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ABSTRACT
Second-order nonlinear spectroscopy is becoming an increasingly important technique in the study of interfacial systems owing to
its marked ability to study molecular structures and interactions. The properties of such a system under investigation are contained
within their intrinsic second-order susceptibilities which are mapped onto the measured nonlinear signals (e.g. sum-frequency gener-
ation) through the applied experimental settings. Despite this yielding a plethora of information, many crucial aspects of molecular
systems typically remain elusive, for example the depth distributions, molecular orientation and local dielectric properties of its con-
stituent chromophores. Here, it is shown that this information is contained within the phase of the measured signal and, critically,
can be extracted through measurement of multiple nonlinear pathways (both the sum-frequency and difference-frequency output sig-
nals). Furthermore, it is shown that this novel information can directly be correlated to the characteristic vibrational spectra, enabling
a new type of advanced sample characterization and a profound analysis of interfacial molecular structures. The theory underly-
ing the different contributions to the measured phase of distinct nonlinear pathways is derived, after which the presented phase
disentanglement methodology is experimentally demonstrated for model systems of self-assembled monolayers on several metallic sub-
strates. The obtained phases of the local fields are compared to the corresponding phases of the nonlinear Fresnel factors calculated
through the commonly used theoretical model, the three-layer model. It is found that, despite its rather crude assumptions, the
model yields remarkable similarity to the experimentally obtained values, thus providing validation of the model for many sample
classes.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169534

INTRODUCTION

Over the last few decades, second order vibrational spec-
troscopic techniques, such as sum-frequency generation (SFG)
spectroscopy, have had an enormous impact on our understanding
of molecular systems due to the wealth of information that they
can reveal. Like their linear counterparts, these techniques can
be employed to analyse microscopic structures and molecular
compositions, but, due to the highly restrictive symmetry

selection rules of second order nonlinear processes, important
additional information can be obtained. Examples are molec-
ular symmetry, spatial order, or molecular orientation.1–3 It is
these peculiar selection rules that also make SFG particularly
useful for the study of interfacial systems. Within the elec-
tric dipole approximation, these techniques probe anisotropic
environments which, for the majority of materials, are only
present in interfacial regions.4 For this reason, SFG spec-
troscopy has been used to make many significant advances in the
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understanding of the structure and interactions at a large range of
interfaces.1,5–7

Despite the vast range of accessible information, for a
full description of a molecular system (especially at interfaces)
even more important parameters are required. Additional key
information includes, for example, details about the spatial (depth)
distributions of its constituent chromophores, characteristics of
the local dielectric environments, and, crucially, how these cor-
relate to the other observables. Gaining access to such corre-
lated information would open up the possibility to new types
of sample studies and to a far deeper understanding of the
molecular structures at interfaces. However, these parameters have
so far been highly challenging to access through spectroscopic
measurements, although this information is generally encoded
within the measured nonlinear response, more precisely in their
phases.

In second order techniques, the spectroscopic information is
governed by the second order susceptibility of the system. In this
context, it is important to distinguish between two types of sus-
ceptibilities, namely, the intrinsic susceptibility which is directly
associated with the properties of the molecular system (and thus
independent of how the sample is being probed), and the mea-
sured (effective) susceptibility which is influenced by the intrinsic
response, but also contains other extrinsic (experimental) factors
which can be modulated. Clear examples of this modulation are
polarisation- or angular-dependent measurements which vary the
contributions of different tensor components of the intrinsic sus-
ceptibility to the measured susceptibility. Such an approach is com-
monly exploited to obtain insight into the molecular symmetry.1
Beyond the angular and polarisation control, permutation of the
frequencies within the nonlinear light–matter interaction (probing
different interaction pathways) also represents such a modulation,
although it has not yet been fully exploited. In this contribution,
it is shown how such a frequency permutation, through measur-
ing both phase-sensitive SFG and difference-frequency generation
(DFG) responses, can be used to precisely determine both depth
distributions of the chromophores and information on their local
dielectric environments.

As mentioned above the key to such information is the phase
of the measured susceptibility. Explicitly, the overall phase of the
measured second order response can be broken down into three
contributions:

1. Firstly, the intrinsic resonant contributions of the chro-
mophores will change phase from 0 to ±π (or vice versa) as
the IR beam passes through the resonant frequency. There-
fore, the combination of resonances within a spectral region
will yield a strong contribution to the overall phase, poten-
tially exploring the entire phase-space across the spectrum.8
This is the phase of the intrinsic susceptibility, denoted here
as φR(ω), and can be used to access the details of the molecu-
lar orientation based on the absolute sign of the phase of each
resonance and the direction of the corresponding transition
dipole vector.

2. Secondly, the propagation path length of the involved beams
will also influence the phase of the measured signal.9–11

This contribution to the overall phase is denoted as φP(ω)
and is directly linked to the depth coordinate of the

corresponding chromophore via the specific wave vector mis-
match of the involved beams. Whilst this phase will contin-
uously cycle from 0 to 2π for an isolated chromophore at
increasing depths, with a distribution of chromophores fol-
lowing a decaying functional form the propagation phase of
the integrated response is well-defined, yielding an unambigu-
ous depth coordinate.

3. Lastly, in the presence of an absorbing material, the nonlinear
Fresnel factors, which govern the local fields in the vicinity of a
chromophore, will become complex and thus also contribute
a phase to the overall measured susceptibility.12 This will be
denoted φL(ω) and has a frequency dependence dictated by
the complex refractive index of the absorbing medium. There-
fore, the relative contributions of dispersion and absorption
to the local dielectric function are exactly accessible from this
phase.

Therefore, the overall phase of the measured susceptibility will be
constructed as in Eq. (1),

φ(ω) = φR(ω) + φP(ω) + φL(ω) (1)

with the first contribution representing the phase of the intrin-
sic susceptibility and the other two being extrinsic contribu-
tions arising from the details of experimental measurement of
the chromophore(s). Although the two extrinsic contributions,
φP(ω) and φL(ω), only appear due to the sample being probed
and thus depend on the specific experimental settings, they obvi-
ously report on intrinsic properties of the system. Specifically,
the depth distribution of each chromophore and local dielectric
properties (which are not contained within the intrinsic suscep-
tibility) are mapped onto the effective susceptibility through the
measurement process. To make the spectroscopic information con-
tained within these different phase contributions accessible, the sum
in Eq. (1) must be decomposed. Unfortunately, such a decom-
position is not generally possible solely through measuring the
response from single phase-sensitive second order pathway (e.g.,
just SFG alone). As will be shown here, this challenge can be over-
come by the combined measurement of phase-sensitive SFG and
DFG as this modulates (via sign flips) the phases of the extrin-
sic contributions, φP(ω) and φL(ω). This concept is schemati-
cally depicted in Fig. 1, showing the different phase contributions
for the SFG and DFG pathways along with their corresponding
susceptibilities.

Besides the described benefit of gaining direct access to the
desired correlated information on depth coordinates and local
dielectric environments, there is another important aspect that
makes such a phase decomposition often indispensable: by elim-
inating the extrinsic contributions, the “true,” intrinsic response
of the molecular systems being probed can be determined with
great accuracy. This is particularly relevant for substrates where
the extrinsic phase contributions are significant, such as interfaces
with a high degree of ordering through large depths, or those at
metal surfaces which are strongly absorbing.13 For example, both
of these effects are present in electrochemical systems where the
metallic electrodes with applied potentials can lead to substantial
extrinsic phase contributions. As a result, the measured (uncor-
rected) vibrational line-shapes show significant spectral distortions
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FIG. 1. Schematic depiction of the different phase contributions to the measured
susceptibility, χ(2)

eff , namely the intrinsic phase, φR, the propagation phase, φP ,
and the local field phase, φL.

which often largely prohibit a detailed spectral analysis and may eas-
ily lead to incorrect interpretations of the obtained results.14,15 A
precise decomposition of the overall measured phase into intrin-
sic and extrinsic contributions can then efficiently overcome this
challenge.

In this contribution, the concept of disentangling the measured
phase into its constituents by means of pathway-selective second
order measurements is presented theoretically and experimentally.
One aspect of this concept has previously been presented for
the example of systems containing a propagation phase on non-
absorbing substrates (thus possessing no local field phase), where
the method was shown to yield high spatial accuracy reaching the
sub-nanometre length-scale.16 Here, the theoretical considerations
are generalised and derived from first principles. This includes a
quantum-mechanical derivation of the different induced nonlinear
polarisations for each pathway, as well as how they are mapped onto
to the experimentally measured SFG and DFG signals. Although
many theoretical descriptions of nonlinear optics can be found
elsewhere in the literature,9,17–19 the detailed description of both
SFG and DFG responses given here extends beyond the general
concepts which are commonly presented, particularly through
consideration of intrinsic responses arising from a subset of
the entire frequency-space, extension of permutation symmetry
arguments in the experimentally relevant scenarios of ground state
restriction and vibrational resonance, and, importantly, how these
intrinsic susceptibilities are related to the measured responses. This
sets out the combined SFG/DFG technique on a broad theoretical
foundation. The now generalised concept also includes local field
phase contributions, which are shown to be equally separable
from the intrinsic phase as was the propagation phase. Finally,
this concept is experimentally validated by a series of SFG and
DFG measurements on selected model samples of self-assembled
monolayers (SAMs) formed on metal surfaces, comparing the
obtained results with the common theoretical model (three-layer
model, 3LM).18,19

THEORETICAL CONSIDERATIONS

The technique presented in this work is based on disentangling
and extracting components from the phase of the measured second
order responses probing different Liouville pathways, specifically the
SFG and DFG output fields. As mentioned in the introduction, the
response in both cases is described by the effective second order sus-
ceptibility, which is markedly different from the intrinsic response
that directly arises from the molecular hyperpolarisabilities, as it is
also affected by both the driving fields and the emitted field. This
distinction between intrinsic and effective responses will be essential
for the understanding of the theoretical description of the presented
method.

To make meaningful comparisons between the effective SFG
and DFG responses, it is important to consider circumstances under
which they are equal, and those where they are not. In the fol-
lowing theoretical considerations, the two intrinsic responses will
be broken down to their quantum mechanical origins in order
to derive the conditions of equality, ultimately showing that this
occurs in most cases. Thereafter, the (measured) effective sus-
ceptibilities will be compared where they are shown to generally
differ for different pathways. These differences originate from the
extrinsic phase contributions relating to the interaction of the
driving fields with the chromophore in its specific environment
[i.e., local field and spatial (depth) origin]. It is thus these devi-
ations between the measured SFG and DFG responses that are
exploited in disentangling the intrinsic and extrinsic phase con-
tributions to the effective susceptibility and obtaining the desired
information.

