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ABSTRACT: The knowledge of electrochemical activation en-
ergies under applied potential conditions is a prerequisite for
understanding catalytic activity at electrochemical interfaces. Here,
we present a new set of methods that can compute electrochemical
barriers with accuracy comparable to that of constant potential
grand canonical approaches, without the explicit need for a
potentiostat. Instead, we Legendre transform a set of constant
charge, canonical reaction paths. Additional straightforward
approximations offer the possibility to compute electrochemical
barriers at a fraction of computational cost and complexity, and the
analytical inclusion of geometric response highlights the
importance of incorporating electronic as well as the geometric
degrees of freedom when evaluating electrochemical barriers.

1. INTRODUCTION
Understanding electrocatalytic activity on the atomic scale is
essential for improving electrochemical energy transformation
devices. While thermodynamic considerations are hereby
sufficient to understand the differences between materials en
gros,1−3 a quantitative understanding of catalytic activity,
selectivity, and stability can only be achieved by knowledge of
the kinetic processes, in particular electrochemical activation
energies. Assessing them from ab initio calculations, e.g., via
density functional theory (DFT), is, however, complicated by
the compositional and configurational complexity of the
interface. In addition, the reorientation of polar molecules,
charge transfer, and charge rearrangement during reactions in
finite computational cells at fixed electron number causes
dramatic changes in the interfacial potential drop during the
reaction, making it difficult to assess reaction energetics at
constant potential conditions.4−9

Gratifyingly, most of these issues are remedied when
describing the interface natively at applied electrode potential,
where the number of electrons is adjusted to fulfill the constant
potential boundary condition. However, such setups neces-
sitate an appropriate electrolyte model that can counterbalance
the electronic excess charges. While this poses a major obstacle
for implementing such schemes in an all-explicit frame-
work,10−13 corresponding calculations at finite excess charge
are straightforward in implicit−explicit setups.6,14−17 Here, a
DFT cell is coupled to a continuum solvent model that
naturally provides electrolyte counter charges, and the major
challenge rather lies in the availability of an efficient and stable
potentiostat implementation. Most common potentiostat
methods adjust the number of excess electrons ne after each

electronic self-consistent field (SCF) step in an outer loop
until the electrode potential matches the target poten-
tial.6,14,15,18−20 More effective methods use an inner loop to
adjust the potential within the SCF.16,21 However, both
approaches often require lower SCF convergence thresholds in
order to reduce numerical instabilities, leading to increased
computational cost and even convergence failures, which at
least can be improved with more advanced potentiostat
algorithms.20

In this work, we present a new set of methods that can
compute adiabatic grand canonical electrochemical barriers
within such implicit−explicit setups with accuracy comparable
to that of constant potential approaches without requiring an
explicit potentiostat. The methods extend on our previous
works22−25 that clarified that constant potential energetics can
be simply obtained by the Legendre transform of an
interpolated, constant charge energy landscape. In particular,
we demonstrate that transition states for the proton adsorption
on Au(111)�that proceeds adiabatically�26 as obtained from
a set of constant potential Nudged Elastic Band (NEB)
calculations can be fully reproduced from a set of constant
charge NEB calculations.
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Furthermore, we test the accuracy of a variety of
computationally more efficient approximate methods based
on a second-order Taylor expansion of charge and potential
dependencies. The simplest method involves a single constant
charge NEB calculation that fully accounts for the electronic
response to the applied potential to linear order, providing the
activation barrier and its linear potential dependence. More
refined methods that account for second-order electronic
effects and geometric responses can be obtained in a
straightforward way with a handful of additional charged
single point and/or additional charged NEB calculations.
In addition to offering new pathways toward computation-

ally efficient electrochemical barrier evaluations, our detailed
analysis provides a concise view on how electronic and
geometric response properties affect the observed potential
dependencies.

