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1 Introduction

Six-dimensional superconformal field theories (6d SCFTs) are UV complete theories with
conformal symmetry and supersymmetry in the highest possible dimension [1–13]. Com-
pactification of 6d SCFTs on a d-dimensional manifold Md leads to many interesting (6−d)-
dimensional SCFTs [14–63]. In particular, for 6d N = (2, 0) SCFTs realized on the world-
volume of N M5-branes, the twisted compactification over 4-manifolds M4 give a large class
of two-dimensional theories denoted by TN [M4] [56–58], and more recently such reductions
have been extended to 6d N = (1, 0) SCFTs [61–63]. The theories TN [M4], defined through
the 4-manifold M4, are in general difficult to study since in most cases the Lagrangian de-
scription is unknown. It is believed that, in interesting cases, they will eventually flow to
non-trivial interacting 2d SCFTs.

Global symmetry is one of the most important tools in the study of quantum field the-
ories. Recently, through the association of symmetries with topological defects [64, 65],
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the concept of symmetry has been greatly generalized to include higher-form symme-
tries [37, 64–84], higher-group symmetries [85–96], and non-invertible symmetries [97–151].
The fusion of non-invertible defects does not obey the group law and they are described
by (higher)fusion categories [152–154]. Non-invertible symmetries were first found in 2d
CFTs, and recently constructed in many higher-dimensional theories. In this paper, we
will study the global symmetries and in particular the non-invertible ones, in the theory
TN [M4], using the concept of SymTFTs.

Symmetry topological field theory (SymTFT) is a topological field theory on a compact
(d+1)-dimensional space Xd+1, which encodes symmetries, anomalies, and global structures
for theories on the boundary Xd = ∂Xd+1 [155–160]. 6d SCFTs are relative theories living
on the boundary of a non-invertible 7d TQFT [161, 162]. Taking into account this relative
nature, it becomes apparent that one has to study the compactification of the 6d/7d coupled
system on M4. The 2d theory TN [M4] is in general also relative and coupled to a non-
invertible 3d TQFT obtained from the reduction of the 7d TQFT. This 3d TQFT is the
SymTFT for TN [M4]. To make TN [M4] absolute, one needs to choose a maximal isotropic
sublattice in H2(M4,ZN ) [163] or polarization on M4 [164]. Combining with other discrete
choices of data, one can find all global variants of TN [M4].

From the perspective of the 3d SymTFT, the maximal isotropic sublattice is equivalent
to a choice of topological boundary condition [165] rendering the fields corresponding to this
subset non-propagating background fields. The 0-form symmetry of the 3d SymTFT that
transforms between these boundaries gives rise to different 2d topological manipulations
among global variants of TN [M4] [166]. In our setup, this symmetry can be obtained from
the automorphism group of H2(M4,ZN ) denoted by AutZN

(Q). Thus, by employing the
SymTFT, one can obtain the global variants of TN [M4] and study how they transform
under topological manipulations.

Similar to the class S theory, the automorphism group of H2(M4,Z) or mapping class
group MCG(M4) leads to Montonen-Olive-like dualities that also transform different global
variants of TN [M4] into each other. Also, there are coupling constants of TN [M4] corre-
sponding to geometric parameters of M4 which transform non-trivially under such dualities.
At fixed points of such transformations, combinations of the duality transformations and
topological manipulations, captured by MCG(M4), give rise to topological defects known
as duality defects. When the combination involves a gauging operation, the defects are non-
invertible. In this way, one can construct interesting non-invertible defects in TN [M4]. Sim-
ilar constructions for the class S theory in four dimensions have been studied in [110, 159].

The plan of the current paper is as follows. In section 2, we give a general overview of
SymTFTs from dimensional reduction and the construction of absolute theories. We then
proceed in section 3 to study the compactification of 6d N = (2, 0) theory of type AN−1 on
P1 × P1. The SymTFT is the standard ZN gauge theory. With the help of this SymTFT,
we find the orbifold groupoid and global variants of TN [P1 × P1] for all prime N , as well
the cases of N = 4 and N = 6. An interesting observation is that when N is even, one can
identify both bosonic and fermionic absolute theories of TN [P1 × P1] and two topological
manipulations, one of which is gauging and another one is stacking the Arf invariant. For
the cases of N prime, we identify all global variants and possible topological manipulations.
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We also discuss how to generalize the result to the case when N = pq is not prime, but
a product of two primes p and q, using two examples, namely N = 4 for p, q not coprime
and N = 6 for p, q coprime. We can reproduce all orbifold groupoids studied in [166], and
without too much effort, we can study the cases for N > 6.

With the knowledge of the global variants and how they transform under duality
and topological manipulations, we discuss the topological defects in each global variant
of TN [P1 × P1]. It turns out that there exist duality defects for each N . In particular,
for N = 2, one can show that the duality defect can be related to invertible symmetry
by duality, and thus is non-intrinsic non-invertible, but for all other cases, the duality is
intrinsic non-invertible.

We extend our analysis to the connect sum of P1 × P1. The SymTFT in this case
is ZN × ZN gauge theory. For N = 2 and N = 3, we compute the maximal isotropic
sublattice and obtain the same orbifold groupoid studied in [166]. Considering the possible
SPT phases, the global variants can be obtained from the complement of these sublattices.
After that, we determine the mapping class group and the coupling constants. Interestingly,
at particular value, these couplings are invariant under a set of dualities of a D8 group. We
find some topological manipulations that can undo the action of these dualities in some
specific global variant. Since these topological manipulations involving different ways of
gauging, we can realize non-invertible defects described by TY (D8) category.

Next, in section 4, we study the other Hirzebruch surfaces. As we will show in the
main text, it is sufficient to consider the case of F1. The SymTFT is the twisted ZN gauge
theory. In analogy with the P1 ×P1 case, using the SymTFT, we study the global variants
of the theory TN [F1] and possible topological manipulations for each N . Similar to the
P1 × P1 case, one can find two absolute theories for odd N . However, they are not related
by gauging, but some other topological operation. For even N , there are significantly
fewer global variants compared with the P1 × P1 case. One observation is that there is
an anomaly for gauging Z2. It is interesting to find the physical understanding of these
topological operations. Similarly, we find the mapping class group, couplings and identified
topological defects for prime N , N = 4 and N = 6. We compute the 0-form symmetries
of ZN gauge theories up to N = 20 and twisted gauge theory up to N = 11 from the
perspective of geometry. For odd N , the result is the same as the ones found in [167], while
for even N , our result gives the 0-form symmetry for spin (twisted) ZN gauge theories.

We then move to study the del Pezzo surfaces, particularly dP2, in section 5. We
calculate the mapping class group of dP2 and determine the couplings constants using
invariant volumes. Under a transformation generated by a Z2 subgroup of the class mapping
group, these couplings are invariant at a extended loci in the conformal manifold, which
implies the exsistence of the duality defect. However, the SymTFT does not have the form
of a standard Dijkgraaf-Witten theory. It would be interesting to study it on its own.

Finally, in section 6, we consider TN [M4] with a general compact 4-manifold M4,
which is allowed to have 1-cycles, 3-cycles, as well as torsional cycles. From the 7d TQFT
of the AN−1 (2, 0) theory, we derive the 3d SymTFT for TN [M4] using differential co-
homology [155, 157]. As examples, we consider the 4-manifold T 2 × S2 with non-trivial
(1-)3-cycles and the Enriques surface with torsional cycles. We compute the intersection
numbers in both examples and analyze the symmetry and mixed anomalies.
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2 Compactification of 6d SCFTs on 4-manifolds

In six dimensions, there exist six-dimensional N = (2, 0) SCFTs that can be understood as
relative theories living on the boundary of a non-invertible seven-dimensional topological
quantum field theory [161–163]. However, the partition function of such theories on a six-
manifold M6 is not well-defined, and instead, the theory is better understood as a state in
the Hilbert space of the bulk TQFT.

In this section, we will first review how to define the partition vector of these 6d
theories by choosing a discrete set of data. Next, we will discuss the dimensional reduction
of 6d relative theories, which involves coupling the 7d/6d systems on 4-manifolds to obtain
absolute theories upon compactification. Finally, we will focus on the compactification of
the 7d TQFT of the 6d SCFTs of type AN−1 on a 4-manifold with non-trivial 2-cycles.
We will study various properties of the resulting three-dimensional SymTFT that will be
useful in subsequent sections.

2.1 6d SCFTs as relative theories

In a 6d N = (2, 0) SCFT of type g, the defect group D is given by the center of g [163, 168].
When D is non-trivial, the theory is relative and the bulk 7d TQFT is non-invertible. The
partition function of such a 6d relative theory on a manifold M6 is not a number but a
vector in the Hilbert space of the 6+1-dimensional TQFT on M6 × R. To specify it, we
need to choose a discrete set of data that will be discussed in the following.

Consider the specific case of the 6d N = (2, 0) theory of type AN−1, denoted by TN .
The defect group, in this case, is D = ZN , implying that the theory is relative when N > 1.
The 7d bulk TQFT associated with this theory is described by the action [161]

S7d = N

4π

∫
W7

c ∧ dc , (2.1)

where c ∈ H3(W7,U(1)) is a 3-form field. The corresponding Wilson 3-surfaces of this
theory are given by

Φ(M3) := e

∮
M3

c
, M3 ∈ H3(W7,ZN ) (2.2)

On a constant time 6d slice M6 ⊂ W7, the Wilson 3-surfaces satisfy the following
equal-time commutation relation [159]

Φ(M3)Φ(M ′
3) = e⟨M3,M ′

3⟩Φ(M ′
3)Φ(M3) . (2.3)

where the intersection pairing is

⟨M3, M ′
3⟩ =

2πi

N

∫
M6

ωM3 ∪ ωM ′
3

(2.4)

with ωM3 and ωM ′
3

being the Poincare dual of M3 and M ′
3. Besides, Wilson 3-surfaces

Φ(M3) also satisfy the following quantum torus algebra

Φ(M3)Φ(M ′
3) = e

1
2 ⟨M3,M ′

3⟩Φ(M3 + M ′
3) . (2.5)
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The 6d SCFT can be understood as a state in the Hilbert space H(M6) of this 7d
TQFT. In order to specify this state, one must first fix a basis for H(M6), which is specified
by a maximal isotropic sublattice L ⊂ H3(M6,ZN ), i.e. a maximal subset such that1

⟨M3, M ′
3⟩ = 0 , ∀ M3, M ′

3 ∈ L . (2.6)

With L, one can find a set of commuting Wilson 3-surfaces. These Wilson 3-surfaces define
a basis in H(M6) given by

Φ(M3)|L, 0⟩ = |L, 0⟩, ∀M3 ∈ L , (2.7)

where |L, 0⟩ is a state in H(M6) invariant under Φ(M3). The rest of the states in H(M6)
are obtained from elements in L⊥ = H3(M6,ZN )/L by

Φ(M ′
3)|L, 0⟩ = |L, M ′

3⟩, ∀M ′
3 ∈ L⊥ . (2.8)

An element M3 ∈ L induces an action on the state |L, M ′
3⟩ given by [163]

Φ(M3)|L, M ′
3⟩ = e⟨M3,M ′

3⟩|L, M ′
3⟩ . (2.9)

Given a choice of L, the “partition vector” of the 6d SCFT is given by [159]

|AN−1⟩ =
∑

M ′
3∈L⊥

ZL(M ′
3)|L, M ′

3⟩ , (2.10)

where the coefficients ZL(M ′
3) are the 6d conformal blocks [162]. To obtain the partition

function, one can consider the geometry W7 = M6 × I and the choice of the L can be
understood as the choice of the topological boundary condition for the 7d TQFT. The
partition function of the 6d SCFT on the boundary is then given by

ZL(M6) = ⟨L, 0|AN−1⟩ , (2.11)

and
ZL(M6, M ′

3) = ⟨L, M ′
3|AN−1⟩ . (2.12)

Thus, by the choice of maximal isotropic sublattice L and elements in L⊥, one can obtain
partition functions from relative 6d SCFTs.

Compactification on 4-manifolds. Consider the 6d SCFT living on M6 = Σ2 × M4
and the corresponding 7d bulk theory on W7 = W3 × M4. After compactifying this 7d/6d
coupled system on M4, one obtains a 2d theory on Σ2 denoted by TN [M4] and a 3d TQFT
on ∂W3 = Σ2. Note that the 2d theory is a relative theory coupled to a non-trivial TQFT
in the 3d bulk. As discussed in [163, 164], to obtain 2d absolute theories, one needs to
choose a maximal isotropic sublattice in the internal geometry.

1Note that the maximal isotropic sublattice L ⊂ H3(M6,ZN ) is the dual of those defined in
H3(M6,ZN ) [163, 164].
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Assuming that M4 does not have any 1-cycles or 3-cycles, H3(M6,ZN ) splits via the
Künneth formula as

H3(M6,ZN ) ∼= H2(M4,ZN )⊗ H1(Σ2,ZN ) .

Thus, any two 3-cycles M3, M ′
3 ∈ H3(M6,ZN ), can be decomposed as

M3 = M2 × γ, M ′
3 = M ′

2 × γ′,

with M2, M ′
2 ∈ H2(M4,ZN ) and γ, γ′ ∈ H1(Σ2,ZN ). The intersection between M3 and M ′

3
becomes

⟨M3, M ′
3⟩ = (M2, M ′

2)× ⟨γ, γ′⟩ , (2.13)

where (−,−) is defined by the intersection form of M4

Q : H2(M4,ZN )× H2(M4,ZN ) → ZN . (2.14)

and ⟨−,−⟩ is the standard anti-symmetric intersection pairing for Σ2.
Similar to the theory of class S [114, 159, 163], to obtain absolute theories on Σ2, one

needs to specify a maximal isotropic sublattice L ⊂ H2(M4,ZN ) such that

(M2, M ′
2) = 0 , M2, M ′

2 ∈ L . (2.15)

More explicitly, the intersection is

(M2, M ′
2) = v⃗M2Qv⃗M ′

2
(2.16)

where v⃗M2 and v⃗M ′
2

are representatives of M2 and M ′
2 in H2(M4,ZN ). According to

equation (2.13), choosing an L automatically defines a 6d maximal isotropic sublattice
L ⊂ H3(M6,ZN ) given by

L = L ⊗ H1(Σ2,ZN ) . (2.17)

As we will see, different choices of L define different topological boundary conditions for the
3d SymTFT on W3 and thus lead to distinct absolute theories on Σ2 denoted by TN,L[M4].