As a final note, when contrasting SFG with DFG, there are two
distinct and relevant cases that will be addressed. Firstly, SFG and
DFG responses can be generated simultaneously within one experi-
mental setting, where both relate to the same two input frequencies
but different output frequencies, as in Eq. (2). Secondly, there are
SFG and DFG responses which both involve the same three frequen-
cies that have just been interchanged, as in Eq. (3), but must arise
from two separate experiments since they require different input fre-
quencies. In the following theoretical considerations, both cases will
be explored and discussed.

χ̃ (2)(ω2 + ω1, ω2, ω1) vs χ̃ (2)(−ω2 + ω1,−ω2, ω1) (2)

χ̃ (2)(ω2 + ω1, ω2, ω1) vs χ̃ (2)(−ω2,−ω2 − ω1, ω1) (3)

It is clear that the expressions in Eqs. (2) and (3) only con-
sider half of each conjugate pair of the overall measured SFG
and DFG responses, with the other side of each being equiva-
lent, but with negation of the frequency arguments and phase
contributions. Whilst the choice of using the specific responses
in Eqs. (2) and (3) is due to them both having positive ω1 (so
they can be directly plotted together and have equal resonant
phase contributions) and being corresponding terms in the per-
mutation symmetry relations (see later), the choice is otherwise
arbitrary and has no impact on the phase disentanglement that is
possible through this method. The theoretical considerations pre-
sented here can be trivially converted to any other combination of
either part of the SFG conjugate pairing with either from the DFG,
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purely by flipping the corresponding signs of the frequencies and
phases.

A summary of the detailed theoretical descriptions given below
is as follows: in the first step, the correlation functions contributing
to the intrinsic SFG and DFG responses will be derived quan-
tum mechanically, accounting for ground state restrictions and
resonant interactions that are commonplace in vibrational mea-
surements. Secondly, the comparison between the two intrinsic
responses will be discussed both from the perspective of permuta-
tion symmetry [aligning with Eq. (3)] and for the two responses
arising from the same measurement [i.e., Eq. (2)]. Thereafter,
the discussion will navigate towards the extrinsic phase contri-
butions, culminating in expressions for the measured SFG and
DFG responses being derived and how their comparison can
lead to a disentanglement of the intrinsic and extrinsic phase
contributions.

Interaction pathways in the second order response

The theory underlying nonlinear optics has been developed
and reviewed in great detail, with full descriptions and deriva-
tions of the quantum mechanical equations found elsewhere in the
literature.9,17–19 Here, a brief summary of the relevant Liouville path-
way considerations is given based on the semi-classical approach
for the overall Hamiltonian. Although this can be applied to both
comparisons between SFG and DFG [described by Eqs. (2) and (3)],
only the simultaneous responses described by Eq. (2) are considered
in this part [where the equivalent expressions based on Eq. (3) can
be extracted by a simple frequency shift of the two high frequency
arguments].

In nonlinear spectroscopies, the generated fields arise through
multiple interactions between the incident field(s), which consist of
positive and negative frequency components (conjugate pairs), and
the molecular dipoles. This describes the interaction Hamiltonian
which can be substituted into the Liouville equation to derive
different elements of the density matrix after each interaction.
The result is that each component of the interaction Hamiltonian,
V = −μ ⋅ E, (i.e., both positive and negative frequencies) can act on
either the bra or ket side of the density matrix, ρ, as shown for the
interaction with a single field E(t) resulting in a transition between
states “a” and “b” in Eq. (4) (summing over all real states, “p,” of the
system).

⟨b∣[V(t), ρ]∣a⟩ = −(En(t) + E∗n (t)) ⋅∑
p

μbpρpa − ρbpμpa (4)

Therefore, for each interaction, there are four unique routes.
The positive terms in Eq. (4) involve interaction with the bra side
of the density matrix whereas negative terms indicate an interac-
tion with the ket side. Of these, those involving the En(t) part of
the field correspond to a positive frequency interaction (absorption
on the ket side, Aket , and stimulated emission on the bra side, Sbra)
and those with E∗n (t) correspond to a negative frequency interaction
(stimulated emission on the ket side, Sket , and absorption on the bra
side, Abra). It is hence trivial to identify that two interactions with
the same field will yield 16 possible pathways, half of which describe
second harmonic generation (SHG) and the other half optical rec-
tification (OR).20–22 A more detailed description of these different
pathways, how they relate to the common derivation of the second

order susceptibility, and which are allowed from the ground state
can be found in Appendix A.

By extending the concepts above to the case of two interactions
with two different fields, one can generate the typical description
of the general second order response. The overall second order
polarisation, P(2)(t), can be given as in Eq. (5), summing over
the different permutations of the incident fields. This contains
16 different χ̃ (2) components (intrinsic susceptibilities), each with
four correlation functions which correspond to unique pathways
through Liouville space. As an example, the χ̃ (2)(ωm + ωn, ωm, ωn)

component (with all positive frequencies) is contributed to by the
correlation functions corresponding to the following four Liou-
ville pathways: Aket(En)→ Aket(Em), Aket(En)→ Sbra(Em), Sbra(En)

→ Aket(Em), and Sbra(En)→ Sbra(Em). Overall, therefore, the 16
pathways discussed above for two interactions with the same field
are expanded to 64.

P(2)i (t) = ε0

1,2

∑
m,n

x,y,z

∑
j,k
∫

∞

−∞

dωm∫

∞

−∞

dωn

χ̃(2)ijk (ωm + ωn, ωm, ωn) : Ej(ωm)Ek(ωn)e−i(ωm+ωn)t

+ χ̃(2)ijk (ωm − ωn, ωm,−ωn) : Ej(ωm)E∗k (ωn)e−i(ωm−ωn)t

+ χ̃(2)ijk (−ωm + ωn,−ωm, ωn) : E∗j (ωm)Ek(ωn)e−i(−ωm+ωn)t

+ χ̃(2)ijk (−ωm − ωn,−ωm,−ωn) : E∗j (ωm)E∗k (ωn)e−i(−ωm−ωn)t

(5)

As discussed in Appendix A for the SHG/OR case, each path-
way can be portrayed in a grid format such as that in Table I,
with each cell corresponding to a unique correlation function. Note
that half correspond to complex conjugates of the other half, and
thus will not contain unique information. On assuming an initial
ground state population, a reasonable assumption for vibrational
spectroscopy as ω≫ kT, the 64 pathways significantly reduce to 22
non-zero terms. These are highlighted in Table I, with four rep-
resenting SHG (orange), four SFG (red), eight OR (green) and six
DFG (blue). The asymmetry between OR and DFG should be noted
as arising from two disallowed pathways in the latter [Aket(E1)

→ Sket(E2) and its conjugate, Abra(E1)→ Sbra(E2)] that arise from
having two different frequency input fields (where one cannot have
stimulated emission of the higher frequency field after absorption
of the lower), taking ω2 > ω1 in this case without loss of generality.
In the common experimental setup probing vibrational resonances,
with infrared and visible input fields [E(ω1) and E(ω2), respec-
tively], one pair of conjugate pathways for SFG and DFG contains
the resonant responses, with the others representing purely non-
resonant contributions. This is further highlighted by colouring
the resonant pathways in dark red and dark blue, and the non-
resonant pathways in pale red and blue in Table I. The allowed
SFG and DFG pathways can be represented diagrammatically in
the form of Feynman diagrams, ladder diagrams, and Liouville
space pathways as shown in Fig. 2, where the same colouring of
resonant and non-resonant pathways is included, as well as empha-
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TABLE I. Representation of the 64 possible interaction pathways that exist for two
interactions with two independent frequency fields present. The “+” and “−” symbols
indicate the contribution to the frequency and wave vector of the generated signal
field. Highlighted colours are used to indicate the allowed pathways when starting
from the ground state, with SHG processes shown in orange, OR in green, SFG in
red, and DFG in blue (with the dark and light SFG and DFG pathway colours indicating
resonant and non-resonant pathways, respectively).

sising the resonant coherence (“ab” or “ba”) in bold and with green
highlights.

Correlation functions

As mentioned above, each individual χ̃ (2) contribution to
the overall second order polarisation, corresponding to each
combination of positive and negative frequency arguments, con-
tains four correlation functions (pathways) which are summed.
However, on restriction to the ground state many of these
vanish. For SFG, the four possible combinations of frequency
arguments (χ̃ (2)(ω2 + ω1, ω2, ω1), χ̃ (2)(−ω2 − ω1,−ω2,−ω1),
χ̃ (2)(ω1 + ω2, ω1, ω2), and χ̃ (2)(−ω1 − ω2,−ω1,−ω2)) only end up
with a single correlation function each. Similarly, the DFG response
is constituted by two elements with a single correlation function
and two elements with a pair of correlation functions. Therefore,
when considering the contributions to the second order polarisation
oscillating at the SFG or DFG frequency [once again only consider-
ing the simultaneously generated responses as in Eq. (2), but with
those from Eq. (3) being equally obtainable via a simple frequency
shift], the overall intrinsic susceptibilities, χ̃(2)SFG and χ̃(2)DFG, can be
expressed as a sum over their contributing correlation functions
(labelled as Ci). This is expressed in Eqs. (6) and (7), with the
explicit expressions for the individual correlation functions given in
Eqs. (8a)–(8j) (summing over all the real states of the system with
placeholder indices “p” and “q”). The corresponding correlation

FIG. 2. Representations of the different pathway contributions to the general
second order response function when initially in the ground state through two
interactions with electric fields oscillating at different frequencies ω1 and ω2,
showing (a) Feynman diagrams, (b) ladder diagrams, and (c) Liouville space path-
ways. Taking ω1 to be resonant, the resonant pathways are indicated with dark
shading, and the non-resonant pathways with pale shading, with the real-state
coherences (“ab” and “ba”) highlighted in bold and with green highlights in (a)
and (c) as the real state energy levels (“a” and “b”) indicated with solid lines
and virtual states by dotted lines in (b). The corresponding correlation functions,
C1–C10, for the individual pathways explicitly shown in (a) and (b) are indicated on
the left.

function from Eq. (8) is also indicated for each pathway shown in
Fig. 2.