2. METHODS
We evaluate the electrochemical barrier of a prototypical
reaction�the acidic proton adsorption on Au(111) via the
Volmer step

* + + *+H e H (1)

performing DFT calculations with GPAW,27,28 the BEEF-vdW
exchange−correlation functional,29 the Solvated Jellium Model
(SJM)6 as continuum representation of the electrolyte, and the
Atomic Simulation Environment (ASE).30 We model the
transfer from a single hydronium ion surrounded by implicit
solvent to a 3 × 3 Au(111) surface slab of four atomic layers
thickness, of which the bottom two layers are frozen in the
bulk geometry. All geometries were optimized until the force
on each atom was below 0.03 eV/Å for local minima and for
transition states below 0.05 eV/Å, the structures are shown in
Figure S1. When used for Hessian calculations, these
thresholds were reduced to 0.01 and 0.03 eV/Å, respectively.
For optimization of local minima, we use the BFGS algorithm;
for determining the transition states, we use the dynamic,
climbing image Nudged Elastic Band (dyNEB) algorithm,31−34

and for Hessian calculations the vibrations module, as
implemented in ASE.30 We perform both standard canonical
DFT calculations with a fixed excess charge q (commonly
called constant charge calculations) as well as grand canonical
DFT calculations at fixed absolute electrode potential U using
the built-in potentiostat of SJM (constant potential calculations)
and show how the grand canonical energetics can equally be
derived from standard canonical calculations. All computa-
tional parameters are given in the Supporting Information.

3. RESULTS AND DISCUSSION
In general, the reaction path is characterized as the minimum
energy path between two local minima on a potential energy
surface (PES). In an electrochemical context, the relevant PES
is grand canonical in the electronic degrees of freedom, where
the electron number adjusts according to the externally applied
potential. However, a grand canonical PES (gcPES) does not
intrinsically contain more information than a constant charge,
canonical PES (cPES), as both thermodynamic ensembles are
directly linked to each other via a Legendre transform. Hence,
as long as there is sufficient overlap, e.g., between sampled
potentials or electron numbers, one can map both onto each
other identically.
These ideas have already been used to study the properties

of adsorbates at electrified metallic surfaces,22−25 and in this

work, we apply them to the problem of studying electro-
chemical transition states. We will demonstrate how equivalent
energetic information can be retrieved from transition state
searches performed applying a potentiostat in order to satisfy
the constant potential condition and at constant charge
conditions, where the potential varies along the reaction
coordinate.
The main difference between these two methods is the

direction in which the gcPES is explored, as illustrated in
Figure 1. While barrier calculations applying a potentiostat

assess the gcPES along the straight constant potential lines
(bright green), we can similarly explore the equivalent gcPES
along the curved constant charge lines (orange) using grand
canonical energies derived from constant charge calculations.
As the underlying gcPES is identical, all relevant energy
differences, e.g., electrochemical barriers, can be identically
obtained, which we demonstrate in the present work for the
example of the Volmer reaction on Au(111).
We will denote the three characteristic stationary states of

our reaction path as in Figure 1 as initial state (IS, proton at
water molecule in the first layer), transition state (TS), and
final state (FS, Hydrogen adsorbed on a hollow hcp site).
3.1. Grand Canonical Energies from Canonical

Calculations. Since the three characteristic states, IS, TS,
and FS, are of identical composition, they represent different
regions on the same PES. A direct comparison of their
potential energy E(q,r)⃗ from canonical DFT lacks the constant
potential condition custom to electrochemistry. In order to
introduce this latter condition, a Legendre transform needs to
be performed, which transforms E(q,r)⃗ at a given excess charge
q to the grand canonical energy U r( , ) at the respective
electrode potential =U q r q r( , ) ( , )E

q
by referencing any

change in q to an external electron bath with a well-defined
electrochemical potential μ̃e = −eU:6,11,35−38

=U E q U q U U( ) ( ( )) ( ) (2)

