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Abstract

The meaning of most words in language depends on their context. Understanding how the human
brain extracts contextualized meaning, and identifying where in the brain this takes place, remain
important scientific challenges. But technological and computational advances in neuroscience and
artificial intelligence now provide unprecedented opportunities to study the human brain in action as
language is read and understood. Recent contextualized language models seem to be able to capture
homonymic meaning variation (“bat”, in a baseball vs. a vampire context), as well as more nuanced
differences of meaning—for example, polysemous words such as “book”, which can be interpreted
in distinct but related senses (“explain a book”, information, vs. “open a book”, object) whose differ-
ences are fine-grained. We study these subtle differences in lexical meaning along the concrete/abstract
dimension, as they are triggered by verb-noun semantic composition. We analyze functional mag-
netic resonance imaging (fMRI) activations elicited by Italian verb phrases containing nouns whose
interpretation is affected by the verb to different degrees. By using a contextualized language model
and human concreteness ratings, we shed light on where in the brain such fine-grained meaning
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variation takes place and how it is coded. Our results show that phrase concreteness judgments and
the contextualized model can predict BOLD activation associated with semantic composition within
the language network. Importantly, representations derived from a complex, nonlinear composition
process consistently outperform simpler composition approaches. This is compatible with a holistic
view of semantic composition in the brain, where semantic representations are modified by the process
of composition itself. When looking at individual brain areas, we find that encoding performance is
statistically significant, although with differing patterns of results, suggesting differential involvement,
in the posterior superior temporal sulcus, inferior frontal gyrus and anterior temporal lobe, and in motor
areas previously associated with processing of concreteness/abstractness.

Keywords: Semantics; fMRI; Computational linguistics; Polysemy; Concreteness; Semantic composi-
tion; Machine learning; Language models

1. Introduction

1.1. Meaning variation and semantic composition

Most words are ambiguous—they can be interpreted differently depending on the con-
text. However, not all words are ambiguous in the same way. Much of the research on lex-
ical semantic interpretation in linguistics, neuroscience, psychology, and natural language
processing (NLP) has focused on homonyms—words like bat that have interpretations that
are completely unrelated (a flying mammal vs. an implement used in games such as base-
bal: Lyons, 1977; Pinkal, 1995; Rodd, Gaskell, & Marslen-Wilson, 2002). For other words,
however, the differences between the different interpretations are much more fine-grained.
A notorious example of fine-grained variation are cases of semantic polysemy (Apresjan,
1974; Cruse, 1992; Falkum & Vicente, 2015; Haber & Poesio, 2023; Lyons, 1977; Nerlich,
Todd, Herman, & Clarke, 2003; Pinkal, 1995; Pustejovsky, 1998). The word book is a clas-
sic example of a polysemous word: its interpretation can vary depending on the context, but
these different interpretations are intuitively related. As an example, in open the book, the
noun book is used to refer to book as a physical object, whereas in summarize the book, the
same noun is used to refer to an abstract object, the content of the book. Theoretical linguis-
tics has extensively investigated how the process of semantic composition triggers variation
in lexical meaning, where the interpretation of words, like the polyseme book, is affected
by its (syntactic) context (Frege, 1892; Montague, 1973; Pustejovsky, 1998; Partee, 2008;
Pustejovsky, 2011). The theories of composition proposed in this line of research explain the
interplay between syntactic and semantic interpretation—that is, how linguistic units combine
systematically in order to convey complex meaning. In the study reported in this paper, we
investigate the effect of semantic composition on fine-grained meaning variation, including
but not limited to polysemy, using brain evidence.

1.2. Semantic composition in neuroscience

We focused on compositionality effects on the lexical representation in Italian verb-noun
phrases resulting in the contrast between open the book versus summarize the book discussed
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earlier (aprire il libro vs. riassumere il libro; in the following, we will report our example
phrases in English, instead of their original Italian version, to facilitate understanding). In
such constructions, the level of concreteness of the noun is determined by the verb: in the
case of open the book / summarize the book, for instance, the semantic type of the noun
is refined to either physical object or information. These phrases are particularly interesting
because they allow us to investigate how the brain handles fine-grained meaning variation
and how this interacts with semantic composition: in other words, if, and how, the process of
semantic composition alters the representation of its underlying parts (the verb and the noun),
and where these representations are located in the brain.

The meaning variations triggered by semantic composition in verb-noun phrases have been
extensively investigated in the linguistic literature, but not in neuroscience, where adjective-
noun phrases have been studied much more frequently (Bemis & Pylkkänen, 2011; Fritz &
Baggio, 2020; Kochari, Lewis, Schoffelen, & Schriefers, 2021; Murphy et al., 2022; Pylkkä-
nen, 2020), and especially not using brain encoding methods, which we argue could offer
insights into their neural representation. In the few cases where compositionality involving
verbs and nouns has been studied in the cognitive neuroscience of language, this has been
mostly looked at as a syntax or syntax-semantics interface phenomenon. In such experiments,
the authors modulated the syntactic structure (Zaccarella, Meyer, Makuuchi, & Friederici,
2017), changed the semantic roles for the nouns (Frankland & Greene, 2020), and/or looked
at the effects of positive/negative polarity (Zhang & Pylkkänen, 2018) or argument satura-
tion or modification (Westerlund, Kastner, Al Kaabi, & Pylkkänen, 2015). Little attention has
been paid to keeping syntactic or syntax-semantic interface elements unchanged, and instead
studying verb-noun composition by modulating meanings (with the only exceptions, to our
knowledge, of (Husband, Kelly, & Zhu, 2011; Sakreida et al., 2013)). The semantic modula-
tion approach was so far only adopted for adjective-noun composition cases (Fyshe, Sudre,
Wehbe, Rafidi, & Mitchell, 2019; Honari-Jahromi, Chouinard, Blanco-Elorrieta, Pylkkänen,
& Fyshe, 2021; Pylkkänen, 2020).

1.3. Brain encoding

Another novelty in our work is that we use a multivariate brain encoding approach, in
combination with computational models. Previous studies of the interplay between semantic
composition and polysemic variation in the interpretation of lexical items in cognitive neuro-
science (Klepousniotou, Pike, Steinhauer, & Gracco, 2012; Klepousniotou, Gracco, & Pike,
2014; Lukic, Meltzer-Asscher, Higgins, Parrish, & Thompson, 2019; MacGregor, Bouwsema,
& Klepousniotou, 2015; Mollica et al., 2020; Pylkkänen, Llinás, & Murphy, 2006; Pylkkänen
& McElree, 2007; Pylkkänen, 2020) have all used univariate methods (e.g., looking at dif-
ferences in BOLD activation across conditions), whereas multivariate analyses afford higher
sensitivity and, more importantly, a way to test competing accounts (Hebart & Baker, 2018;
Naselaris & Kay, 2015).

Brain encoding studies, where machine learning is used to predict patterns of brain activ-
ity by learning functions from computational representations—for example Abraham et al.
(2014), Grootswagers, Wardle, & Carlson (2017), Haxby et al. (2001), Haxby, Connolly,
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Guntupalli, & others (2014), Haynes (2015), Kragel, Koban, Barrett, & Wager (2018), Lemm,
Blankertz, Dickhaus, & Müller (2011), Naselaris, Kay, Nishimoto, & Gallant (2011), Pereira,
Mitchell, & Botvinick (2009), Rybář & Daly (2022)—have recently started to make use of
vectorial models of meaning proposed in NLP that have been shown to capture an extremely
wide range of information involved with semantic processing (for comprehensive reviews,
see Hale et al., 2022; Murphy, Wehbe, & Fyshe, 2018). In encoding, vectorial semantic rep-
resentations open new possibilities for the investigation of semantic processing in the brain
(Bruffaerts et al., 2019; Diedrichsen & Kriegeskorte, 2017; Kay, 2018; Kriegeskorte, Mur,
& Bandettini, 2008; Naselaris & Kay, 2015). By predicting the brain activation patterns for
concepts, encoding makes it possible to directly compare competing models of cognitive phe-
nomena by looking at their relative fit with brain processing (Naselaris et al., 2011). In this
framework, vectorial semantic representations can offer novel insights with respect to the
interpretation of the neural bases of semantic processing. Brain encoding methods involving
vectorial semantic representations have been used to study various aspects of the interpreta-
tion of linguistic meaning: single-word or -concept meaning (Anderson, Murphy, & Poesio,
2014; Mitchell et al., 2008; Murphy, Baroni, & Poesio, 2009; Murphy et al., 2011; Pereira
et al., 2018) or features (Kaiser, Jacobs, & Cichy, 2022; Sudre et al., 2012), whole-sentence
meaning (Anderson et al., 2021; Jat, Tang, Talukdar, & Mitchell, 2019), teasing apart syntax
and semantics (Caucheteux, Gramfort, & King, 2021), linguistic meaning in naturalistic con-
texts, such as narratives (Caucheteux & King, 2022; Dehghani et al., 2017; Goldstein et al.,
2022; Wehbe et al., 2014) and movie transcripts (Vodrahalli et al., 2018), studies of noun-
adjective composition (Fyshe et al., 2019; Honari-Jahromi et al., 2021), and the investigation
of metaphors (Djokic, Maillard, Bulat, & Shutova, 2020). However, there have been no stud-
ies using computational language models from NLP to further our understanding of how the
brain processes fine-grained meaning variation triggered by semantic composition. This is
in large part because until recently, the prevalent vectorial models of lexical meaning—so-
called distributional semantics representations discussed next (Baroni, Bernardi, & Zam-
parelli, 2014; Boleda, 2020; Clark, 2015; Camacho-Collados & Pilehvar, 2018; Erk, 2012;
Griffiths, Steyvers, & Tenenbaum, 2007; Lund & Burgess, 1996; Landauer & Dumais, 1997;
Lenci, 2018; Turney & Pantel, 2010)—assigned to phrases the same meaning in all contexts.
However, this situation has radically changed recently. In this paper, we aim to fill this gap
deploying more recent distributional models that do take multiplicity of meaning into account.

1.4. Language models and semantic composition

The objective of distributional semantics is to develop data-driven methods—these days
typically called language models—for associating words to high-dimensional vectors that
represent their meanings/usages using word co-occurrence information extracted from large
collections of texts (Boleda, 2020; Harris, 1954; Turney & Pantel, 2010). Until recently, this
line of research had focused on the development of what are usually called static language
models (Apidianaki, 2022; Bojanowski, Grave, Joulin, & Mikolov, 2017; Griffiths et al.,
2007; Lund & Burgess, 1996; Landauer & Dumais, 1997; Mikolov, Sutskever, Chen, Cor-
rado, & Dean, 2013; Pennington, Socher, & Manning, 2014)—models which assign a single
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interpretation to lexical items irrespective of context.1 Such models would assign the same
vectorial representation to book both in the phrase open the book and in the phrase summarise
the book. Recently, however, the situation has changed with the development of contextu-
alized language models, such as ELMO or BERT (Apidianaki, 2022; Devlin, Chang, Lee, &
Toutanova, 2019; Peters et al., 2018; Radford et al., 2019). These are language models which
assign to words representations that capture their linguistic meaning in a specific context—
such models would assign different vectorial representations to book in the two contexts we
are comparing. These models are suited to modeling meaning variation in context, opening,
therefore, new opportunities for studying fine-grained composition phenomena within the
brain encoding framework. But so far, no study has applied these models to investigating the
effect of semantic composition on the interpretation of fine-grained variation in lexical mean-
ing, like those happening in polysemic words. This is the primary objective of this work.

Language models have been used in cognitive research in different ways, depending on the
characteristics of their representations (Günther, Rinaldi, & Marelli, 2019). Static language
models, in which each word is associated with a single vector, have been interpreted as
models of semantic memory (Lund & Burgess, 1996; Landauer & Dumais, 1997; Kumar,
2021). By contrast, contextualized language models, where what is represented are words
appearing in linguistic contexts such as sentences, have been taken to be general models
of semantic processing of both words and sentences (Caucheteux & King, 2022; Lenci,
Sahlgren, Jeuniaux, Cuba Gyllensten, & Miliani, 2022). These models are specifically
meant to capture semantic representations beyond specific semantic dimensions such as
concreteness. Therefore, they can provide original insights with respect to brain processing
of verb-noun semantic composition.