Besides that, each absolute theory can have different global properties [66, 169]. To
specify the global variants, one also needs to choose a specific representative of the non-
trivial classes of L⊥⊗H1(Σ2,ZN ), with L⊥ := H2(M4,ZN )/L. The choice of representatives
in L⊥ determines the possible stacking of the SPT phases and the choice of elements in
H1(Σ2,ZN ) determines the background fields for the corresponding zero-form symmetries
in the 2d theory. After the choice of B, the partition function of the 2d theories is [114]

ZL(Σ2, B) = ⟨L, B|AN−1⟩ = ⟨L, 0|Φ(B)|AN−1⟩ , (2.18)

with B ∈ L⊥. By taking B ∈ L, one goes back to the definition in equation (2.11).
Following the notation introduced in [114, 159, 164], we will denote the representative by
B and the corresponding global variant by TN,L[M4, B].
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Shrink M4
SymTFT(C)7d TQFT

|AN−1⟩ ⟨L(B)| |TN [M4]⟩

x = ϵx = 0

Figure 1. Compactification of 7d/6d coupled system on M4 with maximal isotropic sublattice
L lead to a 2d theory TN [M4] on Σ2 and its SymTFT on Σ2 × I(0,ϵ) with topological boundary
condition ⟨L(B)|.

2.2 SymTFT of TN [M4]

Let {ζi} be a basis of H2(M4,Z) with i = 1, 2, . . . , r. Compactification of the 7d action (2.1)
leads to the following action in 3d

S3d = N

4π

∑
i,j

Qij
∫

W3
ai ∧ daj , (2.19)

where Q is the intersection form of M4 and ai are the 1-form gauge fields

ai =
∫

ζi

c, i = 1, 2, . . . , r . (2.20)

For rational complex surfaces M4, the classification of Q-matrices is well known. For each
r ̸= 2, the matrix Q has to be the diagonal matrix with signature (1, r − 1):

Q =


1 0 . . . 0
0 −1 . . . 0
...

... . . . ...
0 0 . . . −1

 . (2.21)

For r = 2, we have

Q =

0 1
1 0

 (2.22)

if M4 is a Hirzebruch surface Fl with even l, and

Q =

0 1
1 −1

 (2.23)

(or equivalently the diagonal matrix with signature (1, 1)) if M4 is a Hirzebruch surface
with odd l.

We next define the Chern-Simons level matrix

Ki,j ≡ NQi,j . (2.24)
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ϵ → 0
SymTFT(C)

ZTL
[B]⟨L(B)| |TN [M4]⟩

x = 0x = 0 x = ϵ

Figure 2. The 2d absolute theory is obtained by shrinking the interval.

K is an r× r symmetric matrix with integer entries where r is the rank of H2(M4,Z). The
1-form defect group of the 3d theory (2.19) can be obtained by finding the Smith normal
form of K, that is finding matrices P, R ∈ SL(r,Z) such that

P tKR = D, (2.25)

with D a diagonal matrix of the form

D =


d1

. . .
dn

 , (2.26)

with all elements d1, . . . , dn ∈ Z. Then the defect group is determined to be

D =
r⊕

i=1
Zdi

. (2.27)

The line operators can be obtained from 7d by

Lα⃗ = e
i2π
N

∫
γ×M2

c = e
i2πα⃗

N
·
∫

γ
a⃗ (2.28)

where α⃗ = (α1, α2, . . . , αr) denotes the charge of the line defect. S- and T-matrices of the
corresponding TQFT are given by

S(α⃗, β⃗) ≡ B(α⃗, β⃗)√
|D |

, T (α⃗, β⃗) ≡ θα⃗e−2πic/24δ
α⃗β⃗

, (2.29)

where α⃗, β⃗ ∈ D are Anyons, B(α⃗, β⃗) is the braiding matrix

B(α⃗, β⃗) ≡ exp
[
2πiα⃗tK−1β⃗

]
, (2.30)

and
θ(α⃗) ≡ exp[2πiα⃗tK−1α⃗], (2.31)

are the topological spin of anyons α⃗.
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3d TQFT as SymTFT. Choosing a polarization L can be understood as putting the
3d TQFT on Σ2 × I(0,ϵ). As shown in figure 1, the left boundary is the topological one
specified by L and the right one is dynamical encoding the dynamics of TN [M4]. In fact,
this 3d TQFT defines the SymTFT of TN [M4]. Given a topological boundary condition,
the absolute theory is obtained by shrinking the interval in figure 2.

The SymTFT defines the 0-form symmetries of TN [M4] denoted by a group G when it
is invertible and by a fusion category C in the general setting. As studied in [100, 158, 170],
the SymTFT is a Dijkgraaf-Witten (DW) theory [171] when the symmetries are invertible.
However, for non-invertible symmetries, the SymTFT is the Turaev-Viro theory on C or
equivalently the Reshetikhin-Turaev theory on the Drinfeld center Z(C).

Choice of polarization and topological boundary conditions. As observed in [164],
the choice of maximal isotropic sublattices corresponds to the different topological bound-
ary conditions in the 3d TQFT. Maximal isotropic sublattices L then correspond to those
sublattices whose elements have trivial braiding with each other:

B(α⃗, β⃗) = 1 for α⃗, β⃗ ∈ L. (2.32)

As we have seen that different choices of L lead to different absolute theories of TN [M4].
When we make a choice of a maximal isotropic sublattice L in H2(M4,ZN ), then

we are free to choose any element of H1(Σ2,ZN ). This allows us to specify line defects
in the boundary theory along any direction in Σ2. This gives rise to an absolute the-
ory on Σ2 whose partition function with background fields x ∈ H1(Σ2, L) we denote by
ZTN,L[M4][Σ2;x]. The corresponding wavefunctions in HL are then labeled by

|ΨL⟩ =
∑

x∈H1(Σ2,L)
ZL[Σ2;x]|x⟩, (2.33)

where we have abbreviated the partition function of the 2d theory with the choice of
polarization L as ZL[Σ2;x] ≡ ZTL[M4][Σ2, x] with a background field x ∈ H1(Σ2, L) turned
on. Elements of L can then be viewed as discrete versions of x-coordinates while elements
in L⊥ are discrete versions of p-coordinates. A Dirichlet-boundary condition then amounts
to pairing |ΨL⟩ with a coordinate-state ⟨DX | given by

⟨DX | =
∑

x∈H1(Σ2,L)
⟨x|δ(x − X), (2.34)

such that,
⟨DX |ΨL⟩ = ZL[Σ2;X]. (2.35)

A Neumann boundary condition then amounts to switching to momentum eigenstates ⟨NP |,
where P ∈ L⊥ ⊗ H1(Σ2,Z), given by

⟨NP | =
1

|H1(Σ2, L)|
∑

x∈H1(Σ2,L)
e

2πi
N

⟨x,P ⟩⟨x|. (2.36)

– 9 –



J
H
E
P
1
1
(
2
0
2
3
)
2
0
8

SPT phases. We can define Wilson surfaces in 6d which become line defects in the 2d
theories we are after. We subdivide between two different types of Wilson surfaces, namely

Φi(γ) ≡ Φ(γ × M2,i) = e
2πi
N

∮
γ×M2,i

c
,

Φ̂i(γ) ≡ Φ(γ × M̂2,i) = e
2πi
N

∮
γ×M̂2,i

c
, (2.37)

where M2,i ∈ L and M̂2,i ∈ L⊥. The operators Φi do not change a given Dirichlet boundary
condition, while the Φ̂i act as discrete translation operators and create line defects on the
boundary. But note that the Φ̂i crucially depend on the choice of representative of elements
in L⊥. The choice of a different representative amounts to shifting

M̂2,i → M̂2,i +
∑

j

kijM2,j , kij ∈ Z. (2.38)

Using the quantum torus algebra (2.5), under the above shift one has,

Φ̂i→ Φ̂′
i=Φ

γi×M̂2,i+
∑

j

kijγi×M2,j

=e
2πi
N

∑
j
kij⟨M̂2,i,M2,j⟩

∫
Σ2

Ai∪Ai
2 Φ̂i(γi)×

∏
j

Φj(γi)kij ,

(2.39)
where Ai is the Poincare dual of γi. Similarly to [159], in a product ∏i Φ̂′

i(γi) we can then
first use the above splitting and then successively commute all Φj operators past the Φ̂i

operators and thus pick up an SPT phase,

∏
i

Φ̂′
i(γi) = exp

2πi

N

∑
i,j

kij⟨M̂2,i, M2,j⟩
∫

Σ2

(
Ai ∪ Ai

2 + Ai ∪ Aj

)∏
i

Φ̂i(γi) . (2.40)

where the factor Ai∪Ai
2 can be understood as the possible quadratic refinement on Σ2.

Topological manipulations. Suppose the 2d absolute theories have a non-anomalous
discrete symmetry G. There are three kinds of 2d topological manipulations that will
transform between these theories. The first one is the gauging of subgroups H ⊂ G

ZT /G[A] ∼
∑

ZT [a]e
2πi
N

⟨a,A⟩ , (2.41)

where a and A are background fields for H and Ĥ where Ĥ is the quantum symmetry after
gauging, and ⟨a, A⟩ is the standard pairing on Σ2.

The second topological manipulation is stacking the theory with an SPT phase v2 ∈
H2(G,U(1)). When T is spin, one can also stack the fermionic SPT phase [166], for
example, the Arf invariant in 1+1 dimension. With these SPTs, we can have orbifolding a
subgroup H ⊂ G

ZT /v2 G[A] ∼
∑

ZT [a]e
2πi
N

⟨a,A⟩ϵv2 , (2.42)

where ϵv2 is the action of the SPT phase.
The third topological manipulation is the permutation of the symmetry lines in T .

Notice that this manipulation only changes the way how the symmetry is coupled to the
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background fields on Σ2 and will not lead to new global variants of T . We confirm this point
by analyzing the topological defect lines in a theory with ZN symmetry in the next section.

The operations of gauging and stacking SPT phases and their composition are expected
to generate all the global variants of T . These global variants are closed under these topo-
logical manipulations. If one only considers the gauging operations, then these theories and
the associated operations form the orbifold groupoids [166]. As we will see, these different
global variants are different boundary conditions of the 3d SymTFT and the topological
manipulations are determined by the automorphism group or (0-form symmetry) of the
SymTFT.

Dualities from 4-manifold. In class S theory, the mapping class group of torus leads to
the SL(2,Z) Montonen–Olive duality [2, 172, 173]. The mapping class group of 4-manifold
MCG(M4) is given by2

P tQP = Q, P ∈ GL(r,Z), (2.43)

where r is the rank of the intersection form Q. Similarly, we expect that MCG(M4) will
give rise to Montonen–Olive-like dualities for 2d theories.

Global variants. The automorphism group or discrete 0-form symmetries of the 3d
SymTFT denoted by AutZN

(Q) can be determined by

T tQT = Q, T ∈ GL(r,ZN ), (2.44)

where r is the rank of the intersection form Q. These elements in AutZN
(Q) transforming

different absolute theories or global variants of TN [M4] correspond to the 2d topological
manipulations [166]. In particular, this group can be decomposed as

AutZN
(Q) = Aut(G)×ON (Q) (2.45)

where Aut(G) is the automorphism group of the symmetry of T4[M4] that corresponds to
permutations of the 2d symmetry lines while the group ON (Q) corresponds to the different
ways of gauging and stacking possible SPT phases, which give rise to different global
variants of TN [M4]. Thus, the number of global variants is simply given by

d(N) = |AutZN
(Q)|

|Aut(G)| = |ON (Q)| (2.46)

There is a similar result for the class S theory [159].
One can associate each global variant with a matrix M ∈ ON (Q). In fact, these matrix

representations can also be obtained from the data of L and L⊥. These matrices are closed
under dualities and topological manipulations discussed above. The action of duality is
from the left,

M → F tM, F ∈ MCG(M4), (2.47)

while a topological manipulation acts from the right,

M → MG, G ∈ AutZN
(Q) . (2.48)

2It is called symplectic automorphism group in the mathematical literature.
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The actions of dualities and topological manipulations on global variants of TN [M4] will
play an important role in realizing topological defects later.

Central charges. Under the Vafa-Witten twist [173], the 2d theory TG[M4] is in general
a N = (0, 2) SCFT. The supersymmetry is enhanced to N = (0, 4) when M4 is Kähler.
For 4-manifolds without torsional cycles, the central charge of TG[M4] is given by [174]

cR = 3
2(χ + σ)rG + (2χ + 3σ)dGhG,

cL = χrG + (2χ + 3σ)dGhG, (2.49)

In this work, we mainly focus on the 6d N = (2, 0) of type G = AN−1, so rAN−1 = N − 1,
dAN−1 = N2 − 1 and hAN−1 = N . When M4 is Hirzebruch surfaces Fl or the connected
sum of them (Fl)#n , one has χ((Fl)#n) = 2n + 2 and σ((Fl)#n) = 0. Thus, the central
charges are

cL = 3(n+1)(N−1)+4(n+1)N(N2−1), cR = 2(n+1)(N−1)+4(n+1)N(N2−1) (2.50)

For the del pezzo surface dPl, one has χ(dPl) = l+3 and σ(dPl) = 1− l. Thus, the central
charges are

cL = 6(N − 1) + (9− l)N(N2 − 1), cR = (l + 3)(N − 1) + (9− l)N(N2 − 1) (2.51)

3 6d N = (2, 0) SCFTs on P1 × P1

In this section, we will study the theory from the compactification of the 6d N = (2, 0)
theories of type AN−1 on M4 = P1 × P1. By choosing the maximal isotropic sublattice
L, different absolute theories of TN [M4] are obtained on the boundary of the ZN gauge
theories. Using this SymTFT, we will study their global variants (when SPT phases are
considered), and analyze the symmetries and possible anomalies.

