in M2k−2 (SL(2, o)) by(
∆
∗
)

0
, with a fundamental ∆ (i.e. f∆ = 1), we obtain the series

L
(
E2k−2 ⊗

(
∆
∗
)

0
, s
)

= L
((

∆
∗
)

0
, s
)
L
((

∆
∗
)

0
, s− 2k + 3

)
= C1L

((
∆
∗
)

0
, s
)
L
((

∆
∗
)

0
, 2k − s− 2

)
(where C1 is a constant, and where the second equality, we applied the functional
equation for L

((
∆
∗
)

0
, s
)

under s→ 1− s). In particular,

L
(
E2k−2 ⊗

(
∆
∗
)

0
, k − 1

)
= C1L

((
∆
∗
)

0
, k − 1

)2
.

Therefore,

N(∆)2k−3L
(
E2 ⊗

(
∆
∗
)

0
, k − 1

)
= C2 ek,[o,ω](∆)2,

(where C2 = C1ζK(2k − 2)2/C2 N(ω/8)k−3/2), which is the desired Waldspurger
type identity.

The plan of the article is as follows: in Section 2 we provide the notations that
we use throughout the article and also some basic facts which will be needed in the
article. In Section 3 we study, first of all, the basic properties of the general Jacobi
Eisenstein series at the cusp at infinity, which is

Ek,L,s =
∑

A∈Gl\ SL(2,o)

∑
r∈L]

r≡s mod L

qβ(r)ζrβ |k,LA,

where L = (L, β) is an arbitrary even totally positive definite o-lattice, s an isotropic
element of L and l the level of L. In Section 4 we calculate the Fourier coefficients
of Ek,L,s, which are given in Theorem 4.1 and, with some further simplifications
for s = 0, in Theorem 4.3. These calculations are straight-forward and depend
essentially on the generalized Lipschitz formula of Lemma 4.2. The essential part
in the formula for s = 0 is identified as a Dirichlet series whose coefficients are
representation numbers of the quadratic form induced by β on the finite abelian
group L/aL (see (15)). Calculating these numbers for arbitrary L would lead us to
far away from the main goal of this article and we do not pursue this. In Sections 5
and 6 we restrict ourselves to the case of lattices L of index of rank and modified
level one. In Proposition 5.2 we calculate the mentioned representation numbers.
This calculation is not straight-forward and depends on Theorem 5.1, whose non-
trivial proof is given in a separate note [BS]. In Section 6 we conclude with the
proof of the main theorem. In Section 7 we calculate some integrals whose exact
values are needed for the proof of the generalized Lipschitz formula Lemma 4.2.

2. Notations and basic facts

2.1. The algebras C and R. Throughout this article K denotes a totally real
number field over Q with discriminant DK , ring of integers o, group of units o×

and different d. We use tr and N for the trace and the norm from K to Q. Set
C = C ⊗Q K and R = R ⊗Q K. Note that C carries the structure of an algebra
over C and of an algebra over K. We identify K and C with its canonical images
in C (under the maps a 7→ 1 ⊗ a and z 7→ z ⊗ 1), respectively. In this way the
product of e.g. a complex number with an element of K is meaningfully defined as
an element of C. In particular, SL(2,K) acts on C via (A =

[
a b
c d

]
, z) 7→ Az = az+b

cz+d .

Note that R is a K-subalgebra of C. We extend the Q-linear map tr
(
.
)

and every
embedding σ : K 7→ C to a C-linear map C 7→ C. We let H to be the Poincaré
upper half plane attached to K, i.e. the subset of all z in C such that =(σ(z)) > 0
for all embeddings σ of K. Finally N denotes the norm of the C-algebra C, i.e., for
c ∈ C, we have N(c) =

∏
σ σ(c). We use e {∗} := e2πi tr(∗). Moreover, for n and r
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in K, we use qn and ζr for the functions qn(τ) = e {nτ} (τ ∈ H) and ζr(z) = e {rz}
(z ∈ C).

2.2. Jacobi forms of lattice index over K. From now on unless otherwise stated
L = (L, β) will denote a totally positive definite even o-lattice with level l, rank rL
and detL = [L] : L] (see [Boy15, §3.1] for definition). We extend the o-bilinear
map β : L× L 7→ d−1 to a C-bilinear map on LC := C ⊗o L taking values in C. We
use H(L) for the Heisenberg group associated to L [Boy15, Def. 3.14]. Recall that
H(L) = {(x, y, ξ) : x, y ∈ L × L, ξ ∈ C∗} with multiplication (x, y, ξ) · (x′, y′, ξ′) =
(x+ x′, y+ y′, ξξ′e {(β(x, y′)− β(x′, y))/2}). The groups SL(2, o) and H(L) act on
the space of holomorphic functions on H× LC via(

φ|k,LA
)
(τ, z) = N(cτ + d)−ke

{
− cβ(z)
cτ+d

}
φ(Aτ, z

cτ+d ),(
φ|k,L(x, y, ξ)

)
(τ, z) = ξ e

{
τβ(x) + β(x, z) + 1

2β(x, y)
}
φ(τ, z + xτ + y).

(1)

Here and in the following we use

β(x) = 1
2β(x, x).

Occasionally we need “|k,LA” also for half integral k (which defines then no longer a

proper action). The factor N(cτ +d)−k is then evaluated according to the following
convention which we shall use throughout the article. For complex numbers w 6= 0
and r we let

wr = exp(r Logw),

where Log is the main branch of the logarithm, i.e. that branch such that Logw = it
with −π < t ≤ +π for |w| = 1.

Recall from [Boy15, Def. 3.45] that the space Jk,L of Jacobi forms over K of
integral weight k and index L consists of all holomorphic functions on H × LC
which satisfy φ|k,Lg = φ for all g in SL(2, o) and all g in H(L). (If K equals the
field of rational numbers we also have to impose the usual regularity condition at the
cusps, which is automatically fulfilled by a Köcher type principle for K 6= Q [Boy15,
Thm. 3.2].)