χ̃(2)SFG = C1
+ C2

+ C3
+ C4 (6)
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χ̃(2)DFG = C5
+ C6

+ C7
+ C8

+ C9
+ C10 (7)

C1
ijk(ω2 + ω1, ω2, ω1)

=
N

2ε0h̵2∑
p,q

μi
aqμ j

qpμk
pa

(ω1 − ωpa + iΓpa)(ω2 + ω1 − ωqa + iΓqa)
(8a)

C2
ijk(−ω2 − ω1,−ω2,−ω1)

=
N

2ε0h̵2∑
p,q

μi
qaμ j

pqμk
ap

(−ω1 − ωap + iΓap)(−ω2 − ω1 − ωaq + iΓaq)
(8b)

C3
ijk(ω1 + ω2, ω1, ω2)

=
N

2ε0h̵2∑
p,q

μi
aqμ j

qpμk
pa

(ω2 − ωpa + iΓpa)(ω1 + ω2 − ωqa + iΓqa)
(8c)

C4
ijk(−ω1 − ω2,−ω1,−ω2)

=
N

2ε0h̵2∑
p,q

μi
qaμ j

pqμk
ap

(−ω2 − ωap + iΓap)(−ω1 − ω2 − ωaq + iΓaq)
(8d)

C5
ijk(ω2 − ω1, ω2,−ω1)

=
−N

2ε0h̵2∑
p,q

μi
pqμ j

qaμk
ap

(−ω1 − ωap + iΓap)(ω2 − ω1 − ωqp + iΓqp)
(8e)

C6
ijk(−ω2 + ω1,−ω2, ω1)

=
−N

2ε0h̵2∑
p,q

μi
qpμ j

aqμk
pa

(ω1 − ωpa + iΓpa)(−ω2 + ω1 − ωpq + iΓpq)
(8f )

C7
ijk(−ω1 + ω2,−ω1, ω2)

=
−N

2ε0h̵2∑
p,q

μi
qpμ j

aqμk
pa

(ω2 − ωpa + iΓpa)(−ω1 + ω2 − ωpq + iΓpq)
(8g)

C8
ijk(ω1 − ω2, ω1,−ω2)

=
−N

2ε0h̵2∑
p,q

μi
pqμ j

qaμk
ap

(−ω2 − ωap + iΓap)(ω1 − ω2 − ωqp + iΓqp)
(8h)

C9
ijk(−ω1 + ω2,−ω1, ω2)

=
N

2ε0h̵2∑
p,q

μi
aqμ j

qpμk
pa

(ω2 − ωpa + iΓpa)(−ω1 + ω2 − ωqa + iΓqa)
(8i)

C10
ijk(ω1 − ω2, ω1,−ω2)

=
N

2ε0h̵2∑
p,q

μi
qaμ j

pqμk
ap

(−ω2 − ωap + iΓap)(ω1 − ω2 − ωaq + iΓaq)
(8j)

With this quantum mechanical description of the overall second
order response in hand, the intrinsic responses of SFG and DFG can
be directly compared.

Permutation symmetry with restriction
to the ground state

Closer inspection of Eq. (3) shows that the SFG and DFG
responses are closely related to permutations of the three frequency
arguments. For a full comparison between the two pathways, it
is therefore important to discuss permutation symmetry of the
intrinsic susceptibilities.

As shown previously in the literature,17 the χ(2) response has
intrinsic permutation symmetry associated with swapping the two
input frequency arguments along with their corresponding indices,
as shown in Eq. (9). This symmetry is always valid.

χ̃(2)ijk (ω2 + ω1, ω2, ω1) = χ̃(2)ikj (ω2 + ω1, ω1, ω2) (9)

Furthermore, in the case of fully off-resonant interactions, there
is full permutation symmetry where any pair of frequency argu-
ments (including the output field) can be interchanged along with
their corresponding indices without changing χ(2) as long as the
relationship between input and output frequencies is preserved [as
in Eq. (10)].

χ̃(2)ijk (ω2 + ω1, ω2, ω1) = χ̃(2)jik (−ω2,−ω2 − ω1, ω1)

= χ̃(2)kji (−ω1, ω2,−ω2 − ω1)

= χ̃(2)ikj (ω1 + ω2, ω1, ω2) (10)

A proof of this symmetry relation can be found elsewhere,17

however two important factors which relate to common experi-
mental settings are often not considered. Firstly, when one of the
input frequencies is probing resonances, as typically is the case
in SFG, it is not clear to what extent any permutation symmetry
survives (other than the intrinsic permutation symmetry). Further-
more, when probing vibrational transitions, the initial state of the
system can be assumed to be the ground state, which hence restricts
the contributions to the susceptibility, as discussed above. It is also
not clear if this restriction leads to any further reduction in sym-
metry. In the following, it is shown that permutation symmetry is
still applicable as long as the two interchanged frequency arguments
(and their indices) are non-resonant, irrespective of the resonant
status of the third or the initial state of the system.

On restriction to the ground state and only considering the
allowed pathways with positive ω1, i.e., half of each conjugate pair,
the intrinsic SFG susceptibility can be expressed as in Eq. (11) [with
terms (11a) and (11b) corresponding to the C1 and C3 correlation
functions].

χ̃(2)ijk (ω2 + ω1, ω2, ω1)

=
N

2ε0h̵2∑
qr

μi
grμ j

rqμk
qg

(ω1 − ωqg + iΓqg)(ω2 + ω1 − ωrg + iΓrg)
(11a)

+
μi

grμ j
qgμk

rq

(ω2 − ωqg + iΓqg)(ω2 + ω1 − ωrg + iΓrg)
(11b)

Similarly, for DFG, the intrinsic susceptibility [with deliberately
swapped indices “i” and “j” and different upconversion frequency
compared to the SFG in Eq. (11)] can be written as the sum over the
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three allowed correlation functions with positive ω1 (i.e., C6, C8, and
C10), as in Eq. (12).

χ̃(2)jik (−ω2,−ω2 − ω1, ω1)

=
N

2ε0h̵2∑
qr
−

μi
grμ j

rqμk
qg

(ω1 − ωqg + iΓqg)(−ω2 − ωqr + iΓqr)
(12a)

−
μi

gqμ j
qrμk

rg

(−ω2 − ω1 − ωgq + iΓgq)(−ω2 − ωrq + iΓrq)
(12b)

+
μi

gqμ j
rgμk

qr

(−ω2 − ω1 − ωgq + iΓgq)(−ω2 − ωgr + iΓgr)
(12c)

By manipulating the signs of the individual terms, Eq. (12) can be
rewritten as in Eq. (13).

χ̃(2)jik (−ω2,−ω2 − ω1, ω1)

=
N

2ε0h̵2∑
qr

μi
grμ j

rqμk
qg

(ω1 − ωqg + iΓqg)(ω2 − ωrq − iΓrq)
(13a)

−
μi

gqμ j
qrμk

rg

(ω2 + ω1 − ωqg − iΓqg)(ω2 − ωqr − iΓqr)
(13b)

+
μi

gqμ j
rgμk

qr

(ω2 + ω1 − ωqg − iΓqg)(ω2 − ωrg − iΓrg)
(13c)

Then, swapping the dummy indices, “q” and “r,” in the terms
(13b) and (13c), followed by factorisation of the first two terms
results in Eq. (14).

χ̃(2)jik (−ω2,−ω2 − ω1, ω1)

=
N

2ε0h̵2∑
qr

μi
grμ j

rqμk
qg

ω2 − ωrq − iΓrq

× {
1

ω1 − ωqg + iΓqg
−

1
ω2 + ω1 − ωrg − iΓrg

} (14a)

+
μi

grμ j
qgμk

rq

(ω2 + ω1 − ωrg − iΓrg)(ω2 − ωqg − iΓqg)
(14b)

The term in curly brackets in Eq. (14) [term (14a)] can then be
trivially manipulated to yield term (15a) in Eq. (15).

χ̃(2)jik (−ω2,−ω2 − ω1, ω1)

=
N

2ε0h̵2∑
qr

μi
grμ j

rqμk
qg

ω2 − ωrq − iΓrq

× {
ω2 − ωrq − i(Γrg + Γqg)

(ω1 − ωqg + iΓqg)(ω2 + ω1 − ωrg − iΓrg)
} (15a)

+
μi

grμ j
qgμk

rq

(ω2 + ω1 − ωrg − iΓrg)(ω2 − ωqg − iΓqg)
(15b)

Clearly, the expressions in Eq. (15) are different from the cor-
responding SFG terms [Eq. (11)]. However, in the case that the two
high frequency interactions are far from resonance, Eqs. (11) and
(15) can be simplified into Eqs. (16) and (17), respectively.

χ̃(2)ijk (ω2 + ω1, ω2, ω1)

=
N

2ε0h̵2∑
qr

1
(ω2 + ω1 − ωrg)

⎛

⎝

μi
grμ j

rqμk
qg

ω1 − ωqg + iΓqg
+

μi
grμ j

qgμk
rq

ω2 − ωqg

⎞

⎠

=∑
qr

Gr(ω2, ω1)(Rrq(ω1)eiϕq(ω1) +NRrq(ω2)) (16)

In both equations the response has been factorised by the frequency-
dependent real pre-factor, G, with both the resonant and non-
resonant terms being written in polar coordinates with amplitudes
of R and NR, respectively, and the resonant phase, ϕ. Here it is
important to note that although R is labelled as resonant and NR
non-resonant, both contributions are expressed as the sum over all
states and thus must both contain off-resonant terms. The only dif-
ference is that only the former contains the term contributing the
resonant line-shape(s) whereas the latter is purely non-resonant.

χ̃(2)jik (−ω2,−ω2 − ω1, ω1)

=
N

2ε0h̵2∑
qr

1
(ω2 + ω1 − ωrg)

×
⎛

⎝

μi
grμ j

rqμk
qg

ω1 − ωqg + iΓqg
+

μi
grμ j

qgμk
rq

ω2 − ωqg

⎞

⎠

=∑
qr

Gr(ω2, ω1)(Rrq(ω1)eiϕq(ω1) +NRrq(ω2)) (17)

Comparing the responses in Eqs. (16) and (17) shows that
they are indeed identical. (NB: Since this is true for the summa-
tion of half of each conjugate pair, it must therefore also hold for
the other half, and thus also for the total response.) From this, it
is clear that swapping the two off-resonant frequencies leads to the
same result, showing that a remnant of full permutation symme-
try survives (hereafter described as partial permutation symmetry).
Based on this finding it can be followed that the intrinsic SFG and
DFG responses containing the same two off-resonant frequencies
[Eq. (3) discussed above] are precisely equal as long as swapping
the indices “i” and “j” has no impact on the susceptibility. This
restriction is not problematic when the tensor components being
probed can be expressed as χaab. This is always the case for the SSP
polarisation combination which is common in experimental appli-
cations of SFG and DFG. Even for PPP, which is also commonly
applied, the four contributions for rotationally isotropic media fulfil
this criterion to a good approximation as the signals are dominated
by the ZZZ and XXZ components (with the XZX and ZXX highly
cancelling, assuming a co-propagating beam geometry).23 With
regards to other polarisation combinations which are sometimes
used, such as SPS or PSS, or even PSP and SPP for chiral systems,
they clearly do not satisfy the partial permutation symmetry and,
therefore, any comparison between SFG and DFG should consider
the relative similarity of the product of the two transition dipole
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moments (μi
grμ j

rq) when using opposite polarisations. It should also
be noted that the same partial permutation symmetry, with one
input being resonant, also holds when the ground state restriction
is lifted, as shown in Appendix B.