3.1 ZN gauge theory

First, we will introduce the ZN gauge theory which is the 3d SymTFT of TN [P1 ×P1]. The
homology of P1 × P1 is

H∗(P1 × P1,Z) = {Z, 0,Z2, 0,Z}, (3.1)

with intersection form

Q =

0 1
1 0

 . (3.2)

Let b and f be a basis of H2(P1 × P1,Z), with intersection numbers

b2 = 0 , f2 = 0 , b · f = 1 . (3.3)

By the equation (2.20), one can define the following two 1-form gauge fields,

a =
∫

b
c, â =

∫
f

c .

– 12 –



J
H
E
P
1
1
(
2
0
2
3
)
2
0
8

Integrating over P1 × P1, the 3d action becomes

S3d = N

4π

∫
W3

a ∧ dâ + â ∧ da (3.4)

= 2π

N

∫
W3

a ∪ δâ ,

where W3 = Σ2 × I[0,ε] is a slab. Let x be the coordinate of the interval I[0,ε], then the
two boundaries are located at Σ2|x=ε and Σ2|x=0 corresponding to the topological and
dynamical boundary, respectively. Notice that this Chern-Simons action has the form of a
ZN discrete gauge theory. The gauge fields can also be written in terms of the ZN -valued
1-cochains as a → 2πi

N a.
The 3d ZN discrete gauge theory has line operators, which can be obtained from

discrete Wilson surfaces as follows,

L(e,m)(γ) = exp
(2πi

N

∮
γ×M2

c

)
= exp

(2πi

N

∮
γ

ea

)
exp

(2πi

N

∮
γ

mâ

)
, (3.5)

where M2 = eb + mf ∈ H2(P1 × P1,ZN ) and (e, m) ∈ ZN ×ZN are the electric/magenatic
charges. The topological spin of the line operator is

θ
(
L(e,m)

)
= exp

(4πi

N
em

)
. (3.6)

Notice that L(1,0) and L(0,1) together generate a Z(1)
N × Z(1)

N 1-form symmetry for the 3d
SymTFT.

The fusion rule between two distinct line defects is given by

L(e,m)(γ)× L(e′,m′)(γ) = L(e+e′,m+m′)(γ) . (3.7)

The braiding between them is

L(e,m)(γ)L(e′,m′)(γ′) = exp
(
−2πi

N
(em′ + me′)⟨γ, γ′⟩

)
L(e′,m′)(γ′)L(e,m)(γ) , (3.8)

where ⟨γ, γ′⟩ represents the intersection number between γ and γ′ on Σ2.
As shown in figure 2, to obtain an absolute 2d theory, one needs to specify a topological

boundary condition in ZN gauge theory and then shrink the slab. One can take the
Dirichlet-boundary condition and half of the line operators will survive on the boundary
generating a ZN 0-form symmetry for the 2d theory. One can also take other topological
boundary conditions giving rise to different global variants of TN [P1 × P1]. As we will see
later, these theories all have ZN 0-form symmetry and can be related to each other by
topological manipulations.

In general, a ZN discrete gauge theory is the SymTFT for theories with invertible ZN

symmetry with fusion category denoted by VecZN
. One can see that, as the ZN discrete

gauge theory has N2 lines, while the fusion category VecZN
only admits N lines, the 3d

SymTFT is the quantum double of the categorical symmetry in 2d.
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3.2 Orbifold groupoid and global variants

In this subsection, we will study how many different absolute 2d theories can be obtained
by choosing a suitable polarization on M4. The discrete isometry of M4 usually leads to
interesting operations on these absolute theories. These operations act on the polarizations
and can transform these 2d absolute theories between each other. Our analysis using the
polarization matches with the analysis from the 2d field theories. These different absolute
theories can be related by gauging and stacking the SPT phase. We take N = 2, N = p

prime numbers, N = 4 and N = 6 to illustrate our results.

Topological manupulations. Consider a 2d theory X with an anomaly free ZN zero-
form global symmetry on a closed two-dimensional spacetime Σ2. One can introduce two
topological operations

• gauging 0-form symmetry ZN denoted by σ:

ZTN [M4]/ZN
[Σ2, A] ∼

∑
a∈H1(Σ2,ZN )

ZTN [M4][Σ2, a] e
2πi
N

∫
Σ2

aA
, (3.9)

where now A ∈ H1(Σ2, ẐN ) is the background field of the quantum symmetry ẐN

after gauging.

• In our case, there is no bosonic SPT phase since H2(ZN ,U(1)) = 0. But, for fermionic
theories, we can stack a fermionic SPT phase, i.e. Arf invariant [175, 176].

Duality. The automorphism group of P1 × P1 is the matrix that preserves the quadratic
form defined by Q with action on H2(P1 × P1,Z). It turns out that these matrices are
elements of the MCG(P1 × P1), which is isomorphic to Z2

2 given by

I =

 1 0
0 1

 , −I =

−1 0
0 −1

 , s =

 0 1
1 0

 , −s =

 0 −1
−1 0

 (3.10)

These matrices correspond to the switch of two P1’s and the flip of their orientation. The
duality is generated by the element s.

For N = 2. As discussed in the previous section, to obtain absolute theories, one needs
to specify a maximal isotropic sublattice L ⊂ H2(P1 × P1,Z2) = (Z2)2, i.e. a 2× 2 integral
lattice. Besides L, the other piece of information is the choice of the elements in L⊥, which
determines the couplings of the background fields and possible stacking of the SPT phase.

With the inner product in equation (2.15), we find the following three maximal isotropic
sub-lattices,

L1 = {(0, 0), (0, 1)} → Z2

L2 = {(0, 0), (1, 0)} → Ẑ2

L3 = {(0, 0), (1, 1)} → Zf
2

(3.11)

Thus, we have three 2d absolute theories. As a theory on the topological boundary of Z2
discrete gauge theory, all these three theories have Z2 symmetry. We will label them by
Z2, Ẑ2, and Zf

2 . The physical meaning of these notations will become clear later.
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Z2 Ẑ2 Zf
2

g

g g

Figure 3. Orbifold groupoids for T2[P1 × P1] with Z2 symmetry. The map g represents the
topological manipulation gauging Z2 up to an SPT phase.

From the equation (2.44), the automorphism group is AutZ2(Q) = S3, with generators

σ =

 0 1
1 0

 , τ =

 1 1
0 1

 .

This automorphism group determines the 0-form symmetries of the SymTFT, which trans-
form between different topological boundary conditions, or in other words, between different
absolute theories by topological manipulations [164, 166].

We find g ∈ S3 acts transitively on three maximal isotropic sublattices and transforms
different absolute theories as in figure 3 with

g = στ =

 1 1
1 0

 ,

This gives the orbifold groupoid for a fermionic theory with Z2 symmetries [166]. It implies
that the theory T2[P1 × P1] is fermionic.

For 2d fermionic theories with non-anomalous Z2 symmetry, up to SPT phases, there
are indeed three absolute theories [175]. In particular, the theories Z2 and Ẑ2 are related
by gauging with Ẑ2 being the quantum symmetry. The theory Z2 and Zf

2 are related by
fermionization/bosonization. Thus, with the help of SymTFT, we are able to determine the
orbifold groupoid of T2[P1 × P1] and the predictions are consistent with the field-theoretic
analysis made in [166].

The maximal isotropic sublattice defines three absolute theories. To obtain the global
variants of T2[P1×P1], one needs also to specify the representatives in L⊥. For example, con-
sider the theory Z2 defined by L1. The complement of it is given by L⊥

1 = H2(M4,Z2)/L1,
which contains two equivalent classes

[(0, 0)] = {(0, 0), (0, 1)}, [(1, 0)] = {(1, 0), (1, 1)}.

The choice of representative in [(1, 0)] determines the possible stacking of the SPT phase.
As studied in [159], the choice of (1, 0) implies that the theory does not stack an SPT
phase denoted by (Z2)0 while the choice of (1, 1) means that the 2d theory is stacked with
an SPT phase denoted by (Z2)1. The choice of representative in L⊥ is denoted by BL.
Similarly, depending on whether an SPT phase is present, there are two global variants for
each maximal isotropic sublattice. In the following, we label them using the subscript 0/1
to denote if there are stacked SPT phases.
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(Z2)0 (Ẑ2)0 (Zf
2)0

(Z2)1 (Ẑ2)1 (Zf
2)1

s

s

σ

σ

τ τ s

τ
σ

0 1
1 0



0 1
1 1



1 0
0 1



1 1
0 1



1 0
1 1



1 1
1 0



Figure 4. Web of transformations for T2[P1 × P1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

Thus, we find a total of 6 global variants for T2[P1 × P1] specified by (L, B). As
observed in [159], there is a prescription to assign the global variants to the matrix in the
automorphism group as

ML,B = (KL, KB) , (3.12)

where KL is a vector containing the lattice point generating the polarization L and KB

denotes the representative of the lattice point in L⊥. In this way, one can associate each
global form with a 2× 2 matrix.

The automorphism groups AutZ2(Q) and MCG(P1×P1) transform among these global
variants, which correspond to perform the topological manipulations (σ, τ) and dualities
s to these 2d theories. By the action from the equation (2.47) and (2.48), we find these
global forms transform according to figure (4). As one can check this matches the field
theoretical analysis in [175]. Thus, we have found all global variants of T2[P1 × P1] and
identified how they transform under topological manipulations and duality.

For N = p > 2. For prime number N = p > 2, there are two maximal isotropic
sublattices

L1 = {(0, 0), (1, 0), . . . , (p − 1, 0)} → Zp

L2 = {(0, 0), (0, 1), . . . , (0, p − 1)} → Ẑp

(3.13)

which defines two absolute theories with Zp symmetry. We will denote them by Zp and Ẑp

because as we will see that they are related by Zp gauging.
One can show that L1 and L2 are the only two maximal isotropic sublattices. Let’s

consider the sublattice generated by a lattice point (e, m) other than (0, 0) in Z2
p. Thus,

the sublattice contains points (e′, m′) satisfying (e′, m′) = k(e, m) with k ∈ Z×
p . The inner
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Zp Ẑp

s

σ0 1
1 0

 1 0
0 1



Figure 5. Web of transformations for Tp[P1 × P1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

product between these two points is

2kem = 0, mod p. (3.14)

For prime p, the only solution is either e = 0 or m = 0, which gives the two maximal
isotropic sublattices L1 and L2. One can also consider the sublattices generated by two
or more linear independent points in Z2

p. However, in this case, one always gets the full
lattice, which is obviously not isotropic.

We find the automorphism group AutZp(Q) is the Dihedral group D2(p−1) defined by

D2(p−1) = ⟨r, σ|rp−1 = σ2 = (σr)2 = 1⟩ (3.15)

The order is 2(p − 1) and the two generators are

r =

 r1 0
0 r2

 , σ =

 0 1
1 0

 ,

where r1, r2 are integers coprime to p and satisfy r1r2 = 1, mod p. According to equa-
tion (2.45), this group can be decomposed as

Aut(Zp) = Z×
p = ⟨r⟩, Op(Q) = Z2 = ⟨σ⟩. (3.16)

Here Z2 transforms between Dirichlet and Neumann boundary conditions in the bulk theory
corresponding to performing Zp gauging to 2d theories. However, Z×

p will not give new
global variants. As we will see below, they correspond to different ways to turn on the
background fields of the same global variant on Σ2.

Thus, there are two absolute theories and they transform into each other by gauging
σ. Note that in this case, it is not possible to stack the Arf invariant as the generator τ

which was present in the N = 2 case is missing for N = p > 2 and p prime, so we have only
two global variants and we can assign two 2× 2 matrices in ⟨σ⟩. Taking into account the
duality s, we plot the orbifold groupoid and global variants in figure 5. This is consistent
with the result in [166].

Topological defect lines. The automorphism group implies that there are actually
2(p − 1) orbifolding theories from the 6d perspective. Indeed, from the 2d viewpoint, we
have exactly 2(p − 1) ways to orbifold a 2d theory with Zp symmetries, once we turn on
the background gauge field for the Zp symmetries, and the D2(p−1) automorphism group
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will be faithfully manifest. This point can be verified at the level of partition functions on
the torus. Recall that, for a 2d CFT denoted as Zp, the Zp symmetries are identical to p

different topological defect lines (TDLs). We can put these TDLs along either temporal
or spatial directions, and thus overall there are p2 numbers of defect partition functions
denoted by Zp(a1, a2), where ai ∈ Zp are holonomies with respect to Zp along two cycles
of the torus, and label the different types of TDLs. For a given theory Zp, we have a
collection of partition functions dressed with these TDLs as {Zp(a1, a2)}ai∈Zp

. Now having
Zp at hand, we spell out the orbifolding theories as

Ẑk
p (b1, b2) =

1
p

∑
ai∈Zp

Zp(a1, a2)ωa1b2−a2b1
p,k , or Zp(a1, a2) =

1
p

∑
bi∈Zp

Ẑk
p (b1, b2)ωb1a2−b2a1

p,k ,

(3.17)
where the bi label the types of TDLs with respect to the quantum symmetries Ẑp in Ẑp,
and

ωp,k ≡ e
2πik

p , with 1 ≤ k < p . (3.18)

Therefore, starting from Zp, one has (p − 1)-ways to orbifold it, denoted by Ẑk
p with a

collection of
{

Ẑk
p (a1, a2)

}
ai∈Ẑp

defect partition functions. One can continue this operation

from one of the resulted p − 1 orbifolding theories, say for example Ẑ1
p . But notice that

now there are only (p− 2)-ways to obtain new orbifolding theories from it, as one way will
transform Ẑ1

p back to Zp from (3.17). Overall, there are

Np = 1 + (p − 1) + (p − 2) = 2(p − 1) (3.19)

orbifolding theories corresponding to the group elements in D2(p−1). It is not hard to show
that there are no more new orbifolding theories apart from the Np ones obtained this way.

For example, in the case of p = 3, we have 4 orbifolding theories given below

Z3 Ẑ1
3

Ẑ2
3

(̂̂
Z2

3

)1
=
(̂̂

Z1
3

)2

, (3.20)

where the red, blue, and orange lines denote the orbifolding with respect to ω3,1, ω3,2 and
the charge conjugation operation C,

C : Zp(a1, a2) −→ Zp(−a1,−a2) . (3.21)

One can honestly check that

Z3(a1, a2) =
(̂̂

Z2
3

)1
(−a1,−a2) , and Ẑ2

3 (a1, a2) = Ẑ1
3 (−a1,−a2) . (3.22)
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Therefore, together with the identity operation, {1, ω3,1, ω3,2, C} are precisely identified
with the automorphism group Z2 × Z2 for p = 3.