1.5. Summary of the analyses

We conducted two separate sets of encoding analyses of verb-noun semantic composition.2

For the first set of analyses, we considered the whole language network in the brain.
By means of encoding, we looked at which models of lexical meaning and which models
of semantic composition best capture brain processing of verb-noun semantic composition.
Regarding lexical meaning, we compared a contextualized language model and “cognitive
models” based on subjects ratings. For semantic composition, we contrasted two methods of
composing representations, based, respectively, on single words and full phrases (described
in detail in Section 4).

In the second set of encoding analyses, we focused on individual areas. In this case, we
considered a number of regions of interest which have been previously argued to play a role
in semantic composition in the brain (Pylkkänen, 2020; Sakreida et al., 2013). We investigated
where in the brain we could most reliably use the concreteness of the phrases to predict brain
signals, an indication that this type of information can be associated with activity in that
area. Within the language network (Fedorenko, Hsieh, Nieto-Castañón, Whitfield-Gabrieli,
& Kanwisher, 2010), we considered the left anterior temporal lobe (ATL), the left posterior
superior temporal sulcus (pSTS), and the left inferior frontal gyrus (IFG); outside of the
language network, the bilateral ventro-medial pre-frontal cortex (vmPFC) and a bilateral

 15516709, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13388 by M

PI 374 H
um

an C
ognitive and B

rain Sciences, W
iley O

nline L
ibrary on [21/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 48 A. Bruera et al. / Cognitive Science 47 (2023)

set of motor areas including the supplementary motor cortex (SMC) and the precentral gyrus
(motor-areas; Sakreida et al., 2013).

1.6. Computational and cognitive models of lexical meaning and phrasal meaning

Our encoding analyses were carried out in relation to two types of models of meaning and,
for each type of model, two ways of using such models to obtain a meaning for phrases.

The first type of model of meaning was a distributional model, namely, a contextualized
language model, ITGPT2. ITGPT2, an adaptation for the Italian language of GPT2 (de Vries &
Nissim, 2021; Radford et al., 2019), is a contextualized model which has been shown to excel
at modeling semantics in the brain (Caucheteux & King, 2022; Schrimpf et al., 2021).

Such a model can be used in two different ways to compute the representation of phrases.
Cognitive scientists contrast “simple” composition (also called “classical” composition in De
Almeida et al., 2016, and “pure” composition in Fodor & Lepore, 2000), where the lexical
representations of the constituents are not modified during composition to obtain a represen-
tation for the phrase, with “complex” composition (also called “enriched” composition in De
Almeida et al., 2016). In this case, the meaning of the phrase is more than the meaning of its
parts, and results from an operation on the semantic interpretation of the constituents which
may involve a transformation of these interpretations (De Almeida et al., 2016; Goldberg,
1995; Pustejovsky, 1998). Contextualized language models are inherently models of complex
composition, as the semantic representation of the lexical constituents is modified accord-
ing to the linguistic context. For such models, the phrasal interpretation we use is directly
computed by the model (we will call it phrase ITGPT2; details on the methodology used are
given in Section 3). Contextualized language models can nevertheless be adapted to obtain
generalized representations for individual lexical items, which are abstracted from specific
linguistic contexts, like static models used to do (Apidianaki, 2022; Bommasani, Davis, &
Cardie, 2020; Vulić, Ponti, Litschko, Glavaš, & Korhonen, 2020). Such single-word vectors
can be then composed through a mechanism of simple composition, as they represent indi-
vidual words in isolation. In this case, the semantic representation of a phrase is simply given
by the average of the semantic representations of its parts (in the following, single-words
ITGPT2; again, see Section 3).

The materials in this experiment were designed to study how semantic composition affects
one specific semantic property: concreteness (see Section 3.1). Thus, the representations
obtained from the contextualized language model were contrasted with what we called cog-
nitive models, directly encoding information about concreteness provided by human sub-
jects. Among these, the representation of phrases according to complex semantic composition
(see above) is made of concreteness ratings provided by human subjects for the full phrases
(phrase concreteness; see Section 3.1 for details on data collection). This models the assump-
tion that raters carry out themselves the complex composition of the lexical items during the
rating task (Naselaris et al., 2011), then representing the result through the concreteness rating
given to each phrase. By contrast, in the simple composition model, a phrase’s concreteness
is the average of each individual word’s concreteness (single-words concreteness)—a pro-
cedure that does not modify the semantic representations during composition.
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1.7. Experimental design and stimulus selection

We modulate the semantics of the stimuli along a concreteness gradient, by varying the
noun (polysemic or not) and the verb (requiring an object of a specific semantic type—abstract
or concrete—or not).

We considered three such modes of composition, to achieve a systematic coverage of the
constraints on interpretation imposed by the verb on the concreteness of the noun. In order to
allow direct comparisons among each mode of composition, we used a balanced set of nouns
belonging to one of the two semantic types involved in dot-objects such as book —namely,
physical objects and information.

The first type of semantic composition we consider is transparent semantic composition,
where a verb and a nonpolysemic noun have the same semantic type in terms of their con-
creteness (e.g., open the envelope for physical object and explain the idea for informational
content), and therefore, the meaning of the phrase emerges transparently from the combina-
tion of the two parts (Bemis & Pylkkänen, 2011; Baggio, Van Lambalgen, & Hagoort, 2012;
Jackendoff, 1997; Kamp & Partee, 1995; Partee, 2008; Pylkkänen & McElree, 2006; Pylkkä-
nen, 2008). Previous work on the distributional properties of concrete and abstract nouns
and verbs in large corpora indicates that this is the statistically dominant case (Frassinelli,
Naumann, Utt, & m Walde, 2017; Frassinelli & Im Walde, 2019; Naumann, Frassinelli, &
Schulte im Walde, 2018).

The second type of composition we considered is sense selection (also called “semantic
type coercion”) typical of polysemic contexts, whereby the verb selects the relevant sense of
a polysemic noun—the so-called dot-object (see, e.g., Pustejovsky, 1998). Given a linguis-
tic context, the interpretation of the noun can alternate between an abstract sense (informa-
tional content, with lower concreteness) and a concrete sense (physical object, with higher
concreteness)—which results in different semantic types being assigned to the same noun
when found in different phrases (Baggio, Choma, Van Lambalgen, & Hagoort, 2010; Fris-
son, 2015; Goldberg, 1995; Haber & Poesio, 2021; Jackendoff, 1997; Katsika, Braze, Deo, &
Piñango, 2012; Kuperberg, Choi, Cohn, Paczynski, & Jackendoff, 2010; Lauwers & Willems,
2011; Pustejovsky, 1991, 1998; Pylkkänen, 2008; Pustejovsky et al., 2010; Pustejovsky, 2011;
Pylkkänen, 2020; Zarcone, McRae, Lenci, & Padó, 2017).

Finally, we use phrases involving light-verb semantic composition, where the verb is a
light verb, such as have. This type of verbs mostly plays a grammatical role, with very lit-
tle to no semantic relevance in its context (Brugman, 2001; Briem et al., 2009; Butt, 2010;
Wittenberg, Paczynski, Wiese, Jackendoff, & Kuperberg, 2014; Wittenberg & Levy, 2017),
entailing that the interpretation of the phrase relies almost entirely on the noun and does not
indicate a clear action (e.g., have the envelope vs. have the idea).

1.8. Summary of the results

Our results show that the two “complex” models of phrasal meaning (concreteness rat-
ings on phrases and the full-phrase contextualized language model) capture better than
“simple” models brain processing of semantic composition and can predict brain data with
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statistical significance. We also find that, within the sense selection cases of semantic com-
position, phrasal models can discriminate among brain responses to different senses of some,
but not all, nouns referring to dot-objects. This supports a view of semantic composition as
a complex, holistic process operating on whole phrases and which strongly interacts with the
semantics of the parts involved—in our case, the meaning of the verbs and the nouns. Also, we
find that phrase ITGPT2 achieves better results than both simple composition models (single-
words ITGPT2 and single-words concreteness) and close to those obtained with phrase con-
creteness judgments elicited from human subjects. This finding confirms that contextualized
language models are able to capture to a surprising extent brain processing of semantics and
semantic composition. However, overall the performance of the full-phrase ITGPT2 represen-
tations is slightly lower than that obtained using full-phrase human concreteness judgments.
We interpret this as an indication that, while ITGPT2 can capture to a surprising extent brain
processing of semantics and semantic composition, its ability to explain fine-grained meaning
variation triggered by semantic composition as they happen in the brain leaves room, at least
in its current form, for improvement.

Our results on individual areas indicate that, within the language network, the left pSTS

and the left IFG are most consistently and strongly involved with all three types of semantic
composition, also for polysemous nouns; however, we also find that all areas are involved
to some degree in the processing of each mode of composition. We interpret this result
as evidence that different linguistically defined cases of semantic composition elicit dif-
ferent patterns of brain activity, and therefore, involve brain areas distinctly depending on
the cognitive resources required—a view which may help in reconciling apparently con-
flicting results from previous literature. Outside of the language network, instead, we find
that motor areas contain information with respect to the representation of semantic com-
position. This confirms previous literature on neural processing of concreteness, which
found activation of motor areas also with linguistic stimuli (Sakreida et al., 2013), and
is compatible with an integration of linguistic and motor representations during semantic
composition.

2. Semantic composition in the brain

A number of studies have investigated the areas of the brain in which semantic composition
takes place. Earlier work focused on individual areas (regions of interest —ROIs), but in
recent work, there has been a shift toward considering networks. We briefly summarize this
work here.

2.1. Regions of interest

The brain regions associated with semantic composition in previous research are visualized
in Figs. 1 (the language network) and 2 (for areas outside of the language network). All these
regions were considered in the current study.
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Fig. 1. Visualization of the regions of interest and selected voxels of the language network. For the subparts of the
language network used for the ROI analyses (reported in Sections 6.3 and 6.4), colors correspond to each area’s
bar in Figs. 8 and 9 (ATL in purple, pSTS in green, and IFG in cyan). We report in yellow the top 25% most stable
features (across all subjects) obtained for the encoding analysis from the language network using the stability
selection procedure described in Section 3.2.7. They show a clear left-lateralization, with most voxels found in the
pSTS and some in the ATL and the IFG as well. Brain areas are projected on the fsaverage cortical surface provided
by FreeSurfer (Fischl, 2012).

Fig. 2. Visualization of the regions of interest and selected voxels outside of the language network. Since these
areas were used for the ROI analyses (reported in Sections 6.3 and 6.4), colors correspond to each area’s bar in
Figs. 8 and 9 (vMPFC in pink and motor areas in black). We report in yellow, for each area, the top 25% most stable
features obtained using the stability selection procedure described in Section 3.2.7. For motor areas, the most
stable features show some degree of right lateralization, whereas, within the vMPFC, the most stable features are
located within the frontal pole. Brain areas are projected on the fsaverage cortical surface provided by FreeSurfer
(Fischl, 2012).

2.2. Left inferior frontal gyrus

The left IFG has been proposed in Husband et al. (2011), the only previous work inves-
tigating dot-objects and sense selection with univariate fMRI analyses, as the main brain
structure supporting sense selection processes triggered by semantic composition. Similarly,
in Sakreida et al. (2013), the only other study looking at effects of verb-noun semantic com-
position in the brain, the left IFG was found to selectively respond to this modulation. Also,
more generally, this brain area has been found to respond differently to abstract and con-
crete concepts (Binder, Westbury, McKiernan, Possing, & Medler, 2005; Bucur & Papagno,
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10 of 48 A. Bruera et al. / Cognitive Science 47 (2023)

2021; Della Rosa, Catricalà, Canini, Vigliocco, & Cappa, 2018), and to be associated with
composition processes (Schell, Zaccarella, & Friederici, 2017).

2.3. Left anterior temporal lobe

The left ATL has been consistently shown to be a central hub for semantic processing of
individual concepts (for a review, see Lambon Ralph, Jefferies, Patterson, & Rogers, 2017).
In Pylkkänen (2020), which summarizes earlier Magnetoencephalography (MEG) studies,
this area has also been proposed as the main locus for so-called conceptual combination in
the brain.