Such SFG and DFG experiments can be carried out, but this
requires two separate measurements [as mentioned earlier, see

Eq. (3)]. More convenient are often experiments where SFG and
DFG are measured simultaneously [see Eq. (2)]. For the correct com-
parison of the two responses in this case, however, Eq. (17) must
be modified as this goes beyond pure permutation of the three fre-
quency arguments (it additionally involves frequency shifting). The
DFG response is then described by Eq. (18).

χ̃(2)jik (−ω2 + ω1,−ω2, ω1) =
N

2ε0h̵2∑
qr

1
(ω2 − ωrg)

⎛

⎝

μi
grμ j

rqμk
qg

ω1 − ωqg + iΓqg
+

μi
grμ j

qgμk
rq

ω2 − ω1 − ωqg

⎞

⎠

=∑
qr

G′r(ω2, ω1)(Rrq(ω1)eiϕq(ω1) +NR′rq(ω2))

=∑
qr
(1 +

ω1

ω2 − ωrg
)Gr(ω2, ω1)(Rrq(ω1)eiϕq(ω1) + (1 +

ω1

ω2 − ω1 − ωqg
)NRrq(ω2)) (18)

By comparing Eq. (18) with Eq. (17) it is clear that the only dif-
ference in the two DFG responses arises from the real pre-factors,
and a real amplitude scaling of the (purely) non-resonant con-
tribution. It is important to notice that the resonant response is
completely unaltered, both in line-shape and phase. Furthermore,
as the pre-factors are non-resonant, their variations are dominated
by the experimental parameters and not the sample properties
and thus should be removed through referencing, and any dis-
persion in the purely non-resonant term should be vanishingly
small considering it is typically dominated by high-lying electronic
states.24 Therefore, this shows that, just like the permutation-
type DFG response [Eq. (3)], the simultaneously obtained DFG
response [Eq. (2)] has an identical resonant term to the SFG.
Hence, it matters not which pair of SFG and DFG responses are
used for comparison in an experiment, the respective intrinsic
susceptibilities should be equal. Nevertheless, as the permutation-
type DFG response [Eq. (3)] is exactly equal to the SFG response
regardless of referencing, this comparison will be used in the
experimental part of this publication for greater accuracy and
generality.

The measured effective susceptibility

The theoretical considerations thus far set out the intrin-
sic second order response for SFG and DFG, concluding that
they must be equal under the conditions described above. How-
ever, in an experiment one does not simply measure the intrinsic
responses driven by the input fields, but instead, obtains non-
linear signals reflecting the effective susceptibility. As described
earlier, alongside the intrinsic susceptibility, the important mod-
ulations of the driving and generated fields as they are delivered
to the local chromophore and detector are also encoded in the
measured response. These modulations include interactions with
surrounding material, typically being described by the nonlinear
Fresnel factors, as well as a propagation term arising from the
sum of all individual optical pathways to/from individual chro-
mophores. Both of these effects can add significant phase and

amplitude contributions which modify the measured (effective) sus-
ceptibilities for SFG and DFG, resulting in deviations between the
two.

In order to derive the effective susceptibility, the com-
plex nonlinear Fresnel factors, L(ω, z), are introduced, where the
z-dependence is included to account for any variation of the dielec-
tric function with depth. Additionally, the spatial (depth) coor-
dinates of the intrinsic susceptibilities are included, resulting in
magnitude changes that manifest as a depth dependency to ∣χ∣
and phase changes that are explicitly included in the propagation
phase term, φP. With these inclusions, the measured susceptibility,
χ(2)

′

(ωc, ωb, ωa), can be written as in Eq. (19), where the inte-
gration is performed over infinite depth to account for any and
all contributions from chromophores. Here, for greater general-
ity, the frequency arguments ωb and ωa are used to represent any
of the possible input frequencies (i.e., ±ω1 or ±ω2) with the out-
put frequency, ωc, defined by ωc = ωb + ωa. The Fresnel factors are
expressed in polar coordinates, allowing the phase to be explicitly
included.

χ(2)′ijk (ωc, ωb, ωa)

= ∫ dz∣Lii(ωc, z)Ljj(ωb, z)Lkk(ωa, z)χ̃(2)ijk (ωc, ωb, ωa, z)∣

× ei(φR(ωc ,ωb ,ωa ,z)+φP(ωc ,ωb ,ωa ,z)+φL(ωc ,ωb ,ωa ,z)) (19)

The propagation phase contribution in Eq. (19) can be further
expressed as, φP(ωc, ωb, ωa, z) = Δkzz with the wave vector mis-
match Δkz and the spatial (depth) coordinate of the chromophore z.
Furthermore, the overall Fresnel factor phase can be broken down
into its three (single frequency) components, φL(ωc, ωb, ωa, z) =
φL(ωc, z) + φL(ωb, z) + φL(ωa, z).

If one now compares the measurement of both SFG and DFG
Liouville pathways with a positive resonant frequency, ωa = +ω1, i.e.
χ(2)

′

ijk (ω2 + ω1, ω2, ω1) and χ(2)
′

ijk (−ω2,−ω2 − ω1, ω1), then the intrin-
sic phase is the same in both responses (as shown earlier). By
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contrast, when in a reflection geometry, the propagation phase will
have opposite signs, as shown in Eqs. (20) and (21).

φSFG
P = (∣kz(ω1)∣ + ∣kz(ω2)∣ + ∣kz(ω2 + ω1)∣)z > 0 (20)

φDFG
P = (∣kz(ω1)∣ − ∣kz(ω2 + ω1)∣ − ∣kz(ω2)∣)z < 0 (21)

Similarly, a sign flip in the argument for any of the Fresnel fac-
tors is equivalent to taking the complex conjugate since they are
related to the linear interaction with the corresponding field,1 which

thus flips the sign of the corresponding phase contribution, as in
Eq. (22).

Lnn(−ω) = Lnn(ω)∗ = (∣Lnn(ω)∣eiφL(ω))
∗

= ∣Lnn(ω)∣e−iφL(ω) (22)

Therefore, in this case, the expressions for the measured sus-
ceptibility in SFG and DFG are given by Eqs. (23) and (24),
respectively, also applying the partial permutation symmetry of the
intrinsic response for DFG (as shown earlier).

χ(2)′ijk (ω2 + ω1, ω2, ω1) = ∫ dz∣Lii(ω2 + ω1, z)Ljj(ω2, z)Lkk(ω1, z)χ̃(2)ijk (ω2 + ω1, ω2, ω1, z)∣

× ei(φR(ω2+ω1 ,ω2 ,ω1 ,z)+∣φSFG
P ∣+φL(ω2+ω1 ,z)+φL(ω2 ,z)+φL(ω1 ,z)) (23)

χ(2)′ijk (−ω2,−ω2 − ω1, ω1) = ∫ dz∣Lii(ω2, z)Ljj(ω2 + ω1, z)Lkk(ω1, z)χ̃(2)jik (ω2 + ω1, ω2, ω1, z)∣

× ei(φR(ω2+ω1 ,ω2 ,ω1 ,z)−∣φDFG
P ∣−φL(ω2+ω1 ,z)−φL(ω2 ,z)+φL(ω1 ,z)) (24)

Comparing Eqs. (23) and (24) shows that SFG and DFG clearly
deviate and that this difference entirely arises from the sign flip in
certain phase contributions (for the common cases where i = j, as
discussed previously). This property makes the different phase con-
tributions distinguishable and thus accessible via the measurement
of both responses. However, for an arbitrarily complex system and
without simplifying assumptions it would be challenging to unam-
biguously extract the different phase contributions. Nevertheless,
many systems of interest typically allow significant simplifications.
These can be generally described by two cases, as discussed below.

The first case (case 1) considers completely transparent media
in the high frequency region (corresponding to ω2 + ω1 and ω2),
where the two high frequency Fresnel factors become real and thus
possess no phase contributions. On the assumption of little varia-
tion of the Fresnel factors through the depth (which is reasonable
for many systems, e.g., liquid interfaces where the refractive indices
typically change over the order of a nanometre25), Eqs. (23) and (24)
can thus be simplified to Eqs. (25) and (26).

χ(2)′ijk (ω2 + ω1, ω2, ω1) =∫ dz ∣Lii(ω2 + ω1)Ljj(ω2)Lkk(ω1)

× χ̃(2)ijk (ω2 + ω1, ω2, ω1, z)∣

× ei(φR(ω2+ω1 ,ω2 ,ω1 ,z)+φL(ω1)+∣φSFG
P ∣) (25)

χ(2)′ijk (−ω2,−ω2 − ω1, ω1) = ∫ dz ∣Lii(ω2)Ljj(ω2 + ω1)Lkk(ω1)

× χ̃(2)jik (ω2 + ω1, ω2, ω1, z)∣

× ei(φR(ω2+ω1 ,ω2 ,ω1 ,z)+φL(ω1)−∣φDFG
P ∣) (26)

This shows that the only difference between the SFG and DFG
responses now originates from the propagation phases which have
opposite signs and different amplitudes (different ∣Δkz ∣). It is worth
noting that the Fresnel factor for the IR frequency remains complex
in these considerations, but also yields equal contributions to both
the SFG and DFG responses. They therefore do not contribute to
the difference between the two responses. As shown in Eqs. (20)
and (21), there is a linear relationship between the propagation
phase terms and z, with the scaling factors, Δkz , being easily cal-
culable. This means that the isolated depth coordinate, z′, of the
chromophores becomes accessible. To reach a full analytical solu-
tion, the integration must be performed, requiring the application
of a functional form for the z-dependence of χ(2). There are sev-
eral ways to approach this, with two important cases being discussed
here.

In many sample systems the chromophores are located at well-
defined depth coordinates, such that their distribution can be taken
to be a delta-function (e.g., monolayer systems). In these cases, the
integral can be omitted and the phase difference directly yields the
depth coordinate, as shown previously with down to sub-nanometre
resolution.16 Alternatively, the transition from an interface to the
bulk can give rise to decaying χ(2) contributions (e.g., liquid inter-
faces), which may be modelled by an exponential decay function
with a defining decay constant. In this case, the decay constant can
be extracted, as shown previously.16

A second set of simplifications (case 2) to the general expres-
sions shown in Eqs. (23) and (24) can be made for situations where
molecular species are highly localised at the interface to absorbing
media. Here, although the Fresnel factors are now generally com-
plex, the propagation effects can be assumed to be negligible. This
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renders Eqs. (23) and (24) to be as in Eqs. (27) and (28).