2.3. Fourier expansions of Jacobi forms. Every element φ in Jk,L possesses a
Fourier development of the form

(2) φ =
∑

n∈d−1,r∈L]
n−β(r)�0

cφ(n, r) qnζrβ ,

where, for z in LC , we use ζrβ(z) = e {β(r, z)}. For D in K and r in L] such that

D ≡ −β(r) mod d−1, we set Cφ(D, r) = cφ(D + β(r), r). Then

(3) Cφ(D, r) = Cφ(D, s) for r ≡ s mod L

(see [Boy15, remark after Them. 3.3]). Moreover, let u be a unit of K. Applying
the matrix

[
u 0
0 u−1

]
to φ ∈ Jk,L we see that

(4) Cφ(u2D,ur) = N(u)kCφ(D, r)

holds true. Here we use the identity in (2).
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2.4. Jacobi forms with rank one index. Every positive definite even o-lattice
of rank one is isomorphic to a lattice of the form

[c, ω] := (c, (x, y) 7→ ωxy),

where c is a nonzero fractional o-ideal, ω is a totally positive element of K such
that the modified level

m := 1
2ωdc

2

of [c, ω] is an integral ideal ([Boy15, Prop. 3.10]). Note that m depends only on the
isomorphism class of the lattice [c, ω]. Indeed, if a runs through K×, then [ac, a−2ω]
runs through the isomorphism class of [c, ω] (see [Boy15, §3.1, Prop. 3.9]), and all
members of this isomorphism class have obviously the same modified level. A simple
calculation shows

[c, ω]
]

= c/2m.

The Fourier expansion (2) of any φ in Jk,[c,ω] can therefore be written in the form

φ =
∑

n∈d−1,r∈c/2m
n− 1

2ωr
2�0

cφ (n, r) qnζωr =
∑

∆∈c2/m2, r∈c/m
∆�0, ∆≡r2 mod 4c2/m

Cφ(∆, r) q
ω
8 (r2−∆)ζ

ω
2 r.

The coefficient Cφ(∆, r) = cφ
(
ω
8 (r2 −∆), r2

)
depends only on the coset r + 2c as

we saw in the previous section. We can assume if convenient that c is integral and
divisible by m (after replacing c by ac with a suitable a in K×).

Lemma 2.1. If m = o, the class of r in c/2c is already uniquely determined by the
congruence ∆ ≡ r2 mod 4c2.

Proof. Namely, if r and s in c, the congruence r2 ≡ s2 mod 4c2 implies (2ac)2 |
(ar + as)(ar − as), where a is any element of K× such that ac is integral; since
2ac | 2as, so that (ar+ as) ≡ (ar− as) mod 2ac, we conclude 2ac | ar− as, ar+ as,
and hence in any case r − s ∈ 2c. �

We write therefore in the following simply Cφ(∆) for Cφ(∆, r).

2.5. The theta expansion of Jacobi forms. We shall also need the Jacobi-theta
function from [Boy15, Def. 3.32]. For τ in H and z in LC it is defined as

ϑL,s =
∑
t∈L]

t≡s mod L

qβ(t)ζtβ .

Here s is an element of the dual L] of L, i.e. an element of K ⊗o L such that
β(s, x) ∈ d−1 for all x in L.

If φ is a Jacobi form in Jk,L then, on using (3) we can write its Fourier expansion
in the form

φ =
∑

x∈L]/L

hx ϑL,x, where hx =
∑
D�0

D≡−β(x) mod d−1

Cφ(D,x) qD.

One can show that ϑL,s is a Jacobi form of weight rL/2 and index L on some

subgroup of SL(2, o). More generally, Θ(L) = 〈ϑL,x : x ∈ L]〉 is invariant under
the (projective) action of SL(2, o) defined by (A, ϑ) 7→ ϑ|rL/2,LA−1 (see [Boy15,

Thm. 3.1]), in other words, for any y in L]/L,

(5) ϑL,y|rL/2,LA
−1 =

∑
x∈L]/L

ϑL,x ω(A)x,y,

whereA 7→ ω(A) := (ω(A)x,y)x,y∈L]/L defines a projective representation of SL(2, o).

From [Boy15, Thm 3.4 (ii)] we have
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Lemma 2.2. The image of ω is finite.

Later we shall also need:

Lemma 2.3. Let s ∈ L], k be integral and A =
[
d−1 b

0 d

]
∈ SL(2, o). Then,

ϑL,s|k,LA = N(d)−ke
{
b
dβ(s)

}
ϑL,s/d.

Remark. If s ∈ Iso(L), then clearly, e
{
b
dβ(s)

}
= 1 (since d is a unit).

Proof. Using the definition of the slash action |k,L in (1), we obtain

ϑL,s|k,LA = N(d)−k
∑
t∈L]

t≡s mod L

e
{

( 1
d2 τ + b

d )β(t)
}
e
{
β(t, zd )

}
= N(d)−k

∑
t∈L]

t≡s mod L

qβ(t/d)ζ
t/d
β e

{
b
dβ(t)

}
= N(d)−ke

{
b
dβ(s)

}
ϑL,s/d.

For the last identity we used that b
dβ(t) ≡ b

dβ(s) mod L whenever t ≡ s mod L.
Indeed, write t = s+ l (l ∈ L). Then we have β(t) = β(s+ l) = β(s)+β(l)+β(s, l).
But β(s, l) ∈ d−1 (since t ∈ L] and l ∈ L). Also β(l) ∈ d−1, since L is an even
integral o-lattice. The claimed congruence follows now from the fact that d is a
unit. �

2.6. The subspace J∞k,L. For a Jacobi form φ, we define the singular part of φ by

φsing =
∑

s∈Iso(L)

Cφ(0, s)qβ(r)ζrβ ,

where

Iso(L) = {s ∈ L] : β(s) ∈ d−1}.
Denote by J∞k,L the subspace of φ in Jk,L such that φsing = 0.