2.4. Left posterior superior temporal sulcus

The left pSTS, which has been traditionally associated with a number of cognitive processes
(Hein & Knight, 2008), including semantic (Price, Bonner, Peelle, & Grossman, 2015) and
syntactic (Matchin & Hickok, 2020) combinatory processing, was recently shown in Murphy
et al. (2022) to be strongly involved with semantic composition using intracranial electro-
corticography recordings.

2.5. Ventro-medial pre-frontal cortex

We also considered the vMPFC, a brain area falling outside of the language network. The
vMPFC has been implicated with processing of semantic composition in some MEG studies
reviewed in Pylkkänen (2020), where its role was argued to emerge at a later time during
semantic composition, in between language comprehension and production.

2.6. Motor areas

Finally, two motor areas, the precentral gyrus and the supplementary motor cortex (SMC),
were found in Sakreida et al. (2013) to be strongly activated by verb-noun semantic com-
position with varying degrees of concreteness. The proposed explanation for such an acti-
vation, well outside of typical language areas, comes from the embodied cognition frame-
work (Barsalouet al., 2008): in the strongest version, linguistic comprehension should trigger
experiential simulations of the referents of the words in the brain (Fischer & Zwaan, 2008;
Zwaan, 2004); in a softer version, which we adopt here, linguistic comprehension should at
least involve to some extent modality-specific (in this case, motor) features which are inte-
grated with supra-modal, linguistic information (Lambon Ralph et al., 2017), without postu-
lating a full-on mental simulation of the action. If this were the case, then, phrases containing
verbs and nouns of different concreteness should engage to different extents motor areas,
depending on how much motor information is required for the linguistic comprehension of
the verb-noun phrase.

2.7. Brain networks

Brain networks have emerged in recent years as a fundamental level of representation
in cognitive neuroscience, going beyond individual brain areas (Suárez, Markello, Betzel,
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& Misic, 2020). They allow to characterize complex cognitive processes, such as those
related to language, at the same time taking into consideration individual variability within
the network (Fedorenko et al., 2010; Friederici & Gierhan, 2013). A brain network can be
defined either structurally—by looking at paths of physical connections among brain areas—
or functionally—by reference to given cognitive processes, as a set of brain areas which have
been found to respond collectively to them.

The language network is composed of brain areas individuated functionally in Fedorenko
et al. (2010). Through a so-called “localizer task,” the authors found brain areas selectively
activated by meaningful sentences as opposed to lists of nonwords. More recently, it was
shown that syntactic and semantic processes do not activate selectively specific areas, but
rather engage the whole network (Fedorenko, Blank, Siegelman, & Mineroff, 2020).

In previous work, where pictures were used instead of words, authors conducted the encod-
ing/decoding analyses using the whole brain instead of a brain network, or individual areas
(e.g., Mitchell et al., 2008). This approach, however, has two main downsides. First, it tends
to provide “salt-and-pepper” spatial distribution of the voxels retained after feature selection
(cf. the original papers). Among these voxels, clusters falling within semantics- or language-
specific networks may emerge, but a large amount of features are scattered all over the brain.
This makes it hard to interpret results, as it is not clear what brain areas drive performance.
Furthermore, as pointed out in Haynes (2015), it may even be that the patterns do not reflect
information actually available to the brain during processing, because of anatomical con-
straints. Second, it has been shown in recent work looking at metaphorical meaning (Djokic
et al., 2020) that, when stimuli are presented as words, a whole-brain analysis is not optimal
when mapping between language models and the brain. To validate empirically our assump-
tion, we also run a whole-brain analysis like the one used in Mitchell et al. (2008) and Pereira
et al. (2018). The results are reported in Appendix A in the Supplementary Materials. Briefly,
we find that accuracy is similar, but always slightly lower than that obtained with the language
network (Appendix A, Figs. A.1 and A.2). Furthermore, the set of features retained after fea-
tures selection is scattered all over the brain (Appendix A, Fig. A.3), empirically confirming
our assumptions.

3. Methods

3.1. Stimuli

The experiment was carried out in Italian. The stimuli used in this study are Italian verb-
noun phrases whose interpretation was judged by human subjects to occupy different posi-
tions on a concreteness gradient, depending on how a direct object (a noun referring either
to a physical object, a piece of information, or a dot-object) is combined with a predicate (a
verb).

Our 42 stimuli cover the three cases of semantic composition (sense selection, transparent
composition, and light-verb composition); for each case, we selected 14 basic verb-noun
(V+N) phrases, with seven phrases involving a noun belonging to the (abstract) semantic type
information, and seven phrases involving a noun referring to a (concrete) physical object
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12 of 48 A. Bruera et al. / Cognitive Science 47 (2023)

(see stimulus selection procedure below). In the sense selection cases, the nouns (polysemous,
“dot-object” cases) were the same across the two semantic types (e.g., open/summarize a
book). These phrases are minimal examples of composition, involving only the minimum
necessary amount of lexical units for composition to take place (Bemis & Pylkkänen, 2011;
Fritz & Baggio, 2020; Kochari et al., 2021; Murphy et al., 2022; Pylkkänen, 2020), therefore,
allowing to investigate from as close as possible its neural signature.

The 42 stimuli were obtained as follows. We came up with an initial pool of verb-noun
phrases following the criteria discussed below. Those phrases were then rated by human sub-
jects (n = 36) in terms of familiarity and concreteness. The final set of stimuli were selected
so as to be matched in length, number of phonemes and familiarity for the object-information
contrast within each composition case.

In the case of the sense selection stimuli, several nouns that can alternate between an
abstract and a concrete meaning like book, and several verbs that can coerce the meaning of
such nouns into either the abstract or the concrete interpretation were selected. Verb phrases
combining these nouns and verbs were constructed, excluding those which had no meaning
or were ambiguous. The final set of stimuli was built from four nouns (book, magazine, cata-
logue, sketch), and six coercing verbs: three referring to a physical action requiring as a direct
object a physical object (open, pick, give (as a present)), three requiring as a direct object an
information-related object (explain, consult, present).

In the transparent composition stimuli, the verb-noun phrases contained the same coercing
verbs as the sense selection stimuli (i.e., verbs clearly requiring an information- or physical-
object) and nouns unambiguously referring to information- or concrete-objects.

The nouns denoting physical objects are parcel, ticket, flower, coin, ball, parcel, envelope.
The information-denoting nouns are reason, word, problem, question, expert, program.

Finally, in the light-verb stimuli, words which contained nouns of furniture and abstract
information were selected and combined with the verbs (information: opinion, judgment,
idea, story, reason; physical objects: desk, table, sofa, wardrobe, chair; verbs: have, change,
provide). Common household furniture were chosen because they are frequently seen with
book-type objects in real-world scenarios.

Phrases referring to physical objects and informational content were matched, within
each mode of composition, for number of letters and phonemes across phrases involv-
ing physical objects and information (number of letters: pSenseselect ion = .65; plightverb = .44;
ptransparent = .2. number of phonemes: pSenseselect ion = .79; plightverb = .27; ptransparent = .7)
and for familiarity (psense−select ion = .849, ptransparent = .926, plight−verb = .905).

The concreteness ratings for the resulting set of stimuli, which we will use later on in the
encoding analyses as a way to capture the semantics of the phrases (see Section 4.1), are
reported in Fig. 3. They are placed along a linear continuum, where it is possible to visually
retrieve the distinction in concreteness between physical objects and informational contents.
Note also that the position of a phrase along the gradient appears to be determined in part by
the noun, in part by the verb, as shown by the fact that phrases with the same noun occupy
different positions along the gradient.

The concreteness ratings in Fig. 3 differ significantly across phrases for physical objects
and information, both overall (p = 4.51e − 06) and for each semantic composition case. As
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A. Bruera et al. / Cognitive Science 47 (2023) 13 of 48

Fig. 3. Visualization of the average concreteness ratings for the 42 stimuli, provided by 36 raters. Each phrase’s
concreteness is represented by a marker whose color and shape also indicate which semantic type (physical object
or information) and which composition case it belongs to. The position on the y axis of each point corresponds
to the average concreteness value across our 36 raters; error bars represent the standard deviation. Below each
marker, we report the original phrase in Italian. Ratings were rescaled in the range 0–1 in order to ease readability.

expected, a lower p-value is obtained for the types of composition where a clearer separation
between abstract and concrete exists in principle, that is, the transparent composition phrases
(ptransparent = 8.69e − 06) and the light verbs phrases (plight−verb = 1.29e − 07), whereas
sense selection phrases are more nuanced (psense−select ion = .009): after all, they involve the
same word across semantic types (e.g., book can be both a physical object and an informa-
tional content).

3.2. fMRI data

3.2.1. Participants
Nineteen volunteers were recruited, but three of them were excluded from the analysis

because they failed to respond or respond incorrectly in more than 10% of the trials, leav-
ing 16 participants for the analysis (8 females; average age 22.5, standard deviation 3.42).
All participants were native Italian speakers, right-handed, and had normal or corrected-to-
normal vision.

3.2.2. Data acquisition
All of the fMRI experiments were conducted with a 4T Bruker MedSpec MRI scanner.

Structural images were acquired using a T1-weighted MPRAGE sequence with resolution
1*1*1mm. A T2*weighted EPI pulse sequence was used to acquire the functional images
with parameters TR 1000 ms, TE 33 ms, and 26 flip angle, FoV1000*1000. Each acquisition
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volume contains a 64*64 matrix and 17 slices with a gap of 1 mm. Voxel dimensions
are 3mm*3mm*5mm.

3.2.3. Experimental paradigm
Participants were instructed to attentively read the phrases and judge whether the verb-noun

combinations were meaningful. This sensicality task was already employed in previous brain
studies on semantic composition (Pylkkänen, Llinás, & McElree, 2004; Pylkkänen, Oliveri,
& Smart, 2009; Schell et al., 2017) and polysemy (Husband et al., 2011; Pylkkänen et al.,
2006). About 10% of the stimuli were catch-trials with meaningless combinations (e.g., open
the sun). Each trial started with a fixation cross for 500 ms, followed by a verb and then
an article-noun phrase, where each was presented for 450 ms, with a 100-ms interval. A
black cross then remained on the screen for 1500 ms, and subsequently, a question mark was
displayed for 1000 ms, where participants had to respond whether the presented phrase was
meaningful, by pressing the left or right button box (counterbalanced across participants). The
next trial started after a fixation time of 6 s. During one scanning session, all 42 verb-noun
phrases along with five catch-trials (10% of all trials) appeared once in a random order. Each
participant completed six sessions.

3.2.4. Preprocessing
We preprocessed the fMRI data with SPM12 (Penny, Friston, Ashburner, Kiebel, &

Nichols, 2011). We used default parameters for all steps, unless specified otherwise. First,
we defaced the anatomical brain images, in order to guarantee anonymity; then, we realigned
the images and corrected for the timing acquisition of the slices. Next, we coregistered the T1
to the mean EPI image; and finally, we normalized the images to the MNI space, keeping the
original voxel size of 3mm*3mm*5mm. We did not smooth the images.

To obtain one BOLD response image for each phrase, capturing how the brain processes
verb-noun semantic composition, we followed the methodology of Mitchell Anderson,
Zinszer, and Raizada (2004, 2008), and Anderson, Zinszer, and Raizada (2016). Therefore,
we averaged the BOLD response corresponding to the time points between 4 and 8 seconds
(s) after the presentation of the noun, thus accounting for the delayed hemodynamic response
to the stimulus.

It is important to stress that we used the presentation of the noun, instead of the verb, as the
starting point (t0) for the evoked BOLD response. This is due to the fact that, following previ-
ous work on semantic composition in fMRI and MEG (Bemis & Pylkkänen, 2011; Brennan &
Pylkkänen, 2012; Husband et al., 2011; Zhang & Pylkkänen, 2015; Zaccarella et al., 2017), in
our paradigm, the verb and the noun were presented one after the other (serial presentation)
and not concurrently (parallel presentation; Snell & Grainger, 2017). This being the case,
semantic composition could only take place after the appearance of the noun. We empirically
validated our assumption that semantic processing would start only after the presentation
of the noun in a time-resolved encoding analysis. We report the results in Appendix B in
the Supplementary Materials (Figs. B.1– B.4). Time-resolved analyses allow to understand
how each model captures semantic composition in the language network along the temporal
dimension—and importantly, when semantic information starts to be present in brain activity.
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Encoding was carried out separately for each TR falling in the time window between –2 and
12 s after the appearance of the first visual stimulus, the fixation cross (since TR = 1 s, we in
fact evaluated encoding once per second). Results clearly indicate that all of the model rep-
resentations capture brain processing in the time window between 4 and 8 s after the presen-
tation of the noun—but not earlier, confirming our assumption. We believe that, had we used
a parallel presentation paradigm, instead of the serial methodology we actually employed,
results would not have differed significantly. Our expectation is that, as indicated in work on
access to phrase- or sentence- level representations (Snell & Grainger, 2017), semantic pro-
cessing would have simply taken place slightly earlier, given the immediate availability of an
interpretation for the full phrase. This would have just shifted t0 to the time of presentation of
the full phrase, instead of the noun, as it was the case in our experiment.