χ(2)′ijk (ω2 + ω1, ω2, ω1)

= ∣Lii(ω2 + ω1)Ljj(ω2)Lkk(ω1)χ̃(2)ijk (ω2 + ω1, ω2, ω1)∣

× ei(φR(ω2+ω1 ,ω2 ,ω1)+φL(ω1)+φL(ω2+ω1)+φL(ω2)) (27)

χ(2)′ijk (−ω2,−ω2 − ω1, ω1)

= ∣Lii(ω2)Ljj(ω2 + ω1)Lkk(ω1)χ̃(2)jik (ω2 + ω1, ω2, ω1)∣

× ei(φR(ω2+ω1 ,ω2 ,ω1)+φL(ω1)−φL(ω2+ω1)−φL(ω2)) (28)

Now, the difference between the two responses is entirely given
by the sign flip for the two phase contributions from the high fre-
quency Fresnel factors. Hence, these can be explicitly determined.
Note that here the partial permutation symmetry of the intrinsic
responses is used, despite this case being for absorbing media (in the
visible) where this symmetry does not hold. However, it is important
to emphasise that the intrinsic responses to which this symmetry is
applied is the response of the molecular chromophore (not absorb-
ing in the visible) and not that of its (absorbing) surroundings. If the
absorbing medium itself generates a signal, it adds a second contri-
bution to the overall susceptibility which needs need to be treated
separately.

As demonstrated above, measuring both the SFG and DFG
responses clearly separates the overall measured phase into two
terms, one constituting the intrinsic phase with the phase of the IR
Fresnel factor, and the other combining the propagation phase with
the phases of the high frequency Fresnel factors. This, separation
allows for extraction of the desired spectroscopic information under
the described circumstances and/or for the removal of these extrin-
sic phase effects in order to obtain the intrinsic vibrational response
of the system under investigation.

EXPERIMENTAL DEMONSTRATION

The theory outlined above has previously been shown to suc-
cessfully separate the intrinsic phase from the propagation phase
(i.e., case 1 of the simplifications to the general expressions discussed
above), resulting in depth-profiling of the resonant chromophores.16

The work shown here demonstrates that phase disentanglement is
possible through this methodology for the other simplified case,
i.e., case 2 where the samples contain strongly absorbing substrates
but contribute no propagation phase. For this, model systems of
1-octadecanethiol (ODT) self-assembled monolayers (SAMs) on
metallic substrates (silver, platinum, copper, and gold) were probed.
Due to the complex refractive indices of the metal substrates which
persist across the entire electromagnetic spectrum significant phase
deviations can be expected for these samples. By contrast, a sample of
octadecyltrichlorosilane (OTS) monolayers on fused silica (FS) pos-
sesses no phase contributions from the high frequency local fields
and thus served as a comparative reference sample. A schematic for
these sample systems is shown in Fig. 3.

Both SFG and DFG were measured in the PPP polarisation
combination and performed with phase resolution so that each
effective susceptibility is only mapped in half of frequency space

FIG. 3. Schematic showing the model system used to demonstrate the
disentanglement of the resonant and local field phase contributions.

corresponding to positive ω1. For maximum accuracy all experi-
ments are performed using the frequency permutation case [Eq. (3)].
For both pathways, the resulting spectra from the well-packed and
highly ordered SAMs are expected to only show the vibrational res-
onances of the terminal methyl groups8 and thus have no signal
from the depth. Such spectra typically consist of three bands, the
first at ∼2880 cm−1 corresponding to the symmetric CH3 stretch,
a subsequent band at ∼2940 cm−1 due to a Fermi resonance of
the symmetric CH3 stretch with a bending mode overtone, and
finally the asymmetric CH3 stretch (composed of both the in-plane
and out-of-plane modes) at ∼2960 cm−1.8 As shown in the theory
section, these systems should possess the same intrinsic phases in
their vibrationally resonant response, and thus any deviations in
the line-shapes between SFG and DFG can only originate from the
phases of the local fields.

Figure 4 shows the corresponding experimentally determined
SFG and DFG spectra, split into their real and imaginary parts (dis-
persive and absorptive line-shapes, respectively) obtained for ODT
monolayers atop the four metals substrates (Ag, Pt, Cu, Au). Also
included are the reference spectra of the OTS monolayer on FS. As

FIG. 4. Phase-resolved SFG and DFG spectra, split into their real and imaginary
parts, for four samples of an ODT SAM formed on a metal (Ag, Pt, Cu, and Au) in
addition to OTS formed on fused silica (FS).
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expected, the SFG and DFG spectra highly overlap for the FS sam-
ple since the nonlinear Fresnel factors are entirely real in this case.
In contrast, substantial deviations are observed for all four metal
samples. Not only do real and imaginary parts of the vibrational
line-shapes seem intermixed, but these mixtures also vary for the
different samples. This clearly demonstrates the strong effects local
fields have on the measured line-shapes.

In order to extract the local field phase values for each sam-
ple, a detailed analysis of the different contributions to the measured
susceptibilities is required. In the PPP polarisation combination for
metallic substrates, the measured susceptibility is strongly domi-
nated by the χ(2)

′

zzz component (thus taking i = j = k = z)1 and fea-
tures the resonant response from the monolayer located at z = 0.
Besides the resonant response, the strongly absorbing metal sub-
strates also generate a strong (vibrationally) non-resonant contribu-
tion due to the substantial polarizability of the delocalised electrons
in the metal.8,15 Hence, the presence of this second contribution
somewhat alters the expressions for the measured susceptibility
outlined in the theory section. For the required modification of
Eqs. (27) and (28) it needs to be considered that, in contrast to
the resonant term, the non-resonant contributions from the met-
als will not follow the partial permutation symmetry of the high
frequencies as they are no longer far from resonance in the visible
(surface plasmon resonances and inter-band transitions, for exam-
ple26). Another particularity of such nonlinear measurements on
metal surfaces which needs to be considered are field enhancement
effects27 that can lead to different scaling of SFG and DFG responses.
Overall, the susceptibilities can then be written as in Eqs. (29)
and (30)

χ(2)′PPP (ω2 + ω1, ω2, ω1)

= {∣χ̃(2)zzz,R(ω2 + ω1, ω2, ω1)∣ei(φR(ω2+ω1 ,ω2 ,ω1))

+ χ(2)zzz,NR(ω2 + ω1, ω2, ω1)}∣Lzz(ω2 + ω1)Lzz(ω2)Lzz(ω1)∣

× ei(φL(ω2+ω1)+φL(ω2)+φL(ω1)) (29)

χ(2)
′

PPP (−ω2,−ω2 − ω1, ω1)

=
1
A
{∣χ̃(2)zzz,R(ω2 + ω1, ω2, ω1)∣ei(φR(ω2+ω1 ,ω2 ,ω1))

+ χ(2)zzz,NR(−ω2,−ω2 − ω1, ω1)}

× ∣Lzz(ω2)Lzz(ω2 + ω1)Lzz(ω1)∣

× ei(−φL(ω2+ω1)−φL(ω2)+φL(ω1)) (30)

with the (real) scaling factor A accounting for possible differences in
field enhancement. The equations show that the resonant and non-
resonant contributions (χ̃(2)zzz,R) and (χ(2)zzz,NR) in Eqs. (29) and (30)
are (as expected) phase-shifted in opposite directions by the pres-
ence of the local field phases φL. Since there is no clear relationship
between the intrinsic SFG and DFG responses for the vibrationally
non-resonant metal contribution their respective susceptibilities are
simply included with the initial frequency arguments. However, due
to their vibrationally non-resonant character, these quantities repre-
sent (fairly) frequency-independent offsets in the real and imaginary
parts that can significantly vary between SFG and DFG spectra.

These offsets are also clearly visible in the data of Fig. 4 and can be
approximated by a linear trend.

This slowly-varying nature of χ(2)zzz,NR can be exploited to
determine the phases φL using a phase-rotation procedure. Equa-
tion (31) shows the difference between the SFG and the rescaled
DFG responses [Eqs. (29) and (30)] having rotated their phases by
±ε = ∓(φL(ω2 + ω1) + φL(ω2)). This results in complete cancella-
tion of the resonant features in the difference, with the only surviving
term originating from the non-resonant contributions.

χ(2)
′

PPP (ω2 + ω1, ω2, ω1)eiε
− Aχ(2)

′

PPP (−ω2,−ω2 − ω1, ω1)e−iε

= ∣Lzz(ω2 + ω1)Lzz(ω2)Lzz(ω1)∣{χ(2)zzz,NR(ω2 + ω1, ω2, ω1)

− χ(2)zzz,NR(−ω2,−ω2 − ω1, ω1)}eiφL(ω1) (31)

The phase rotation (ε) can now be precisely determined by min-
imising the deviation of this difference spectrum from a straight
line as a function of phase rotation and scaling factor A. The
result of this procedure is a two-dimensional functional, P(ε, A) (see
“Experimental Section” for details), which should have exactly one
minimum. Figure 5 shows an example of this minimisation proce-
dure for the Ag sample. In the top image P(ε, A) is given as a 2D
surface for variable scaling factors (amplitude ratios, A) and phase
rotations (ε). As expected, the resulting surface possesses a clear
minimum, with values of ε = −61.8○ and A = 1.34. The bottom of
Fig. 5 then shows the corresponding deviations of the difference
spectra from a straight line (accommodating for both the real and
imaginary parts) for five different phase rotation values at the opti-
mum amplitude ratio. (It is worth noting that, although for FS, the
χ(2)

′

zzz component does not dominate to the same extent as for the
metals, it can still be treated in the same way, as discussed in the
theory section since only the XXZ and ZZZ tensor components are
significant.) Whilst fitting the difference spectra to a straight line
to account for the non-resonant contributions may seem unneces-
sary if a background of the non-resonant contributions from clean
metal substrates could instead be subtracted, it should be noted
that such a background is not trivial to obtain. Firstly, the surface
functionalisation of the metals is likely to impact their non-resonant
responses, leading to deviations which must be accounted for in
the minimisation, thus rendering the background-acquisition moot.
Secondly, the rapid oxidation and/or contamination of many metal-
lic substrates under ambient conditions further complicates the
situation, likely also yielding deviations in the background. Finally,
the ability to extract the phases independently of whether there is
a substantial non-resonant background present or not makes for a
more widely applicable technique.