Below, we also draw the diagram of the orbifolding theories for p = 5, as elements of
the first non-abelian group D8,

(3.23)

where the 8 vertices denote the 8 orbifolding theories, and the red, blue, purple, green and
orange lines represent the orbifolding action with respect to ω5,1, ω5,2, ω5,3, ω5,4 and charge
conjugation C defined in (3.21). Following the orbifolding trajectories in (3.23), one can
convince oneself that ω5,1 and ω5,2 generate the whole diagram and satisfy the following
relations,

ω2
5,1 = ω2

5,2 = (ω5,1 · ω5,2)4 = 1 . (3.24)

Therefore, one can identify the orbifolding groupoid as

D8 =
〈
r = ω5,1 · ω5,2, s = ω5,1| r4 = s2 = (rs)2 = 1

〉
. (3.25)

The above groupoid structure can be easily generalized to abitrary odd prime number
p, which is generated by

D2(p−1) =
〈
r = ω5,1 · ω5,2, s = ω5,1| rp−1 = s2 = (rs)2 = 1

〉
. (3.26)

Once we turn off the background gauge field, the above diagram collapses back to fig-
ure 5 corresponding the Z2 automorphism subgroup as discussed before. It simply implies
that the p − 1 different way of orbifolding just give the same orbifolded theory up to the
automorphism group Aut(Zp) = Z×

p .
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Ẑf
4 Zf

4

(Z2 × Ẑ2)µ3

Z4 Ẑ4

σ

σ

f f

Figure 6. Orbifold groupoids for T4[P1 × P1] with Z2 symmetry. The map σ4 represents the
topological manipulation gauging Z4 and f is the gauging Z2 up to an SPT phase.

For N = 4. We find the following 5 maximal isotropic sublattices

L1 = {(0, 0), (0, 1), (0, 2), (0, 3)} → Z4

L2 = {(0, 0), (1, 0), (2, 0), (3, 0)} → Ẑ4

L3 = {(0, 0), (0, 2), (2, 1), (2, 3)} → Zf
4

L4 = {(0, 0), (2, 0), (1, 2), (3, 2)} → Ẑf
4

L5 = {(0, 0), (0, 2), (2, 0), (2, 2)} → (Z2 × Ẑ2)µ3

(3.27)

It implies that we have 5 different absolute theories. We will label them with their sym-
metries and possible anomalies. The first four theories have Z4 symmetry while the last
one has anomalous Z2 × Ẑ2 and will be discussed later.

The Z4 symmetry is defined by the non-trivial extension of Z2 by Z2

1 → Z2 → Z4 → Z2 → 1 . (3.28)

This central extension is determined by the cohomology classes κ ∈ H2(Z2,Z2) = Z2.
When κ is non-trivial, the extension gives Z4. Gauging Z4, one obtains another absolute
theory with quantum symmetry given by

1 → Ẑ2 → Ẑ4 → Ẑ2 → 1 (3.29)

Besides that, since Z4 has a subgroup Z2, one can gauge Z4 with an Arf invariant stacked.
In this way, one obtains a fermionic theory with symmetry

1 → Zf
2 → Zf

4 → Z2 → 1 (3.30)

where Z2 = (−1)F . Similarly, one can gauge Ẑ4 with an Arf invariant and the theory so
obtained is also fermionic with symmetry

1 → Zf
2 → Ẑf

4 → Ẑ2 → 1 (3.31)

We label the first four absolute theories using the symmetries defined above.
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(Z4)0

(Ẑ4)0

(Z4)1

(Ẑ4)1

(Ẑf
4)0

(Zf
4)1

(Ẑf
4)1

(Zf
4)0

0 1
1 0

 0 1
1 2

 1 0
2 1

 1 2
2 1



1 0
0 1

 1 2
0 1

 2 1
1 0

 2 1
1 2



s s s sσ σ

τ

τ

σ

σ

τ

τ

Figure 7. Web of transformations for T4[P1 × P1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

The automorphism group is AutZ4(Q) = Z2×D8 with Aut(Z4) = Z2 and O4(Q) = D8.
Here, Z2 represents different ways to turn on the background fields on Σ2 while D8 is
generated by

σ =

 0 1
1 0

 , τ =

 1 2
0 1

 ,

and transforms different maximal isotropic sublattices into each other which represents 2d
topological manipulations.

In particular, with σ and f = τστ , we find these theories transform according to
figure 6. As we can observe, L5 is a singlet with respect to D8, while the square, which
consists of the remaining set {L1, L2, L3, L4}, furnishes a two-dimensional irreducible rep.
of D8. Note that AutZ4(Q) only contains the operation of gauging Z4, not Z2, so the theory
specified by L5 is isolated and cannot be related with other theories by topological manip-
ulations defined by AutZ4(Q). Besides that, our result reproduces the orbifold groupoid
for the theory with non-anomalous Z4 symmetry studied in [166].

Now, let’s take into account the SPT phase for each of these theories. Thus, for theories
with Z4 symmetry, there are 8 global variants, which can be transformed to each other by
two basic topological manipulations, Z4 gauging σ and stacking Arf invariant τ . Following
the same logic, one can assign each global variant with a 2 × 2 D8 matrix M . Then, one
can study how they transform under the topological operations σ and τ , and duality s.
The result is plotted in figure 7.

Mixed anomaly. There is one more absolute theory described by L5. It can be obtained
from the Z4 (Ẑ4) theory by Z2 (Ẑ2) gauging. Since the extension class is non-trivial, it has
anomalous Z2 × Z2 symmetry with mixed anomaly given by [86]

µ3 =
∫

W3
Â ∪ κ(A) , (3.32)
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where Â ∈ H1(Σ2, Ẑ2) and A ∈ H1(Σ2,Z2) are the background connections of Ẑ2 and Z2
respectively, and κ is the extension class.

This anomaly can be detected from the 3d SymTFT. For the topological boundary
condition specified by L5, the terminal lines are {L(0,0), L(0,2), L(2,0), L(2,2)}. The non-
terminal lines are given by the equivalence classes in L⊥

5 ,

B1 = {L(0,0), L(0,2), L(2,0), L(2,2)},

B2 = {L(0,1), L(0,3), L(2,1), L(2,3)},

B3 = {L(1,0), L(3,0), L(1,2), L(3,2)},

B4 = {L(1,1), L(1,3), L(3,1), L(3,3)}.

(3.33)

After computing the braiding of lines from B2 and B3, we find all choices of lines have
non-trivial braiding. This implies a mixed anomaly between Ẑ2 × Z2 [160].

For N = 6. There are 6 maximal isotropic sublattices

L1 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)} → (Z6)++ = Z3 × Z2

L2 = {(0, 0), (2, 0), (4, 0), (0, 3), (2, 3), (4, 3)} → (Z6)−+ = Ẑ3 × Z2

L3 = {(0, 0), (0, 2), (0, 4), (3, 0), (3, 2), (3, 4)} → (Z6)+− = Z3 × Ẑ2

L4 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)} → (Z6)−− = Ẑ3 × Ẑ2

L5 = {(0, 0), (0, 2), (0, 4), (3, 1), (3, 3), (3, 5)} → (Z6)+f = Z3 × Zf
2

L6 = {(0, 0), (2, 0), (4, 0), (1, 3), (3, 3), (5, 3)} → (Z6)−f = Ẑ3 × Zf
2

(3.34)

These maximal isotropic sublattices define six absolute theories with Z6 symmetry. Since
Z6 = Z2 × Z3, we can also label them using their subgroups. These absolute theories
look like the tensor product of absolute theories for N = 2 and N = 3. Depending
on the different behavior of the Z2 and Z3 factors, one has 6 absolute theories denoted
by (Z6)±,±/f , where +/− represents whether a subgroup is gauged or not and f means
whether one has performed the fermionization operation on the Z2 factor.

The automorphism group is AutZ6(Q) = Z2
2 × S3, where Aut(Z6) = Z2 accounts for

different ways to couple the background fields and O6(Q) = S3 × Z2 transforms between
different theories and encodes the possible 2d topological manipulations. The topological
manipulations for a theory with Z6 symmetry can be understood through the manipulations
on its subgroups Z2 and Z3. The generators of AutZ6(Q) are

σ3 =

 0 1
1 0

 , σ2 =

 4 3
3 4

 , τ =

 1 3
0 1

 , (3.35)

where σ3/σ2 denote gauging of Z3/Z2 and τ is denotes stacking the Arf invariant. With
σ3 and σ̃2 = τσ2, one can obtain the orbifold groupoid in figure 8, which can be identified
by the tensor product of the orbifold groupoid of Z2 and Z3 in figure 3 and figure 5.

Consider the possible stacking of the Arf invariant. We have 12 global variants. By
the same procedure, one can associate each of them with a O6(Q) matrix. Using the
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Z3 × Z2 Z3 × Ẑ2 Z3 × Zf
2

Ẑ3 × Z2 Ẑ3 × Ẑ2 Ẑ3 × Zf
2

σ̃2 σ̃2

σ̃2 σ̃2

σ3 σ3 σ3

σ̃2

σ̃2

Figure 8. Orbifold groupoids for T6[P1 × P1] with Z2 symmetry. The map σ3 represents the
topological manipulation gauging Z3 and σ̃2 is the gauging Z2 up to an SPT phase.

representation of topological manipulations in (3.35) and duality operation in (3.10), one
can study the transformation among these global variants. The result is plotted in figure 9.
We find that the topological manipulations drawn in blue are simply the direct product
of the diagram for Z2 in figure 4 and Z3 in figure 5. This diagram can be simplified by
combining the operation of σ3 and σ2 which defines a Z6 gauging below

σ = σ3σ2 =

 0 1
1 0

 (3.36)

The diagram of the global variants plotted using σ and τ is in figure 10.

For general N . Using the SymTFT, we are able to study the global variants of TN [P1×
P1] for general N . The possible topological manipulations are determined by the auto-
morphism group AutZN

(Q)/Aut(ZN ), where Aut(ZN ) = Zϕ(N) and ϕ(N) is the Euler’s
totient function. These topological manipulations act transitively on the global variants.
The number of global variants is

d(N) = |ON (Q)| . (3.37)

Assigning each global variant to a ON (Q) matrix, we can determine how they transform
under the topological manipulations.

The automorphism group AutZN
(Q) plays an important role in determining the global

variants, and topological manipulations. Besides that, it also gives the 0-form symmetry of
the SymTFT, in our case, a ZN gauge theory. We compute AutZN

(Q) for N = 2, 3 . . . 20,
and identify them with finite groups in table 1. Note that, for odd N , our results match
with the 0-form symmetry for the ZN gauge theory studied in [167]. However, for even N ,
the 0-form symmetries from [167] are subgroups of our result because the SymTFT from
the compactification on P1 × P1 is a spin DW theory admitting also fermionic topological
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(Z3 × Z2)1 (Z3 × Zf
2)0 (Z3 × Zf

2)1 (Z3 × Ẑ2)1

(Ẑ3 × Z2)1 (Ẑ3 × Zf
2)0 (Ẑ3 × Zf

2)1 (Ẑ3 × Ẑ2)1

(Z3 × Z2)0

(Ẑ3 × Z2)0

(Z3 × Ẑ2)0

(Ẑ3 × Ẑ2)0

0 1
1 3

 3 4
1 3

 3 1
1 0

 3 1
4 3



4 3
3 1

 1 0
3 1

 1 3
3 4

 1 3
0 1



0 1
1 0



4 3
3 4


3 4
4 3



1 0
0 1


s ss s

s s

σ2 τ σ2

σ2 τ σ2

τ

σ3

τ

τ

σ3

τ

σ3σ3

σ3 σ3

σ2

σ2

Figure 9. Web of transformations for T6[P1 × P1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

N 2 3 4 5 6 7 8 9 10 11 12
AutZN

(Q) S3 Z2
2 D8 × Z2 D8 S3 × Z2

2 D12 D8 × Z2
2 D12 S3 × D8 D20 D8 × Z3

2

13 14 15 16 17 18 19 20
D24 S3 × D12 D8 × Z2

2 (Z4 × Z2)⋊ Z2
2 D34 S3 × D12 D36 D8 × D8 × Z2

Table 1. The automorphism group AutZN
(Q) of P1 × P1 up to N = 20.

boundary conditions [166]. It is noted that, when N = pq with gcd(p, q) = 1, AutZN
(Q)

can be factorized as direct product of AutZp(Q) and AutZq(Q).

Geometric perspective. From the point of view of the 7d symTFT, the different choices
of the maximal isotropic sublattice L and L⊥ are equivalent to the choice of handlebody
of M5 with ∂M5 = M4 [159, 164]. Similar to the solid tori, handlebodies in five dimensions
are characterized by a “meridian” and a “longitude,” which are a set of assignments of
cycles in H2(M4,ZN ). The meridian extends to contractible cycles in H2(M5,ZN ), while
the longitude extends to non-contractible cycles.

In our case, we will find the handlebodies for P1×P1. The number of handlebodies de-
pends on the parameter N . For example, for N = 2, we find the following three geometries
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(Z6)++1 (Z6)−f0 (Z6)−f1 (Z6)+−1

(Z6)−−1 (Z6)+f1 (Z6)+f0 (Z6)−+1

(Z6)++0

(Z6)−−0

(Z6)+−0

(Z6)−+0

1 0
0 1


0 1
1 0



0 1
1 3

 1 0
3 1

 1 3
3 4

 3 1
4 3



3 4
4 3



4 3
3 4



4 3
3 1

3 4
1 3

3 1
1 0

1 3
0 1



s s

s s

s s

σ τ σ

σ τ σ

τ

σ

τ

τ

σ

τ

Figure 10. Web of transformations for T6[P1 ×P1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

with P1 × P1 on the boundary

M
(1)
5 = D3 × S2, M

(2)
5 = S2 × D3, M

(3)
5 = S2 × S2 × R . (3.38)

which is equivalent to the three choices of maximal isotropic sublattice. For each of the
above manifolds, one has two ways to choose longitude. In total, one can define 6 han-
dlebodies. However, for prime N larger than 2, by the same argument discussed in (3.14)
one cannot extend the (1, 1) cycle into a contractible cycle in M5. Thus, only the first two
manifolds are valid. Thus, one has two handlebodies in this case.