3.2.5. Language network analysis
For the encoding analyses, where we compare the performances of a set of models, we

focused on a specific brain network, the language network (Fedorenko et al., 2010). We
employed, for our encoding analyses based on this network, the brain mask provided by
Fedorenko et al., which consists of a bilateral map obtained from the aggregation of the results
of the localizer task on 220 subjects.3 When masked using the language network, our brain
images are composed of a total of 2392 voxels.

3.2.6. Regions-of-interest analysis
For the ROI analyses, we focused on understanding which brain regions contain most infor-

mation with respect to the process of semantic composition. Therefore, we used the model
with the best performance—the phrase concreteness model—as the predictor for the encod-
ing. We focused on five regions of interest (left IFG, left ATL, left pSTS, vMPFC, and motor
areas) which have been previously implicated with semantic composition. To isolate the left
ATL (295 voxels), the left IFG (182 voxels), and the left pSTS (637 voxels), we used the masks
available within the manual parcellation of the language network provided by Fedorenko et al.
(2010). For the vMPFC, we used the vMPFC mask published by Delgado et al. (2016) (727 vox-
els). For the motor areas, we used the masks for the precentral gyrus and the supplementary
motor cortex available from the Harvard-Oxford Brain Atlas (Desikan et al., 2006) (1789
voxels).

3.2.7. Feature selection
Feature reduction is fundamental for fMRI data, which has high dimensionality. Dedicated

methods have been devised in the literature for encoding studies like ours, where a mapping
function is learnt between a vectorial model and brain data (Mitchell et al., 2008; Pereira et al.,
2018). We adopted the methodology of Mitchell et al. (2008), which is a straightforward
choice in encoding studies involving word vectors (Anderson, Zinszer, & Raizada, 2016;
Caceres et al., 2017). This procedure was carried out separately for each subject separately
and for each train-test split (see Section 5.2). Within each training set, first features (voxels)
are ranked according to their so-called stability (i.e., average Pearson correlation of BOLD
signal across the six trials for each stimulus, with higher correlation values indicating higher
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stability). Then, the top n most stable voxels are selected and retained for further analysis; the
same selection of features, determined independently from the test set, is applied to the test
set. As in Mitchell et al. (2008) and Anderson et al. (2016), we used the n = 500 most stable
voxels. Notice that the only difference of our approach with the original implementation is
that voxels were not selected from the whole brain, but from the language network or each
ROI, depending on the analysis. Feature selection was not applied for those brain areas whose
total number of voxels was lower than 500 (left IFG and left ATL; see Section 3.2.6).

As shown in Fig. 1, where we report the 25% most used features plotted against the lan-
guage network, the feature selection procedure selected voxels belonging mostly to the left
pSTS, but also, in minor part, to the left ATL and the left IFG.

4. Models

4.1. A “cognitive model” of concreteness

The main semantic dimension along which our set of 42 phrases, which exemplify dif-
ferent modes of verb-noun semantic composition, vary is concreteness, since the nouns in
the stimuli can refer to either a physical object or to information. Concreteness has been
found to be a variable playing a fundamental role for semantic processing in both behavioral
and brain studies (Mkrtychian et al., 2019; Montefinese, 2019). Early approaches viewed
the abstract/concrete distinction as binary, and involving different processing pathways—
for instance, the Dual Coding theory of Paivio (1969), or the interpretation of results from
patients of Crutch and & Warrington (2005). However, a more graded view of the distinction
between concrete and abstract semantic representations has emerged in more recent literature.
In this literature, concreteness and abstractness are organized along a continuum, with grad-
ual involvement of sensorimotor, linguistic, and emotional features (Anderson et al., 2014;
Borghi et al., 2017; Glenberg et al., 2008; Ghio, Vaghi, & Tettamanti, 2013; Hill, Korhonen,
& Bentz, 2014; Troche, Crutch, & Reilly, 2017).

Therefore, we also learned encoding mappings between a graded notion of concreteness
and fMRI data. Being able to find an accurate mapping of this kind would provide evidence
that concreteness is one of the dimensions affected by semantic composition, shifting word
meanings toward more or less concrete interpretations (cf. Hill & Korhonen, 2014).

Also, we believe that a comparative approach, looking at the difference in performance
between this model and a computational language model like ITGPT2, can provide interesting
insights with respect to the ability of current language models to capture subtle features of
semantic composition in the brain. In this sense, we expect concreteness to provide an upper
bound on the quality of our language models in terms of encoding, since concreteness ratings
are provided by human subjects. We nevertheless acknowledge that the types of semantic
information contained in human ratings and language models differ along many dimensions,
with language models encoding disparate types of semantic information at once (Emmanuele,
Enrico, Chu-Ren, Lenci, & others, 2021; Utsumi, 2020). Evidence emerging from the contrast
of the two, therefore, should not be interpreted in terms of a strict alignment of the two types of
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representation, but in terms of a broad convergence toward representations that can similarly
explain brain activity (Blank, 2023; Schrimpf et al., 2021).

4.1.1. Phrase concreteness
As a model of complex composition (see Introduction) based on concreteness, we used

the concreteness scores obtained through the rating procedure presented in Section 3.1, that
we call phrase concreteness. In this case, we assumed, following Naselaris et al. (2011)
that, when confronted with the task of rating the concreteness of the full phrase, raters are
in fact carrying out a nonlinear transformation of the lexical representations into a complex
representation of their composed meaning, which they then express in terms of a phrase con-
creteness rating.

4.1.2. Single-word concreteness
We wanted to create a model of simple composition (see Introduction) based on concrete-

ness. The fundamental constraint of such a model is that the representation of a phrase should
be obtained without modifying the representations of the individual concepts involved in com-
plex, nonlinear ways. To achieve this, we used a methodology which has been used in previous
work as a baseline to capture how linguistic context shapes semantic dimensions such as con-
creteness (Gregori et al., 2020) or valence, dominance and arousal (Calvo & Mac Kim, 2013).
This approach relies on averaging the ratings for individual words contained in a phrase to
obtain a representation of the phrase’s relevant rating. For instance, suppose the words “imag-
ine” and “cello” are, respectively, rated concretenessimagine = 2 and concretenesscello = 5.
The rating for the phrase “imagine the cello” would be concretenessimaginethecello = (2 +
5)/2 = 3.5. Notice that, despite its extreme simplicity, averaging has proven to be a strong
mechanism to capture facets of meaning not only in computational modeling (Dinu, Baroni,
& others, 2013) but also in brain studies (Wu, Anderson, Jacobs, & Raizada, 2022). As a
starting point, we collected a set of ratings from a group of Italian raters (n = 36) for the indi-
vidual words (verbs and nouns) contained in the phrases. Then, we modeled each phrase’s
concreteness as the average of the concreteness of the verb and the noun. We call this model
single-words concreteness. The phrase concreteness model and the single-words concrete-
ness models present a moderate degree of representational similarity (r = .672 , Fig. 4), con-
firming that they capture different, but related approaches to the representation of the seman-
tics of the phrases.

4.2. Language models

4.2.1. Modeling compositionality with distributional semantics and language models
Much work has been dedicated, in distributional semantics, to the topic of compositionality

(for overviews, see Baroni et al., 2014; Erk, 2012; and Mitchell & Lapata, 2010). Composi-
tional distributional semantics as a research field is particularly active for static language
models. This is because static models represent individual words in isolation: if one wants
to capture the subtleties of meaning composition as it is carried out by humans, it is an
open question how to best compose such individual vector representations (Boleda, 2020).
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Fig. 4. Representational similarity among the models’ representations used for encoding. The color and the value
reported in each cell of the confusion matrix reflect the Pearson correlation among the corresponding row and
column models’ representational spaces, computed as is customarily done in representational similarity analysis,
as the vector of within-model pairwise Pearson correlations (Diedrichsen & Kriegeskorte, 2017). Overall, models
seem to capture in distinct ways the semantics of the phrases, as is shown by the gradient of correlations: in
particular, concreteness models are more similar to one another than computational models.

In other words, the core challenge for compositional distributional semantics approaches is
being able, given a linguistic context such as a sentence, to infuse knowledge about syntac-
tic and semantic structure in vectors for individual words. Vanilla distributional word vectors
bear no explicit trace of syntax, or part of speech information, or semantic category, aside
from what can be indirectly captured through distributional information. In other words, the
vectors for words like “explain,” “music,” and “the” (respectively, a verb, a noun, an article)
all live in the same vector space, without any clear boundary between them, as is instead the
case, for instance, in grammars (notice also that the different senses of “book” are squeezed
in a single vector). This limits the ability of such models to capture fine-grained semantic
composition, which relies on various pieces of information emerging at the interface between
syntax and semantics. Various solutions have been proposed in the literature, mostly based
on tensors or special composition operations (Baroni & Lenci, 2010; Baroni & Zamparelli,
2010; Baroni, 2013; Chersoni et al., 2019; Erk & Padó, 2008; Grefenstette, Dinu, Zhang,
Sadrzadeh, & Baroni, 2013; Lenci, 2011; Levy & Goldberg, 2014). Contextualized language
models, on the contrary, are designed to overcome such limitations by default. They represent
words in context. Therefore, they specialize in capturing the way in which linguistic mean-
ing is shaped compositionally in context. To do so, they heavily rely on the use of machine
learning mechanisms like attention and self-attention (Vaswani et al., 2017). Because of this
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they constitute the best models currently available from NLP when it comes to capturing fine-
grained variation in meaning triggered by compositional processes (Apidianaki, 2022). This
drove our decision to use a contextualized language model for our analyses.

4.2.2. ITGPT2
We tested two separate types of representations for the contextualized language model—

modeling a complex and a simple approach—mirroring the representations obtained for
concreteness. Starting from the same model, we followed two different vector extrac-
tion procedures—one for complex composition, and another one for simple composition
(described below). We would like to underline that, for both simple and complex semantic
compositions, we used the exact same pretrained language model. This allowed us to eschew
any possible confound due to pretraining factors, like size and source of training data used,
or the number of parameters in the neural network. Such variables differ dramatically across
language models and strongly affect their performance, making it hard to make reliable
comparisons (Kaplan et al., 2020; Kirstain, Lewis, Riedel, & Levy, 2022; Min et al., 2021;
Zhang, Warstadt, Li, & Bowman, 2021). As a starting point for both the simple and the com-
plex models of composition, we used ITGPT2 (de Vries & Nissim, 2021), an adaptation for
Italian of GPT2, a model which is publicly available and widely used in the literature (Radford
et al., 2019). Our choice of ITGPT2 was guided by the fact that its English counterpart, GPT2
(Radford et al., 2019), had been previously used and validated with brain data for English
(Caucheteux et al., 2021; Schrimpf et al., 2021). Models in the GPT family are available in
different sizes, depending on the number of parameters used in the neural network. As a rule
of thumb, more parameters certainly increase the computational cost—sometimes making a
model impossible to use without dedicated computing resources (Izsak, Berchansky, & Levy,
2021)—but may or may not improve performance (de Varda & Marelli, 2023; Kaplan et al.,
2020). To obtain the best results possible, we use the best-performing version of ITGPT2
available, which is ITGPT2-medium. This deep neural network has 24 layers and 380 millions
of parameters, just like its English equivalent, GPT2. ITGPT2 was created using a two-steps
procedure. First, the input (embedding) layer of the original GPT2-small English model (124
millions of parameters) was retrained, leaving the rest of the neural network frozen, for
Italian, using ItWaC and Wikipedia in Italian (Baroni, Bernardini, Ferraresi, & Zanchetta,
2009). This effectively operates a translation of the input layer embeddings of the pretrained
English model. Then, the newly learnt input layer embeddings were mapped to the bigger
GPT2-medium model (having 355 millions of parameters) using a linear transformation. This
led to the creation of a version of GPT2-medium “translated” to Italian. For reference, the orig-
inal GPT2 English model was trained on 40GB of text scraped online, from which Wikipedia
pages were removed (Radford et al., 2019). ITGPT2 inherits the knowledge extracted by GPT2
from such training data in its hidden layers, above the input layer which is instead adapted to
Italian. To validate our choice of using ITGPT2 as our contextualized model, in Appendix D in
the Supplementary Materials, we report the results of comparing its performance against var-
ious versions of XGLM (Lin et al., 2021), a much bigger language model (1.7, 2.9, 4.5, and 7.5
billions parameters). This model was created as a publicly available counterpart to GPT-3, and
was trained on CC100-XL, a huge multilingual corpus covering 68 snapshots of the Common
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Crawl dataset and 30 languages, including Italian (Lin et al., 2021). Results indicate that
ITGPT2 is always better than all of the versions of XGLM, no matter their size (Appendix D,
Fig. D.1; see Section 7.2 for a discussion on this point which may seem counterintuitive). In
Appendix E in the Supplementary Materials, we also validate empirically our assumption that
a contextualized language model would perform better than a static counterpart (Appendix E,
Fig. E.1). We report the encoding results using FastText, a state-of-the-art static language
model (Bojanowski et al., 2017), in a variety of vector extraction modalities—in all cases,
results are always worse than those obtained with either XGLM or ITGPT2.