The resulting phase values of the high frequency local fields
for the five different samples are given in Table II and compared
to the calculated phases, also giving their corresponding deviations.
The calculations were performed using the three-layer model (3LM,
for details see the “Experimental section”) which is currently the
standard method of estimating the phases of the nonlinear Fresnel
factors for such sample systems (thin films atop flat substrates). This
model uses refractive index data for the bulk materials from the lit-
erature and an approximation of the effective refractive index and
thickness of the film as input parameters.18,28 The data in Table II
show a very good match between the measured and theoretical
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FIG. 5. Depiction of the resulting deviation parameter, P(ε, A), derived from the
minimisation procedure used to obtain the extrinsic phase contribution.

TABLE II. Comparison of the measured local field phase contribution and that
calculated from the three-layer model (3LM) using refractive indices from the
literature.1

Substrate
Measured

phase/○
Calculated phase

from 3LM/○ Deviation/○

FS −2.6 0.0 −2.6
Ag 61.8 63.3 −1.5
Pt 44.4 45.2 −0.8
Cu 67.1 69.4 −2.3
Au 67.9 71.0 −3.1

values, with deviations only up to ∼3○. This good agreement is
on one hand a convincing demonstration of the accuracy of the
“Experimental method” but on the other hand this result is also
somewhat surprising given the simplicity of the 3LM. It is espe-
cially remarkable that, despite the use of bulk values for the refractive
indices in the calculation, the 3LM seems to yield a very good
approximation of the nonlinear Fresnel factors in such samples. The
surface functionalisation of the metal would intuitively be expected
to alter the electronic structure of the substrates, and hence also their
refractive indices. Nevertheless, the presented results do not show
such an effect.

At this point is important to note that there are alternative
ways of determining the phase shifts induced by any extrinsic fac-
tors. For example, a method which is often implemented in SFG
spectroscopy is performing multi-parameter fitting on spectra to

fit the resonances.32 However, there is a substantial qualitative dif-
ference between the presented SFG/DFG method and these more
commonly used techniques. Multi-parameter fits tend to result in
mutual dependencies in their parameters making them suscepti-
ble to input bias or misinterpretation, significantly reducing their
reliability. In contrast, determination of the extrinsic phases using
SFG/DFG in principle requires no fitting. Only in cases where addi-
tional (undesired) spectral contributions interfere with the signal of
interest (e.g., the metal non-resonant response) does the method
require a fitting procedure, but as shown above, this only calls for
up to two free parameters (ε and A in the case of the minimisation
procedure). Whilst these parameters define the 2D parameter space
obtained from the minimisation, it is important to note that the
deviations of the difference spectra from a straight line also require
four further parameters describing the gradient and intercept for the
real and imaginary parts. Nevertheless, these parameters define two
independent 2D parameter spaces which are also not linked to the
parameter space obtained from the minimisation as they are part of
its definition. Therefore, unlike multi-parameter fits, this minimisa-
tion procedure avoids significant mutual dependency. Furthermore,
as shown in Fig. 5, this fitting procedure also yields a parameter space
which is smooth and only contains a single, steep minimum. This
removes any potential bias and ensures a highly accurate result.

Having extracted these extrinsic phase contributions, the other
described benefit of this methodology can also be demonstrated,
namely, obtaining the “true” intrinsic spectra of the molecular
samples. The phases in the measured spectra must therefore be back-
shifted by the obtained phase values. Figure 6 shows the resulting
spectra having implemented this phase-shifting step. The resonant
line-shapes of SFG and DFG now show a very good match which
clearly indicates that the effect of the high frequency local field
phases have successfully been removed. However, on closer inspec-
tion of the corresponding SFG and DFG spectra it becomes clear that
although the spectral contributions from the vibrational resonances
seem identical the overall SFG and DFG spectra also show impor-
tant differences. For all samples SFG and DFG spectra largely deviate
in offset and in case of Cu and Au it can be observed that these
offsets even possess deviating curvatures. To understand this dis-
crepancy, it is important to note that the applied correction does not
remove the vibrationally non-resonant response but only the phase
shifts in the local fields. The spectra therefore still contain a super-
position of the intrinsic responses from the molecular monolayer
and the metal substrate. As mentioned above, the SFG and DFG
responses from the metal surfaces are generally different. In case of
Ag and Pt the metal response is only a constant offset. The differ-
ences between SFG and DFG responses from those metals therefore
only lead to different offsets in the spectra. For the Cu and Au sam-
ples, in contrast, the metal response clearly deviates from an offset
and even shows deviations from a straight line. This observation is
not really surprising as the proximity of the surface plasmon res-
onance and inter-band transitions to the upconversion frequencies
are considerably closer than for Ag and Pt.33–36 For Cu and Au the
metal contributions in the SFG and DFG spectra will consequently
not only differ in offset but can obviously also differ in curvature,
just as observed in the spectra. It can therefore be concluded that
the apparent deviations do not report on inaccuracies in retrieving
the intrinsic responses but represent the natural differences in the
intrinsic contributions from the metal surface. This interpretation is
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FIG. 6. SFG and DFG spectra for the five monolayer samples after removal of the
local field phase effects.

also supported by the fact that the experimentally determined phases
of the high frequency Fresnel factors are in close agreement with the
theoretical values across all samples.

The next question that must be addressed is to what accuracy
the resulting “corrected” spectra reveal the “true” intrinsic spec-
tra of the molecular samples. Equations (29) and (30) show that
the spectra will still contain the residual phase shift associated with
the IR field φL(ω1) as it contributes equally to SFG and DFG.
Nevertheless, for metals in the mid-IR, the phase of L is typically
small (on the order of a few degrees37) and thus, only represents
a minor perturbation. This estimate is also supported by the data
presented in Fig. 6. If there were significant phase contributions
from φL(ω1) present in the spectra one would expect these to vary
for the different metal samples. However, the spectra show that the
resonances in all samples are centred at the same frequencies (as
shown by the dotted vertical lines), indicating that there are no
significant phase-shifts between them. Therefore, although the pre-
sented concept cannot completely isolate the intrinsic responses,
the phase-corrected spectra represent very good approximations to
such.

This gives now the opportunity to further analyse and compare
the obtained spectra for the different samples. A closer inspection of
the spectra shows that all samples have line-shapes dominated by the
same resonant features (indicated by the dotted vertical lines in the
imaginary part, labelled “b,” “d,” and “e”). These frequencies align
well with the expected resonances of the terminal CH3 groups of the
SAMs, namely the symmetric (“b”) and antisymmetric (“e”) C–H
stretching modes, as well as the symmetric Fermi resonance (“d”).
One strong contrast between the spectra for the metal samples and
those from FS are the relative amplitudes of “b” and “d” compared to
the “e” resonance (i.e., symmetric to antisymmetric ratio). This is a
well-known property of SAMs on dielectrics and originates from the
fact that both the XXZ and ZZZ components are significant for these
substrate materials.1 The superposition of these tensor components
leads to a large cancellation of the symmetric resonances (“b” and

“d”) as observed in the spectra. A further observation from the spec-
tra is the presence of two additional resonant features, particularly
for the Pt and Cu samples, labelled “a” and “c,” which are assigned
to CH2 stretches (symmetric and anti-symmetric, respectively).8 A
spectrum only containing methyl resonances is characteristic of a
perfectly well-packed and defect-free monolayer in an all-trans con-
formation. By contrast, the appearance of CH2 signals indicates the
presence of gauche defects.8 The spectra for the different samples
show varying amplitudes of the CH2 signals, which nicely follows
the known reactivity of the different metals with thiols. Ag and Au
form monolayers with the greatest packing densities whereas Cu
and Pt often form more sparsely packed films with greater numbers
of defects.38,39 It is important to note that the presence of gauche
defects in the chains will lead to a slight reduction of film thickness
and thus potentially a difference in propagation phase between the
samples. Nevertheless, this change in thickness will be at most a few
Angstroms and give rise to a propagation phase of <1○ which can
hence be neglected. This example demonstrates how the application
of the presented method enables a detailed and unbiased compar-
ison between the different molecular structures formed on such
metal samples without the need for any prior assumptions on the
details of the intrinsic vibrational spectra such as specific line-shapes
models.

CONCLUSIONS AND OUTLOOK

In this contribution, it was shown that crucial aspects of molec-
ular systems like molecular orientation and local dielectric proper-
ties are contained within the phase of the measured signal in second
order optical experiments. Here, the focus lay firmly on exploiting
multiple Liouville pathways to disentangle the measured phase into
its constituents. Through a detailed theoretical analysis and confir-
matory experiments, it was shown that the resonant phase, intrinsic
to the molecular response, can be isolated from extrinsic phase con-
tributions such as any additional propagation of the beams through
depth or from absorbing media altering the local field environ-
ment. Furthermore, when either of the two aforementioned extrinsic
phase contributions are negligible, it is shown that the other can
be isolated. This opens the possibility for depth-resolved vibrational
studies, as demonstrated in previous work,16 as well as for the cor-
relation of vibrational spectra with their local field environment, as
shown in this work. In addition, it was found in this study that the
experimentally determined and the calculated phases of the Fres-
nel factors showed remarkable similarity, with ≤3○ discrepancies.
This mutual agreement between the experiment and theory gives
significant support to both the experimental methodology and the
theoretical model as it is unlikely that both are equally false. This
clearly suggests that the three-layer model (3LM) which, despite the
lack of experimental validation, is commonly used for such calcula-
tions (including in this work) indeed yields accurate values for the
nonlinear Fresnel factors, at least for the sample systems used in this
study. It will be interesting to investigate whether the observed accu-
racy is maintained under modified experimental conditions such as
applying electric potentials to the metal surface in an electrochemical
cell.

In the two simplifying cases discussed above, one of the
two extrinsic phase contributions was essentially nullified, allowing
the two independent observables (SFG and DFG) to separate the
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remaining extrinsic phase from the intrinsic contribution. Although
these two cases cover the vast majority of nonlinear vibrational
spectroscopy applications, the extension of this concept to systems
with even higher complexity can be envisioned. For example, in
the electrochemical systems mentioned above both extrinsic phase
contributions can be significant, presenting large phase shifts from
local fields and substantial depth contributions.14,40 Provided that
the 3LM is found to yield reliable results for the sample system under
investigation it is possible to disentangle all three different phase
contributions: intrinsic, propagation, and local field. This could be
done through separation of the former from the other two and sub-
sequent isolation of the propagation term through subtraction of the
calculated local field phase from the 3LM. However, even if the phase
contributions from the local field factors cannot be separately deter-
mined (calculated), the intrinsic phase can for such samples still be
isolated from both extrinsic contributions yielding the undistorted
intrinsic vibrational spectrum. This would enable meaningful spec-
tral analysis and comparisons between the vibrationally resonant
features from different samples and/or for varying experimental
conditions (e.g. different electric potentials). Although, in the con-
text of this work, this aspect is not the main focus, its importance
cannot be emphasised enough as the desired molecular information
accessible through second order spectroscopy is generally encoded
within the details of the resonant line-shapes. It is hence crucial that
the intrinsic spectra are correctly obtained.