The group of units o× of o acts on Iso(L) and on the set Iso(L)/L of L-orbits
s+L. If φ is a Jacobi form in Jk,L, then Cφ(0, s) depends only on s+L in Iso(L)/L,

and by (4) we have Cφ(0, us) = N(u)kCφ(0, s) for any u in o× and s in Iso(L). In
particular, Cφ(0, s) = 0 if there is a unit u with us ≡ s mod L and N(u)k = −1.
Set
(6)

Isok(L) =
{
s ∈ Iso(L) : for all u ∈ o× with us ≡ s mod L one has N(u)k = +1

}
From the preceding discussion it is clear that

φsing =
∑

s∈Isok(L)/L

Cφ(0, s)ϑL,s,

and that φsing is contained in the subspace Θk−sing(L) of all ϑ in Θ(L) such that
ϑ|k,LA = ϑ for all upper triangular matrices A in SL(2, o). We have then the exact
sequence

(7) 0 −→ J∞k,L
⊆−−→ JkL

sing−−−→ Θk−sing(L),

where sing maps a Jacobi form φ to its singular part φsing. As an immediate
consequence of Theorem 3.1 below we have

Proposition 2.4. For k > 2 + n
2 , the map sing in (7) is surjective.

In particular,

dim J∞k,L = dim Θk−sing(L) = card
(
(Isok(L)/L) /o×

)
.

If the class number of K is one, then J∞k,L is a complement of the subspace of cusp

forms in Jk,L [Boy15, remark after Def. 3.47].
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3. Jacobi-Eisenstein series

Throughout this section L = (L, β) denotes a totally positive definite even inte-
gral o-lattice of level l and rank rL. We shall use G = SL(2, o).

Definition. For integral k and s ∈ Isok(L) (see (6)), we define

(8) Ek,L,s =
∑

A∈Gl\G

ϑL,s|k,LA,

where Gl denotes the subgroup of all
[
d−1 b

0 d

]
in G such that d ≡ 1 mod l.

The sum in (8) is well-defined, i.e. the Ath term ϑL,s|k,LA in the sum defin-
ing Ek,L,s depends indeed only on GlA, as is easily deduced from Lemma 2.3 (for

the deduction note that ds ≡ s mod L for all s in L] and d ≡ 1 mod l since the
level l lies in the annihilator of L [Boy15, Prop. 1.5]).

We shall show in a moment that the sum defining Ek,L,s is absolutely convergent
for k > 2 + rL/2. Note that Ek,L,s = Ek,L,s′ for s ≡ s′ mod L (since then ϑL,s =

ϑL,s′). Moreover, one has Ek,L,s = N(u)kEk,L,us for all u in o× (as one sees

by replacing A by
[
u 0
0 u−1

]
A, which is allowed since

[
u 0
0 u−1

]
normalizes Gl, and

applying Lemma 2.3).

Theorem 3.1. Suppose k − rL/2 > 2. The series (8) is absolutely and uniformly
convergent on compact subsets of H, and converges towards an element of Jk,L. Its
singular part equals (

Ek,L,s
)

sing
=

∑
u∈o×/ol

N(u)kϑL,us,

where ol denotes the group of units u in o× such that u ≡ 1 mod l.

Proof. Write (8) in the form

Ek,L,s =
∑

A∈Gl\G

N(cτ + d)−(k−rL/2)ϑL,s| rL
2 ,L

A.

Using (5) we have

Ek,L,s =
∑

A∈Gl\G

N(cτ + d)−(k−rL/2)
∑

x∈L]/L

ϑL,x ωx,s(A
−1).

Let S = V ×C, where V ⊂ H is a cusp sector in the sense of [Fre90, Ch. 1, §2, p. 29]
and C is a compact subset of LC . We shall show in a moment that the sum in (8)
is normally convergent on S. Since every compact subset of H×LC is contained in
such an S, this implies the first part of the theorem.

For verifying the normal convergence on S we note that each ϑL,x is bounded
to above on S as follows from its Fourier expansion. Since the image of ω is
finite (see Lemma 2.2) we have then that the absolute value of the inner sum in
the last expression for Ek,L,s is bounded to above by a constant γ independent

of A (but dependent on S). Therefore, on S the sum of
∣∣ϑL,s|k,LA∣∣ over a set of

representatives A for Gl\G is bounded to above by

γ
∑

A∈Gl\G

sup
(τ,z)∈S

|N(cτ + d)−(k−rL/2)|.

But this sum is convergent [Fre90, Chap. 1, Lemma 5.7].
The first part implies that Ek,L,s is holomorphic. From the definition it is im-

mediate that Ek,L,s satisfies Ek,L,s|k,Lg = Ek,L,s for all g in G and all g in H(L).
Hence Ek,L,s defines an element of Jk,L (for K = Q we still need to check that
Ek,L,s is holomorphic at infinity, which will follow from the considerations below).
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For verifying the formula for the singular part of Ek,L,s we consider the theta
expansion of Ek,L,s, i.e. we write

Ek,L,s =
∑

x∈L]/L

hx ϑL,x, where hx =
∑

A∈Gl\G

ω(A−1)x,s N(cτ + d)−(k−rL/2).

For r in Iso(L) the coefficient CEk,L,s(0, r) equals the constant term of hr, which
can be computed by setting τ = it for real t and let t tend to infinity. Since the
sum defining hx is uniformly convergent on cusp sectors we can interchange the
limit and the sum and obtain

CEk,L,s(0, r) =
∑

A=
[
a b
0 d

]
∈Gl\Go

ω(A−1)r,s N(d)−(k−rL/2)

(where Go is the subgroup of G of all matrices of the form
[
a b
0 d

]
). A set of rep-

resentatives of Gl\Go is given by the matrices
[

1/d 0
0 d

]
, where d runs through a

set of representatives for o×/ol. By Lemma 2.3 ω
([

d 0
0 1/d

])
r,s

equals N(d)−rL/2 if

r ≡ s/d mod L, and 0 otherwise. The claimed formula is now obvious. �

For calculating the Fourier coefficients of Jacobi-Eisenstein series we write their
definition (8) in a slightly different way. For this we need, first of all, a description
of Gl\G.