In this subsection, we studied the orbifold groupoid and global variants of the 2d
theories from the warping of N M5-brane on P1 × P1. For the cases of prime N , we
identify all global variants and possible topological manipulations. We also discuss how to
generalize the result to the case when N = pq is not prime, but a product of two primes p

and q using two examples N = 4 for p, q are not coprime and N = 6 for p, q are coprime.
In general, given the prime factorization of N , we can apply the method discussed here
recursively and find all global variants of TN [P1 × P1]. Finally, we identify the 0-form
symmetries of spin ZN gauge theories up to N = 20 from the perspective of geometry.
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Zp[R] Ẑp[R] Zp[ 1
R ]

σ s

Zp[R] Zp[ 1
R ]

N

Figure 11. At R = 1, the Zp theory has a non-invertible defect N = σs. The coupling constant R

is included explicitly for each theory.

3.3 Duality defects

In this subsection, we will study the non-invertible symmetries of the theory TN [P1 × P1].
Similar to the class S theories in 4d [159], the non-invertible symmetries can be realized
by the combinations of topological manipulations and dualities at the special point in the
conformal manifold. With the understanding of global variants of TN [P1 × P1] and their
transformation properties studied in the previous subsection, we construct duality defects
for the theories with prime N and N = 4, 6. Besides that for N = 2, there exist global
variants with mixed anomaly between invertible symmetries. After gauging one of them,
we find the same duality defect using the half-space gauging construction [104]. Finally,
we discussed how these defects are realized in the compactification of the 3d SymTFT.

Couplings and fixed points. In the compactification of M5-branes on P1 × P1, the
resulting 2d theory is a supersymmetric sigma model with target space the moduli space
of magnetic monopoles [57, 177, 178]. The target space contains a U(1) isometry which
for one M5-brane can be identified with a compact boson with radius R, where R depends
on the conformal structure of the 4-manifold and describes the ratio of the sizes of the
two P1’s [57]. For the compactification of N M5-branes on P1 × P1, we expect the same
coupling in the 2d theory TN [M4]. From the equation (3.10), the duality map changes the
coupling constant into

R
−I−−→ R , R

s−→ 1
R

.

As we will see later, the subgroup Z2 generated by s will also be a subgroup of AutZN
(Q),

which will lead to duality defects for theories TN [P1 × P1] at R = 1.
The non-invertible defects can be realized as the combinations of the topological op-

erations G(σ, τ), the gauging σ and stacking SPT phase τ , and the duality F from the
automorphism group MCG(P1×P1). In general, these operations will change the 2d global
variant and the coupling R. To realize defects in 2d theories, one needs to find a set of
G(σ, τ) and F operations such that their combination keeps the global variant and coupling
invariant. Note that only the duality operation F will change the coupling R. Thus, to
guarantee that the coupling R stays the same after acting with F , one needs to take R to
be the fixed point of it. In our case, the only non-trivial duality operation is F = s with a
fixed point at R = 1. We will implicitly take R = 1 in the remainder of this section.
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N Theory Defects

2 (Z2)m, (Ẑ2)m τmσsτm

2 (Zf
2)m τmτsτm

p Zp, Ẑp σs

4 (Z4)m, (Ẑ4)m, (Zf
4)m, (Ẑf

4)m τmσsτm

6 (Z6)±±m τmσsτm

6 (Z6)±fm στστσs

Table 2. Duality defects of TN [P1 × P1] at R = 1.

Next, we need to find some topological manipulation G(σ, τ) which can undo the action
of F = s and map the global variant to itself. More precisely, given a distinct 2d global
variant labeled by M , one needs to find a pair of F and G(σ, τ) satisfying the following
conditions,

F tMG = M, F ∈ MCG(P1 × P1) , G(σ, τ) ∈ AutZN
(Q). (3.39)

This way one can realize a defect N = FG in a theory labeled by M . In this way, we
analyze all possible defects in global variants of TN [P1 × P1] for N = prime, N = 4, and
N = 6. The result is in table 2. Notice that except for the theory (Zf

2)m, the defects
realized using F = s involve the gauging operation and thus could be non-invertible.

To study their invertibility, one needs to calculate the fusion among the defects and
other invertible lines in the theory TN [P1 ×P1]. When N is prime, the defect only involves
a single gauging operation σ. The fusion rule of these defects have been studied in [158]
and they are given by

ηN = 1, η ×N = N , N ∼ N , N ×N =
∑

η(γ), (3.40)

where η is the line generating the ZN symmetry, N is the orientation reversal of N and
γ ∈ H1(M1,ZN ) is a 1-cycle of Σ2. These are the same as the fusion rules of the Tambara-
Yamagami fusion categories TY (ZN ).

When N is not prime, the theories TN [P1 ×P1] have more global forms and in general
admits more duality defects. For example, there are 12 global forms for T6[P1 × P1].
Eight of them, i.e. (Z6)±±m, have defects τmσsτm. Since it involves only one operation
of gauging Z6, according to the fusion rule in (3.40), they are non-invertible and form the
Tambara-Yamagami fusion categories TY (Z6).

For global forms (Z6)±fm, the defect is στστσs involving 3 operations of gauging Z6.
From the web of global forms in figure 9 and 10, one can show this defect is equivalent to
σ3τ where σ3 is the operation of gauging the Z3 subgroup of Z6. The fusion rule of σ3τ ,
i.e. στστσs is again given by the equation (3.40), but with η generating Z3 invertible lines.
The symmetry category for global forms (Z6)±fm thus decomposes as TY (Z3)× Z2.

Besides that for the theory of (Zf
2)m, one can identify a defect composed of stacking

SPT phase τ and duality s at R = 1. Since it does not involve the gauging operation, it
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implements an Z2 invertible symmetry. As we will see in the following, this Z2 symmetry is
anomalous having a mixed anomaly with Zf

2 . After gauging Zf
2 , the Z2 symmetry becomes

non-invertible, and the associated duality defect is given by τστs [104]. This duality defect
can be identified in figure 4. After gauging σ, the theory becomes (Z2)1 and indeed one
can find this duality defect from table 2.

A typical example of this phenomenon can be seen in the well-known Ising model
and its fermionization. The non-invertible duality defect N in Ising after fermionization
turns out to be the (−1)FL which is invertible but has a non-trivial ’t Hooft anomaly with
fermionic parity (−1)F [179]. On the other hand, gauging (−1)F gives back the Ising model
and (−1)FL is mapped back to the non-invertible N line correspondingly as a reminiscent
of the ’t Hooft anomaly.

Since the duality defects found in theories (Z2)m and (Ẑ2)m can be related to the
anomalous invertible symmetry in (Z2)f

m by either dualities or topological manipulations,
they are non-intrinsic non-invertible [104, 110, 158]. While the duality defects realized in
global variants of TN [P1 ×P1] with N > 2 are not connected to any invertible symmetries,
thus they are intrinsic non-invertible.

Mixed anomaly. Given a choice of maximal isotropic sublattice L, the 2d absolute
theory can have enhanced 0-form symmetry G′ ⊂ MCG(P1 ×P1) if for any element g ∈ G′,
one has

g(M4) = M4, g(L) = L, (3.41)

where L = L⊗H1(Σ2, D). Thus, the partition function Zg(M4),g(L)(Σ2, 0) is invariant under
the transformation g. From the analysis in equation (3.10), the Z2 subgroup generated by
reversing orientation is always a symmetry for any absolute theory, while for the other Z2
generated by s, it depends on the number of M5-branes N and the choice of the maximal
isotropic sublattice.

If there is a mixed anomaly between G′ and ZN , then one can obtain the non-invertible
defect by gauging ZN [104]. In our case, we can identify this mixed anomaly from the choice
of L and L⊥ [114]. Given a 2d global variant specified by L ⊗ v ⊂ L and β ⊗ v ∈ L⊥ with
β ∈ L⊥ and v ∈ H1(Σ2,ZN ) is a ZN cocycle on Σ2. Although L is invariant under
symmetry g ∈ G, the choice g(β ⊗ v) is not necessarily an element of L⊥. In general, it
can be written as g(β ⊗ v) = β ⊗ v +α⊗ v with α⊗ v ∈ L. There will be a mixed anomaly
between G′ and ZN if the following condition holds [159]

e
i
2 ⟨α⊗v,β⊗v⟩ ̸= 1. (3.42)

As we will see in the following, one can find such mixed anomalies in the 2d absolute
theories.

We will derive the mixed anomaly between the duality transformation s and Zf
2 in the

theory (Zf
2)0 from the partition function. For example, consider the absolute theory (Zf

2)0
defined by L3 in equation (3.11) with generator α = (1, 1) and β = (0, 1). In terms of the
cycles in P1 × P1, let’s denote them by α = b + f and β = b. Obviously, L3 is invariant
under tranformation s ∈ MCG(P1 × P1) so as α, but the L⊥ part β is not invariant under
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s, but transform as s(b) = f . By direct calculation, one can show

Zs(L3)(Σ2, s(b ⊗ v), s(R)) = ⟨L3, f ⊗ v|Z⟩
= ⟨L3, f + (b + f)⊗ v|Z⟩

= ⟨L3, 0|e
i
2 ⟨f⊗v,b⊗v+f⊗v⟩Φ(b ⊗ v)|Z⟩

= e
i
2 ⟨f⊗v,b⊗v⟩ZL3

(
Σ2, f,

1
R

)
= eiπArf(v)ZL3

(
Σ2,

1
R

, g

)
(3.43)

where we have used that Arf(v1+v2)+Arf(v1)+Arf(v2) = ⟨v1, v2⟩ with v1, v2 ∈ H1(Σ2,ZN ).
As shown in [104], at the fixed point R = 1, this is the anomaly required to realize the
duality defect by gauging Zf

2 .

Duality defects from SymTFT. The duality defects constructed above can also be
realized in the SymTFT. In general, a subgroup F ⊂ MCG(M4) induces a domain wall in
the SymTFT with non-trivial action on the anyons as Lα⃗ → LF tα⃗ where α⃗ represents the
charge of L. The associated condensation defect is defined by [106, 109, 180]

CF (M2) ∼
∑

γ∈H1(M2,ZN )
L(Ir−F T )α⃗(γ) (3.44)

which is realized geometrically as a surgery defect [159]. A twist defect TF (M2, M1) is
obtained by condensing L(Ir−F t)α⃗ on CF (M2) through ∂M2 = M1 with Dirichlet boundary
condition. As studied in [158], after gauging F in the SymTFT and shrinking the slab, these
twist defects become the |F |-ality defect.3 In our case, F = ⟨s⟩ ⊂ MCG(P1 × P1) corre-
sponds to the electro-magnetic duality of ZN gauge theory, which will give rise to the duality
defect obtained in this section after gauging Z2 and shrinking the interval in the SymTFT.

3.4 Connected sum of P1 × P1

We will extend the previous analysis to the connect sum of P1 × P1. The SymTFT in this
case is the ZN × ZN gauge theory, which have very rich structure on the global variants,
symmetries and anomalies. Note that (P1×P1)#(P1×P1) does not have complex structure
and will be treated as a real 4-manifold.

ZN × ZN gauge theory. The intersection form of #2(P1 × P1) is

Q =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (3.45)

3Precisely, this is defined when F is a cyclic group.
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Let bi and fi with i = 1, 2 be a basis of H2(#2(P1 × P1),Z). After compactifying the 7d
TQFT on it, the 3d SymTFT is

S3d = 2π

N

∫
W3

a1 ∪ δâ1 + a2 ∪ δâ2 , (3.46)

where ai =
∫

bi
c and âi =

∫
fi

c are ZN cocycles on W3. The defect group

D = ZN × ZN × ZN × ZN (3.47)

This is the ZN ×ZN gauge theory that will be the SymTFT for 2d theories with ZN ×ZN

symmetries.

Duality. The mapping class group of MCG(#2(P1 × P1)) is an infinite group with the
following generators

S =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , T =


−1 0 0 0
0 −1 0 1
1 0 1 0
0 0 0 1

 , D =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , W =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

(3.48)
The element P of mapping class group acts on the 2-cycle (Poincaré dual to the 2-form

in Ω2(M4))

J = xb1 + yf1 + zb2 + wf2 =


x

y

z

w

 (3.49)

as J → PJ . The volume of 2-cycles are

Vb1 = J · b1 = y

Vf1 = J · f1 = x

Vb2 = J · b2 = w

Vf2 = J · f2 = z .

(3.50)

The volume of #2(P1 × P1) is invariant under the action of P :

V#2(P1×P1) =
1
2J · J = xy + zw . (3.51)

We introduce three geometric parameters

R1 = x

y
= Vf1

Vb1

, R2 = z

w
= Vf2

Vb2

, R3 = y

z
= Vb1

Vf2

. (3.52)
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The MCG(#2(P1 × P1)) generators acting non-trivially on these parameters are

S · R1 = R1 , S · R2 = 1
R2

, S · R3 = R2R3

D · R1 = R2 , D · R2 = R1 , D · R3 = 1
R1R2R3

T · R1 = R1R2R3
R2R3 − 1 , T · R2 = R2 + R1R2R3 , T · R3 = 1− R2R3

R1R2R3 + R2

W · R1 = R1 , W · R2 = R2 , W · R3 = −R3 .

(3.53)

Let us discuss the finite subgroups of MCG(#2(P1 × P1)). First, let’s consider Z2
subgroups generated by one of the generators in (3.48). The fixed points of the coupling
constants are

S : (R1, 1, R3), D :
(

R1,
1

R1
,±1

)
, T :

(
0, R2,

1
2R2

)
, W : (R1, R2, 0) (3.54)

which depending on arbitary parameters define the extended loci in the conformal manifold.
When the couplings are taken to be

(R1, R2, R3) = (1, 1,±1) . (3.55)

The symmetry generated by S and D is enhanced to D8 and one can realize more interesting
defects at this coupling. One can consider more general subgroups of MCG(#2(P1 × P1))
and find more fixed points of these couplings on the conformal manifold.