Figure 1. Illustration of the absolute grand canonical PES along the
reaction path in dependence of absolute electrode potential U.
Constant potential paths are shown as bright green lines, and constant
charge paths are shown as orange lines. Note the slight shift of the
transition state position r∥⃗TS indicated by points along each path.
Details of this illustration can be found in the Supporting Information.
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at a given r.⃗
However, just as a cPES is meaningful only at a fixed number

of excess electrons ne = −q/e, a gcPES is meaningful only at
fixed electrode potential U, requiring the use of a potentiostat
that adjusts ne such that U = const.
Considering that canonical forces F⃗ at a constant charge q

are identical to the grand canonical forces at the respective
constant electrode potential U(q),39−41

= = =r U q F r q( , ( ) const. ) ( , const. ) (3)

Using the grand canonical energy and forces in combination
with a potentiostat provides all relevant quantities that are
necessary for common geometry optimizations or transition
state search algorithms, which evaluate the PES of the system.
While this use of a potentiostat for directly returning the

gcPES is appealing, to this date, only a few DFT codes provide
a computationally efficient potentiostat.6,15,17

However, the equivalence of forces of the canonical and
grand canonical PES (eq 3) implies that a geometrically
stationary point r*⃗, i.e., a local extremum or a saddle point,
determined in one PES is also a stationary point in the other
PES.40−42 This allows evaluating stationary points in the cPES
at certain excess charges qi using structure relaxations or
transition state search algorithms yielding ri⃗* and Ui*, Legendre
transform their energies Ei* = E(qi, ri⃗*) to the grand canonical
energies * = * *U r( , )i i i , and obtain the identical states with
identical grand canonical energies as if we searched for ri⃗* and

*i at Ui* in the gcPES. However, the electrode potentials Ui*
corresponding to the excess charges qi will differ for the
different stationary states IS, TS, and FS.
The situation is illustrated in Figure 2, where we show the

grand canonical energy of IS, TS, and FS as a function of

potential determined by structure relaxations and NEB
calculations on the cPES at different excess charges (indicated
by points) in comparison with calculations using a potentiostat
(indicated by diamonds).
Both approaches yield essentially identical results, the only

difference being that the potentiostat aligns all corresponding

data points vertically at the chosen potentials, thus allowing us
to directly compute energy differences, e.g., reaction energies
or kinetic barriers, in a point-wise manner.
3.2. Approaches Based on Multiple Canonical NEB

Calculations. The detailed procedures of the presented
methods are outlined in the Supporting Information.

3.2.1. Inter-/Extrapolation Including Geometric Response.
Evidently, instead of using a potentiostat, we can equally
interpolate the grand canonical energy of a geometrically
stationary state * = *U U r U( ) ( , ( )) by choosing an
appropriate interpolation method in the potential range that
is fully covered by the explicitly calculated data points at
varying charge qi. It might additionally benefit from the first
derivative of the grand canonical energy of a stationary state,
which is given by the excess charge41

*
= * = +

*
=

U
U

U
U r U

U
r
U

q
d
d

( )
d
d

( , ( ))

(4)

since = q
U

and = = 0 for stationary points:

* = * * *
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d
d
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interp interp
(5)

In Figure 2, we show the interpolation using a cubic Hermite
spline, taking into account the slope as solid lines. It yields
excellent agreement with the data from the potentiostat
calculations�especially considering that canonical and poten-
tiostat-based results are derived from separate geometric
relaxations and NEBs. Given a fine enough grid of excess
charges qi, the specific choice of an interpolation function is
hereby of no great importance.
This interpolation-based method can, in principle, re-create

the same results as a calculation using a potentiostat and
requires multiple NEB calculations in order to cover the
desired potential range and resolution. Considering that the
analysis of transition paths across a range of electrode
potentials, which is typically of central interest, necessitates
similar interpolation across a set of constant potential results,
the central difference between the present canonical-based and
established potentiostat-based barrier calculations lies only in
the sequential ordering of interpolation and Legendre
transform.
One drawback of the interpolation-based method is its