Lemma 3.2. The application A 7→ (0, 1)A indices a bijection

(9) Gl\G→
{

(c, d) ∈ o2 : gcd(c, d) = o
}
/ol.

Remark. Note that representatives for the orbits of the right hand side of (9) are
given by (0, d), where d is a representative in o×/ol, and by (c, d) (c 6= 0), where c
is a representative in o/ol and d ∈ o such that (c, d) = 1.

Proof of Lemma 3.2. First we prove the well-definedness. For that suppose A =
[ ∗ ∗c d ] and B = [ ∗ ∗c′ d′ ] lie in the same coset, i.e. we have A = [ ∗ ∗0 γ ]B for some γ ∈ o×

with d ≡ 1 mod l. Hence, (c, d) = γ(c′, d′), which shows that (0, 1)A and (0, 1)B lie
in the same orbit under the action of ol.

Now we prove the injectivity. For that suppose (0, 1)A = (c, d) and (0, 1)B =
(c′, d′) (A := [ ∗ ∗c d ], B := [ ∗ ∗c′ d′ ] ∈ G) lie in the same orbit under the action of ol.
Hence, c = c′u and d = d′u for some u ∈ ol. Therefore, one can form a matrix
U = [ ∗ ∗0 u ] ∈ Gl such that A = UB. Surjectivity follows from Bezout’s theorem. �

Lemma 3.3. Let s ∈ L] and k be integral. Then, we have

(10) ϑL,s =
∑
x∈L

(
qβ(s)ζsβ

)
|k,L(x, 0, 1).

Proof. We shall calculate the right hand side of the claimed identity, and show that
it equals ϑL,s. Using the slash actions |k,L as in (1), we have(

qβ(s)ζsβ
)
|k,L(x, 0, 1)(τ, z) = e {τβ(x) + β(x, z)} qβ(s)e {β(s, z + xτ)}

= qβ(x+s)(τ)ζx+s
β (z).

Now inserting qβ(x+s)ζx+s
β into the right hand side of (10) and doing the substitu-

tion x 7→ x− s yields the result. �
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Proposition 3.4. We have

Ek,L,s(τ, z) =
∑

u∈o×/ol

N(u)k ϑL,us(τ, z)

+
∑
c∈o/ol

c6=0

∑
d∈o

(c,d)=1

N(cτ + d)−k
∑
x∈L

e
{
aτ+b
cτ+dβ(x+ s) + 1

cτ+dβ(x+ s, z)− c
cτ+dβ(z)

}
.

Here for a given (c, d), the pair (a, b) denotes any solution of ad− bc = 1.

Proof. Using the expression for ϑL,s from Lemma 3.3 the defining formula of the
Jacobi-Eisenstein series (8) can be written in the form

Ek,L,s =
∑

A=
[
a b
0 d

]
∈Gl\G

ϑL,s|k,LA+
∑

A=
[
a b
c d

]
∈Gl\G

c 6=0

∑
x∈L

(
qβ(s)ζsβ

)
|k,L(x, 0, 1)A.

We have{(
qβ(s)ζsβ

)
|k,L(x, 0, 1)A

}
(τ, z) =

N(cτ + d)−ke
{
−cβ(z)
cτ+d

}
e

{
β(x)Aτ + β

(
x,

z

cτ + d

)}
×

e {β(s)Aτ} e
{
β
(
s, z
cτ+d + xAτ

)}
.

Inserting this into the second sum of the last formula for Ek,L,s, and using the rep-
resentatives for Gl\G according to the remark after Lemma 3.2 proves the propo-
sition. �

4. Fourier Coefficients of Jacobi-Eisenstein Series

In this section we shall calculate the Fourier coefficients of Jacobi-Eisenstein
series Ek,L,s at the cusp at infinity. A first formula is given by the following theorem.

Theorem 4.1. Let k be integral, let L be a totally positive definite even integral
o-lattice of o-rank rL, and let s in Isok(L). Assume that k − 1

2rL > 2. Then, we
have

Ek,L,s =
∑

u∈o×/ol

N(u)k ϑL,us + C
∑

(n,r)∈d−1×L]
D:=n−β(r)�0

[
N(D)k−1− 1

2 rL
∑
c∈o/ol

c6=0

γn,r(c, s)

N(c)k

]
qnζrβ ,

where

γn,r(c, s) :=
∑

d mod c
(c,d)=1

∑
x∈L/cL

e
{
a
cβ(x+ s)− 1

cβ(r, x+ s) + d
cn
}
,

where the a in the inner sum denotes any element in o with ad ≡ 1 mod c, and
where C is given by (11) below.

For the proof of the theorem we use the following formula.

Lemma 4.2. For k − rL
2 > 1, one has∑

(t,p)∈o×L

N(τ + t)−ke
{
−β(z+p)

τ+t

}
= C

∑
(n,r)∈d−1×L]
D:=n−β(r)�0

N(D)k−1− 1
2 rL qnζrβ ,

where

(11) C =
i−knK (2π)k+1− 1

2 rL

Γ
(
k − 1

2rL
)nK D

− 1
2

K det(tr
(
L
)
)−

1
2 .
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Proof. Let F (τ, z) denote the left hand side of the claimed formula. Since F is
periodic and holomorphic in (τ, z) with respect to the period lattice o× L, we can
write it in the form

(12) F (τ, z) =
∑

(n,r)∈d−1×L]
γ(n, r) qnζrβ

for suitable coefficients γ(n, r). For finding the γ(n, r) we apply the Poisson sum-
mation formula (see e.g. [Ser79, Part II, §6, Prop. 15]), which in this case implies
that, for all τ and z, one has

(13) γ(n, r) qnζrβ = C1

∫
R×(R⊗oL)

f(t, p) e {−nt− β(r, p)} dt dp.