Overall, the presented method is anticipated to be highly valu-
able for future interfacial studies with any significant depth depen-
dency or phase contributions from local fields, which describes a
substantial range of interfaces spanning many research areas, for
example charged liquid interfaces.41 Finally, it should be noted
that the proposed concepts are general and not restricted to the
application in second order techniques as shown here. This method-
ology can readily be extended to higher order spectroscopic meth-
ods where even a greater number of different pathways can be
probed.

EXPERIMENTAL
SAM formation

Trichloro(octadecyl)silane(OTS) SAMs were prepared follow-
ing the procedure as described in previous publications.42,43 1-
Octadecanethiol (ODT) was obtained from Sigma-Aldrich (98%
purity) and used as received to form a 5 mM solution in ethanol
(96%, Sigma Aldrich, St. Louis, MO, USA) by dissolving with stir-
ring for 20 min. Metal substrates (silver, platinum, copper, and
gold) were produced by thermal evaporation on cleaned fused silica
windows (Thorlabs, Newton, NJ, USA). The fused silica windows
were cleaned following a procedure which involved rinsing and
submerging for 15 min in an ultrasonic bath using three different
solvents, namely acetone, followed by isopropanol, and finally ultra-
pure water. The cleaned windows were then dried under a nitrogen
stream and used immediately. The SAMs used in this work were
formed by submerging the freshly made metal substrate, cleaned
by rinsing with ultrapure water (MilliQ, 18.2 MΩ cm) and ethanol
(96%, Sigma Aldrich), in the ODT solution for 24 h (Ag and Au),
48 h (Cu), or 60 h (Pt). The substrates were subsequently rinsed with
ethanol and were observed to be strongly hydrophobic.

Spectrometer setup

Full details of the experimental setup used for SFG and DFG
measurements can be found in Ref. 44. In short, two independent
(3 and 4 W) 800 nm outputs (∼30 fs, 1 kHz) of a Ti:Sapphire
laser (Astrella, Coherent, Santa Clara, CA, US) are used to feed
two optical parametric amplifiers (TOPAS, Light Conversion, Vil-
nius, LT), with one using the generated signal and idler outputs in
a DFG unit to generate tuneable mid-IR pulses, and the other being
used to generate the signal output which is subsequently frequency-
doubled using a BBO crystal to give tuneable upconversion (UC)
pulses. These beams are combined in a co-linear geometry and sent
to a home-built interferometer which splits the infrared, the first
part, combined with the visible UC beam, being used to gener-
ate a local oscillator (LO) from quartz and passed through a delay
stage to control the timing relative to the second part. The beams
are then recombined (IR, UC, and LO) in a co-linear geometry,
split in two using an oscillating mirror (500 Hz) to alternate pulses
between two paths, going towards a sample and quartz reference,
and finally recombined to be sent to the detectors. The combination
of a dichroic mirror and polarisation optics allow both the SFG and
DFG to be separately measured with balanced detection, each being
quasi-simultaneously referenced.

Spectral acquisition and treatment

SFG and DFG spectra were acquired from different experi-
ments using different UC frequencies (800 and 645 nm, respec-
tively). Each spectrum was recorded fully in the time domain by
scanning the timing of the LO +UC pulses relative to the IR, ranging
from −300 fs to 6000 fs in steps of 0.65 fs to obtain a full inter-
ferogram of the vibrational coherence. The resulting spectrum for
each sample was obtained by averaging 100 interferograms, per-
forming a Fourier transform (and isolating the positive frequency
contribution), and referencing to z-cut quartz.

Phase determination algorithm

The extrinsic phase from the high frequency Fresnel factors was
obtained from the SFG and DFG spectra for each substrate using an
optimisation algorithm which applied the procedure to calculate the
deviation parameter, P(ε, A), as defined in Eq. (32):

1. Rotate the phase of the complex SFG and DFG spectra in
opposite directions by ε.

2. Subtract the DFG spectrum from the SFG spectrum and inde-
pendently calculate the deviation of the real and imaginary
parts from a straight line (obtained through linear regression,
labelled Cε,A).

3. Sum the squares of the linear-corrected difference spectra in
both the real and imaginary parts.

P(ε, A) = ∫ dω∣χ(2)SFGeiε
− Aχ(2)DFGe−iε

− Cε,A∣
2

(32)

Calculation of the Fresnel factors using
the three-layer model

A full derivation of the three-layer model (3LM) equations for
the local field Fresnel factors can be found elsewhere.18,28 From this,
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the diagonal Fresnel matrix, L, can be given as in Eq. (33) where
t and r are the transmission and reflection coefficients defined in
Eqs. (34)–(37) for S and P polarised inputs.

L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ3

cos θ1

t13
P (1 − r32

P eiδ
)

1 − r32
P r31

P e2iδ 0 0

0
t13
S (1 + r32

S eiδ
)

1 − r32
S r31

S e2iδ 0

0 0
n1

n3

t13
P (1 + r32

P eiδ
)

1 − r32
P r31

P e2iδ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(33)

The superscripts on the transmission and reflection coeffi-
cients, e.g., 13, are representative of the different media used in the
3LM, with 1 being the incident medium (air), 2 being the bulk sub-
strate (metal or FS), and 3 the thin film (SAM). The other parameters
included are δ, the propagation phase obtained through the SAM
[given in Eq. (38)], n, the refractive index, and θa, representing the
beam angle in medium “a” [with relative relations given by Snell’s
law, Eq. (39)].

rab
S =

na cos θa − nb sin θb

na cos θa + nb sin θb
(34)

rab
P =

nb cos θa − na sin θb

nb cos θa + na sin θb
(35)

tab
S =

2na cos θa

na cos θa + nb cos θb
(36)

tab
P =

2na cos θa

nb cos θa + na cos θb
(37)

δ = k3
z h (38)

na sin θa = nb sin θb (39)

Values used for the calculation of the Fresnel matrix are given
in Table III, with the substrate refractive indices (n2) being sourced
from the literature of clean metal substrates.29–31 The refractive
index of the incident medium was taken to be that of air, with a
value of unity independent of frequency, and that of the SAM (n3)
to be an effective refractive index of 1.18, representing an average
value between the incident medium (air) and the bulk value for ODT
(1.46)45 based on the effective medium approximation.28 Finally, the
propagation phase obtained through the SAM was calculated based
on Eq. (38) with a thickness, h, taken to be 2.0 nm, calculated using
values for the C–C bond length (1.524 Å) and bond angle (109.5○)
based on the VSEPR model for a tetrahedral geometry.45 Further-
more, the monolayer was taken to be well-packed in an all-trans
geometry with a tilt angle of 30○ for the purposed of calculation.
It should be noted, however, that these approximations may not be
representative of the true monolayer structure on each metal (clearly
evident, for example, with the presence of gauche defects), but the
ultimate phase contribution to the calculated Fresnel factors from

TABLE III. Parameters used for the calculation of the nonlinear Fresnel factors based
on the three-layer model.

Parameter Value

nair 1.00
nFS(645 nm) 1.46
nAg(645 nm) 0.0534 + 4.37i
nPt(645 nm) 0.472 + 6.27i
nCu(645 nm) 0.247 + 3.56i
nAu(645 nm) 0.164 + 3.55i
nFS(800 nm) 1.46
nAg(800 nm) 0.0368 + 5.57i
nPt(800 nm) 0.576 + 8.08i
nCu(800 nm) 0.254 + 5.01i
nAu(800 nm) 0.154 + 4.91i
nSAM 1.23
SAM thickness, h 2.0 nm
θa 70○

this thickness are of the order of ∼1○ and thus these approximations
are reasonable for these purposes.
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APPENDIX A: LIOUVILLE PATHWAYS
FOR SHG AND OR

As described in the main text, the four possible pathways
for each light field interaction result in 16 possible pathways for
a second order process involving two interactions with the same
field. These can be conveniently displayed in a 2D grid format as
in Table IV where the individual contribution to the frequency
and wavevector of the generated field is indicated by “+” and “−”
signs.

If the system is initially in the ground state, which is a rea-
sonable approximation for vibrational spectroscopy, then the 16
potential pathways are reduced to six because stimulated emission
cannot occur from the ground state. Of these six pathways, two yield
an output field oscillating at twice the input frequency, thus repre-
senting second harmonic generation (SHG), and the other four yield
a DC field, representing optical rectification (OR) pathways, shown
in orange and green in Table IV, respectively.

The total set of 16 contributions can also be seen from the
theoretical derivation of the second order polarisation, P(2)(t), in
such a case which can be described by Eqs. (A1)–(A6) [where only
two interactions at the same frequency, ω, are considered via the
introduction of a delta function in Eq. (A2)]

P(2)(t) = ε0

t

∫
−∞

dt1

t1

∫
−∞

dt2 χ(2)(t, t1, t2)

: (E(t1) + E∗(t1))(E(t2) + E∗(t2)) (A1)

TABLE IV. Representation of the 16 possible interaction pathways that exist for two
interactions with the same field. The “+” and “−” symbols indicate the contribution to
the frequency and wavevector of the generated signal field. Highlighted colours are
used to indicate the allowed pathways when starting from the ground state, with SHG
processes shown in orange and OR in green.