4.2.3. Vector extraction procedure
To extract the contextualized vectors to be used for encoding, we adapted the so-called

procedure of “representation pooling,” a methodology validated on benchmarks from com-
putational linguistics in Bommasani et al. (2020), Vulić et al. (2020), and Apidianaki (2022)
and, more specifically, in Bruera and & Poesio (2022), for brain data. The procedure is equal
for both single-words ITGPT2 and phrase ITGPT2. The differences between the two models
will be explained in detail below. For the time being, it will be enough to say that, for single-
words ITGPT2, we extracted representations for words in isolation (e.g., “open,” “book”); for
phrase ITGPT2, by contrast, we extracted the representations for the phrases directly (e.g.,
“open the/a book,” in the context of a sentence). We implemented the representation pooling
vector extraction procedure in five steps:

1. collecting from natural language corpora sentences containing mentions of each phrase
(phrase ITGPT2) or either the verb or the noun (single-words ITGPT2). For phrase
ITGPT2, we sampled sentences where the verb preceded the noun by no more than
two words, so as to be able to capture cases like “open the old book.” For single-words
ITGPT2, we sampled the mentions independently for verbs and nouns, so as to cap-
ture contexts of usage of the individual words which were not related to the phrases
themselves (all the sentences used are publicly available together with the code and
the extracted vectors);

2. encoding the sentences using the contextualized model;
3. extracting the top 12 hidden layers (which in Jat et al., 2019; Schrimpf et al., 2021;

Antonello, Vaidya, & Huth, 2023 have been shown to best capture brain seman-
tic processing) for the tokens corresponding to the phrase (phrase ITGPT2) or word
(single-words ITGPT2). We also consider as part of the phrase representation the hidden
activations for the first token occurring after the phrase, as we found that this had a
positive impact on results. This choice is due to the fact that GPT2 is a causal language
model—that is, it learns to predict the coming word in a sentence given a previous
sequence of words. In these models, the hidden states at t + 1 capture the information
contained in the whole sequence until t . Therefore, the hidden representation at t + 1
contains information about the whole phrase that came before;

4. for each mention, averaging across layers and tokens, so as to obtain a single mention
contextualized vector;
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5. finally, averaging across at most n randomly selected mentions of each phrase (phrase
ITGPT2) or word (single-words ITGPT2). Following Vulić et al. (2020), n = 10 since
this amount of vectors has been shown to provide optimal results.

This methodology provided us with one contextual vector for each phrase (phrase ITGPT2)
or word (single-words ITGPT2). For phrase ITGPT2, this captured an averaged meaning of the
phrase in various linguistic contexts. For single-words ITGPT2, an additional step was required
(mirroring the procedure followed for phrase concreteness). We will describe it below.

As corpora to extract the sentences from, we used three different types of texts in Italian,
in order to maximize the coverage of our contextual phrase vectors. The first was the Italian
version of Wikipedia, which is commonly used in the creation of distributional word vectors
(Bojanowski et al., 2017; Bommasani et al., 2020; Devlin et al., 2019). The second was the
Italian portion of the OpenSubs corpus of film subtitles (Tiedemann, 2012), since it has been
shown that subtitles allow for the creation of word vectors that can model psycholinguistic
phenomena better than generic written corpora (Mandera, Keuleers, & Brysbaert, 2017). The
third was ItWac, a corpus of Italian texts crawled from the Web (Baroni et al., 2009), which is
again a common choice in the field (Levy, Goldberg, & Dagan, 2015; Mandera et al., 2017).

We report in Appendix C in the Supplementary Materials an ablation study for ITGPT2,
focusing on how each the style of each corpus affects the vectorial representations for the
phrases (Appendix C, Fig. C.1). In it, we investigated the impact on encoding results of
removing sentences from one of the three corpora before representation pooling for the full-
phrase ITGPT2 (in fact, it was not possible to remove ItWac, as it was the only corpus contain-
ing at least one example per phrase). As it can be seen, using all three corpora led to superior
performance overall. Especially for the sense selection and light verb cases, using all three
corpora resulted in a clear improvement in encoding results. This validates our approach,
where the full set of corpora is used, and indicates that a mixture of styles seems to be bene-
ficial for representation pooling to be used in brain encoding.

In Fig. 4, we report the representational similarity between representations from ITGPT2 and
the concreteness models, indicating that they seem to capture rather different types of seman-
tic information. Full-phrase ITGPT2 correlates about the same with both concreteness models
(r = .208 for phrase concreteness, and r = .265 for single-words concreteness). Single-words
ITGPT2 is more similar to concreteness models than phrase ITGPT2 (r = .288 for single-words
concreteness, and r = .251 for phrase concreteness). Finally, correlations between simple and
complex models are moderate, indicating relevant differences among the two types of repre-
sentations (ITGPT2: r = .491; concreteness: r = .672).

4.2.4. Phrase ITGPT2
For phrase ITGPT2, the representations for each phrase are the ones obtained at the end of

the vector extraction procedure described in Section 4.2.3.

4.2.5. Single-words ITGPT2
For single-words ITGPT2, we used a methodology directly matched to the one used for

single-words concreteness, the cognitive model of simple composition. Through vector
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extraction (see Section 4.2.3), we obtained separate semantic representations for individual
verbs and nouns, just as was done for concreteness ratings (see Section 4.1.2). The repre-
sentations for the phrases were then composed by averaging the vectors for the verb and the
noun. This counts, as discussed above, as a simple method of meaning composition. Here,
the composition process does not alter in nonlinear ways the meaning of the parts being com-
posed, as is instead the case for phrase ITGPT2. It is important to underline that, for both
phrase ITGPT2 and single words ITGPT2, the vectors come from the same deep layers of the
same neural network. The crucial difference is that while the vectors for the phrases in phrase
ITGPT2 are contextualized phrase vectors, the representations of the phrases in single-words
ITGPT2 are averages of contextualized individual word vectors. This mirrors as closely as pos-
sible the difference between the two cognitive models, phrase concreteness and single-words
concreteness (see Section 4.1.2).

4.3. Signal-to-noise ratio

We also report so-called ceiling encoding values (Anderson et al., 2019, 2021; Nili et al.,
2014), which are a way to quantify the signal-to-noise ratio (SNR) in the fMRI data. The
ceiling value indicates to what extent the fMRI data in itself can be encoded—how distin-
guishable in the fMRI data are the patterns corresponding to the stimuli (Anderson et al.,
2019). The ceiling values were computed using exactly the same encoding setup (see Sec-
tion 5.2), with the exception that, as inputs, averaged fMRI responses from other subjects
(without any feature reduction) are employed instead of model representations.

Notice that, since ceiling values are obtained from mapping brain recordings between
subjects, they are in fact themselves “noisy” measurements. This is due, first, to the noise
inherent in the measurements, as well as noise related to inter-subject alignment—and we
assume that, increasing the sample size, estimates would be more precise (Cremers, Wager,
& Yarkoni, 2017; Desmond & Glover, 2002). Second, additional noise comes from the fact
that it is not defined exactly what type of information is contained in ceiling scores (Ander-
son et al., 2019). This means that they should not be considered as absolute upper bounds
on performance—in fact, top-performing models can provide performance above the SNR
ceiling (Anderson et al., 2019; Schrimpf et al., 2021). They should simply be interpreted
as a guide for the interpretation of the results: SNR ceiling values, in our case, provide an
approximate expectation of what level of performance a good model should be expected to
achieve.

Ceiling values are reported in the plots as gray shades (the ceiling value for each condition
is the liminal value where the gray shade disappears).

5. Brain encoding

5.1. Methodology

To find the mapping between brain data and models, we used the representational similarity
encoding framework of Anderson et al. (2016). Intuitively, this approach does not require to
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Fig. 5. Visualization of the RSA encoding procedure using a toy example with only three phrases. Here, we
consider a simple example, where we want to encode three brain images. In the RSA encoding framework, there
is no model to be fit to make the predictions, and only similarities in a given model are used. Starting from the
input (part A), which are similarities between phrases computed using a model (in our case, Pearson correlation
for language models and inverse of the absolute difference for concreteness ratings), the prediction for each phrase
(part C) is obtained as the sum of the real brain images for the words outside of the test set (in our example, the
brain images for phrase 2 and phrase 3 from part B), where each image is weighted by the similarity in the model
with the target phrase. Then, when all target images have been predicted, the leave-two-out pairwise evaluation
described in Section 5.2 takes place. Notice that, since in the actual evaluation each test set is composed of two
test items, not of one single item as is the case in this toy example, in our experiment when predicting the brain
images (part C), similarity to the other test item is not used to make the prediction.

fit a model: instead, it simply relies on pairwise similarities among brain images and model
representations in their native spaces to predict a brain image (encoding)— details are pro-
vided below.

This method, despite its simplicity, provides multiple advantages: excellent performance,
as shown in Anderson et al. (2016); straightforward interpretability in the framework of the
representational similarity analysis (RSA: Kriegeskorte et al., 2008; Kriegeskorte & Kievit,
2013); no risk of overfitting (Hosseini et al., 2020).

5.1.1. Representational Similarity Encoding
In encoding, the goal is to predict the brain response to a stimulus given its model

representation. In representational similarity encoding (Anderson et al., 2016), the brain
image for a given stimulus from the test set is modeled as the weighted sum of the brain
responses to the stimuli in the training set, where the weights are the pairwise Pearson
correlation between the test item and each training item. For instance, given a toy train-
ing set of three model representation for the phrases �a = read the book, �b = throw the book,
�c = copy the book and their corresponding brain images abrain, bbrain, cbrain, the brain response
dbrain to the test item d = open the book given its model representation �d would be computed
as dbrain = abrain ∗ r�a∗ �d + bbrain ∗ r�b∗ �d + cbrain ∗ r�c∗ �d where r is the operation of Pearson cor-
relation (see Fig. 5 for a visualization of this procedure).
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Fig. 6. Comparing encoding scores across models and composition modes. Left to right: accuracy of all stimuli
(overall) and the three modes of composition (see Section 5.2). The two cognitive models are in shades of blue and
the two language models are in shades of yellow. Complex models are in the respective darker shade. The Y-axis
represents the accuracy score, averaged across subjects. Bar heights correspond to average values, and average
scores for individual subjects are reported as dots. Ceiling values, which quantify the SNR—that is, the level of
best possible encoding or decoding of the fMRI data itself, are reported as inverted gray bars, going from 1. to the
ceiling accuracy value. The random baseline of 0.5 is indicated by a dotted line. We report the results of statistical
tests against the baseline as stars in the lower part of each bar (at a y value of slightly above 0.2); one star stands
for p < .05, two stars for p < .005, and three stars for p < .0005. Below the plots, we report pairwise statistical
comparisons for each possible pair of bars within each section of the plots, using squares whose color reflect
the model whose comparison is reported. All p-values are FDR-corrected (see Section 5.3). Complex models of
composition are always above chance with statistical significance, and better than simple models. The difference
between simple and complex models is also statistically significant in most cases.