Here, f(t, p) denotes the (t, p)-th term of the sum defining of F (τ, z), and dt and
dp are Haar measures on R and R⊗o L, respectively. Moreover,

C1 = voldt(R/o)−1 voldp((R⊗o L)/L)−1.

Inserting the formula for f(t, p) we obtain

γ(n, r) = C1

∫
R

N(τ + t)−ke {−n(τ + t)}×∫
R⊗oL

e
{
−β(z+p)

τ+t

}
e {−β(r, z + p)} dt dp.

Note that γ(n, r), being a coefficient in the Fourier development (12), does neither
depend on z nor on τ . In other words, for evaluating the integral defining γ(n, r)
we are free to choose z and τ . Denote the inner integral by J . After completing
the square J becomes

J = e {(τ + t)β(r)}
∫
R⊗oL

e
{
−β(z+p+(τ+t)r)

τ+t

}
dp.

Choosing z = −(τ + t)r, we have J = e {(τ + t)β(r)}Λ(τ + t), where, for any τ
in H, we set

Λ(τ) :=

∫
R⊗oL

e
{
−β(p)

τ

}
dp.

This is a standard Gaussian integral with respect to the (complex-valued) quadratic
form p 7→ tr

(
−β(p)/τ

)
on the real vector spaceR⊗oL. Its value equals C2 N(τ)rL/2

with

C2 = Λ(i) N(i)−rL/2.

(For this note that the integral and N(τ)rL/2 are holomorphic functions of τ , and
it suffices therefore to prove the claimed identity for τ = iv with v in R, which is
quickly checked by substituting p

√
v for p.) We therefore obtain

γ(n, r) = C1C2

∫
R

N(τ + t)−k+rL/2e {(τ + t) (β(r)− n)} dt.

Recall that γ(n, r) does not depend on τ .
Let D := n − β(r). If σ(D) ≤ 0 for at least one embedding σ we can choose τ

such that σ(τ) = iv with a positive real v and let v tend to infinity. But then the
integral on the right tends to 0, and we have γ(n, r) = 0. If D � 0, we replace τ
by τ/D and substitute t/D for t, which yields

γ(n, r) = C1C2C3N(D)k−1−rL/2,

where

C3 =

∫
R

N(τ + t)−k+rL/2e {−(τ + t)} dt.
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Using the formulas for C2 and C3 from Corollary 7.2 and Proposition 7.3, we obtain
the claimed formula. �

Proof of Theorem 4.1. From Proposition 3.4 we have

Ek,L,s =
∑

u∈o×/ol

N(u)kϑL,us + Is,

where

Is =
∑
c∈o/ol

c6=0

N(c)−k
∑
d∈o

(c,d)=1

N(τ + d
c )−k

∑
x∈L

e
{
− c
cτ+dβ(z − x+s

c ) + a
cβ(x+ s)

}

(and where we used a
c −

1
c(cτ+d) = aτ+b

cτ+d ). Replacing d by d + ct, where d runs

through a set of representatives for d mod c and t through o, and replacing x by
x− cp with x running through a set of representatives for L/cL and p through L,
the sum Is can be rewritten in the form

(14) Is =
∑
c∈o/ol

c 6=0

N(c)−k
∑

d mod c
(c,d)=1

∑
x∈L/cL

e
{
a
cβ(x+ s)

}
F (τ + d

c , z −
x+s
c ),

where

F (τ, z) =
∑

(t,p)∈o×L

N(τ + t)−ke
{
−β(z+p)

τ+t

}
.

Inserting the Fourier expansion of F from Lemma 4.2 into (14) gives

Is = C
∑
c∈o/ol

c6=0

N(c)−k
∑

d mod c
(c,d)=1

∑
x∈L/cL∑

(n,r)∈d−1×L]
D:=n−β(r)�0

N(D)k−1− 1
2 rLe

{
a
cβ(x+ s) + nd

c − β(r, x+s
c )
}
qnζrβ .

Changing the order of summation and collecting the exponential together yields
the formula given in the theorem. �

If we take s = 0 then Ek,L,s can be further simplified. Namely, we have

Theorem 4.3. Under the same assumptions and notations as in Theorem 4.1 we
have for s = 0

1
[o×:ol]

Ek,L,0 = ϑL,0 + C
[o×:ol]

∑
(n,r)∈d−1×L]
D:=n−β(r)�0

N(D)k−1− 1
2 rLL(D, r; k − 1) qnζrβ .

Here, for D ∈ K× and r in L] such that D + β(r) ≡ 0 mod d−1, we use L(D, r; s)
for the Dirichlet series

L(D, r; s) =
∑

C∈Cl(K)

( ∑
b∈C−1

µ(b)

N(b)s−rL+1

)(∑
a∈C

Na(D, r)

N(a)s

)
,

where the first sum is over all ideal classes C of K, and the inner sums are over
all integral ideals b in C−1 and a in C, respectively. Moreover, µ is the Möbius
function on the semigroup of nonzero integral ideals of K, and

(15) Na(D, r) = card
(
{x ∈ L/aL : β(x− r) ≡ −D mod ad−1}

)
.

Remark. Note that the assumption s = 0 ∈ Isok(L) implies k is even if K contains
a unit of norm −1, and vice versa.
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Proof of Theorem 4.3. It is easy to see that the first summand in Theorem 4.1 for
s = 0 reads [o× : ol]ϑL,0. We now simplify the second summand. For that we have
to calculate the sum

(16) S :=
∑
c

N(c)−k
∑

d mod c
(c,d)=1

∑
x∈L/cL

e
{
a
cβ(x)− β(r, xc ) + d

cn
}
.

Here we replaced the sum of c in o/ol by [o× : ol] times the sum over c ∈ o/o×,
which becomes then a sum over all integral principal ideals c = oc.