limitation to the potential range that is explicitly covered by
the chosen qi. However, as evident from Figure 2, the potential
dependence of the grand canonical energy of a stationary state
is not very complex and typically well described by a parabolic
capacitor-like expression recognized and exploited in a wide
range of previous works considering the grand or the canonical
ensemble.5,7−9,22−25,38,43−47 In line with the common practice
in the field,48 we refer to the second-order expansion
coefficient as capacitance, noting that it does not directly
relate to the experimentally observable capacitance. Consider-
ing that * U( ) always exhibits a maximum at the potential
UPZC* where the given state exhibits zero excess charge (qPZC =
0 in eq 4, cf. ref 49), we can write

* = * * * +U C U U U( )
1
2

( ) ( )extrap PZC total PZC
2 3

(6)

where *PZC, UPZC* , and the capacitances Ctotal* can for now be
considered simple, constant fit parameters unique to every

Figure 2. Inter-/extrapolated grand canonical energies of initial,
transition, and final state as a function of absolute electrode potential
derived from eight constant charge climbing image NEBs for q =
−0.555, −0,444, ..., 0.222 e (from left to right) in comparison with
potentiostat results (diamonds). Cubic Hermite spline interpolation
as solid lines, quadratic extrapolation as light solidlines.
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stationary state describing the parabolic potential dependence
of U r( , ) along r*⃗(U). Using a parabolic model function
allows a physically sensible and accurate extrapolation to
potentials outside the range explicitly calculated, while the
accuracy difference to higher-order interpolation methods, e.g.,
a cubic Hermite spline interpolation, is negligible, as shown in
Figure 2. Keep in mind, however, that other systems might
exhibit a more complex potential dependence, where the
capacitance is a potential-dependent quantity.
As a word of caution, besides the deviations caused by

higher-order contributions at potentials far from UPZC* , a special
case might arise when a stationary state becomes energetically
unstable, dropping into a second nearby local minimum/saddle
point (which translates into a discontinuity of r*⃗(U)), leading
to an abrupt change in the grand canonical energetics. In such
a case of a competing state, we would have to consider that
alternative state in the same manner but separately in the
energetics. We emphasize, however, that these special cases are
not specific to our method but equally have to be considered in
the potentiostat method or any other electrochemical barrier
method.
3.3. Approaches Based on a Single Canonical NEB

Calculation. The parabolic extrapolation formula eq 6
exhibits only three free parameters, which can be obtained
by performing multiple, but only a few, charged NEB
calculations. However, if we knew Ctotal* , then it would be
possible to parametrize eq 6 directly from only a single,
converged, constant charge NEB calculation. As we demon-
strate in the following, Ctotal* can indeed be approximated at
various levels of detail and accuracy without performing
additional NEB calculations. At the crudest level, we can
approximate Ctotal* by a single value Csingle that is constant and
independent of the considered state of the surface. In a first
more refined approach, we approximate Ctotal* for each of the
stationary states IS, FS, and TS by only considering the
electronic response with * =*

*C C q
Utotal el , i.e., at r*⃗ = const.

The most accurate method further includes the effect of
geometric response, which can be expressed as a geometric
capacitance contribution where Ctotal* = Cel* + Cgeom* .41

Note also that while it is reasonable to perform the
geometric optimizations�relaxations and TS search�atqPZC
= 0, one can determine it equally at any given q, e.g., if some
states are not accessible (stable) at zero excess charge (see the
Supporting Information).