= ε0

∞

∫
−∞

dω
∞

∫
−∞

dω′
t

∫
−∞

dt1

t1

∫
−∞

dt2 χ(2)(t, t1, t2)

: (E(ω)e−iωt1 + E∗(ω)eiωt1)

× (E(ω′)e−iω′t2 + E∗(ω′)eiω′t2)δ(ω − ω′) (A2)

= ε0

∞

∫
−∞

dω
t

∫
−∞

dt1

t1

∫
−∞

dt2 χ(2)(t, t1, t2)

: (E(ω)E(ω)e−iω(t1+t2) + E(ω)E∗(ω)e−iω(−t1+t2)

+ E∗(ω)E(ω)e−iω(t1−t2) + E∗(ω)E∗(ω)e−iω(−t1−t2)) (A3)

= ε0

∞

∫
−∞

dω
∞

∫

0

dτ1

∞

∫

0

dτ2 χ(2)(t, t − τ1, t − τ1 − τ2)

: (E(ω)E(ω)e−iω(2t−2τ1−τ2)

+ E(ω)E∗(ω)e−iω(−τ2) + E∗(ω)E(ω)e−iω(τ2)

+ E∗(ω)E∗(ω)e−iω(−2t+2τ1+τ2)) (A4)

= ε0

∞

∫
−∞

dω
∞

∫

0

dτ1

∞

∫

0

dτ2 χ(2)(t, t − τ1, t − τ1 − τ2)

: (E(ω)E(ω)eiω(2τ1+τ2)e−2iωt

+ E(ω)E∗(ω)eiωτ2 + E∗(ω)E(ω)e−iωτ2

+ E∗(ω)E∗(ω)e−iω(2τ1+τ2)e2iωt
) (A5)

= ε0

∞

∫
−∞

dωχ(2)(2ω, ω, ω) : E(ω)E(ω)e−2iωt

+ χ(2)(0, ω,−ω) : E(ω)E∗(ω)

+ χ(2)(0,−ω, ω) : E∗(ω)E(ω)

+ χ(2)(−2ω,−ω,−ω) : E∗(ω)E∗(ω)e2iωt (A6)

where the specific interaction times, t1 and t2, are converted to time
delays, τ1 and τ2, according to Eqs. (A7) and (A8)

t1 = t − τ1 (A7)

t2 = t − τ1 − τ2 (A8)

After exploiting the Fourier transform definition and evalua-
tion of the time delay integrals, Eq. (A6) clearly shows four con-
tributions (two conjugate pairs) with different χ(2) terms that are
oscillating at either twice the input frequency or not at all, thus indi-
cating the SHG and OR pathways. As this is a second order process,
each χ(2) component will consist of four correlation functions (e.g.,
the nonlinear polarisation contribution oscillating at +2ω is con-
tributed to from the four pathways which yield “+” contributions
from both interactions, as seen in Table IV) which leads to the 16
possible pathways described in Table IV, as expected. Again, in the
ground state, many of these correlation functions will vanish as they
represent disallowed pathways.
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FIG. 7. Representations of the different pathway contributions to the second order
response function when initially in the ground state through two interactions with
an electric field oscillating at frequency ω, showing (a) Feynman diagrams, (b)
ladder diagrams, and (c) Liouville space pathways.

The specific pathways can also be represented pictographically
through Feynman diagrams, ladder (energy level) diagrams, or Liou-
ville space pathways as in Fig. 7 where only the ground state allowed
interaction pathways are shown. From these diagrams it is easy
to recognise the complex conjugate pairs as they represent mirror
images in the Feynman diagrams, inversions of solid and dashed
arrows in the ladder diagrams, and reflections along the state pop-
ulation diagonal in the Liouville space pathways. Correspondingly,
it is trivial to identify conjugate pairs in Table IV as diagonal boxes
within each quadrant. As the conjugate pairs only yield one unique
contribution, it is only necessary to measure one of each pair for a
full description, thus reducing the effective number of contributions
by a factor of two.

APPENDIX B: PERMUTATION SYMMETRY OF χ(2)

If one restricts the contributions to the second order suscepti-
bility to only include those with positive ω1 (which is easily achieved
experimentally), the general expression for χ(2) includes 32 unique
correlation functions. Of these, half will arise from two interactions
with the same field (SHG or OR), leaving 16 terms from SFG and
DFG (eight each). For SFG, the overall susceptibility is, therefore,
given by Eq. (B1).

χ(2)ijk (ω2 + ω1, ω2, ω1)

=
N

2ε0h̵2∑
pqr

ρ(0)pp

⎧⎪⎪
⎨
⎪⎪⎩

μi
prμ j

rqμk
qp

(ω1 − ωqp + iΓqp)(ω2 + ω1 − ωrp + iΓrp)

(B1a)

−
μi

rqμ j
prμk

qp

(ω1 − ωqp + iΓqp)(ω2 + ω1 − ωqr + iΓqr)
(B1b)

−
μi

qrμ j
rpμk

pq

(ω1 − ωpq + iΓpq)(ω2 + ω1 − ωrq + iΓrq)
(B1c)

+
μi

rpμ j
qrμk

pq

(ω1 − ωpq + iΓpq)(ω2 + ω1 − ωpr + iΓpr)
(B1d)

+
μi

prμ j
qpμk

rq

(ω2 − ωqp + iΓqp)(ω2 + ω1 − ωrp + iΓrp)
(B1e)

−
μi

rqμ j
qpμk

pr

(ω2 − ωqp + iΓqp)(ω2 + ω1 − ωqr + iΓqr)
(B1f)

−
μi

qrμ j
pqμk

rp

(ω2 − ωpq + iΓpq)(ω2 + ω1 − ωrq + iΓrq)
(B1g)

+
μi

rpμ j
pqμk

qr

(ω2 − ωpq + iΓpq)(ω2 + ω1 − ωpr + iΓpr)

⎫⎪⎪
⎬
⎪⎪⎭

(B1h)

By rearrangement of the transition dipole moments in the numera-
tors for each correlation function, it can be noticed that every term
expresses a progression of three pairs of indices that have the form:
pa → ab → bp where “a” and “b” can be either “q” or “r” in the
summation. As “q” and “r” are completely free parameters in each
term [(but “p” is not due to the multiplication of every term by the
density of states for state “p” (ρ(0)pp )], they can be interchanged with-
out loss of generality. This, therefore, leaves eight permutations of
the form pr → rq → qp, where the only distinction in the numera-
tors comes from the order of indices i, j, k, representing which field
is associated with the specific transition. Since there are six possi-
ble permutations of i, j, k there must be repetitions, and indeed it is
possible to see (with appropriate swapping of “q” and “r”) that term
(B1b) has the same numerator as term (B1g), and term (B1c) has the
same as term (B1f). Taking terms (B1b) and (B1g) then, for example,
it is possible to combine them (swapping “q” and “r” in the latter) as
in Eq. (B2).

−
μi

rqμ j
prμk

qp

(ω1 − ωqp + iΓqp)(ω2 + ω1 − ωqr + iΓqr)

−
μi

rqμ j
prμk

qp

(ω2 − ωpr + iΓpr)(ω2 + ω1 − ωqr + iΓqr)

= −
μi

rqμ j
prμk

qp

(ω2 + ω1 − ωqr + iΓqr)
{

1
(ω1 − ωqp + iΓqp)

+
1

(ω2 − ωpr + iΓpr)
} (B2a)

= −
μi

rqμ j
prμk

qp

(ω2 + ω1 − ωqr + iΓqr)
{

ω2 + ω1 − ωqr + i(Γpr + Γqp)

(ω1 − ωqp + iΓqp)(ω2 − ωpr + iΓpr)
}

(B2b)

= −
μi

rqμ j
prμk

qp

(ω1 − ωqp + iΓqp)(ω2 − ωpr + iΓpr)

× {
ω2 + ω1 − ωqr + i(Γpr + Γqp)

ω2 + ω1 − ωqr + iΓqr
} (B2c)

Similarly, terms (B1c) and (B1f) can be combined into the
single term as in Eq. (B3).
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−
μi

rqμ j
qpμk

pr

(ω1 − ωpr + iΓpr)(ω2 + ω1 − ωqr + iΓqr)

−
μi

rqμ j
qpμk

pr

(ω2 − ωqp + iΓqp)(ω2 + ω1 − ωqr + iΓqr)

= −
μi

rqμ j
qpμk

pr

(ω1 − ωpr + iΓpr)(ω2 − ωqp + iΓqp)

× {
ω2 + ω1 − ωqr + i(Γpr + Γqp)

ω2 + ω1 − ωqr + iΓqr
} (B3)

Therefore, by substituting these expressions into Eq. (B1) along
with an appropriate swapping of “q” and “r” in specific correlation
functions, the second order susceptibility for SFG with positive ω1
can be written as in Eq. (B4).

χ(2)ijk (ω2 + ω1, ω2, ω1)

=
N

2ε0h̵2∑
pqr

ρ(0)pp

⎧⎪⎪
⎨
⎪⎪⎩

μi
prμ j

rqμk
qp

(ω1 − ωqp + iΓqp)(ω2 + ω1 − ωrp + iΓrp)

(B4a)

+
μi

qpμ j
rqμk

pr
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(B4b)

−
μi

rqμ j
prμk
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× {
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} (B4c)

−
μi

rqμ j
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× {
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ω2 + ω1 − ωqr + iΓqr
} (B4d)

+
μi

prμ j
qpμk

rq

(ω2 − ωqp + iΓqp)(ω2 + ω1 − ωrp + iΓrp)
(B4e)

+
μi

qpμ j
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rq

(ω2 − ωpr + iΓpr)(ω2 + ω1 − ωpq + iΓpq)

⎫⎪⎪
⎬
⎪⎪⎭

(B4f)

By swapping frequencies ω2 + ω1 and ω2 with negation, along with
their corresponding indices, results in the expression for the second
order susceptibility in Eq. (B5).

χ(2)jik (−ω2,−ω2 − ω1, ω1)

=
N

2ε0h̵2∑
pqr

ρ(0)pp

⎧⎪⎪
⎨
⎪⎪⎩

μ j
prμi

rqμk
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× {
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} (B5d)

+
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(B5e)

+
μ j
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(−ω2 − ω1 − ωpr + iΓpr)(−ω2 − ωpq + iΓpq)

⎫⎪⎪
⎬
⎪⎪⎭

(B5f)

Therefore, by manipulating the signs, this can be rewritten as
in Eq. (B6).

χ(2)jik (−ω2,−ω2 − ω1, ω1)

=
N

2ε0h̵2∑
pqr

ρ(0)pp

⎧⎪⎪
⎨
⎪⎪⎩

−
μ j
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(B6a)
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(B6b)

+
μ j
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prμk
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× {
ω2 − ωrq − i(Γrp + Γqp)
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} (B6c)

+
μ j
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× {
ω2 − ωrq − i(Γpr + Γqp)

ω2 − ωrq − iΓqr
} (B6d)

+
μ j

prμi
qpμk

rq

(ω2 + ω1 − ωpq − iΓpq)(ω2 − ωpr − iΓpr)
(B6e)

+
μ j

qpμi
prμk

rq

(ω2 + ω1 − ωrp − iΓpr)(ω2 − ωqp − iΓqp)

⎫⎪⎪
⎬
⎪⎪⎭

(B6f)

TABLE V. Corresponding contributions to the SFG and DFG susceptibility on the
assumption of non-resonant ω2 + ω1 and ω2 interactions.

Term in SFG Term in DFG
[Eq. (B4)] [Eq. (B6)]

(B4a) (B6c)
(B4b) (B6d)
(B4c) (B6a)
(B4d) (B6b)
(B4e) (B6f)
(B4f) (B6e)
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In the case of both ω2 + ω1 and ω2 being off-resonant, a direct com-
parison can hence be made between the terms in Eq. (B6) with those
in Eq. (B4). Specifically, the specific terms correspond exactly to each
other as in Table V.
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