We replace x by dx in the inner sum and write

a
cβ(dx)− β(r, dxc ) + d

cn ≡
d
c (β(x)− β(r, x) + n) mod d−1,

where we use that ad ≡ 1 mod c. Note that N := β(x)− β(r, x) + n is in d−1. We
change the order of the last two sums in (16), and calculate the sum

S̃ :=
∑

d mod c
(c,d)=1

e
{
d
cN
}
.

For this we write

S̃ =
∑

d mod c

 ∑
a|(c,d)

µ(a)

 e
{
d
cN
}

=
∑
a|c

µ(a)
∑
d∈a/c

e
{
d
cN
}
.

Since χ : d 7→ e
{
d
cN
}

defines a linear character, the sum
∑
d∈a/c e

{
d
cN
}

equals

zero unless χ is trivial, when it equals card (a/c). But the character χ is trivial if and
only if d

cN ∈ d−1 for all d ∈ a, i.e. if a
cN ∈ d−1, or, equivalently if N ∈ ca−1d−1.

Moreover, the order of the group a/c equals N(ca−1) (as follows from the exact
sequence 0→ a/co→ o/co→ o/a→ 0).

Therefore (16) becomes

S =
∑
c

∑
a|c

µ(c/a) N(a)
N(c)k

card
(
{x ∈ L/cL : β(x− r) +D ≡ 0 mod ad−1}

)
,

where we replaced a by ca−1 and wrote β(x)− β(r, x) + n = β(x− r) +D.
Interchanging the summation and writing c = ab, we obtain (recall that c runs

through principle ideals, so that for fixed a the ideal b runs through the integral
ideals in the ideal class cl(a−1) of a−1)

S =
∑
a

∑
b∈cl(a)−1

µ(b) N(a)
N(a)k N(b)k

card
(
{x ∈ L/abL : β(x− r) +D ≡ 0 mod ad−1}

)
.

Since the defining congruence of S depends only on x mod aL, we can suppress
the b when counting S and multiply the result by the cardinality of the kernel
of the natural map L/abL → L/aL, which equals N(b)rL (since L is isomorphic
as o-module to s × orL−1 for some integral ideal s, so that the kernel aL/abL is
isomorphic as o-module to as/abs × (a/ab)rL−1, which in turn is isomorphic as
o-module to (o/b)rL). Thus,

S =
∑
a

∑
b∈cl(a)−1

µ(b)

N(b)k−rL
Na(D, r)

N(a)k−1
.

The formula of the theorem becomes now obvious. �
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5. Explicit formulas for the Na(D, r) in the rank one case

For rank one o-lattices of modified level o the numbers Na(D, r) defined in (15)
can be calculated explicitly using a result in [BS]. For explaining this result and
our formulas for Na(D, r) we need to introduce some notations.

Let K denotes an arbitrary (not necessarily totally real) number field. Let ∆
be a non-zero integer in K which is a square modulo 4. For a prime ideal p - ∆,

we set
(

∆
p

)
= +1 or = −1 accordingly as ∆ is a square modulo 4p or not. Of

course, for p - 2 the number ∆ is a square modulo 4p if and only if it is square
modulo p as follows from the Chinese remainder theorem. We continue

(
∆
∗
)

to a

homomorphism of the group I∆ of fractional ideals relatively prime2 to ∆ onto the
group {±1}.

As is shown in [BS, Thm. 4] the homomorphism
(

∆
∗
)

defines a Größencharakter

modulo ∆. Its conductor equals ∆/f∆
2, where f∆ is the maximal integral ideal

dividing ∆ such that ∆ is a square modulo 4f2∆ (and where maximal refers to
the partial ordering defined by division of ideals). We use

(
∆
∗
)

0
for the primitive

Größencharakter modulo ∆/f2∆ induced by
(

∆
∗
)
. Using the Größencharakter

(
∆
∗
)

0
we define a function χ∆ on the semigroup of all integral ideals a by setting

χ∆(a) :=

{
N(g)

(
∆

a/g2

)
0

if (a,∆) = g2 and ∆ is a square mod 4g2

0 otherwise.

Note that, for an integral square g2 | ∆, the condition that ∆ is a square mod 4g2

is equivalent to g | f∆. Of course, χ∆ is no longer a homomorphism, but it re-
mains multiplicative in the sense that χ∆(ab) = χ∆(a)χ∆(b) whenever a and b are
relatively prime.

Theorem 5.1. [BS, Thm. 6] For any integral ideal a, one has

(17) card
({
x ∈ o/2a : x2 ≡ ∆ mod 4a

})
=

∑
b|a

a/b squarefree

χ∆(b).

(The sum is over all integral ideals diving a and such that a/b is squarefree.)

Remark. In terms of Dirichlet series the formula of the theorem can be rewritten
as ∑

a

card
({
x ∈ o/2a : x2 ≡ ∆ mod 4a

})
N(a)s

=
ζK(s)

ζK(2s)
L(χ∆, s).

The L-series L(χ∆, s) coincides up to a finite number of Euler factors with the
L-series

L
((

∆
∗
)

0
, s
)

=
∑

(a,∆/f2∆)=1

(
∆
a

)
0

N(a)−s

of the Größencharakter
(

∆
∗
)

0
(the sum being over all integral ideals relatively prime

to ∆/f2∆). More precisely, one has (see Lemma 6.1)

L(χ∆, s) = L
((

∆
∗
)

0
, s
)∑
t|f∆

µ(t)
(

∆
t

)
0

N(t)s
σ1−2s(f∆/t),

where we use
(

∆
t

)
0

= 0 if t is not relatively prime to ∆/f2∆, and where µ(a) is the
Möbius µ-function of K.