3.3.1. Single Capacitance Approximation: SC. Let us
consider now the crudest of approximations, where we assume
Ctotal* ≈ Csingle to be identical for all considered states and
potentials. While using a single, invariable capacitance seems
oversimplistic, a corresponding approximation is very common
in electrochemical contexts, e.g., in barrier calculations based
on the charge extrapolation5 or the mean potential method7−9

or in the description of adsorption under applied potential
conditions within an effective dipole-field approximation.43

Considering that our explicitly determined values for Ctotal* are
24.0 μF/cm2 (IS), 16.7 μF/cm2 (TS), and 18.6 μF/cm2 (FS),
the SC approximation seems not overdramatic for the present
system. This is evidenced by comparing the grand canonical
reference results with the predictions obtained from the single
canonical NEB, single capacitance (SC) approximation (Figure
3, diamonds and dotted lines, respectively). The agreement is
certainly impressive, considering that the reference results are
obtained from multiple, grand canonical, constant potential

NEB calculations while the SC results are obtained from a
single canonical NEB at qPZC = 0 and with Csingle = 18.2 μF/
cm2 determined from a finite difference evaluation of

= *C q
Usingle based on a set of five charged SCF calculations

(qi = ± 0.222, ± 0.111, 0.0 e) of a Au(111) surface without a
proton but only with a water molecule that is geometrically
fixed at r*⃗(qPZC = 0) = const. As a final remark, if Csingle is not
explicitly computed but assumed (e.g., based on experimental
data), the SC method can equally be applied to infer constant
potential barriers, only based on a single canonical, qPZC = 0
NEB calculation, which removes even the necessity of an
appropriate counter charge model (e.g., implicit solvent
environment).

3.3.2. Electronic Capacitance Approximation: EC. The
approximation following SC in complexity is straightforward:
instead of assuming identical capacitances for all three states,
we approximate them independently by probing the purely
electronic response of each state. This approach considers only
the explicit dependence of *U r U( , ( )) on U while keeping
r*⃗ = rP⃗ZC* fixed at the geometry of the stationary point at qPZC =
0. Mathematically, this corresponds to a second-order
expansion only in the electronic degrees of freedom around
each state’s PZC:

* = * * * +

+

U C U U U

U

( )
1
2

( ) ( )

( )

el PZC el PZC
2

geom
2

el
3 (7)

where Cel* is considered constant. Practically, this equation is
parametrized by performing first a single geometry optimiza-
tion at constant qPZC = 0, followed by charged electronic SCF
calculations (qi = ± 0.222, ± 0.111 e) at fixed geometry for
each of the states of interest, which yields all necessary
information on the electronic response properties. The
resulting EC results are shown as crosses and dashed-dotted
lines in Figure 3. The missing geometric response leads to

Figure 3. Grand canonical energies of IS, TS, and FS in the SC, EC,
and EGC approximation (dotted, dashed-dotted, and dashed lines) in
comparison to extrapolated (light solid lines) and reference
potentiostat results (diamonds). The electronic SCF calculations
used for determining the electronic capacitance of the EC approach
are shown as crosses. While SC and EC results lead to reasonable
agreement with the reference data, the EGC approximation agrees
nearly perfectly with the extrapolated and reference results. Note the
large contributions of geometric effects for IS and TS (difference
between EC and EGC (dashed-dotted and dashed lines)).
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larger deviations at potentials further away from each UPZC* ,
which leads us to the final set of approximate, single-shot
barrier methods that include further the geometric response up
to second order.

3.3.3. Electronic and Geometric Capacitance Approxima-
tion: EGC. Until now, we either approximated the potential-
dependent grand canonical energy of a stationary state