5.2. Evaluation

In this study, we used leave-two-out pairwise evaluation, commonly used in brain encod-
ing studies involving vectorial computational models (Honari-Jahromi et al., 2021; Mitchell
et al., 2008; Pereira et al., 2018). This methodology is also suited to the representational
similarity encoding framework, as it was the one used in Anderson et al. (2016). This pro-
cedure is repeated for all possible pairs of stimuli within each subject. At each iteration,
the data are split into a train set, comprising all but two stimuli, and a test set, which
instead is made up by the two left-out stimuli. From the training set, predictions for the
two left-out stimuli are produced. The accuracy for an iteration is evaluated by comput-
ing the four Pearson correlations between the predicted and target vectors, and comparing
the “matched” and “mismatched” scores to obtain a binary evaluation score for the cur-
rent test iteration, where 1 equals correct decoding and 0 is for wrong decoding. Therefore,
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accuracy = 1, if corr( �target1, �̂target1) + corr( �target2, �̂target2) > corr( �target1, �̂target2) +
corr( �target2, �̂target1); else, encoding is considered unsuccessful, and accuracy = 0. The
assumption is that for the model to have learnt how to carry out the encoding means that
the overall correlation among correctly matched vectors should be higher than those for the
incorrectly matched vectors (Mitchell et al., 2008).

Scores across all iterations are then averaged within a subject. An average accuracy of 0.5
indicates chance performance, since the scores are binary. Encoding analyses are carried out
at the level of individual subjects, and then averaged across all subjects to provide the final
overall encoding score.

Note that, each round of pairwise evaluations measures to what extent the model has learnt
to generalize in the specific case of the categorical relation holding between the two test items
(Bruera & Poesio, 2022; Chyzhyk, Varoquaux, Milham, & Thirion, 2022; Elangovan, He, &
Verspoor, 2021; Grootswagers et al., 2017; Gorman & Bedrick, 2019; Lake & Baroni, 2018).
Therefore, it is possible to examine the results of different categorical relations separately. For
instance, we can examine to what extent the model captures semantic composition involving
light-verbs by looking at the accuracy of the iteration rounds that consist of phrases belonging
to the light-verb composition mode as the test stimuli (e.g., have the envelope vs. have the
flower).

5.3. Statistical testing and multiple comparisons correction

We ran two sets of statistical significance comparisons. First, we measured whether encod-
ing accuracies were reliably above chance (chance = 0.5) with one sample t-tests. Second,
we compared the results for each pair of representational models with one another and of each
pair of ROIs. For this, we used McNemar’s test, which is the standard way of comparing binary
scores produced by a machine learning model (Stkapor, 2017). p-Values were corrected with
the False Discovery Rate (FDR) procedure for multiple comparisons (Benjamini & Hochberg,
1995). We correct scores for multiple comparisons separately for encoding and decoding
and for each family of tests (t-tests and McNemar tests). Within a set of tests (e.g., t-tests),
all p-values are corrected using only one procedure (i.e., p-values for all models/ROIs are
concatenated and corrected using only one call of the function mne.stats. f dr_correct ion).
This ensures reliability of the correction procedures, avoiding incorrect rejection of the
null hypothesis.

6. Results

6.1. Encoding semantic composition in the language network

Phrase concreteness gives the best encoding scores for all composition cases,
with strong statistical significance (overall= 0.63, p < .0005, sense selection = 0.598, p =
.0105, transparent= 0.643, p = .0002, light verbs= 0.579, p = .0014). The single-words
concreteness model, despite often having statistically significant differences to the phrase con-
creteness model (poverall< .0005, psense selection= .4089, ptransparent< .0005, plight verbs= .0479),
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nevertheless reaches statistical significance in almost all composition cases (overall=
0.584, p = .0016, sense selection= 0.576, p = .0235, transparent= 0.575, p = .0253, light-
verbs= 0.539, p = .1154). This indicates that modeling verb-noun semantic composition in
terms of a graded concreteness space captures a lot of the signal present in the brain.

The performance of the contextualized language model, ITGPT2, shows the same pat-
tern of results as concreteness, although differences are slightly less pronounced. Phrase
ITGPT2 performs significantly better than chance across all cases (overall= 0.625, p = .0016,
sense selection= 0.608, p = .0018, transparent= 0.581, p = .0347, light verbs= 0.596, p =
.0406). In contrast, single-words ITGPT2 achieves statistical significance in all cases except
light verbs (overall= 0.604, p = .0061, sense selection= 0.566, p = .0481, transparent=
0.57, p = .0388, light verbs= 0.564, p = .1154). Phrase ITGPT2 outperforms single-words
ITGPT2 in all cases, and the difference between the two models reaches significance in
all cases except transparent composition (poverall< .0005, psense selection= .0110, ptransparent=
.7157, plight verbs= .0169). This suggests that, in the case of ITGPT2, the advantages provided
by adapting the semantic representation of the lexical items to the context—the key feature
which is exploited by phrase ITGPT2—allow us to capture quite well the nuances of fine-
grained semantic composition in the brain.

This picture is also confirmed by direct comparisons between the two complex mod-
els of composition (phrase concreteness rating and phrase ITGPT2). Overall, phrase con-
creteness shows better performance than phrase ITGPT2, but the difference is statistically
significant only for the transparent composition case (poverall= .7135, psense selection= .9025,
ptransparent= .0006, plight verbs= .6802). Phrase ITGPT2, by contrast, appears to capture better
than full-phrase concreteness ratings brain processing of verb-noun phrases containing light
verbs and, marginally, sense selection—however, the differences between the two models, as
reported above, do not reach statistical significance.

When looking at the simple models of composition, single-words concreteness is on a par
with single-words ITGPT2 for the sense selection and transparent cases (psense selection= .9025,
ptransparent< 1.), while the language model-based representations provide better encoding
scores for the overall (poverall= .0008) and light verbs (plight verbs= .3566) cases.

In summary, the encoding results show that overall the “complex” approach to semantic
composition—using a separate model for the entire phrase instead of computing its inter-
pretation from that of the words—explains brain processing of the stimuli better than simple
models. This pattern of results emerges primarily from the cognitive models, and is confirmed,
although with less strong effects, by computational language models.

6.2. Encoding polysemy in the language network

We also checked whether we could distinguish the concrete and the abstract senses of each
polysemous dot-object noun such as book (Fig. 7). We looked specifically at the subset of all
pairwise results where different senses of the same noun were left out as items within the test
sets (e.g., book as a physical object, as in open the book, and book as its informational content,
as in explain the book). The phrase concreteness model reaches statistically significant encod-
ing both for book and magazine (book = 0.652, p = .0221, accmagazine = 0.875, p = .0014).
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Fig. 7. Comparing encoding scores across models for the sense-selection mode. In the sense-selection mode,
results for the polysemic nouns are reported separately along the x-axis. Left to right: accuracy of the four pol-
ysemous dot-object nouns. The two cognitive models are in shades of blue and the two language models are in
shades of yellow. Complex models are in the respective darker shade. The Y-axis represents the accuracy score,
averaged across subjects. Bar heights correspond to average values, and average scores for individual subjects are
reported as dots. Ceiling values, which quantify the SNR—that is, the level of best possible encoding of the fMRI
data itself, are reported as inverted gray bars, going from 1. to the ceiling accuracy value. The random baseline
of 0.5 is indicated by a dotted line. We report the results of statistical tests against the baseline as stars in the
lower part of each bar (at a y value of slightly above 0.2); one star stands for p < .05, two stars for p < .005, and
three stars for p < .0005. Below the plots, we report pairwise statistical comparisons for each possible pair of bars
within each section of the plots, using squares whose color reflect the model whose comparison is reported. All
p-values are FDR-corrected (see Section 5.3). For the two senses of book, phrase concreteness provides the best
scores, followed by phrase ITGPT2—both reaching significantly above-chance performance. Magazine is the only
polyseme for which the two senses can be discriminated by all models.

The computational model of complex composition, phrase ITGPT2, shows largely similar
performance (bookITGPT2 = 0.604, p = .0396, magazineITGPT2 = 0.75, p = .0388). Simple
models of composition, by contrast, perform worse overall: single-words concreteness per-
forms well, but only approaches significance for book (booksingle−wordsconcreteness = 0.611, p =
.0638, magazinesingle−wordsconcreteness = 0.812, p = .0097), while single-words ITGPT2 shows
above chance performance just for magazine (magazinesingle−wordsITGPT2 = 0.812, p = .0116).
Note that these results need to be taken with caution given the limited amount of data. This is
particularly true for catalogue, magazine, and drawing, for which there are only two phrases
each. However, for book, where six phrases are available, we did achieve better performance,
and the pattern is similar to the sense selection results (reported in the first section to the left
in Fig. 6).
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Fig. 8. Results for encoding phrase concreteness ratings from fMRI across the five regions-of-interest (ROIs). The
Y-axis represents the accuracy score, averaged across subjects. Bar heights correspond to average values, and
average scores for individual subjects are reported as dots. Ceiling values, which quantify the SNR—that is, the
level of best possible encoding or decoding of the fMRI data itself, are reported as inverted gray bars, going from
1. to the ceiling accuracy value. The random baseline of 0.5 is indicated by a dotted line. We report the results of
statistical tests against the baseline as stars in the lower part of each bar (at a y value of slightly above 0.2); one
star stands for p < .05, two stars for p < .005, and three stars for p < .0005. Below the plots, we report pairwise
statistical comparisons for each possible pair of bars within each section of the plots, using squares whose color
reflect the model whose comparison is reported. All p-values are FDR-corrected (see Section 5.3). The left pSTS

is the only brain area where encoding from phrase concreteness is statistically significant for all composition
cases; the left IFG and the motor areas do so for the overall, the sense selection, and the transparent composition
cases.

6.3. Encoding semantic composition in individual brain areas

We used a separate encoding analysis to find out in which ROIs previously implicated
with semantic composition phrase concreteness could better predict brain activity related
to verb-noun semantic composition. In this case, we chose to run the encoding using the
phrase concreteness model only, since it is the model that theoretically captures most natu-
rally the effects of semantic composition in our stimuli (see Section 4.1). Results are shown in
Fig. 8.

The left pSTS (green in Fig. 8), the brain area which provides most of the voxels retained
after feature selection (see Fig. 1), showed significant accuracy across all cases (overall=
0.632, p < .0005; sense selection= 0.593, p = .013; transparent= 0.666, p < .0005; light
verbs= 0.592, p = .0013). Importantly, this is the only brain area where activity evoked by
light verb cases can be predicted with statistical significance; in this case, difference with
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other brain areas is strongly statistically significant too (plight verbs< .0005 for the vMPFC, the
left IFG, and the left ATL, and plight verbs= .014 for motor areas).

The left IFG (cyan in Fig. 8) shows overall good encoding performance, with statistically
significant scores in all cases except light verbs (overall= 0.596, p = .0012; sense selection=
0.593, p = .0096; transparent= 0.618, p = .0066; light verbs= 0.529, p = .0991).

The left ATL (purple in Fig. 8) shows lower performance than the left pSTS and the
IFG, but encoding is still significantly above chance—or very close to significance—in
all cases except light verbs (overall= 0.572, p = .0012; sense selection= 0.564, p = .054;
transparent= 0.583, p = .0233; light verbs= 0.524, p = .1572).

Outside of the language network, the vMPFC (pink in Fig. 8) shows the lowest average
performances and never reaches significance (overall= 0.516, p = .2246; sense selection=
0.526, p = .265; transparent= 0.529, p = .2302; light verbs= 0.489, p = .6691).

The most surprising results, however, come from the motor areas (black in Fig. 8).
Despite being numerically lower in the left pSTS and the left IFG, performance is signifi-
cantly above chance for all composition cases except sense selection, where it approaches
it anyways (overall= 0.582, p = .001; sense selection= 0.571, p = .0668; transparent=
0.577, p = .0287; light verbs= 0.556, p = .0288). This indicates clear involvement in pro-
cessing verb-noun semantic composition.