N=2. We find that the maximal isotropic sublattice are given by

L1 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1)}
L2 = {(0, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 0), (1, 0, 0, 1)}
L3 = {(0, 0, 0, 0), (0, 0, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)}
L4 = {(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 1, 0)}
L5 = {(0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0)}
L6 = {(0, 0, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0)}
L7 = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 1, 1)}
L8 = {(0, 0, 0, 0), (0, 0, 1, 1), (1, 0, 0, 0), (1, 0, 1, 1)}
L9 = {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)}
L10 = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}
L11 = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 1), (1, 1, 1, 0)}
L12 = {(0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1), (1, 1, 1, 1)}
L13 = {(0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1)}
L14 = {(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 0, 1), (1, 1, 1, 0)}
L15 = {(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 1)}

(3.56)
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Thus, there are 15 absolute theories on the boundary with Z2 × Z2 symmetry. These
theories are transformed into each other by different ways of gauging subgroups in Z2 ×Z2
forming the orbifold groupoid [166]. For example, there are three ways to gauge a single
Z2 by gauging the first one, the second one or the diagonal one. One can also gauge the
full Z2×Z2 with or without the SPT phase. In this way, one can obtain 6 bosonic theories.
Besides that one can perform fermizations to these theories leading to 9 fermionic theories.
In total, there are 15 absolute theories.

For each of these absolute theories, one can stack SPT phase and Arf invariant, it
turns out that these two operations generating D8 group. So, there are 8 global variants
associated with each absolute theory and totally 120 global variants. The counting of
global variants can also be understood from the automorphism group of AutZ2(Q). In
this example, we find that |AutZ2(Q)| = 720, which again can be understood as the semi-
product of Aut(Z2 ×Z2) and O2(Q). Since Aut(Z2 ×Z2) = S3, we find that |O2(Q)| = 120
that corresponds to global variants of T2[#2(P1 × P1)].

Similar to the P1 × P1 case, we can associate each global variants with a matrix M ∈
O2(Q). This matrix presentation of a global variant can be obtained from the maximal
isotropic sublattice L and the complement L⊥. For example, consider L1 and L⊥

1 , one can
obtain 8 the following matrices

M
(1)
L1

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , M
(2)
L1

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 1

 , M
(3)
L1

=


0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0

 ,

M
(4)
L1

=


0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 1

 , M
(5)
L1

=


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 0

 , M
(6)
L1

=


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

 ,

M
(7)
L1

=


0 1 0 0
1 1 0 1
0 0 0 1
0 1 1 0

 , M
(8)
L1

=


0 1 0 0
1 1 0 1
0 0 0 1
0 1 1 1

 .

Each of them is a matrix in O2(Q) associated with a global variants. Similarly, one can
obtain the matrix representation for other L’s.

These 2d theories admit many topological defects. For example, let’s consider the
global variant defined by the following O2(Q) matrix

M =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.57)
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From the 1st and 3rd, we can see that they are from the L2 and B = {(0, 1, 0, 0), (0, 0, 1, 0)}.
Consider the duality transformation S and D. These action can be undone by the following
two topological manipulation

σ4 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , σ5 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


which represents gauging of subgroups in Z2 ×Z2 with possible stacking of SPT phases. In
this way, one can realize topological defects in the theory specified by M at the fixed points
found in (3.55). Since the construction involving gauging, the corresponding symmetry is
non-invertible described by the TY (D8) category [101].

N = p > 2. Let’s consider a theory with non-anomalous symmetry G = Zp × Zp where
p is prime larger than 2. There are three types of topological manipulations include the
automorphism of Zp × Zp, the stacking of SPT phase v2 ∈ H2(Zp × Zp,U(1)) = Zp and
gauging subgroups of Zp × Zp. With these basic operations, one can find 2(p + 1) gauging
operations [166]. Take p = 3 for example, there are 4 ways that Z3 can embedded in
Z3 × Z3. In terms of their generator, (1, 0), (0, 1), (1, 1), (1, 2). Besides that, one has 3
ways to gauge Z3 ×Z3 with the SPT phase. Taking into account the trivial gauging, there
are a total of 8 orbifolding operations leading to a orbifold groupoid.

This result can be confirmed from the study of global variants of T3[#2(P1 ×P1)]. The
maximal isotropic sublattices in this case are given by

L1 = {(0,0,0,0),(0,0,0,1),(0,1,0,0),(0,1,0,1),(0,0,0,2),(0,1,0,2),(0,2,0,0),(0,2,0,1),(0,2,0,2)}
L2 = {(0,0,0,0),(0,0,0,1),(1,0,0,0),(1,0,0,1),(0,0,0,2),(1,0,0,2),(2,0,0,0),(2,0,0,1),(2,0,0,2)}
L3 = {(0,0,0,0),(0,0,1,0),(0,1,0,0),(0,1,1,0),(0,0,2,0),(0,1,2,0),(0,2,0,0),(0,2,1,0),(0,2,2,0)}
L4 = {(0,0,0,0),(0,0,1,0),(1,0,0,0),(1,0,1,0),(0,0,2,0),(1,0,2,0),(2,0,0,0),(2,0,1,0),(2,0,2,0)}
L5 = {(0,0,0,0),(0,1,0,1),(0,2,0,2),(1,0,2,0),(1,1,2,1),(1,2,2,2),(2,0,1,0),(2,1,1,1),(2,2,1,2)}
L6 = {(0,0,0,0),(1,0,1,0),(0,1,0,2),(0,2,0,1),(1,1,1,2),(1,2,1,1),(2,0,2,0),(2,1,2,2),(2,2,2,1)}
L7 = {(0,0,0,0),(0,1,1,0),(0,2,2,0),(1,0,0,2),(1,1,1,2),(1,2,2,2),(2,0,0,1),(2,1,1,1),(2,2,2,1)}
L8 = {(0,0,0,0),(1,0,0,1),(0,1,2,0),(0,2,1,0),(1,1,2,1),(1,2,1,1),(2,0,0,2),(2,1,2,2),(2,2,1,2)}

which defines 8 absolute theories with Z3 × Z3 symmetry on Σ2. Considering the possible
stacking of SPT phase, there are 3 global variants for each absolute theory. Thus, there
are 24 global variants of T3[#2(P1 × P1)].

The automorphism group has order |AutZ3(Z3 ×Z3)| = 1152. Taking into account the
automorphism group GL(3,Z3) with order 48, one has that |O3(Q)| = 24 which is expected
from the physical analyisis. Similarly, one can assign each global variant to a O3(Q) matrix.
For example, the matrices of global variants defined by L1 and its complement L⊥

1 is given
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by

M
(1)
L1

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , M
(2)
L1

=


0 1 0 0
1 0 0 2
0 0 0 1
0 1 1 0

 , M
(3)
L1

=


0 1 0 0
1 0 0 1
0 0 0 1
0 2 1 0


Next, consider the global variant defined by M

(2)
L1

. The S duality and D duality will
change the global variants. To get back M

(2)
L1

, one can perform the gaugings defined by

σ5 =


1 1 1 2
0 1 0 0
0 2 0 1
0 1 1 0

 , σ7 =


0 2 1 0
0 0 0 1
1 0 0 1
0 1 0 0


which can undo the duality transformation S and D. Again, we construct the non-invertible
defects at the fixed point of these self-dual couplings. In general, there are many topological
defects and we will study them in future work.

4 6d N = (2, 0) SCFTs on Hirzebruch surfaces Fl

In this section, we will study the compactification of the 6d N = (2, 0) theories of type
AN−1 on Hirzebruch surfaces Fl. As we will see that it is sufficient to focus on the case F1.
Using 3d SymTFT, we determine the global variants of TN [F1] and possible topological
manipulations for various different N . Similar to the P1 × P1 case, we identify the duality
group MCG(F1) and the coupling of TN [F1] from invariant volume of F1. Finally, we
construct topological defects in each of these global variants.

4.1 Twisted ZN gauge theory

Let us denote the divisor classes of Hirzebruch surface Fl by f and b, and they have the
intersection form

Q =

f · f f · b

b · f b · b

 =

0 1
1 −l

 . (4.1)

After compactification, the 7d TQFT in equation (2.1) becomes

S3d = N

2π

∫
â ∧ da − Nl

4π

∫
a ∧ da (4.2)

where a =
∫

b c and â =
∫

f c. Note that under the gauge transformation of a → a + dg and
â → â + dĝ, there will be a boundary term

1
4π

∫
Σ2
(2Nĝ − Nlg)da (4.3)

which constrains us to consider the transformations satisfying 2Nĝ − Nlg ∈ 2πZ [181].
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From this, the K-matrix and its inverse are determined to be

K =

 0 N

N −lN

 , K−1 =

 l
N

1
N

1
N 0

 . (4.4)

We see that the defect group is
DFl

= ZN × ZN , (4.5)
The line operators L(e,m) are given similarly by the equation (2.28) with (e, m) ∈ ZN ×ZN .
The topological spin is

θ
(
L(e,m)

)
= exp

(
2πi

N

(
em + le2

2

))
(4.6)

and the S-matrix is determined to be

S(α⃗, β⃗) = 1
N

exp
[2πi

N
(α1β1l + α2β1 + α1β2)

]
. (4.7)

This matches with the result in reference [182] which computed such S-matrices from the
point of view of N = 4 SU(N) SYM on Fl.

By pushing our 3d defect lines γ, γ′ to the 2d boundary Σ of our 3-manifold M3, we
find the following commutation relation between line operators

Lα⃗(γ)Lβ⃗
(γ′) = B(α⃗, β⃗)γ·γ′

L
β⃗
(γ′)Lα⃗(γ), (4.8)

where γ · γ′ denotes the intersection number of the two lines on the 2d boundary or equiv-
alently their linking number in bulk. This allows us to define absolute theories on the
boundary Σ of the 3-manifold M3 by choosing a maximal commuting subgroup of the de-
fect group or in other words by choosing a polarization. Such a subgroup L is determined
by the requirement

B(α⃗, β⃗) = 1 ∀ α⃗, β⃗ ∈ L. (4.9)
In fact, it is sufficient to consider the case with l = 1, since one can always shift the

coefficient −Nl in the DW twist to an integer in Z2N by â → â − a. For even l, the DW
twist can be turned off, and the action gives the ZN gauge theory. While all the odd l is
equivalent to l = 1 and the 3d TQFT is a twisted ZN gauge theory denoted by (ZN )N .
In the following, we will focus on the 4-manifold F1. For theories TN [Fl], although the
local dynamical physics are different, the global variants, symmetries, and anomalies are
captured by the SymTFT obtained for TN [F1].

4.2 Global variants

Similarly with the ZN gauge theories, we expect the topological manipulations of TN [F1]
include ZN gauging σ and stacking Arf invariant ξ which can be observed from AutZN

(Q).
Besides, there are also duality transformations from MCG(F1). For F1, we find that
MCG(F1) = Z2

2 given by

I =

1 0
0 1

 , r =

1 0
2 −1

 , −I =

−1 0
0 −1

 , −rI =

−1 0
−2 1

 . (4.10)

The only group element that acts non-trivially on the global variants is r.
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(Z2)0 (Z2)1

r

ξ1 0
0 1

 1 1
0 1



Figure 12. Web of transformations for T2[F1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

N = 2. In this case, we find the following maximal isotropic sublattice4

L = {(0, 0), (1, 0)} → Z2

So, there is only one absolute theory according to its symmetry denoted by Z2. Different
from the Z2 gauge theory, there is no maximal isotropic sublattice corresponding to theory
with Z2 gauged because the DW twist ω ∈ H3(W3,U(1)) is a t’Hooft anomaly for Z2.

This anomaly can be probed from the braiding between lines in the SymTFT. The
theory has four anyons 1, s, s̄ and b = s × s̄ with topological spin θ(1) = θ(b) = 1,
θ(s) = i and θ(s) = −i. Notice that these anyons are identical to those in the double
semion model. Indeed, there is only one type of topological boundary condition found
in the double semion model [183]. The maximal isotropic sublattice corresponds to take
Lagrangian algebra (1, b). As one can check that there is non-trivial braiding between
either s and s̄ with itself, which implies that Z2 is anomalous [160].

Since there is only one absolute theory, the automorphism group AutZ2(Q) is also
simple, which is isomorphic to Z2 with generator

ξ =

 1 1
0 1

 . (4.11)

Similar to the P1 × P1 case, we can understand this operation as stacking some invertible
TQFT. Again, we will denote the theory with and without this stacking as (Z2)0 and (Z2)1.

Hence in this case, there are two global variants, labeled by (Z2)0 and (Z2)1, which are
transformed into each other with the stacking of the non-trivial phase ξ and the duality r.
The same as the P1×P1 case, one can associate a AutZ2(Q) matrices to each global variant
and perform the operation ξ and r on it using the equations (2.48) and (2.47). The result
is in figure 12.

N = p > 2. Consider N is a prime number larger than two. The maximal isotropic
lattices can be obtained from the equation (2.15). For p = 3, they are

L1 = {(0, 0), (1, 0), (2, 0)} → Z3

L2 = {(0, 0), (1, 2), (2, 1)} → Zρ
3

In fact, one can show that there are only two maximal isotropic sublattices for any prime p.
4Note the maximal isotropic sublattices are computed by (2.16), which are dual to the polarizations

found using the condition (4.9) in SymTFT.
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Zp Zρ
p

r

ρ1 0
0 1

 1 2
0 p − 1



Figure 13. Web of transformations for Tp[F1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

Consider the sublattice generated by a lattice point (e, m) other than (0, 0) in Z2
p.

Thus, the sublattice contains points (e′, m′) satisfying (e′, m′) = k(e, m) with k ∈ Z×
p . The

inner product between these two points is

k(2em − m2) = 0, mod p. (4.12)

For prime p, the only solution is either m = 0 or 2e = m mod p. Thus, the isotropic
sublattices are generated by points (1, 0) and (1, 2) which define the following polarization

L1 = ⟨(1, 0)⟩ → Zp, L2 = ⟨(1, 2)⟩ → Zρ
p (4.13)

Note that physically the above isotropic condition can be understood as the requirement of
gauge invariance of the SymTFT discussed in (4.3). One can also consider the sublattices
generated by two or more linear independent points in Z2

p. However, in this case, one
always gets the full lattice, which is obviously not isotropic. Thus, one can only find two
maximal isotropic lattices when N is prime and larger than two. When N = 2, these two
polarizations are the same.