* = *U U r U( ) ( , ( )) ignoring the individual geometric
response r*⃗(U) of each stationary state (SC and EC
approximation), or we directly sampled and inter-/extrapolated
Ui* and *i with accurate geometric response ri⃗* by performing
multiple geometry optimizations at various qi.
We can, however, also follow an expansion-type approach

for the geometric response, i.e., evaluate how r(⃗U) responds to
a change in potential U analytically. For this, we expand the
grand canonical energy U r( , ) in both U and r ⃗ around a
stationary point, e.g., (U°*, r°⃗*), yielding a 3N + 1-dimensional
parabolic expression + U r( , )el geom that is accurate up to
second order in U and r ⃗ around U°*, r°⃗*. The stationarity

condition * =!U r U( , ( )) 0 then yields the linear geometric
shift of r(⃗U) and finally * = *+ +U U r U( ) ( , ( ))el geom el geom .
Due to their length and general importance, the mathematical
details of this analysis are reported separately in ref 41; a
shorter summary is given in the Supporting Information.
Such derived potential dependence of the grand canonical

energy of a stationary point is given by

* = * * + * *

+

+ U C C U U

U

( )
1
2

( )( )

( )

el geom PZC el geom PZC
2

3 (8)

* = * * *C q qT
geom

1
(9)

where we consider an expansion around the PZC, without loss
of generality (see the Supporting Information). Here, Cel*, as
above, denotes the purely electronic capacitance, * 1

the
inverse of the 3N × 3N-dimensional, grand canonical Hessian
and ∇⃗q* the 3N-dimensional gradient of the excess charge in
the 3N spatial degrees of freedom�all properties being
evaluated at UPZC* and rP⃗ZC* and considered constant (see the
Supporting Information for a discussion of the potential
dependence of Cgeom* ). We can obtain the required properties
from a common (grand canonical) Hessian calculation, i.e., a
finite-differences evaluation of the changes of forces

=i j r,
i

j
and excess charge =q( )j

q
rj

caused by a

displacement of the system along one of the 3N atom
coordinates rj while using a potentiostat to maintain constant
potential conditions. The value of ∇⃗q can equally be

determined as
U

�the change of force caused by a change
in potential U (see the Supporting Information or refs9,41).
However, following the spirit of this work, we rewrite this

expression into purely canonical quantities and thus para-
metrize it based on constant charge calculations only. For this,
we make use of the general relation between the grand
canonical Hessian and the canonical Hessian H:41

= H C U UT
el (10)

where the gradient of the electrode potential ∇⃗U is closely
related to its grand canonical counterpart�the gradient of the
excess charge ∇⃗q�via:41

=q C Uel (11)

Note that the electronic capacitance Cel is identical in the
canonical and grand canonical ensemble and that all quantities
depend on the respective independent variables r ⃗ and U or q.41

Similar to the grand canonical case, performing a common
canonical Hessian calculation yields both H and ∇⃗U, i.e., all
quantities needed in order to derive and ∇⃗q, and finally,
Cgeom* via eqs 11, 10, and 9. For an exhaustive mathematical
derivation, explanation, and discussion, we encourage the
interested reader to follow the derivation in the Supporting
Information or ref 41.
The corresponding energetics using Cgeom* derived from

purely canonical calculations at qPZC = 0 are plotted in Figure 3
as dashed lines. The analytically derived, Hessian-based result

*+el geom and the fitted, parabolic expression *
extrap agree

perfectly, reflecting the relevance of accounting for the
potential-induced geometric displacements. Instead of per-
forming multiple NEB calculations, we can equally derive the
quadratic potential dependence, including geometric effects, by
performing only a single NEB calculation in combination with
additional single point calculations to obtain the Hessian and
Cel. As a consequence, we can get results that are essentially as
good as the multi-NEB approach at a dramatically reduced
effort and computational cost. The impact of including
geometric effects is in fact even more significant when
considering the actual activation energies, i.e., the energetic
difference between transition state and resting states, as we
show in the following.
3.4. Kinetic Barriers. Activation energies between a resting

state α = IS, FS and the transition state TS, i.e., for the forward
and backward reaction, are given by the respective energy
differences =TS TS . For simplicity, here, we only
consider the states discussed until now, i.e., the forward barrier
with respect to the proton in the interfacial water layer. The
interested reader finds the same analysis for an initial state that
considers the proton in the bulk electrolyte in the Supporting
Information.18,40