6.4. Encoding polysemy in individual brain areas

As in the language network analyses (Section 6.2), we also looked at encoding per-
formance for the senses of each polysemous dot-object noun. This was done to evaluate
where in the brain the concrete and the abstract senses of the dot-object nouns could be
distinguished. The results are similar to the ones reported in Section 6.2: phrase con-
creteness can reliably predict brain activity related to polysemy with different patterns
across brain areas. The two senses of book can be predicted with performance significantly
above chance only in the left IFG (bookle f t IFG = 0.625, p = .0482), whereas statistical
significance is only approached in all other areas (bookle f tAT L = 0.625, p = .054,
bookle f t pST S = 0.618, p = .0814, bookV MPFC = 0.59, p = .0836, bookmotor−areas =
0.59, p = .1022). For the word magazine, statistically significant performance is
found both inside and outside of the language network (magazineV MPFC = 0.875, p =
.0015, magazinemotor−areas = 0.812, p = .0132, magazinele f tAT L = 0.75, p = .0481,
magazinele f t pST S = 0.75, p = .048; the only exception is magazinele f t IFG = 0.687, p =
.1022). Finally, for catalogue and drawing, just as was the case in the analyses on the full lan-
guage network (Fig. 7), encoding is never statistically significant (catalogueV MPFC =
0.531, p = .4522, cataloguemotor−areas = 0.468, p = .6691, cataloguele f t IFG =
0.5, p = .5555, cataloguele f tAT L = 0.562, p = .3414, cataloguele f t pST S = 0.562, p =
.3299; drawingV MPFC = 0.375, p = .9147, drawingmotor−areas = 0.687, p = .0923,
drawingle f t IFG = 0.656, p = .0836, drawingle f tAT L = 0.375, p = .918, drawingle f t pST S =
0.562, p = .3108).
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7. Discussion

7.1. Graded concreteness is a powerful dimension for capturing the effect of composition in
the brain for verb-noun phrases

The encoding results in Figs. 6 and 7 show that graded concreteness is a powerful lens
through which to explore the effect on the brain of verb-noun semantic composition. In
particular, the judgments about phrase concreteness consistently provide a good model of
the brain response to the stimuli in our study. The simple, single-words concreteness rat-
ings also showed good encoding performance, though the accuracy was lower than with the
phrase concreteness model. This confirms previous reports that averaging individual repre-
sentations, despite being an apparently naïf approach, counts as a solid baseline mechanism
when accounting how individual components of meaning are composed in cognition (Ander-
son et al., 2017; Calvo & Mac Kim, 2013; Dinu et al., 2013; Thornton, Weaverdyck, & Tamir,
2019; Wu et al., 2022).

Overall, these findings support the view that concreteness is an important semantic dimen-
sion for these phrases; also, they would seem to provide evidence for concreteness as a con-
tinuous, rather than binary variable—a position which has become accepted recently (Borghi
et al., 2017; Sakreida et al., 2013).

7.2. ITGPT2 captures fine-grained meaning variation in the brain

Although ITGPT2 did not achieve as high a performance as directly using subjective con-
creteness ratings, we still found that it had the ability to capture the impact of the stimuli
on brain representation well above chance. This suggests that in the long run, contextual-
ized language models may become a potential alternative to rating data, which are difficult
and expensive to collect except for small-scale studies (Grand, Blank, Pereira, & Fedorenko,
2022).

The effectiveness of a model like ITGPT2 makes intuitive sense. Modification of the seman-
tic representations through semantic composition is the raison d’être of contextualized lan-
guage models, which represent each word as a complex, nonlinear function of the other words
surrounding them. Furthermore, our pattern of results is consistent with recent results in the
literature which clearly indicates that contextualized language models provide excellent fit
with brain data (Anderson et al., 2021; Bruera & Poesio, 2022; Caucheteux & King, 2022;
Goldstein et al., 2022; Jat et al., 2019; Sun, Wang, Zhang, & Zong, 2020; Schrimpf et al.,
2021). Note, however, that these previous works only considered either simple concepts or
longer, less controlled sentences, while our work focused on an intermediate unit—phrases—
and involved much more stringent testing: we used a strictly controlled modulation of con-
creteness and very specific cases of verb-noun composition. From this point of view, our
results provide stronger evidence that contextual language models are able to capture the sub-
tle variations in meaning elicited in the brain, since we focused on an extremely simple case
of verb-noun phrase, thus reducing confounds to a minimum.

Our results, however, also point to the current limitations of a model like ITGPT2. Like
in the case of concreteness ratings, we compared representations obtained from averaging
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individual words—that is, when creating representations composed in a simple, nonlinear
method, which has been shown, however, to be quite effective also in NLP (Dinu et al., 2013;
Herbelot & Baroni, 2017; Lazaridou, Marelli, & Baroni, 2017)—to the full-fledged, complex,
nonlinearly composed phrase representations from contextualized mentions of the phrases.
The contrast does indicate an advantage for phrase ITGPT2, the complex model of composi-
tion, with higher scores overall when compared to single-words ITGPT2. But the magnitude
of such differences is smaller than the one found with concreteness ratings. Furthermore, the
model based on full-phrase concreteness is overall better than phrase ITGPT2. The emerging
picture, therefore, indicates that extremely controlled fine-grained effects on semantic inter-
pretation triggered by composition are only partially captured by a contextualized language
model like ITGPT2. Future developments in the field, which is growing at an extremely fast
rate, will show whether such limitations can be overcome by having bigger models, or whether
a different approach needs to be taken altogether (Kirstain et al., 2022; Lenci et al., 2022).
We believe that, in this respect, our work can also provide relevant insights for NLP—in par-
ticular from the point of view of probing whether and how contextualized language models
handle composed meaning beyond individual words, such as constructions (Li, Zhu, Thomas,
Rudzicz, & Xu, 2022; Madabushi, Romain, Divjak, & Milin, 2020; Veenboer & Bloem,
2023; Weissweiler et al., 2023). With respect to this, the results reported in Appendix D in
the Supplementary Materials provide some insights. Converging with recent results showing
that creating larger models is not enough to better capture cognitive processing (de Varda &
Marelli, 2023; Oh & Schuler, 2023; Oh, Clark, & Schuler, 2022; Shain, Meister, Pimentel,
Cotterell, & Levy, 2022), we find that the smallest model (ITGPT2) provides the best encoding
performance overall. This seems to confirm that model size may not be the most important
factor in order to improve the mapping between contextualized language models and cogni-
tive processing, or at least not for all linguistic phenomena (but see Antonello et al., 2023 for a
different opinion). Also, when comparing the patterns of results across layers for single-words
and phrase ITGPT2 (Figs. F.1 and F.2 from Appendix F in the Supplementary Materials),
it is clear that contextualization is a key factor in determining the differences among the
models’ representations. For phrase ITGPT2, the complex model of composition, performance
increases dramatically as layers progress and as more contextualization takes place (top
performance is at layer 23). On the contrary for its simple counterpart, single-words ITGPT2,
contextualization is much less important, and the peak of performance is reached much earlier
(layer 11).

In other words, our findings provide original evidence with respect to why contextual-
ized language models are able to capture cognitive language processes (for a discussion on
the theoretical import of this, see also Günther et al., 2019, and Antonello and & Huth,
2022). These results indicate that one of the key features in modeling linguistic process-
ing in the brain with computational means is modeling complex, nonlinear ways in which
constituents need to be modified by the process of composition itself—giving rise to a holis-
tic representation of the phrase whose properties go beyond those of their parts (see fur-
ther discussion of this view in Section 7.3: Joshi & Schabes, 1997; Kay & Michaelis, 2019;
Pustejovsky, 1998).
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7.3. Evidence for construction-based semantic composition in the brain

We would argue that our results about learning mappings with concreteness judgments and
with computational language models have implications for theoretical accounts of minimal
verb-noun composition: specifically, they suggest that meaning resulting from semantic com-
position in the verb phrases under study is not purely compositional.

The first and main piece of evidence comes from mapping simple and complex composition
to and from concreteness models—in the first case, modeling a phrase’s semantic representa-
tion as a simple average of the individual word’s representations (single-words concreteness),
and in the second case, assuming that complex, nonlinear semantic composition is carried out
by the subjects providing the concreteness ratings for the full phrases (phrase concreteness).
The second piece of evidence, which is, however, only confirmatory, as it is less strong, comes
from the results with language models. Semantic dimensions are not directly interpretable in
such models (Boleda & Erk, 2015), but they do provide the advantage of modeling differently,
and more explicitly, the way in which semantic representations compose and are modified by
the process of composition.

The results summarized in Fig. 6 show that both with concreteness judgments and language
models, modeling semantic composition at the phrase level gives significantly more accurate
results than modeling at the word level. This pattern of results emerges very clearly partic-
ularly for the cognitive model based on concreteness, indicating that a more holistic model
of semantic composition provides a better description of how the brain processes verb-noun
composition. Specifically, in the complex (phrase-level) models, the representations of the
individual words are modified in complex, nonlinear ways. We hypothesize, therefore, that
in verb-noun composition, the interpretation of the constituents is modified by the process
of composition itself. In other words, composition does not simply combine the interpre-
tations of the constituents recursively computed bottom up, but may modify or select the
semantic representations it acts upon—and therefore, some of the properties of the resulting
phrase representation go beyond its parts (Culicover, Jackendoff, & Audring, 2017; Puste-
jovsky, 1998). This more complex view of composition is consistent with the more recent
accounts developed in linguistics, such as the Generative Lexicon (Pustejovsky, 1998), Lex-
icalized Tree-Adjoining Grammar (Joshi & Schabes, 1997), Construction Grammar (Kay &
Michaelis, 2019), or Head-Driven Phrase Structure Grammar (HPSG) (Pollard & Sag, 1994).

We nevertheless acknowledge that alternative models could have been used for simple com-
position. This point may be raised especially from the perspective of computational linguis-
tics and NLP, where much research has been dedicated to this subject (see Section 4.2.1).
However, it is important to notice that our model of simple semantic composition—based
on averaging individual representations—is motivated by two main factors. First of all, it is
completely unsupervised, whereas more sophisticated methods used in NLP often make use
of supervised learning of composed representations. The main issue about using a supervised
approach here would have been choosing the target for training—an a priori “golden” rep-
resentation of composed semantic representation. This would have introduced circularity in
our analyses: it would have required us to assume in advance what a good model of semantic
composition in the brain is—which was, however, one of the core questions motivating this
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work. Second, among the unsupervised ways of composing semantic representations, averag-
ing provides the main advantages of transparency and effectiveness, which has been proved in
both cognitively oriented and NLP-oriented studies (Anderson et al., 2017; Calvo & Mac Kim,
2013; Dinu et al., 2013; Gregori et al., 2020; Herbelot & Baroni, 2017; Lazaridou et al., 2017;
Thornton et al., 2019; Wu et al., 2022).

We would like to underline that our results do not rule out that simple composition (so-
called “pure” compositionality) can capture any facet at all of semantic composition in the
brain. In fact, our results indicate that models of simple composition, based on averaging,
can actually explain brain activity to a good extent for some cases of composition (see, for
instance, Fig. 6). Our main point, however, is different. We believe that our results suggest
that, in order to properly explain how fine-grained meaning variation is captured in the brain
through semantic composition, a more complex, holistic model of compositionality is needed.
In such a model, individual representations are modified by the process of composition itself
in complex ways, and the resulting composed meaning goes beyond the sum of its parts.
In such a view, the complexity of the mechanisms behind semantic compositionality varies
from case to case—and while in some basic instances, pure compositionality can go a long
way in explaining cognitive processing, complex compositionality allows to also accommo-
date more subtle cases, like sense selection, together with the more coarse-grained examples
of composition.

7.4. Verb-noun semantic composition in the language network

Brain imaging studies of semantic composition have provided (sometimes contrasting) evi-
dence that different brain regions are involved, including the left inferior frontal gyrus (IFG)
(Husband et al., 2011; Schell et al., 2017), the left anterior temporal lobe (ATL) (Pylkkänen,
2020), and the left posterior superior temporal sulcus (pSTS) (Murphy et al., 2022).