2A fractional ideal is called relatively prime to ∆, if it is of the form a/b with integral ideals a

and b both of which have no prime ideal common with ∆.
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We are now ready to prove our explicit formulas for the numbers Na(D, r) defined
in (15) in the case of rank one lattices. For this let

[c, ω] = (c, (x, y) 7→ ωxy)

be an even rank one lattice. Recall that this means that c is a nonzero fractional
o-ideal, and ω is a totally positive element of K such that the modified level of [c, ω]

m = 1
2ωc

2d

is an integral ideal. The numbers Na(D, r) of (15) take here the form

Na(D, r) = card
(
{x ∈ c/ac : 1

2ω(x− r)2 ≡ −D mod ad−1}
)
.

Proposition 5.2. Assume m = o. For any integral ideal a, any D ∈ K× and
r ∈ L] such that D ≡ − 1

2ωr
2 mod d−1, one has

Na(D, r) = N(c)−1
∑
b|a

a/b squarefree

χ∆(bc2),

where ∆ = −8D/ω.

Proof. Multiplying the congruence defining Na(D, r) by 8/ω and setting y = 2r−2x
gives

Na(D, r) = card
(
{y ∈ c/2ac : y ≡ 2r mod 2c, y2 ≡ ∆ mod 4ac2}

)
,

(where we also used m = 1
2ωc

2d = o and L] = 1
2 cm

−1 = 1
2 c). Note that by

assumption (2r)2 ≡ ∆ mod 4c2, so that the second congruence y2 ≡ ∆ mod 4ac2

implies y2 ≡ (2r)2 mod 4c2. But this implies the first congruence y ≡ 2r mod 2c
(for the short argument see the proof of Lemma 2.1). We conclude that

Na(D, r) = card
({
y ∈ c/2ac : y2 ≡ ∆ mod 4ac2

})
.

After replacing [c, ω] by [ac, a−2ω] with a suitable a in K× we can assume that c
is integral. We then have available the natural reduction map c/2ac2 → c/2ac, and
hence we can count the solutions y in c of ∆ ≡ y2 mod 4ac2 modulo 2ac2 instead
of 2ac, so that

Na(D, r) = N(c)−1 card
({
y ∈ c/2ac2 : y2 ≡ ∆ mod 4ac2

})
.

Since ∆ is in (2r)2 + 4c2 and 2r is in c, any integral solutions y of ∆ ≡ y2 mod 4ac2

is already in c. Hence

Na(D, r) = N(c)−1 card
({
y ∈ o/2ac2 : y2 ≡ ∆ mod 4ac2

})
,

and we can apply Theorem 5.1 to conclude

Na(D, r) = N(c)−1
∑
b|ac2

ac2/b squarefree

χ∆(b) = N(c)−1
∑
b|a

a/b squarefree

χ∆(bc2).

For the second identity note that any b | ac2 such that ac2/b is squarefree and
(b,∆) is a square, is necessarily divisible by c2 (Otherwise there would exist a
prime ideal p with β < 2γ, where β and γ are the orders of b and c at p. But
c2 | ∆ and (b,∆) being a square implies then that β is even, whence 2γ − β ≥ 2,
contradiction that ac2/b is squarefree.) �
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6. Fourier coefficients in the rank one case

In this section we finally derive the formulas for the Fourier coefficients of Jacobi-
Eisenstein series for lattices of rank and modified level one which we discussed in § 1
(see Main Theorem).

Proof of Main Theorem. Let D = −∆ω/8 and write D = n − 1
2ωr

2 (r ∈ c/2 and

n ∈ d−1). From Theorem 4.3

ek,[c,ω](D) = C N(D)k−3/2L(D, r; k − 1),

where

L(D, r; s) =
∑

C∈Cl(K)

∑
b∈C−1

µ(b)

N(b)s

∑
a∈C

Na(D, r)

N(a)s

with

Na(D, r) = card
(
{x ∈ c/ac : 1

2ω(x− r)2 ≡ −D mod ad−1}
)
.

(Note that from the formula of the numbers Na(D, r) in Proposition 5.2 we see that
they don’t depend actually on r. Therefore, from now on we use instead of Na(D, r)
and L(D, r; s), Na(D) and L(D; s), respectively.)

In the series L(D; s) we write the sum over a ∈ C as h−1
K

∑
a

∑
ψ ψ(a)ψ(C)−1,

where a runs through all integral ideals of K and ψ runs through all characters
of the class group of K (we write ψ(a) for the value of ψ at the class of a), and
where hK is the class number of K. Exchanging sums and moving the sum over ψ
to the front, L(D; s) becomes

hKL(D; s) =
∑
ψ

∑
b

µ(b)ψ(b)

N(b)s

∑
a

ψ(a)
Na(D)

N(a)s
=
∑
ψ

1

L(ψ, s)

∑
a

ψ(a)
Na(D)

N(a)s
,

where b is now also running through all integral ideals. We now insert our formula
for Na(D), which gives

hKL(D; s) =
∑
ψ

1

L(ψ, s)

∑
a squarefree

ψ(a)

N(a)s

∑
a

ψ(a)χ∆(ac2)/N(c)

N(a)s
.

Note that ∑
a squarefree

ψ(a)

N(a)s
=

L(ψ, s)

L(ψ2, 2s)
,

so that

hKL(D; s) =
∑
ψ

1

L(ψ2, 2s)

∑
a

ψ(a)χ∆(ac2)/N(c)

N(a)s
.

In other words, we have

hKL(D; s) = ψ(c)−2 N(c)2s−1
∑
ψ

1

L(ψ2, 2s)
Lc2(ψχ∆, s),

where Lc2(ψχ∆, s) is defined in (18) below. The theorem follows now using the
subsequent lemma. �

Let ∆ be an integer in K, let c be an integral ideal of K such that c2 | ∆ and ∆
is a square modulo 4c2. We set

(18) Lc2(ψχ∆, s) :=
∑
c2|a

ψ(a)χ∆(a)

N(a)s
.
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Lemma 6.1. For the L-series (18), one has in the notations of Theorem 1

ψ(c)−2 N(c)2s−1 Lc2(ψχ∆, s)

L
(
ψ
(

∆
∗
)

0
, s
)

= N(f∆/c)
1−2s

∑
t|f∆/c

µ(t)ψ(t)
(

∆
t

)
0
N(t)s−1 σψ

2

2s−1 (f∆/ct) .