The automorphism group AutZp(Q) is still D2(p−1). Taking into account the Aut(Zp) =
Z×

p , one has Op(Q) = Z2 with generator

ρ =

 1 0
2 p − 1

 (4.14)

As one can check ρ switches two polarizations L1 and L2. However, due to the twist, one
cannot gauge Zp since the operation ρ cannot be understood as gauging.5 Indeed, the
gauging operation comes from the electro-magnetic duality in the bulk, but the twisted ZN

gauge theory does not have it. We will denote one absolute theory defined by L1 as Zp and
denote the other one by Zρ

p to emphasize that it can be obtained from the theory Zp by a
topological manipulation ρ. Note that there is no ξ operation for prime p. Zp and Zρ

p are the
only two global variants of Tp[F1] related by the operation ρ and duality r as in figure 13.

5Note that for N = p, we did not find the obstruction to gauging discussed in [160]. For either L1 and
L2, one can always find representatives in B1 and B2 such that they have trivial braiding and generating
Zp symmetry on Σ2.
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(Z4)0 (Zρ
4)0

(Z4)1 (Zρ
4)1

1 0
0 1

 1 0
2 3



1 2
0 1

 1 2
2 3


(Z2 × Zρ

2)µ3

ρ

ρ

ξ ξ

r

r

Figure 14. Web of transformations for T4[F1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

N = 4. The maximal isotropic lattices are

L1 = {(0, 0), (1, 0), (2, 0), (3, 0)} → Z4

L2 = {(0, 0), (1, 2), (2, 0), (3, 2)} → Zρ
4

L3 = {(0, 0), (0, 2), (2, 0), (2, 2)} → Z2 × Zρ
2.

(4.15)

There are two absolute theories with Z4 symmetry denoted by Z4 and Zρ
4 which are defined

by the central extension of Z2 by Z2 in (3.28) and (3.29), and one aboslute theory with
anomalous symmetry Z2 × Zρ

2.
The automorphism group AutZ4(Q) is Z3

2. Taking into account the Aut(Z4) = Z2, one
has O4(Q) = Z2

2 with generator

ρ =

 1 0
2 3

 ξ =

 1 2
0 1

 (4.16)

As one can check that ρ switching two polarizations L1 and L2 can be understood as an
operation of gauging Z4 while ξ is the operation of stacking a non-trivial phase. Thus,
there are four global variants of T4[F1]. They transform under duality r and topological
manipulation ξ and ρ in figure 14.

Note that the absolute theory defined by L3 is not connected with the other four global
variants via topological manipulations because the topological manipulations are Z4 pre-
serving operations while the absolute theory has symmetry Z2 ×Zρ

2 with a mixed anomaly
µ3. This anomaly is the same one found from Z4 discrete gauge theory in equation (3.32).
Similarly, one can detect it from the braidings between the line operations (3.33).

N = 6. The maximal isotropic lattices are

L1 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)} → Z6 = Z3 × Z2

L2 = {(0, 0), (1, 2), (3, 0), (2, 4), (4, 2), (5, 4)} → Zρ
6 = Zρ

3 × Z2
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(Z6)0

(Z6)1

(Zρ
6)0

(Zρ
6)1

1 0
0 1



1 3
0 1



1 3
2 5



1 0
2 5



ρ

ρ

ξ ξ

r

r

Figure 15. Web of transformations for T6[F1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

N 2 3 4 5 6 7 8 9 10 11
AutZN

(Q) Z2 Z2
2 Z3

2 D8 Z3
2 D12 Z5

2 D12 Z2 × D8 D20

Table 3. The automorphism group AutZN
(Q) of F1 up to N = 11.

The theory T6[F1] on the boundary has Z6 symmetry. We can also use its subgroups Z3
and Z2 to denote its global variants. The automorphism group AutZ6(Q) is Z3

2. Taking
into account the Aut(Z6) = Z2, one has O6(Q) = Z2

2 with generator

ρ =

 1 0
2 5

 ξ =

 1 3
0 1

 (4.17)

As one can check that ρ switching two polarizations L1 and L2 while ξ is the operation of
stacking a non-trivial phase. Thus, there are four global variants of T6[F1]. They transform
under duality r and topological manipulation ξ and ρ in figure 15.

General N . With the help of twisted ZN gauge theory, we can study the global variants
of TN [F1] for general N . The possible topological manipulations are determined by the
automorphism group ON (Q). These topological manipulations act transitively on the
global variants and the number of global variants is d(N) = |ON (Q)|. By associating
each global variant with a ON (Q) matrix, we can determine how they transform under the
topological manipulations.

The automorphism group AutZN
(Q) is important for finding the global variants, and

topological manipulations. Besides that, it also gives the 0-form symmetry for the twisted
gauge theory (ZN )N . We compute AutZN

(Q) for N = 2, 3 . . . 11, and identify them to finite
groups in table 3. Note that, for odd N , our results match with the 0-form symmetry for
the twisted gauge theory (ZN )N studied in [167] while, for even N , our approach from the
compactification of 6d SCFT gives the 0-form symmetry of the spin (ZN )N theories.
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4.3 Topological defects

We discuss the non-invertible symmetries for TN [F1]. Analogous to the cases of M4 =
P1 × P1, we need to introduce a parameter R, where MCG(F1) acts on. Then, we study
the non-invertible defect at the fixed point under the duality transformation.

Coupling from geometry. There is a coupling in the theory TN [F1]. We will determine
it from the invariant volume of F1. The duality group MCG(F1) = Z2

2 is discussed in (4.10).
Let us denote the Kahler class (Poincaré dual to the Kahler form) as

J = xb + yf ≡

x

y

 . (4.18)

The volume of the 4-manifold F1 is given by

VF1 = 1
2JT QJ . (4.19)

VF1 is invariant under the base change J → PJ , where P ∈ GL(2,Z) satisfies

P T QP = Q . (4.20)

Hence we conclude that the action of P on the geometry of F1 is exactly given by J ′ = PJ .
We introduce the parameter

R = x

y
(4.21)

that transforms under the elements of MCG(F1). To see its geometric meaning, we compute
the volume of 2-cycles

Vf = J · f = x

Vb = J · b = y − x

Vb+f = Vf + Vb = y .

(4.22)

Hence R is the ratio of the volume of f over the volume of b + f , which are both S2:

R = Vf

Vb+f
. (4.23)

Under the duality transformation r from equation (4.10), the coupling changes as

r(R) = R

2R − 1 . (4.24)

The fixed point is hence R = 1. We will fix the coupling to this value in the following.
In analogy with the P1×P1 case, to construct the duality defect in a global variant M ,

one needs to search for a combination of the topological operations G(ρ, τ), the operation
ρ and stacking SPT phase τ , and the duality F from the MCG(F1) such that FMG = M ,
i.e. the global variant keeps the same. Then the duality defect is given by N = FG at the
fixed point of R. In this way, we find all defects in the global variants of TN [F1] for N is 4,
6 and prime numbers. The result is listed in table 4. Note that the physical explanation of
the topological manipulation ρ is not clear. We will study the fusion rule of these defects
in future work.
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N Theory Defects

2 (Z2)m τr

p Zp,Zρ
p ρr

4 (Z4)m, (Zρ
4)m ξmρrξm

6 (Z6)m, (Zρ
6)m ξmρrξm

Table 4. Topological defects of TN [F1] at R = 1.

5 6d N = (2, 0) SCFTs on del Pezzo surfaces

In this section, we will study the global variants, symmetries, and possible anomalies of
theories TN [M4] when the 4-manifold is a del Pezzo surface dPl with l ≥ 1. The Picard
group generators of dPl are denoted as h, e1, e2, . . . , el, which satisfies the intersection
relations

h2 = 1 , h · ei = 0 , ei · ej = −δi,j (i, j = 1, 2, . . . , l) . (5.1)
The intersection form of dPl is a rank-(l + 1) matrix, of the form

Qij = diag(1,−1, . . . ,−1) . (5.2)

We compute the mapping class group MCG(dPl) and AutZN
(Q), whose elements cor-

respond to the solutions to the equations (2.43) and (2.44). We discuss the choices of
polarization for some examples of l, N . Note that in general

H2(dPl,ZN ) = Zl+1
N . (5.3)

These group elements one-to-one correspond to the genuine topological line operators,
which are labeled by

L(c1,c2,...,cl+1)(γ) =
l+1∏
i=1

exp
(2πi

N

∮
γ

ciai

)
(ci = 1, . . . , N) . (5.4)

Example: dP1. Consider M4 = dP1 with intersection form6

Q =

1 0
0 −1

 (5.5)

The automorphism group of dP1 is isomorphic to Z2
2 given by

I =

 1 0
0 1

 , −I =

−1 0
0 −1

 , s =

 1 0
0 −1

 , −s =

−1 0
0 1

 (5.6)

As before the Z2 subgroup generated by −I corresponds to flipping the orientation. While
the Z2 subgroup generated by s means changing the exceptional divisor e to −e leading to
the non-trivial duality in TN [dP1]. Now, we will discuss their global forms.

6Note that it is not isomorphic to the F0 since one can not find an unimodular matrix G ∈ GL(2,Z)
such that QdP1 = GtQF0 G. In fact, the Picard group of it is the even 2-dimensional unimodular indefinite
lattice II1,1.
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(Z2) (Z2)t1

t11 0
0 1

 0 1
1 0


Figure 16. Web of transformations for T2[dP1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations. Note that the duality
s does not transform between them.

(Zp) (Zp)t2

s

t21 0
0 1

 1 0
0 −1



Figure 17. Web of transformations for Tp[dP1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

N = 2. The only polarization for N = 2 is

L = {(0, 0), (1, 1)} → Z2

Obviously, it is invariant under the duality s. The possible topological manipulation can
be read from the group AutZ2(Q) = Z2 generated by

t1 =

0 1
1 0

 (5.7)

which corresponds to some topological manipulation denoted by t1. Thus, there are two
global forms of T2[dP1]. According to the previous prescription, we can associate each one
with a matrix and the web of the global forms are plotted in figure 16.

N = p. There are two polarizations when N is a prime number, which are given by

L1 = ⟨(1, 1)⟩ → Zp

L2 = ⟨(1,−1)⟩ → (Zp)t2

The possible topological manipulation can be read from the group AutZp(Q) = Z2 gener-
ated by

t2 =

1 0
0 −1

 (5.8)

which corresponds to some Z2 topological manipulation η. Thus, there are two global
forms of Tp[dP1]. According to the previous prescription, we can associate each one with
a matrix and the web of the global forms are plotted in figure 17.
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(Z4) (Zt2
4 )0

(Z4)t3 (Zt2
4 )t3

1 0
0 1

 1 0
0 3



1 2
2 1

 1 2
2 3


Z2 × Z2

t2

t2

t3 t3

s

s

s s

Figure 18. Web of transformations for T4[dP1]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

N = 4. There are three polarizations when N is a prime number, which are given by

L1 = {(0, 0), (1, 1), (2, 2), (3, 3)} → Z4

L2 = {(0, 0), (2, 2), (1, 3), (3, 1)} → (Zt2
4 )

L3 = {(0, 0), (0, 2), (2, 0), (2, 2)} → Z2 × Z2

The possible topological manipulation can be read from the group AutZp(Q) = Z2 × Z2
generated by

t2 =

1 0
0 −1

 , t3 =

1 2
2 1

 (5.9)

which corresponds to some Z2 topological manipulation η and stacking SPT phase. Thus,
there are 4 global forms of T4[dP1] associated with L1 and L3. They transform into each
other in figure 18. However, the polarization is invariant under both s, t2 and t3 are isolated
from L1 and L2.

Let J = xh+ ye with x, y ∈ Z be the Kähler form. One can define the parameter R in
TN [dP1] by

R = Vh

Ve
= −x

y
(5.10)

where

Vh = x, Ve = −y

are the volumes of 2-cycles. Under the duality s, it is easy to check that R → −R. Thus,
the theory admits topological defects only when R = 0. This implies that the divisor h has
zero volume and dP1 is singular. We will not consider singular 4-manifold in this paper.
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Now we discuss the case of M4 = dP2 in detail. The solution of integral T -matrix to
the equation (2.44) forms the discrete group O(1, 2;Z). The generators are

A =


3 2 −2
2 1 −2
2 2 −1

 , S =


1 0 0
0 0 1
0 1 0

 , T1 =


−1 0 0
0 1 0
0 0 1

 , T2 =


1 0 0
0 −1 0
0 0 1

 (5.11)

In particular, they generate all Pythgorean triples (a, b, c) satisfying a2 = b2 + c2 from a
given one.

The O(1, 2;Z) element P act on the Kahler form

J = xh + ye1 + ze2 =


x

y

z

 (5.12)

as J → PJ . The volumes of 2-cycles are

Vh = J · h = x

Ve1 = J · e1 = −y

Ve2 = J · e2 = −z .

(5.13)

The volume of dP2 is
VdP2 = 1

2J · J = 1
2(x

2 − y2 − z2) . (5.14)

Let us introduce two geometric parameters

R1 = −x

y
= VH

VE1
, R2 = y

z
= VE1

VE2
, (5.15)

the O(1, 2;Z) generators acting non-trivially on R1 are R2 are

S · R1 = R1R2 , S · R2 = 1
R2

A · R1 = −3R1R2 + 2R2 − 2
2R1R2 + R2 − 2 , A · R2 = 2R1R2 + R2 − 2

2R1R2 + 2R2 − 1
T1 · R1 = −R1 , T1 · R2 = R2

T2 · R1 = −R1 , T2 · R2 = −R2 .

(5.16)

We discuss the fixed point of (R1, R2) under the actions of some subgroups of O(1, 2;Z).
For the finite subgroup of O(1, 2;Z), the only meaningful one is the Z2 subgroup generated
by S, since if one include A, they must generate an infinite subgroup. For the Z2 subgroup
{I, S}, the fixed point is given by

(R1, R2) = (R1, 1) , (5.17)

which is an extended loci in the terminology of [159].
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N = 2. The maximal isotropic sublattices are labeled as

L1 = {(0, 0, 0), (0, 1, 1)} → Z(1)
2

L2 = {(0, 0, 0), (1, 0, 1)} → Z(2)
2

L3 = {(0, 0, 0), (1, 1, 0)} → Z(3)
2 .