First, we compare the inter- and extrapolated results
obtained from multiple canonical NEB calculations using a
parabolic fit, which are shown in Figure 4 as dark and light blue
solid lines, with the potentiostat-derived reference results
(diamonds).
The excellent agreement between these results, with

maximum deviations smaller than 20 meV, demonstrates that
the quadratic extrapolation of constant charge calculations can
already re-create the nonlinear barrier changes with potential.
The nonlinearity originates from the TS shifting toward the
energetically less favored state (in the case of the forward
barrier, the IS for low potentials, and vice versa for the reverse
barrier).18,40,50,51

Of the approximate expansion-type methods based on a
single canonical NEB calculation, unsurprisingly, the Hessian-
based EGC method performs the best (dashed orange lines). It
essentially re-creates the extrapolated results that require
multiple canonical NEB calculations, indicating that the
individual electronic and geometric responses of the respective
states determine the nonlinear potential dependence of the
barrier.
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When we include only the pure electronic response
individually for all involved states (EC approximation) or
even only a single, constant capacitance (SC approximation),
we obtain a slightly different picture. Here, predictive accuracy
is only obtained in close vicinity of the potentials that are
explicitly probed by the constant charge NEB (vertical lines in
Figure 4). In particular, the methods fail to reproduce the
nonlinear potential dependence across the studied potential
window. While the SC approximation can only describe a
linear potential dependency by construction, since the identical
quadratic contributions cancel out, the nonlinear potential
dependence obtained within the EC approximation is markedly
different from the actually observed trend. This is especially
evident for the backward, TS-FS barrier (cf. Figure 4). This
clarifies that the seemingly more refined EC approximation
that accounts for differences in the purely electronic response
at IS, FS, and TS does indeed not improve upon the simplistic
approach with only one single, constant electronic capacitance.
As such, it highlights the importance of accounting not only for

the electronic but also for the geometric response systemati-
cally, as also pointed out by others before.48

We can even go a step further and evaluate the origin of the
nonlinear potential dependence of the activation energies by
dissecting it into its various contributions. Within the present
quadratic approximations, we obtain for the linear and
quadratic potential dependencies

=
U

C U U C U U( ) ( )
TS

total PZC total
TS

PZC
TS

(12)

=
U

C C
2 TS

2 total total
TS

(13)

Hence, within the SC approximation, where Ctotalα = CtotalTS =
Csingle, the nonlinear term vanishes and the linear term is simply
given by the differences in the potentials of zero excess charge
CsingleΔUPZC

TS−α, identical to the potential dependence in an
effective dipole-field approximation.43 Already, with the
simplest method, we can thus determine the linear potential
dependence, in essence, the electrochemical symmetry factor
relative to the state α.
As evident from eq 13, nonlinearities originate from

capacitance differences between the considered states, which
can be split into electronic and geometric contributions:

= +
U

C C C C( ) ( )
2 TS

2 el
TS

el geom
TS

geom (14)

Note that the local minima α and the transition state differ in
one significant property: along the reaction path, the transition
state is a local maximum. Following this idea, let us consider a
case where geometric response occurs only along the transition
path coordinate ξ, i.e., a purely one-dimensional problem. In
this case, we find that

= <

i
k
jjj y

{
zzz

C 0

q
r

geom,
TS

TS 2

,
TS

(15)

since the reaction path ξ is a normal mode of the grand
canonical Hessian with a negative eigenvalue < 0,

TS (cf. ref
41). In contrast, Cgeom,ξα > 0 for the local minima IS and FS,
since > 0, is positive. These opposing contributions are
the reason why the geometric response leads to a lower total
capacitance in comparison to the purely electronic description
for the TS (the dashed EGC approximation lies above the
dotted EC in Figure 3) but a higher total capacitance for the IS
and the FS (EGC lies below the EC in Figure 3). These
considerations clarify that there is a distinct difference in the
geometric response of resting states and transition states,
which drive the overall curvature