Proof. Since ψχ∆ is multiplicative Lc2(ψχ∆, s) has an Euler product, say

ψ(c)−2 N(c)2s−1 Lc2(ψχ∆, s)

L(ψ
(

∆
∗
)

0
, s)

=
∏
p|∆

Fp (s) .

Note that the Euler product is only over the prime ideals dividing ∆, since for p

not dividing ∆, we have χ∆(pk) =
(

∆
p

)k
. For p | ∆, we have

Fp(s) =


σψ

2

1−2s

(
pvp(f∆)

)
if p | ∆0, p - c,

σψ
2

1−2s

(
pvp(f∆/c)

)
if p | ∆0, p | c,∑

t|pvp(f∆) µ(t)ψ(t)
(

∆
t

)
0
N(t)−s σ∗ψ

2

1−2s

(
pvp(f∆)/t

)
if p - ∆0, p - c,∑

t|pvp(f∆/c) µ(t)ψ(t)
(

∆
t

)
0
N(t)−s σ∗ψ

2

1−2s

(
pvp(f∆/c)/t

)
if p - ∆0, p | c,

where ∆0 = ∆/f2∆, and σ∗ψ
2

1−2s(f) =
∑

t|f N(t)1−2sψ2(t) = N(f)1−2sσψ
2

2s−1(f).

Indeed, for verifying the first two rows it suffices to note that, for p | ∆0, the
coefficient χ∆(pk) equals N(p)k/2 if k ≤ 2vp(f∆) and k is even, and it equals 0
otherwise.

For the last two lines, i.e. for p - ∆0, we find χ∆(pk) = N(p)k/2 if k ≤ 2vp(f∆)

and k is even, and χ∆(pk) = N(p)vp(f∆)
(

∆
p

)k
0

for k ≥ 2vp(f∆). Hence, if p - c, we

obtain

Fp(s) = (1− ψ(p)
(

∆
p

)
0

N(p)−s)σ∗ψ
2

1−2s

(
pvp(f∆)

)
+ N(p)vp(f∆)ψ(p)2vp(f∆)+1

(
∆
p

)
0

N(p)−(2vp(f∆)+1)s,

which equals the claimed expression. Finally, for p | c, the calculation is similar.
The lemma is now obvious. �

7. Appendix

In this appendix we calculate some integrals which we needed in the proof of
Lemma 4.2.

Proposition 7.1. Let L = (L, β) be a positive definite (not necessarily integral)
Z-lattice, and µ a Haar measure on R⊗Z L. Then∫

R⊗ZL

e−2πβ(p) dµ(p) =
µ(V/L)√

det(L)
,

where det(L) is the determinant of L (i.e. the determinant of any Gram matrix of
the bilinear form β with respect to a given Z-basis of L).

Proof. Let aj be a Z-basis of L, let xj be the dual basis, and let x = (x1, . . . , xn)
be the isomorphism of V := R ⊗Z L with Rn with coordinate functions xj . Then
q(p) = 1

2β(p, p) becomes q = 1
2xFx

t with the Gram matrix F = (β(ai, aj))i,j , and

there is a λ > 0 such that µ(A) = λ
∫
x(A)

dx for all measurable A in V , where

dx is the usual Lebesgue measure on Rn. In particular, x maps a fundamental
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mesh of L in V to a fundamental mesh of Zn in Rn (since x maps L to Zn), and
therefore λ = µ(V/L). In the coordinates xj our integral becomes∫

V

e−2πβ(p) dµ(p) = λ

∫
Rn
e−πxFx

t

dx = λ det(F )−1/2,

which is the claimed formula. �

As immediate consequence we obtain

Corollary 7.2. For any totally positive definite o-lattice L = (L, β) and any Haar
measure ν on R⊗o L, one has∫

R⊗oL

e {iβ(p)} dν(p) =
ν ((R⊗o L)/L)√

det(trL)
,

where trL is the Z-lattice (L, tr ◦β).

Proposition 7.3. For any real r > 1 and τ ∈ H, we have

(19)

∫
R

N(τ + t)−re {−(τ + t)} dt = N(i)−r
(2π)(r+1)nK

Γ(r)nK
,

where dt denotes the Haar measure on R, which becomes the usual Lebesgue measure
when we identify R with RnK using the R-linear continuations of the embeddings σ
of K to R as coordinate functions.

Proof. First of all note that γ := Log N(τ) −
∑
σ Log σ(τ) does not depend on τ

(since γ is holomorphic in H with values in 2πiZ). Choosing τ = i, we find
e−rγ = e(rnK/4)/N(i)r, hence N(τ)−r = e(rnK/4) N(i)−r

∏
σ σ(τ)−r Extending

the embeddings σ of K to R-linear maps on R they become coordinate functions
of an isomorphism of R with RnK . Applying the isomorphism whose coordinate
functions are the R-linear extensions of the embeddings σ, the integral in question
becomes the product e(rnK/4) N(i)−r

∏
σ Iσ, where

Iσ =

∫ +∞

−∞

e−2πi(τσ+u)

(τσ + u)
r du =

∫
=(u)=c

e−2πiu

ur
du =

−1

ir−1

∫
<(z)=c

z−re2πz dz,

with τσ = σ(τ) and c = =(τσ) (which is positive), and where, for the last identity
we set u = iz. But f(t) := 1

2πi

∫
<(z)=c

z−retz dz is the inverse Laplace transform

of z−r, whence z−r =
∫∞

0
f(t) e−zt dt. On the other hand z−rΓ(r) =

∫∞
0
e−zt tr dtt ,

and hence f(t) = tr/Γ(r). �
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