(5.18)

The T solutions to (2.44) areI ,


0 1 0
1 0 0
0 0 1

 ,


1 0 0
0 0 1
0 1 0

 ,


0 0 1
1 0 0
0 1 0

 ,


0 1 0
0 0 1
1 0 0

 ,


0 0 1
0 1 0
1 0 0


 (5.19)

They form an AutZ2(Q) = S3 group, with generators

σ =


1 0 0
0 0 1
0 1 0

 , τ =


0 0 1
0 1 0
1 0 0

 , (5.20)

satisfying
σ2 = τ2 = I , (στ)3 = I . (5.21)

There are six global forms (Z(1)
2 )0, (Z(2)

2 )0, (Z(3)
2 )0, (Z(1)

2 )1, (Z(2)
2 )1, (Z(3)

2 )1, which are
transformed by S3 elements in the same way as the case of M = P1 × P1, N = 2. We plot
the transformations in figure 19.

We also list the topological defects at the fixed point (R1, R2) = (R1, 1), analogous to
the case of T2[P1 × P1]:

Theory Defects
(Z(1)

2 )m, (Z(2)
2 )m τmσSτm

(Z(3)
2 )m τmτSτm

(5.22)

For N = 3, there are 48 T solutions to (2.44), they form a group S4 × Z2, which is
generated by 


1 0 0
0 1 0
0 0 2

 ,


0 1 1
1 1 2
2 1 2

 ,


0 2 2
2 1 2
2 2 1

 ,


2 0 0
0 2 0
0 0 2


 . (5.23)

In the above equation, the first three elements generate the S4 factor, while the last diagonal
matrix generates the Z2 factor. More generally, we list the number n of the solutions
to (2.44) for different N here:

N 2 3 4 5 6 7 8 9 10 11
|AutZN

(Q)| 6 48 128 240 288 672 2048 1296 1440 2640
(5.24)
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(Z(1)
2 )0 (Z(2)

2 )0 (Z(3)
2 )0

(Z(1)
2 )1 (Z(2)

2 )1 (Z(3)
2 )1

S

S

σ

σ

τ τ S

τ
σ


1 0 0
0 0 1
0 1 0




0 0 1
1 0 0
0 1 0




1 0 0
0 1 0
0 0 1




0 0 1
0 1 0
1 0 0




0 1 0
1 0 0
0 0 1




0 1 0
0 0 1
1 0 0



Figure 19. Web of transformations for T2[dP2]. The transformations in orange are the duality
transformations. The transformations in blue are topological manipulations.

From the growth of |AutZN
(Q)|, we can see that TN [dP2] is not simply a ZN gauge theory.

Finally let us briefly discuss the cases of M4 = dPl for l > 2. For M4 = dP3, we list the
number n of solutions to (2.44) for some values of N :

N 2 3 4 5 6 7
n 48 1440 12288 28800 69120 235200

(5.25)

For M4 = dP4, when N = 2, the number of solutions to (2.44) is 720. In general, we will
leave a detailed dicussion of the physics of TN [M4] in the future work.

6 6d N = (2, 0) SCFTs on general 4-manifolds

In this section, we consider TN [M4] with a general 4-manifold M4, which is allowed to
have 1-cycles, 3-cycles, as well as torsional cycles. Using Poincaré duality and universal
coefficient theorem, the general form of homology and cohomology groups are

H∗(S,Z) =
(
Z,Zb1 ⊕

⊕
α

Zlα ,Zb2 ⊕
⊕

α

Zlα ,Zb1 ,Z
)

H∗(S,Z) =
(
Z,Zb1 ,Zb2 ⊕

⊕
α

Zlα ,Zb1 ⊕
⊕

α

Zlα ,Z
)

.

(6.1)
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We denote the free generators of Hn(M4,Z) by vi
n, and the torsional generators of

Hn(M4,Z) by tα
n, then we expand the differential cohomology class Ğ4 as

Ğ4 =
b1∑

i=1
F̆ i

3 ⋆ v̆i
1 +

b2∑
i=1

F̆ i
2 ⋆ v̆i

2 +
b1∑

i=1
F̆ i

1 ⋆ v̆i
3

+
∑

α

B̆α
1 ⋆ t̆α

3 +
∑

α

B̆α
2 ⋆ t̆α

2 .

(6.2)

Plug (6.2) into the SymTFT action of 6d (2,0) theory

S7d = N

4π

∫
Ğ4 ⋆ Ğ4 (6.3)

and expand out the terms. The SymTFT action has two parts, the first part involves the
primary invariant integrated over M4:

S3d,1 = N

4π

 b2∑
i,j=1

∫
M4

v̆i
2 ⋆ v̆j

2

∫
W3

F̆ i
2 ⋆ F̆ j

2 +
b1∑

i,j=1
2
∫

M4
v̆i

1 ⋆ v̆j
3

∫
W3

F̆ i
3 ⋆ F̆ j

1

 . (6.4)

The second part involves the secondary invariant integrated over S:

S3d,2 = N

4π

∑
i,α

∫
M4

v̆i
2 ⋆ t̆α

3

∫
W3

F̆ i
2 ⋆ B̆α

1 +
∑
i,α

∫
M4

v̆i
3 ⋆ t̆α

2

∫
W3

F̆ i
1 ⋆ B̆α

2

+
∑
α,β

∫
M4

t̆α
2 ⋆ t̆β

3

∫
W3

B̆α
2 ⋆ B̆β

1

 .

(6.5)

After plug in F i
2 = dai, F i

1 = dci
0 and F i

3 = dbi, the terms (6.4) become

S3d,1 = N

4π

 b2∑
i,j=1

∫
M4

v̆i
2 ⋆ v̆j

2

∫
W3

ai ∧ daj +
b1∑

i,j=1
2
∫

M4
v̆i

1 ⋆ v̆j
3

∫
W3

ci
0 ∧ dbj

 (6.6)

For the terms (6.5), the terms on the first line can be eliminated by redefining v̆i
2 →

v̆i
2 + miαtα

2 and v̆i
3 → v̆i

3 + niαtα
3 (miα, niα ∈ Z). The remaining terms are

S3d,2 = N

4π

∑
α,β

∫
M4

t̆α
2 ⋆ t̆β

3

∫
W3

B̆α
2 ⋆ B̆β

1 . (6.7)

6.1 T 2 × S2

As an example of M4 with odd-dimensional cycles, we consider the dimensional reduction
of 6d (2,0) AN theory on M4 = T 2 × S2, which results in various 2d theories TN [T 2 × S2]
with certain amounts of supersymmetries.

The 4-manifold T 2 × S2 has homology and cohomology groups

H∗(T 2 × S2,Z) = (Z,Z2,Z2,Z2,Z)
H∗(T 2 × S2,Z) = (Z,Z2,Z2,Z2,Z) .

(6.8)
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We denote the generators of H i(T 2 ×S2,Z) by ωi, ω̂i (i = 1, 2, 3). We can thus expand the
3-form c as

c = b ∧ ω1 + b̂ ∧ ω̂1 + a ∧ ω2 + â ∧ ω̂2 + c0 ∧ ω3 + ĉ0 ∧ ω̂3 . (6.9)

After integrating the 7d topological action (2.1) over T 2 ×S2, we obtain the 3d topological
action

S3d = N

4π

∫
M3

a ∧ dâ + â ∧ da + b ∧ dĉ0 − ĉ0 ∧ db − b̂ ∧ dc0 + c0 ∧ db̂

= 2π

N

∫
M3

aδâ + bδĉ0 − b̂δc0 .

(6.10)

On the second line, the gauge fields all become ZN -valued cochains. a and â are gauge
fields for ZN 0-form symmetries, analogous to the case of TN [P1 × P1]. b and b̂ are gauge
fields for ZN 1-form symmetries. c0 and ĉ0 are scalars, which can be thought as background
gauge fields for ZN (−1)-form symmetries. Note that the two ZN 1-form symmetries are
mutually local, which leads to the prediction that the 2d theory may have a Γ(1) = Z2

N

1-form symmetry.

6.2 Enriques surface

An Enriques surface S is a complex surface with torsional homology and cohomology groups

H∗(S,Z) = (Z,Z2,Z10 ⊕ Z2, 0,Z)
H∗(S,Z) = (Z, 0,Z10 ⊕ Z2,Z2,Z) .

(6.11)

The surface has topological invariants

χ(S) = 12 , σ(S) = −8 . (6.12)

Hence the central charge of the 2d theory TG[S] is

cR = 6rG

cL = 12rG .
(6.13)

Let us expand the differential cohomology class Ğ4 as

Ğ4 =
10∑

i=1
F̆ i

2 ⋆ v̆i
2 + B̆1 ⋆ t̆3 + B̆2 ⋆ t̆2 . (6.14)

F̆ i
2 are field strengths of gauge fields ai (i = 1, . . . , 10), the background gauge fields of U(1)

0-form global symmetries. B̆1 and B̆2 are background gauge fields of Z2 0-form and 1-form
global symmetries. Geometrically, v̆i

2 corresponds to the free part Z10 of H2(S,Z). t̆3 and
t̆2 corresponds to the Z2 torsion of H3(S,Z) and H2(S,Z) respectively. In the Poincaré
dual language, t̆3 corresponds to the Z2 torsional 1-cycle [Σ1], and t̆2 corresponds to the
Z2 torsional 2-cycle [Σ2] on S.

Plug (6.14) into the SymTFT action of 6d (2,0) theory

S3d = N

4π

∫
Ğ4 ⋆ Ğ4 (6.15)
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and expand out the terms. The SymTFT action has two parts, the first part involves the
primary invariant integrated over S:

S3d,1 = N

4π

10∑
i,j=1

∫
S

v̆i
2 ⋆ v̆j

2

∫
W3

F̆ i
2 ⋆ F̆ j

2 . (6.16)

∫
S v̆i

2 ⋆ v̆j
2 can be computed with the intersection form on the Enriques surface, with is the

unimodular matrix I1,9 with signature (1, 9).∫
S

v̆i
2 ⋆ v̆j

2 = Qij

Q = diag(1,−1,−1, . . . ,−1) .
(6.17)

Hence after reducing to the 3d ’t Hooft anomaly polynomial, we have

S3d,1 = N

4π

∫
W3

Qijai ∧ daj , (6.18)

where we contracted i, j indices.
The second part involves the secondary invariant integrated over S:

S3d,2 = N

2π

( 10∑
i=1

∫
S

v̆i
2 ⋆ t̆3

∫
W3

F̆ i
2 ⋆ B̆1 +

∫
S

t̆2 ⋆ t̆3

∫
W3

B̆2 ⋆ B̆1

)
. (6.19)

Now let us evaluate the coefficients in the SymTFT action. First, we can set∫
S

v̆i
2 ⋆ t̆3 = 0 (6.20)

by redefining v̆i
2 → v̆i

2 + mit̆2 (mi ∈ Z). This shifting do not affect the computation
of (6.17). Finally, the last term

∫
S t̆2 ⋆ t̆3 is computed via the linking pairing7

∫
S

t̆2 ⋆ t̆3 = link([Σ1], [Σ2]) =
1
2 . (6.21)

The final SymTFT expression is

S3d = N

4π

 10∑
i,j=1

Qij

∫
W3

F̆ i
2 ⋆ F̆ j

2 +
∫

W3
B̆2 ⋆ B̆1

 . (6.22)

It is qualitatively different for even N and odd N . For odd N , there is a mixed ’t
Hooft anomaly between a Z2 1-form symmetry (with background gauge field B2) and a
Z2 0-form symmetry (with background gauge field B1). For even N , the mixed ’t Hooft
anomaly term is absent.

7The linking pairing must equal to 1
2 , because it is non-degenerate.
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7 Conclusion and outlook

In this paper we studied the symmetry TFT and duality defects of 2d CFTs obtained
from compactification of the 6d (2, 0) theory of AN−1-type on 4-manifolds M4. We focused
mainly on the case of M4 = P1 × P1 while also working out details of F1 and del Pezzo
surfaces as well as more general complex surfaces. We find that such compactifications
give rise to a rich multitude of duality networks and interesting defect fusion categories
including non-invertible defects. A main message is that the combination of geometric
dualities coming from M4 and topological transformations on the field theory side together
produce the full structure of 0-form symmetries. While in some cases the global variants
and their connections on the 2d side were known previously from field theory constructions,
we find that our geometric approach allows for a much more efficient classification. We find
invertible defects by studying maximal isotropic sublattices of H2(M4,ZN ) and their com-
plements giving rise to Abelian fusion categories in 2d. The corresponding fusion category
in the bulk SymTFT is then the quantum double of the one on the boundary. Moreover, we
find non-invertible defects which are realized at fixed points of coupling constants under the
discrete automorphisms of M4. Here, coupling constants correspond to ratios of volumes
of 2-cycles of M4 and the discrete automorphisms act as generalized T-dualities on these.

In the case of del Pezzo surfaces, the structure seems to be more intricate and it is
not immediately clear how to choose topological boundary conditions for the SymTFT
which does not seem to be the quantum double of any known fusion category. However,
the geometric method of choosing maximal isotropic sublattices does give rise to Abelian
fusion categories on the boundary which can then be identified with possible topological
boundary conditions. To get a more complete picture of the ultimate structure of the 2d
TDLs one needs a thorough analysis of the SymTFT at the Lagrangian and field theoretical
level. We leave this to future work.

Another interesting direction is to study SymTFTs arising from reductions for 6d (1,0)
SCFTs. Reductions of such theories on a 4-manifold would give rise to 2d theories with
half of the amount of supersymmetry and have richer physics [62, 63]. Besides that, the
compactification of 6d (2,0) SCFTs on T 2 × S2 is expected to give various 2d SQCDs. It
would be compelling to investigate the TDL structures of these theories in the far infra-red
region, and compare them to our general SymTFT analysis employed in this paper. We
also plan to explore these topics in future studies.
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