English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enantiomorph conversion in single crystals of the Weyl semimetal CoSi

MPS-Authors
/persons/resource/persons126563

Carrillo-Cabrera,  Wilder
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126855

Simon,  Paul
Paul Simon, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126835

Schmidt,  Marcus
Marcus Schmidt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126702

König,  Markus
Markus König, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126541

Borrmann,  Horst
Horst Borrmann, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Carrillo-Cabrera, W., Simon, P., Schmidt, M., König, M., Borrmann, H., Winkelmann, A., et al. (2023). Enantiomorph conversion in single crystals of the Weyl semimetal CoSi. Communications Materials, 4(1): 109, pp. 1-9. doi:10.1038/s43246-023-00434-8.


Cite as: https://hdl.handle.net/21.11116/0000-000E-35AB-6
Abstract
Chiral intermetallic phases may show unusual chemical and physical properties with nontrivial structure-property relationship. It is therefore of particular interest to study the structural conversion between domains of different handedness. Here, the atomic decoration of the enantiomorph exchange area within single crystal of the Weyl semimetal CoSi is determined by a combination of atomic-resolution scanning transmission electron microscopy imaging, single crystal X-ray diffraction and quantum chemical analysis of atomic interactions. Two-atomic [CoSi] units are shown to be the bonding base for the FeSi-type structure and may be considered as ‘pseudo-molecules’, thinking of molecular organic crystals. Tiny reorganisation of atomic interactions within these units results in the appearance of sequence ‘faults’ in the structure pattern i.e. in a different structural motif in the enantiomorph exchange area, which – contrary to the A and B enantiomorphs of CoSi – contains an inversion centre and allows a local enantiomorph ‘conversion’. Due to the special features of atomic interactions, the reorganisation of multi-atomic bonds leads to slightly higher total energy. This appears within one and the same grain which is prepared by the short distance chemical vapor transport.