In our study, we focus on three linguistically motivated, very specific and distinct cases of
semantic composition within the verb-noun semantic composition phrases (sense selection,
transparent composition, and light-verb phrases; see Section 3.1 for details). This approach
allows us to obtain a detailed picture with respect to verb-noun semantic composition in the
brain, revealing which previously reported brain areas support each mode of composition,
and consequently, whether each case of composition depends on specific neural processes
or not.

As shown in Fig. 8, each ROI contains variable amounts of information related to semantic
composition depending on the composition case. This implies that sense selection, transparent
composition, and light-verb phrases involve partially different brain processes and resources;
such a view, in turn, is compatible with linguistic theories of semantic composition, which
propose a similar picture (Jackendoff, 1997; Pustejovsky, 1998). Our results not only confirm
the framework provided by theoretical linguists with respect to the differences among these
cases, but they also offer ways to reconcile the apparently contradictory accounts of the neural
bases of semantic composition. Overall, our results found across the different composition
modes are compatible with the presence of a gradient of preferential involvement of different
brain regions depending on the characteristics of the specific composition case.
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First, the pSTS was found to be the only area strongly involved in all composition cases,
with encoding performance being always statistically significant—importantly, it is the only
brain area where light-verb phrases could be encoded with statistical significance, and signif-
icantly better than all other areas (see Section 6.1). This suggests that it may play a general
role in semantic composition processes, with no clear specialization (Matchin & Hickok,
2020; Murphy et al., 2022). Second, with respect to the left ATL, it showed significant per-
formance for the overall and transparent composition cases, and very close to significance
for sense selection (p = .0504). This is consistent with the view that this area is relevant for
modality-independent conceptual representation and combination (Pylkkänen, 2020)—and,
we add, holistic modification of the representations through composition (cf. above). Third,
regarding the left IFG, encoding reaches statistical significance in all cases except light-verbs,
including the polyseme book. This involvement in all cases where concreteness is modulated,
even in extremely fine-grained cases such as dot-objects, can be explained by proposing that
activation patterns in the IFG are differentially modulated by abstract and concrete stimuli,
with possible additional effects due to processing of composition (Schell et al., 2017)—an
explanation dovetails nicely with a solid body of previous results connecting concreteness
and the IFG (e.g., Binder et al., 2005; Della Rosa et al., 2018, reviewed in Bucur & Papagno,
2021).

7.5. Semantic composition outside of the language network

Brain areas outside of the language network have also been associated with semantic com-
position. We have considered two such cases: the vMPFC, which according to Pylkkänen
(2020) should reflect late processing of composition; and a set of motor areas (the precen-
tral gyrus and the SMC) which (Sakreida et al., 2013) found to be activated by modulation
of concreteness in verb-noun phrases. The involvement of the two areas would be associ-
ated with different functionalities: the vMPFC should be involved in the process of compo-
sition itself according to Pylkkänen (2020), whereas motor areas are meant to be involved
in the semantic representation of phrase meaning, depending on the level of concreteness
(Sakreida et al., 2013)—a hypothesis stemming from the embodied cognition framework
(Barsalouet al., 2008), and concurring with recent proposals which describe semantic process-
ing in the brain as an integration of multi-modal information (Binder et al., 2016; Jackson,
2021; Pulvermüller, 2013; Lambon Ralph et al., 2017).

In our analyses on individual brain areas, summarized in Figs. 8 and 9, the vMPFC does
not appear to be much involved in semantic composition, since encoding scores are almost
never significantly better than chance. This result would appear to be in line with other reports
that vMPFC involvement with semantic composition cannot be always replicated (Pylkkänen,
2020). We interpret this as providing further evidence that the role of the vMPFC in semantic
composition is not confirmed, and may indeed depend on MEG-specific artifacts or to the task
at hand (i.e., whether language production is involved or not)—two explanations proposed in
Pylkkänen (2020).

In motor areas, by contrast, we were able to encode brain activity with accuracy above
chance not only for all of the composition cases (see Fig. 8; notice that sense selection only
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Fig. 9. Encoding brain activity from phrase concreteness for different senses of the same word (representing a
dot-object) within the sense selection case across the five regions-of-interest (ROIs). The Y-axis represents the
accuracy score, averaged across subjects. Bar heights correspond to average values, and average scores for indi-
vidual subjects are reported as dots. Ceiling values, which quantify the SNR—that is, the level of best possible
encoding or decoding of the fMRI data itself, are reported as inverted gray bars, going from 1. to the ceiling accu-
racy value. The random baseline of 0.5 is indicated by a dotted line. We report the results of statistical tests against
the baseline as stars in the lower part of each bar (at a y value of slightly above 0.2); one star stands for p < .05,
two stars for p < .005, and three stars for p < .0005. Below the plots, we report pairwise statistical comparisons
for each possible pair of bars within each section of the plots, using squares whose color reflect the model whose
comparison is reported. All p-values are FDR-corrected. Results show that brain activity associated with the two
senses for book can be reliably encoded only in the the left IFG, but performance approaches significance also for
the left ATL (p = .054). For the word magazine, the opposite pattern emerges—encoding performance is statisti-
cally significant for all areas except the left IFG. The two senses for catalogue and drawing, by contrast, cannot be
distinguished reliably in any brain area.

approaches statistical significance, with p = .0668), but also for the two senses of maga-
zine (see Fig. 9). Thus, with respect to the neural bases of semantic processing, our results
confirm a graded recruitment of motor areas during language comprehension modulated by
fine-grained semantic shifts in concreteness, as already proposed by Sakreida et al. (2013)
and fitting with larger pictures of semantics in the brain (Binder et al., 2016; Jackson, 2021;
Lambon Ralph et al., 2017).

Notice, however, that our results do not bear directly on the debate on embodied cognition
and the role of experiential simulation during language comprehension (Mahon & Caramazza,
2008; Meteyard, Cuadrado, Bahrami, & Vigliocco, 2012; Zwaan, 2014). Encoding analyses
such as ours only allow us to say that semantic information can explain patterns of activity
in motor areas evoked by language. This is compatible with current theories of semantics as
a process integrating multi-modal and supra-modal, linguistic features (Lambon Ralph et al.,
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2017), but it cannot speak as per how and when in semantic processing these areas were
recruited, something which would instead be needed in order to make a claim in favor of
strong theories of embodied cognition (Meteyard et al., 2012).

7.6. Encoding word senses

Finally, the sense selection stimuli give us some—very preliminary—evidence on the
extent to which we can retrieve the distinction between word senses for book-type dot-objects
in the brain. These results are particularly relevant for the debate on the cognitive represen-
tation of polysemic lexical items, as it is unclear whether all polysemes should show the
same type of cognitive processing, or instead polysemy should work idiosyncratically in each
case, possibly interacting with the prototypicality of each noun as a dot-object—for example,
book would be a more prototypical case of the sense alternation between physical object-
informational content than magazine (Haber & Poesio, 2021). The results reported in Fig. 7
seem to speak in favor of the latter; notice, however, that they cannot be seen as anything
more than as underlined above (see Section 6.2), given the small number of examples.

All polysemous words show different patterns of encoding accuracies, both for ceiling and
for the various models, and only some of them can be encoded with accuracy significantly
above chance or approaching statistical significance—namely, book and magazine. This sug-
gests that each polyseme has to be characterized using different models, and possibly different
cognitive and neural processes, depending on its specific properties.

Finally, being able to encode the two senses for book and magazine using GPT-2 indicates
that a contextual language model can capture extremely fine-grained information about dif-
ferent senses of words as they are processed in the brain. This represents, to our knowledge,
an original finding. This is promising, but further work will be needed to qualify on the one
hand, how brain processing changes from one polyseme to another (cf. above), and on the
other hand, which types of polysemes are best captured by contextual language models, and
why (cf. Haber & Poesio, 2021).

8. Conclusion

During language comprehension, the interpretation of words and phrases varies slightly
depending on the context, triggering fine-grained meaning variation, and in some cases, evok-
ing different so-called word senses: for instance, the polysemous noun book refers to a phys-
ical object when it is preceded by the verb open, and instead refers to a piece of information
when the verb copy is used before it.

In this work, we investigated the neural basis of such fine-grained shifts in lexical seman-
tics modulated by semantic composition in Italian verb-noun phrases. We used a multivariate
approach, encoding brain activity using cognitive and computational models. We first com-
pared the performance of four models at encoding brain representations of verb-noun phrases
within the language network. Two models were based on cognitive data—concreteness
ratings—and two were computational—their representations were extracted from ITGPT2, a
contextualized language model for Italian based on the GPT family of models (Radford et al.,
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2019). Within each family of models (cognitive and computational), we created representa-
tions that captured either complex semantic composition, where the individual lexical repre-
sentations are modified in nonlinear ways during composition, or simple composition, where
constituents are simply put together through averaging, but not modified.

Then, we also carried out analyses on individual brain areas using the best model (phrase
concreteness). We looked at brain areas previously proposed in the literature to be implicated
with verb-noun semantic composition, both within the language network (left IFG, left ATL,
left pSTS) and outside of it (vMPFC, motor areas).

Our results provide a detailed picture with respect to both theoretical and empirical ques-
tions related to semantic composition. Regarding the more theoretical side, comparing differ-
ent models (Sections 6.1 and 6.2) sheds light on the mechanisms behind semantic composi-
tion in the brain. Phrase-based (“complex”) models were consistently better than word-based
(“simple”) models. This seems to suggest that semantic composition in the brain does not
simply involve the application of a shallow composition process, but instead modifies in non-
linear ways the representations over which semantic composition operates.

Looking at separate brain areas (Sections 6.3 and 6.4) allowed us, by contrast, to investi-
gate the neural bases of fine-grained semantic shifts triggered by semantic composition. Two
brain areas seemed to most consistently contain information regarding semantic composition.
The first one was the left pSTS, inside the language network. This confirms its previously pro-
posed role as a generic substrate for combinatory processes. The second one, which is more
surprising as it falls outside of the language network, was a set of motor areas (the precentral
gyrus and the SMC). This suggests that during semantic composition, modality-specific infor-
mation (in this case, motor representations of the actions described in the phrase) is recruited.
Additionally, the left IFG and the left ATL also seemed to be relevant for semantic composition,
although less consistently. Finally, our results add to previous results casting doubts on the
role of the vMPFC in semantic composition.

We were also able to encode different senses for some, but not all, polysemous words, both
with concreteness models and computational language models—an indication that polysemy
can be captured in the brain, but it is a multifaceted and idiosyncratic process.
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Notes

1 With a few exceptions, most notably the work by Erk and Padó (2008) and Schütze
(1998).

2 The preprocessed fMRI data, the code to replicate the analyses, as well as the figures,
evaluations, sentences, and word vectors extracted from language models, can be found
at a dedicated repository on the Open Science Foundation website at this link: https:
//osf.io/sphn4/.

3 The brain masks were downloaded from https://evlab.mit.edu/funcloc/.
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Additional supporting information may be found
online in the Supporting Information section at the end
of the article.

Fig. A.1: Encoding scores for the various composition
cases using a whole-brain analysis.

Fig. A.2: Encoding scores for polysemy cases using a
whole-brain analysis.

Fig. A.3: Features used for encoding (across subjects)
using the whole-brain approach.

Fig. B.1: Time-resolved encoding scores for
phrase concreteness.

Fig. B.2: Time-resolved encoding scores for
phrase ITGPT2.

Fig. B.3: Time-resolved encoding scores for single-
words concreteness.

Fig. B.4: Time-resolved encoding scores for single-
words ITGPT2.

Fig. C.1: Encoding scores for the various composition
cases using ITGPT2 with different combinations of cor-
pora as sources for the sentences to be used for represen-
tation pooling.

Fig. D.1: Encoding scores for the various composition
cases using progressively bigger versions of XGLM.

Fig. E.1: Encoding scores for the various composi-
tion cases using fasttext, a state-of-the-art static lan-
guage model.

Fig. F.1: Layer-by layer encoding scores for the vari-
ous composition cases using phrase ITGPT2.

Fig. F.2: Layer-by layer encoding scores for the vari-
ous composition cases using single-words ITGPT2.
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