U

2 TS

2 toward positive
values (cf. Figure 4) leading to the observed convex nonlinear
potential dependence of the activation barrier.
In order to assess the validity of this simplified, one-

dimensional analysis of the geometric influence on electro-
chemical barriers, we reevaluate the EGC approximation while
only taking the geometric response along the reaction path ξ
into account. Essentially, we analytically include the effect of
the potential-dependent geometric shift of the transition state
along the reaction path, as indicated in the inset of Figure 1 by
points. The EξGC results are plotted as green lines in Figure 4,
which demonstrates that, indeed, most of the geometric

Figure 4. Comparison of kinetic forward and reverse barriers in
dependence of the absolute electrode potential. Multiple NEB
calculations-based methods (blue solid lines): interpolation (dark),
extrapolation (light). Single-NEB methods (orange lines): EGC
(electronic + geometric, dashed), EC (electronic only, dashed-
dotted), and SC (single capacitance, dotted). Reference potentiostat
data is shown as dark blue diamonds. Note the strong influence of
geometric effects, i.e., the difference between EGC (dashed) and EC
approximation (dashed-dotted), which are, to a large extent,
originating from contributions along the reaction path ξ (EξGC,
bright green lines). The PZCs of the relevant states UPZC* , which are
accurately probed by the q = 0 NEB used for SC, EC, EGC, and
EξGC, are indicated by light vertical lines.
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contributions originate from the response along the reaction
path, at least for the studied system.
We want to emphasize that since ξ represents an eigenmode

of the grand canonical Hessian at the TS, we can obtain Cgeom,ξTS

either by diagonalizing TS and selecting the respective
component to evaluate eq 15, or, even simpler, by determining
the local curvatures of along the reaction path at the
transition state. Simplifying even more by neglecting the
differences between the direction of canonical and grand
canonical normal modes, we can calculate Cgeom,ξTS from only a
single canonical NEB calculation (see the Supporting
Information). The latter method thus removes the necessity
to compute the full Hessians and can instead be directly
evaluated from the already performed canonical NEB
calculation, as long as the resolution along the path is
sufficiently dense. As a result, this approximation makes the
most efficient use of all of the data already available from a
single NEB calculation.

4. CONCLUSIONS
In this work, we derive accurate electrochemical constant
potential activation energies from common, canonical constant
charge calculations, in principle removing the need for using a
potentiostat. This is achieved by exploiting the special
properties of geometrically stationary points in the grand
canonical and canonical PES.
Furthermore, we show that the grand canonical energetics of

the relevant states of the Volmer step on Au(111) are
described with excellent accuracy using a second-order
polynomial in the potential U�implying that the entire
potential-dependent energetics can be derived from a single
constant charge NEB calculation�as long as the second-order
expansion coefficient, the capacitance Ctotal, is determined
accurately enough.
Leveraging this, we present a set of highly efficient methods

at various degrees of accuracy: from a rough estimate based on
a single, state-independent capacitance, capturing already the
linear potential dependence of electrochemical barriers, via
inclusion of the state-specific but purely electronic response to
finally an accurate analytical incorporation of all geometric
degrees of freedom to second order, which essentially re-
creates the nonlinear potential dependence of electrochemical
barriers obtained from multiple NEB calculations.
Our analysis furthermore highlights the central importance

of considering the geometric response, in particular along the
reaction path coordinate in the case of electrochemical barriers.
More generally, we show that the geometric response of
stationary points can be mapped onto a geometric
capacitance�with contributions at transition states opposite
to that at local resting states. These analytic second-order
results remain valid in the vicinity of the sampled data, even for
other systems where higher-order contributions might become
more relevant.
Besides the practical use of the presented methods, e.g.,

efficient high throughput studies, this work provides a detailed
qualitative and quantitative understanding on the importance
of geometric effects in first-principles simulations of electro-
chemical interfaces.
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